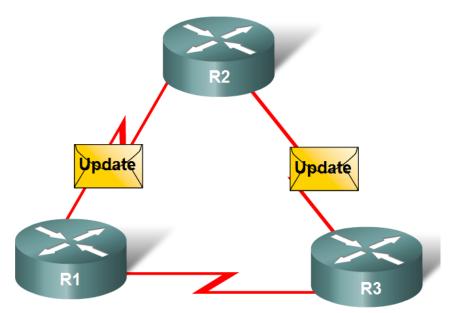


Introduction to Dynamic Routing Protocol

Routing Protocols and Concepts – Chapter 3


Cisco Networking Academy® Mind Wide Open®

Objectives

- Describe the role of dynamic routing protocols and place these protocols in the context of modern network design.
- Identify several ways to classify routing protocols.
- Describe how metrics are used by routing protocols and identify the metric types used by dynamic routing protocols.
- Determine the administrative distance of a route and describe its importance in the routing process.
- Identify the different elements of the routing table.

- Function(s) of Dynamic Routing Protocols:
 - -Dynamically share information between routers.
 - -Automatically update routing table when topology changes.
 - -Determine best path to a destination.

Routers Dynamically Pass Updates

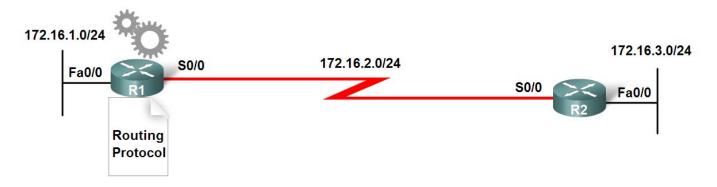
- The purpose of a dynamic routing protocol is to:
 - -Discover remote networks
 - -Maintaining up-to-date routing information
 - -Choosing the best path to destination networks
 - -Ability to find a new best path if the current path is no longer available

Routing Protocol Operation

Routing protocols are used to exchange routing information between the routers.

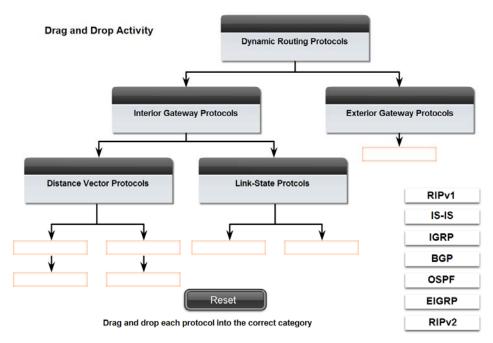
Components of a routing protocol

Algorithm


In the case of a routing protocol algorithms are used for facilitating routing information and best path determination

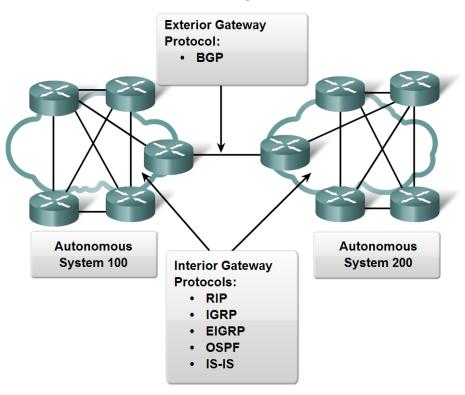
Routing protocol messages

These are messages for discovering neighbors and


Routing Protocol Operation

Routing protocols are used to exchange routing information between the routers.

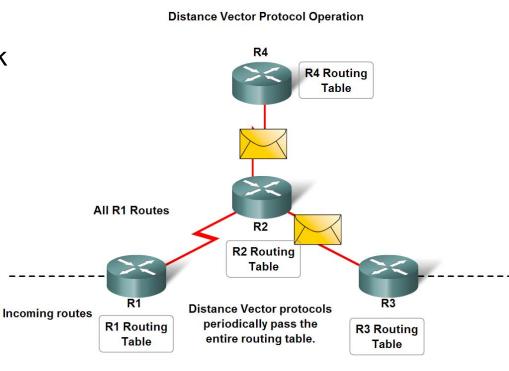
- Advantages of static routing
 - -It can backup multiple interfaces/networks on a router
 - -Easy to configure
 - -No extra resources are needed
 - -More secure
- Disadvantages of static routing
 - -Network changes require manual reconfiguration
 - -Does not scale well in large topologies


- Dynamic routing protocols are grouped according to characteristics. Examples include:
 - -RIP
 - -IGRP
 - -EIGRP
 - -OSPF
 - -IS-IS
 - -BGP

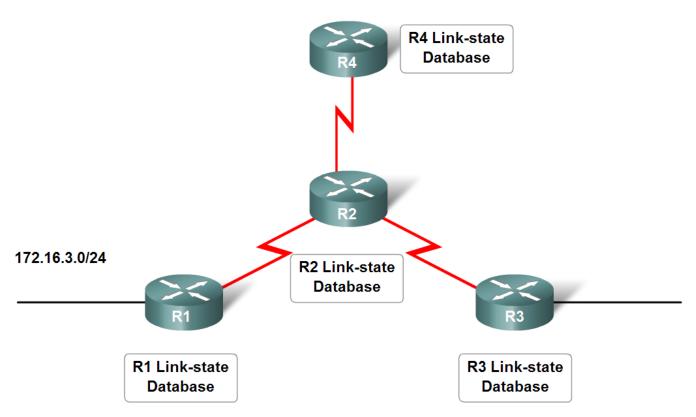
 Autonomous System is a group of routers under the control of a single authority.

- Types of routing protocols:
 - -Interior Gateway Protocols (IGP)
 - -Exterior Gateway Protocols (EGP)

- Interior Gateway Routing Protocols (IGP)
 - -Used for routing inside an autonomous system & used to route within the individual networks themselves.
 - -Examples: RIP, EIGRP, OSPF
- Exterior Routing Protocols (EGP)
 - -Used for routing between autonomous systems
 - -Example: BGPv4


IGP: Comparison of Distance Vector & Link State Routing Protocols

Distance vector

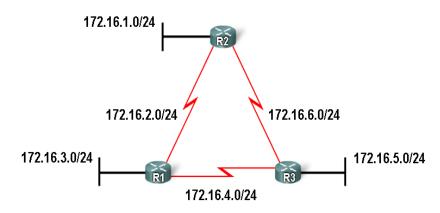

- routes are advertised as vectors of distance & direction.
- incomplete view of network topology.
- Generally, periodic updates.

Link state

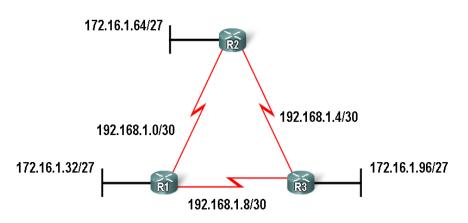
- complete view of network topology is created.
- updates are not periodic.

Link-state Protocol Operation

Link-state protocols pass updates when a link's state changes.

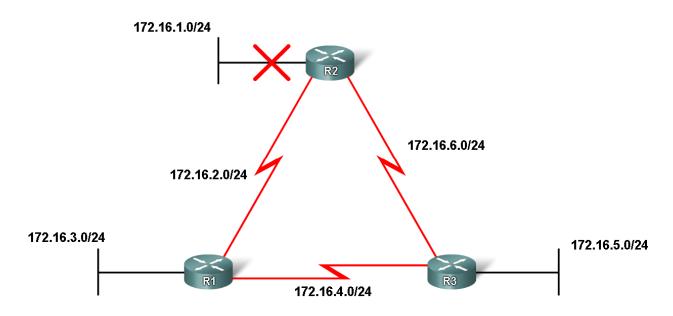

Classful routing protocols

Do NOT send subnet mask in routing updates


Classless routing protocols

Do send subnet mask in routing updates.

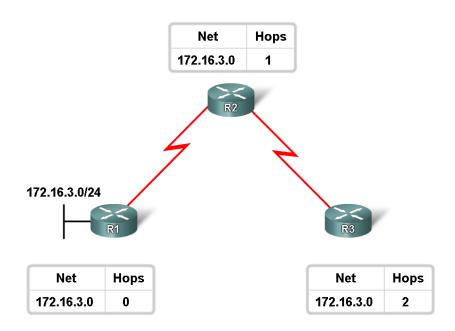
Classful vs. Classless Routing


Classful: Subnet mask is the same throughout the topology

Classless: Subnet mask can vary in the topology

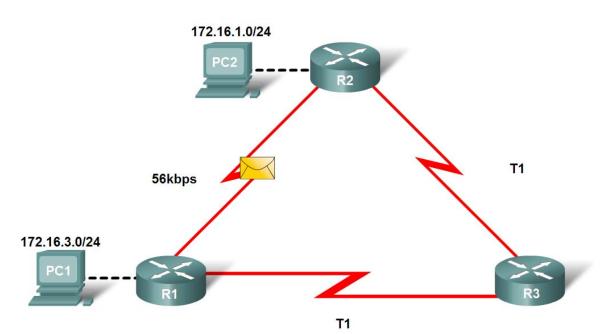
 Convergence is defined as when all routers' routing tables are at a state of consistency

Comparing Convergence


Slower Convergence: RIP and IGRP Faster Convergence: EIGRP and

OSPF

Metric

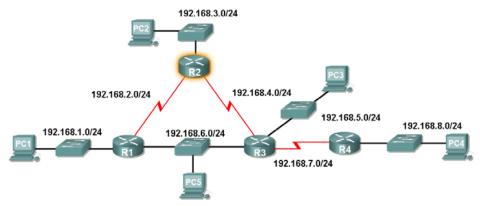

A value used by a routing protocol to determine which routes are better than others.

Metrics

- Metrics used in IP routing protocols
 - -Bandwidth
 - -Cost
 - -Delay
 - -Hop count
 - -Load
 - -Reliability

Hop count vs. Bandwidth

RIP chooses shortest path based on hop count. OSPF chooses shortest path based on bandwidth.

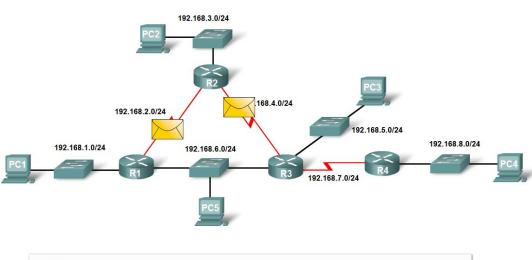

- The Metric Field in the Routing Table
- Metric used for each routing protocol

-RIP - hop count

-IGRP & EIGRP -Bandwidth (used by default), Delay (used by default), Load, Reliability

-IS-IS & OSPF – Cost, Bandwidth (Cisco's implementation)

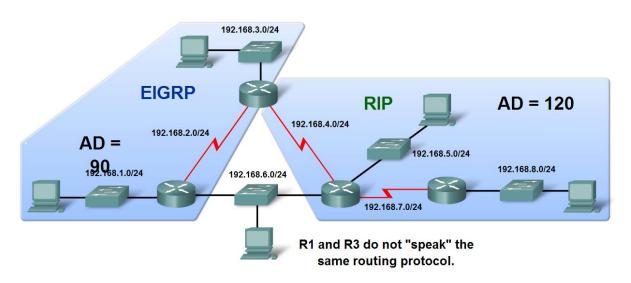
Metric in the Routing Table



Load balancing

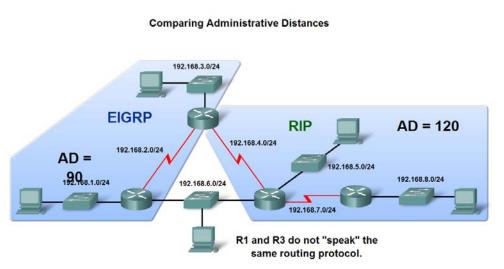
This is the ability of a router to distribute packets among multiple same cost paths

Load Balancing Across Equal Cost Paths


Purpose of a metric

It's a calculated value used to determine the best path to a destination

Purpose of Administrative Distance


It's a numeric value that specifies the preference of a particular route

Comparing Administrative Distances

 Identifying the Administrative Distance (AD) in a routing table

It is the first number in the brackets in the routing table


```
R2#show ip route

<output omitted>

Gateway of last resort is not set

D    192.168.1.0/24 [90/2172416] via 192.168.2.1, 00:00:24, Serial0/0/0
C    192.168.2.0/24 is directly connected, Serial0/0/0
C    192.168.3.0/24 is directly connected, FastEthernet0/0
C    192.168.4.0/24 is directly connected, Serial0/0/1
R    192.168.5.0/24 [120/1] via 192.168.4.1, 00:00:08, Serial0/0/1
D    192.168.6.0/24 [90/2172416] via 192.168.2.1, 00:00:24, Serial0/0/0
R    192.168.7.0/24 [120/1] via 192.168.4.1, 00:00:08, Serial0/0/1
R    192.168.8.0/24 [120/2] via 192.168.4.1, 00:00:08, Serial0/0/1
```

```
R2#show ip rip database
192.168.3.0/24 directly connected, FastEthernet0/0
192.168.4.0/24 directly connected, Serial0/0/1
192.168.5.0/24
[1] via 192.168.4.1, Serial0/0/1
192.168.6.0/24
[1] via 192.168.4.1, Serial0/0/1
192.168.7.0/24
[1] via 192.168.4.1, Serial0/0/1
192.168.8.0/24
[2] via 192.168.4.1, Serial0/0/1
```

Dynamic Routing Protocols

Route source	Default AD
Connected interface	0
Static	1
EIGRP summary route	5
eBGP	20
EIGRP (Internal)	90
IGRP	100
OSPF	110
IS - IS	115
RIP	120
EIGRP (External)	170
iBGP	200
Unknown	255

Directly connected routes

Have a default AD of 0

Static Routes

Administrative distance of a static route has a default value of

```
R2#show ip route 172.16.3.0
Routing entry for 172.16.3.0/24
Known via "static", distance 1, metric 0 (connected)
Routing Descriptor Blocks:
* directly connected, via Serial0/0/0
Route metric is 0, traffic share count is 1
```


Directly connected routes

-Immediately appear in the routing table as soon as the interface is configured

Summary

- Dynamic routing protocols fulfill the following functions
 - -Dynamically share information between routers
 - -Automatically update routing table when topology changes
 - -Determine best path to a destination
- Routing protocols are grouped as either
 - -Interior gateway protocols (IGP)Or
 - -Exterior gateway protocols(EGP)
- Types of IGPs include
 - -Classless routing protocols these protocols include subnet mask in routing updates
 - -Classful routing protocols these protocols do not include subnet mask in routing update

Summary

- Metrics are used by dynamic routing protocols to calculate the best path to a destination.
- Administrative distance is an integer value that is used to indicate a router's "trustworthiness"
- Components of a routing table include:
 - -Route source
 - -Administrative distance
 - -Metric

