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Separation and mass spectrometry in microbial metabolomics
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Measurements of low molecular weight metabolites have been

increasingly incorporated in the characterization of cellular

physiology, qualitative studies in functional genomics, and

stress response determination. The application of cutting edge

analytical technologies to the measurement of metabolites and

the changes in metabolite concentrations under defined

conditions have helped illuminate the effects of perturbations in

pathways of interest, such as the tricarboxylic acid cycle, as

well as unbiased characterizations of microbial stress

responses as a whole. Owing to the complexity of microbial

metabolite extracts and the large number of metabolites

therein, advanced and high-throughput separation techniques

in gas chromatography, liquid chromatography, and capillary

electrophoresis have been coupled to mass spectrometry –

usually high-resolution mass spectrometry, but not exclusively

– to make these measurements.
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Introduction
Genomics, proteomics, and transcriptomics have all made

considerable contributions to the field of functional geno-

mics. However, understanding of the genome, transcrip-

tome, and proteome is not enough to fully characterize
www.sciencedirect.com
cellular function. For example, the proteome cannot be

completely predicted from the transcriptome owing to

differences in regulatory mechanisms at the protein level

(e.g. post-translational modifications). Furthermore, an

approach based solely on transcriptomics will also be

inadequate, since there are many genes that are not under

transcriptional control.

The metabolome, however, is further from gene expres-

sion and, thus, more closely reflects the activities of a cell at

a functional level. Furthermore, many metabolites are not

exclusively involved in a single metabolic pathway, so it is

only when the metabolome is characterized as a whole – or

all associated metabolic pathways – that the pathway(s) of

interest can be identified with a high degree of certainty.

The time it takes for the metabolome to reflect a change

may vary depending on the perturbation in question, thus

the timing of sample acquisition and the methods used to

identify and quantitate the metabolome are crucial.

A universal quenching and extraction protocol for

microbes does not yet exist; however, a detailed review

of such procedures has been written recently [1]. Pre-

viously the extraction of phosphorylated compounds has

proven difficult, which is problematic because of the

importance of phosphorylated compounds in metabolism

(e.g. ATP). This difficulty is many-faceted owing to the

potential for cleavage of phosphate groups in a highly

aqueous environment [2], as a result of the interaction

with phospholipids in the cell [3�], and because tripho-

sphates are readily hydrolyzed (enzymatically or non-

enzymatically) even after exposure of the cells to organic

solvent [4]. Despite this, extraction procedures have been

developed to improve the yield of phosphorylated com-

pounds and continue to be improved [2–4].

Owing to the wide range of physiochemical properties

and concentration ranges of metabolites there is no one

method that can separate, detect, and identify all known

metabolites. Mass spectrometry (MS) is a popular tool

that, given the complexity of microbial metabolic

extracts, requires a chromatographic separation to reduce

isobaric interferences (i.e. compounds of the same mass

being indistinguishable in the mass spectrometer) and ion

suppression (i.e. more easily ionizable species masking

the presence of less ionizable species). In this review we

discuss several chromatographic techniques that compli-

ment each other because they are able to resolve com-

pounds of differing physiochemical properties.
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Metabolomics by GC–MS
Gas chromatography coupled to mass spectrometry (GC–

MS) is a very popular tool within the field of metabolo-

mics [5–7,8��]. The majority of the GC–MS metabolite

profiling applications are focused on plant metabolomics

rather than microbiological or biomedical research. Since

all plant metabolites originate from the plant machinery

itself [9], interpretation of metabolite profiles in plants are

more straightforward than for microorganisms and mam-

malian cells. However, rapid development in the field of

metabolic engineering and recent advances in analytical

techniques have resulted a growing focus in microbial

metabolomics [1,10�].

While MS provides individual mass spectra that can

differentiate between co-eluting metabolites that are

chemically diverse, the main advantages of GC over other

separation techniques are a high separation efficiency (as

highlighted by its ability to distinguish isomeric com-

pounds), ease of use, robustness, and low cost [6,7,8��].
GC–MS is a technique that usually yields extensive and

highly reproducible fragmentation because of the stan-

dardized use of electron ionization (EI), which has

enabled metabolites to be identified by matching their

relative retention times, retention or Kovats indices, and

mass spectral fragmentation patterns, to known and pre-

dicted information available from extensive databases

(e.g. the NIST and Wiley database) [5]. It is noteworthy

that the large amount of chromatographic and spectral

data generated in metabolomics by GC–MS requires

special de-convolution and identification software plat-

forms (e.g. AMDIS, AnalyzerPro and LECO Chroma-

TOF) [11,12].

A major drawback of GC–MS is that analytes are required

to be volatile. Since a large number of metabolites are

non-volatile, time-consuming derivatization steps are

required [11,13]. Furthermore, thermally labile com-

pounds, such as phosphorylated metabolites, can easily

degrade when exposed to the high temperatures in the

GC oven. Additionally, metabolites can have varying

affinities for derivatizing agents, which could lead to

inaccurate quantification unless derivatized chemical

standards and data correction strategies are used to nor-

malize for such a bias [14]. One must also be aware of the

formation of byproducts from the derivatization pro-

cedure [15], as well as the possible conversion of analytes

(e.g. arginine to ornithine, cyclization of open-chain

sugars, decarboxylation of alpha-ketoacids, etc.) and/or

degradation of the final product(s) (e.g. the hydrolysis of

trimethylsilyl derivatives), which could lead to misinter-

pretation of the data generated. A two-step derivatization

method (e.g. methoximation followed by silylation), can

provide a wider coverage of analyzable metabolites [16].

Although GC–MS is a well-established analytical tech-

nique and most of its metabolomics publications focus on
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applications rather than method development and/or

optimization [17,18,19��], the extremely complex nature

of biological samples required enhanced separation per-

formance and improved instrumentation, which led to the

development of multidimensional separation techniques,

such as GC–GC time of flight (TOF)–MS [18,20]. This

novel approach presents a dramatically improved peak

separation capacity and an increase in sensitivity, while

TOF–MS provides a very fast scanning rate and

additional sensitivity for improved detection. Further-

more, the application of two different GC columns (i.e.

polar/non-polar) can provide greater metabolite detection

coverage for metabolomics analysis, via improved selec-

tivity [21–23]. Despite this recent advance, GC–GC–

TOF–MS is not yet routinely used in metabolomics

partly because of practical problems (e.g. optimization

of fraction modulation) and partly because of high instru-

ment cost.

Metabolomics by LC–MS
The combination of GC–MS with liquid chromatography

coupled to mass spectrometry (LC–MS) can provide

greater coverage of the metabolome [24]. Smilde et al.
were able to detect a very high number (93%) of the

commercially available metabolites of the in silico meta-

bolome of Bacillus subtilis and Escherichia coli. Similar

coverage (95–97%) was achieved for the same microor-

ganisms and Saccharomyces cervisiae with the application of

six different analytical methods [10�]. It must be noted,

however, that only around half of the estimated metab-

olites were commercially available as reference com-

pounds, which confers a higher degree of confidence in

the identification of metabolites.

As a standalone technique, LC–MS is still prominent

among the technologies currently available to perform

metabolic profiling not only because there is no need to

derivatize analytes, but also because LC has demon-

strated its ability to resolve large numbers of metabolites

[25,26]. LC separations that are compatible with electro-

spray ionization (ESI) are desirable because of the polar

and ionizable nature of most metabolites [10�]. Even

though ESI is the most commonly used ionization tech-

nique with LC, techniques such as APCI [27] and APPI

[28] are becoming increasingly popular due to their appli-

cability to less polar metabolites. Additionally, LC is an

attractive alternative to GC because it is a particularly

versatile separation technique: varying the stationary and

mobile phases through approaches like ion pairing (IP)

LC–MS [29], hydrophilic interaction liquid chromatog-

raphy (HILIC) MS [24,30], and reverse phase LC–MS

[31–33] allows for the simultaneous quantitative analysis

of different classes of important metabolites.

The HILIC–MS obtained metabolic fingerprint of

starvation stress response by E. coli and Saccharomyces
cervisiae [34�] is an example of the benefit of LC–MS
www.sciencedirect.com
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because the metabolites did not require derivatization.

Upon carbon or nitrogen starvation, the changes in con-

centration of 68 cellular metabolites were measured.

Quantitative changes in metabolic profiling have also

been measured with an isotopic dilution strategy [35],

where fully isotopically labeled metabolites are used as

internal standards. LC–ESI–MS–MS analysis of these

pooled samples was utilized to measure glycolytic and

tricarboxylic acid cycle intermediates in Saccharomyces
cervisiae following a glucose pulse. In addition to quanti-

fication, isotopic labeling has also been used to assign

molecular formulae to single compounds [36�].

Metabolomics by CE–MS
Capillary electrophoresis (CE) offers several potential

advantages over GC and LC for the analysis of complex

mixtures of metabolites, including even higher separation

efficiencies, extremely small sample injection volumes

(nL range), rapid method development, and low reagent

costs. CE–MS is commonly utilized with electrospray

ionization (ESI) and, like LC–MS, can also be used for

structural elucidation via tandem mass spectrometry [37].

CE may be used to perform highly efficient separations of

a wide range of sample types, and can even be used to

separate intact microorganisms as well [38]. The simplest

and most commonly applied mode of CE is capillary zone

electrophoresis (CZE), which has been used to separate

charged analytes from the lysate of microorganisms

[3�,39,40]. The incorporation of additives, such as surfac-

tants, into the separation buffer can be used to separate

neutral and charged compounds via Micellar Electroki-

netic Chromatography (MEKC) [41]. Both APCI [27] and

APPI [28] have been coupled with CE to measure less

polar compounds, and the latter has also been coupled to

MEKC separations, which are not normally compatible

with ESI [28]. Chiral compounds can also be separated by

adding cyclodextrins to the separation buffer [42]. Both

MEKC and the chiral method have been used as quality

control assays to determine the level of impurities that

have arisen from the production of amino acids by fer-

mentation [43].

Recently, a comprehensive and quantitative survey of

anionic and cationic metabolites from E. coli was con-

ducted via CE–MS [3�]. From the results obtained, 375

charged hydrophilic intermediates in primary metabolism

were identified, of which 198 were quantified, further

cementing the notion that CE–MS can make a major

contribution to the field of microbial metabolomics. CE–

MS has also been used in functional genomics studies on

various microorganisms, including response to antibiotics

[44], salt [45], and cadmium stress [40].

The main limitation of CE is the lack of sensitivity due to

small sample injection volumes, especially when coupled

to MS. The sample can be further diluted by a sheath
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liquid. However, the combination of a reduced sheath

flow rate and the employment of online sample precon-

centration procedures, such as pH-mediated stacking and

transient isotachophoresis [46], can achieve sensitivities

similar to that of current LC–MS protocols. Furthermore,

the dilution effect brought about by the sheath flow can

be avoided entirely by using a sheathless interface [47].

Current CE–MS protocols that utilize an acidic electro-

lyte, such as formic acid, appear to be among the best

approaches for measuring cationic species, as they can

yield highly efficient separations, with extremely good

sensitivity [3�,39,40]. The measurement of anions

appears to be more difficult, primarily because a reversal

of the electroosmotic flow (EOF) is often required to

achieve highly efficient separations [3�]. Furthermore,

this separation strategy requires the use of rather expens-

ive coated fused silica capillaries. In 2006, however,

Harada et al. published a method that utilized conven-

tional CE separation with an EOF and a supplementary

pressure gradient to achieve highly efficient separations

of coenzyme-As, organic acids, nucleotides and sugar

phosphates [48�]. A similar approach was also used to

measure sugar phosphates, including regioisomers such as

hexose-6-phosphate and hexose-1-phosphate, from the

lysate of E. coli [37].

The characterization of unknown metabolites is one of

the biggest challenges that face metabolomics today. The

current strategy used by most laboratories is to utilize the

relative migration times of chemical standards, together

with mass spectral information, for the identification of

unknown metabolites. Such a strategy requires a large

chemical standards library, which can be extremely

costly. To circumvent this problem, a computer-simu-

lated algorithm was developed to predict the CE

migration profile of charged analytes [49�]. Physicochem-

ical properties such as mobility and acid dissociation

constants were used for the simulation. There was excel-

lent agreement between experimental and simulated

relative migration times, with an average error of <2%.

Thus, prediction simulations would ensure the charac-

terization of metabolites that are not readily synthesized

or commercially available [49�].

Data mining
Metabolomics data sets are complex owing to the large

amounts of data that are generated in three dimensions

(i.e. the mass spectra of individual components, their

retention times and their intensities). The main obstacle

is the extraction of all the useful information that is

present in the raw data. While peak de-convolution

algorithms have been developed, automated peak picking

and integration still remains an important challenge. This

is complicated by the wide range of peak intensities, peak

asymmetry, and spectral interferences (which is con-

nected to the resolving power of a mass analyzer and
Current Opinion in Microbiology 2008, 11:233–239
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the abundance of an analyte), all of which can lead to

incorrect assignments of differences [50]. Current soft-

ware packages that can perform data extraction from

normalized mass spectra and total ion chromatograms

include Agilent MassHunter MFE, Bruker Metabolite

Detect, ACD/Labs IntelliXtract/CODA and NIST

AMDIS.

Extensive libraries are required to identify all the mined

data. There are well-established spectral libraries for GC–

MS that contain up to 606,000 spectra (Palisade 600k

Ed.). However, in the case of LC–MS and CE–MS, it is

more difficult to obtain a standardized spectral library

owing to a high instrument dependent variability and

variable source conditions. Thus, laboratories are nor-

mally responsible for building up their own spectral

libraries.

The final step to complete a metabolomics study is the

application of relevant statistical tests in order to deter-

mine metabolic differences or target components that are

characteristic of a sample and/or conditions [50]. The use

of post-data collection statistical methods can greatly

minimize variations in analytical observations such as

retention time, mass accuracy, and signal intensity [51].

The most rigorous statistical method is multivariate data

analysis [52].

Application of metabolomics tools for
isotopomer-based flux analysis
Metabolic flux analysis via 13C labeling is a high-through-

put technology to quantitatively track metabolic path-

ways and determine overall enzyme function in cells.

Metabolic fluxes are the functional output of the com-

bined transcriptome, proteome, and metabolome. These

data bridge contemporary functional analyses of the cel-

lular phenotype [53,54]. The essence of 13C-based meta-

bolic flux analysis is the precise measurement of the

labeling patterns of targeted metabolites from tracer

experiments to determine the complex metabolic net-

work [53,55]. Traditionally, isotopomer analysis of metab-

olites is mainly carried out by the measurement of

proteinogenic amino acids via nuclear magnetic reson-

ance (NMR) spectroscopy [56–58] or GC–MS

[13,59,60,61�,62,63].

Recently, high-resolution and highly sensitive mass spec-

trometers have been used to precisely measure the label-

ing pattern of both amino acids and metabolites in central

metabolic pathways at nanomolar concentrations. LC–

MS–MS has been used for the determination of intra-

cellular amino acids to profile metabolic flux changes

during fed-batch cultivation [64�]. CE coupled to time-

of-flight MS (CE–TOF–MS) has been applied to measure

the isotopomer distribution of 13 unstable metabolites in

central metabolism, including some unstable phosphory-

lated molecules such as 3-P-glycerate, phosphoenolpyru-
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vate, and ribose-5-P [65�]. Direct infusion via ESI

coupled to Fourier transform ion cyclotron resonance

MS (FT-ICR MS) was able to measure the metabolite

isotopomer distribution in a biomass hydrolysate of Desul-
fovibrio vulgaris Hildenborough, unveiling an unusual

citrate synthase activity [66,67]. Labeling measurements

of metabolites other than amino acids should enable the

flux analysis of more complicated metabolic networks

(such as mammalian cells) and therefore improve the

accuracy of flux determination.

Conclusions
As metabolic quenching and extraction protocols are

improved, the vast array of separation techniques that

can be coupled to MS in the pursuit of metabolomic

analysis will have to be further developed. Presently there

is no one technique that seems capable of easily resolving

the hundreds of metabolites present in microbial extracts.

Although there are academic endeavors to accomplish

exactly that, the most comprehensive metabolite cover-

age has come from the combination of using multiple and

overlapping separations that compliment each other in

their ability to resolve compounds of differing physio-

chemical properties. Furthermore, metabolome quanti-

tation is complicated by the lack of comprehensive and

automated data mining software, the need to perform

statistical analyses to minimize the effects of variations in

analytical observations, and may miss the mark entirely

when drawing conclusions about cellular activity and

function without the application of flux analysis to the

results. In a rather short period, however, the field of

metabolomics has blossomed from a seemingly imposs-

ible undertaking to a fruitful laboratory practice that

allows us to address scientific questions that were pre-

viously inaccessible.
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