Optimization of Intrusion Detection Systems in Wireless Sensor Networks

DTEDI

Martin Stehlík

DTEDI – Introduction to my research Faculty of Informatics, Masaryk University, Brno

November 2012

Wireless Sensor Network (WSN)

• Highly distributed network which consists of many low-cost sensor nodes and a base station (or sink) which gathers the observed data for processing.

Sensor node (TelosB)

- Microcontroller
 - 8 MHz, 10 kB RAM
- External memory
 1 MB
- Radio
 - 2.4 GHz, 250 kbps
- Battery
 - 2 x AA (3 V)
- Sensors
 - Temperature, light, humidity, ...

Security

- WSNs are more vulnerable than conventional networks by their nature.
- Sensor nodes:
 - Have lower computational capabilities.
 - Have limited energy supply.
 - Can be easily captured.
 - Are not tamper-resistant.
- WSNs are deployed in hostile environment.

Attacker model

- Passive attacker
 - Eavesdrops transmissions.
- Active attacker
 - Alters data.
 - Drops or selectively forwards packets.
 - Replays packets.
 - Injects packets.
 - Jams the network.
 - => can be detected by *Intrusion Detection System* \odot

Intrusion detection system (IDS)

• IDS can monitor packets addressed to itself.

Local monitoring

• IDS can overhear and monitor communication of its neighbors.

Watchdog monitoring

IDS techniques

- Many techniques have been proposed to detect different attacks.
- We can measure:
 - Packet send & delivery ratio.
 - Packet sending & receiving rate.
 - Carrier sensing time.
 - Sending power.
- And monitor:
 - Packet alteration.

IDS optimization

- Sensor nodes are limited in its energy and memory.
- Better IDS accuracy usually requires:
 - *Energy* (network lifetime).
 - *Memory* (restriction to other applications).
- ⇒ **Trade-off** between *IDS accuracy* and *WSN performance*.
- Parameters of IDS can be optimized!

IDS optimization framework

Why do we simulate WSN?

- New protocols and security approaches are being developed rapidly => need to investigate and explore their functionality.
- Time of implementation and runtime (e.g. battery depletion).
- Simulation of hundreds or thousands of sensor nodes during development of new WSN solutions.
- Verifiability of results.
- Repeatability of tests.

Simulation of WSN

- Accurate simulation of wireless channel and energy consumption is important to verify our proposals.
- Protocols which work during simulations may fail in real environment because of simplicity of the model.
- Many simulators of different quality are available.
- Some of them are developed specifically for wireless networks or even for WSN, others are generic or generic with specific extension/framework.

Simulation of WSN

- Model should represent:
 - Environment.
 - Radio signal propagation.
 - Topology.
 - Physical properties of sensor nodes (radio chips and batteries).
 - Protocols (PHY and MAC).
- We performed comprehensive comparison in the past.
- Currently we use:
 - MiXiM.
 - TOSSIM.

IDS optimization framework

Simulator

- *Input:* candidate solution represented as a simulation configuration.
 - Number of monitored neighbors.
 - Max. number of buffered packets.
- *Output:* statistics of a simulation.
 - Detection accuracy.
 - Memory and energy consumption.
- *Simulation:* specific WSN running predefined time configured according to the candidate solution.

IDS optimization framework

Optimization engine

- *Input:* statistics from the simulator.
 - Detection accuracy.
 - Memory and energy consumption.
- *Output:* new candidate solution(s) in form of simulation configurations.
 - Number of monitored neighbors.
 - Max. number of buffered packets.
- *Algorithms:* <u>evolutionary algorithms</u>, particle swarm optimization, ant colony optimization, ...

Multi-objective evolutionary algorithms

• Single aggregate objective function

$$\frac{1}{2|C|} * \sum_{c_i \in C} \frac{x(c_i)}{n(c_i)} + \frac{1}{2|A|} * \sum_{a_i \in A} \frac{y(a_i)}{n(a_i)} + 0.1 \frac{1}{|C|} * \sum_{c_i \in C} \frac{1}{1+m(c_i)}$$

- Pareto-based ranking schemes.
 - Set of non-dominated solutions.

Pareto front

• Set of non-dominated solutions.

Comparison of MOEA

- Quality of Pareto front approximation.
- Diversity of found solutions.
- Speed of convergence.
- => All based on:
 - Algorithms (NSGA-II, SPEA2).
 - Mutation and crossover probabilities.
 - Population size.
 - Number of generations.

Thesis proposal

- Examination of the optimization techniques.
 - Evolutionary algorithms, multi-objective evolutionary algorithms, coevolutionary algorithms.
- Optimization of IDS for specific attacks.
 - Selective forwarding attack, delay attack, data modification attack, jamming attack and Sybil attack.
- Impact of topology, wireless channel model, traffic and environment on the optimization.
 - Robust solutions for complex changing environments.

Thesis proposal

- Investigation of options for configurations of the whole network stack using optimization techniques or semi-automatically.
 - Application, network, MAC and PHY layer. Intrusion detection system.
- Integration of the found solutions into a working IDS design framework for wireless sensor networks.
 - Framework will be tested in our laboratory testbed and released under a suitable open access license.
- Interdisciplinary research.
 - WSN, security, optimizations.

Thank you for your attention.

Questions?

Evolutionary algorithms

• Inspired in nature.

Stochastic operators: Representation depender "Darwinism" (stochastic or determinist) Main CPU cost

Checkpointing: stopping criterion and statistics

Source: http://eodev.sourceforge.net/eo/tutorial/html/EA_tutorial.jpg

NSGA-II

- Nondominated Sorting Genetic Algorithm II.
- Two criteria:
 - Ranking using nondominance concept (convergence).
 - Crowding distance (diversification).

Source: J. Branke, B. Scheckenbach, M. Stein, K. Deb, H. Schmeck, Portfolio optimization with an envelope-based multi-objective evolutionary algorithm, 2009.

SPEA2

- Strength Pareto Evolutionary Algorithm 2.
- Fitness value based on:
 - Number of dominating solutions and their strength of dominance.
 - Density estimation.

Source: E, Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, 2001.

Our test case

- Tools:
 - Simulator MiXiM, ParadisEO, BOINC.
- Wireless channel model:
 - Based on own results for outdoor environment.
- MAC layer.
 - CSMA.
- Topology:
 - 100, 250 and 500 uniformly distributed sensor nodes.
 - Topology corresponding to the lab testbed.

Our test case

- IDS:
 - Detection of selective forwarding and dropping based on watchdog monitoring.
- Optimized parameters:
 - p1 number of nodes to be monitored. Influences accuracy and memory usage.
 - p2 number of packets stored in a buffer. Influences accuracy and memory usage.
 - p3 number of packets received. Influences accuracy.
 - p4 detection threshold. Influences accuracy.

Coevolutionary algorithms

- Competitive Coevolutionary Algorithms.
 - Individuals are rewarded at the expense of those with which they interact.
- Cooperative Coevolutionary Algorithms.
 - Individuals are rewarded when they work well with other individuals.
- Would it be possible to use coevolutionary algorithms to optimize the IDS?
- The first population would aim to produce the best IDS while the second population would produce more and more sophisticated attacks.