
Control Explicit—Data Symbolic Model Checking

Petr Bauch

supervised by: Jǐŕı Barnat

November 22, 2012

P. Bauch (ParaDiSe) Execution-Based Verification 1 / 14



Introduction

to Execution-Based Verification

P. Bauch (ParaDiSe) Execution-Based Verification 2 / 14



Formal Verification

given a program, decide, using rigorous mathematical methods, if the
program is correct (against behaviour specification)

• undecidable in theory (of computability)

ϕ : N→ N, ψ : N→ N;ϕ
?
= ψ

• difficult in practice

power of specification
formal informal

size of program
small large

P. Bauch (ParaDiSe) Execution-Based Verification 3 / 14



Transition System

verifying that a program satisfies a formula by checking that its transition
system is a model of the formula

• execution generates a transition system

• states are
evaluation of variables,
program counter(s),
heap, stack content

• transitions are execution of commands

• branching is caused by
conditions,
cycles,
thread interleaving

a = 5
b = 6

pc = 35

a = 5
b = 7

pc = 33

if (a ≤ 5)

b := a + 1

P. Bauch (ParaDiSe) Execution-Based Verification 4 / 14



Execution-Based Verification

execute the system while concurrently checking the specification

• Testing (arbitrary program)

a = 5
b = 7

a = 22
b = 3

a > 10

a ≤ 10
closed system

safety specification

P. Bauch (ParaDiSe) Execution-Based Verification 5 / 14



Execution-Based Verification

execute the system while concurrently checking the specification

• Symbolic Execution (no multiplication or cycles)

a > 5
b ≥ 7

a > 5 a ≤ 5

a > 10

a ≤ 10
open system

safety specification

J. King. Symbolic Execution and Program Testing. Commun. ACM, 19(7):385–394,
1976.

P. Bauch (ParaDiSe) Execution-Based Verification 5 / 14



Execution-Based Verification

execute the system while concurrently checking the specification

• Model Checking (small, parallel programs; communication protocols)

a = 5
b = 7

a = 22
b = 3

a > 10

a > 10

closed system

temporal specification

M. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program
Verification. In Proc. of LICS, pages 332–344, 1986.

P. Bauch (ParaDiSe) Execution-Based Verification 5 / 14



Long-Term Objectives

overcome the limitations of individual methods

• testing: more user friendly
• automatic (Godefroid, et. al., 2008)
• parallelism (Simsa, et. al., 2010)

• symbolic execution: more robust
• temporal properties (Braione, et. al., 2008)
• parallelism (Păsăreanu, et. al., 2003)
• cycles (Trt́ık, et. al., 2012)

• model checking: smaller state space
• symbolic representation (McMillan, et. al., 1992)
• bounded approach (Biere, et. al., 1999)
• parallel approach (Barnat, et. al., 2001)

P. Bauch (ParaDiSe) Execution-Based Verification 6 / 14



Explicit vs Symbolic Model Checking

• explicit:
states forming the transition system are stored explicitly
better for asynchronous, control-flow nondeterministic systems
allow parallel processing

• symbolic:
transition system is encoded into a logical formula
better for synchronous, data-flow nondeterministic systems
parallelisation is difficult

C. Eisner and D. Peled. Comparing Symbolic and Explicit Model Checking of a Software
System. In SPIN volume 2318 of LNCS, pages 230–239. Springer, 2002.

P. Bauch (ParaDiSe) Execution-Based Verification 7 / 14



State of the Art

towards complete and precise verification of parallel software
against temporal specification

bytecode

LTL
parallel complete

precise

open programs

umbrellaed verification

P. Bauch (ParaDiSe) Execution-Based Verification 8 / 14



Symbolic Execution

• states (path conditions) represented as linear constraints
use state-of-the-art libraries [1], e.g. Omega library [2]
– fast, unbounded variable evaluation, Presburger arithmetic

1. A. Coen-Porisini and G. Denaro and C. Ghezzi and M. Pezzé. Using Symbolic
Execution for Verifying Safety-Critical Systems. In Proc. of ESEC/FSE, pages 142–151,
2001.

2. W. Pugh. A Practical Algorithm for Exact Array Dependence Analysis.
Communications of the ACM, 35(8):102–114, 1992.

P. Bauch (ParaDiSe) Execution-Based Verification 9 / 14



Symbolic Execution

• handle nondeterminism, parallelism by generating execution
interleavings

• no state equivalence → no accepting cycle detection → no temporal
specification

S. Khurshid, C. Păsăreanu, and W. Visser. Generalized Symbolic Execution for Model
Checking and Testing. In TACAS, volume 2619 of LNCS, pages 553–568. Springer, 2003.

P. Bauch (ParaDiSe) Execution-Based Verification 9 / 14



Symbolic Execution

• handle loops: unwind [1], invariants [2], path counters [3]

1. J. King. Symbolic Execution and Program Testing. Commun. ACM, 19(7):385–394,
1976.

2. S. Khurshid, C. Păsăreanu, and W. Visser. Generalized Symbolic Execution for Model
Checking and Testing. In TACAS, volume 2619 of LNCS, pages 553–568. Springer, 2003.

3. J. Strejček and M. Trt́ık. Abstracting Path Conditions. In Proc. of ISSTA, pages
155–165, 2012.

P. Bauch (ParaDiSe) Execution-Based Verification 9 / 14



Symbolic Execution

• handle complex operations: state-of-the-art decision procedures [1],
SMT solvers (bit-vectors, arrays), trigonometric functions [2]

1. S. Anand and C. Păsăreanu and W. Visser. JPF-SE: A Symbolic Execution Extension
to Java PathFinder. In TACAS, volume 4424 of LNCS, pages 134–138. Springer, 2007.

2. M. Souza and M. Borges and M. d’Amorim and C. Păsăreanu. CORAL: Solving
Complex Constraints for Symbolic PathFinder. In NFM volume 6617 of LNCS, pages
359–374. Springer, 2011.

P. Bauch (ParaDiSe) Execution-Based Verification 9 / 14



Symbolic Execution

• handle bytecode as input language

C. Păsăreanu and N. Rungta. Symbolic PathFinder: Symbolic Execution of Java
Bytecode. In Proc. of ASE, pages 170–180, 2010.

P. Bauch (ParaDiSe) Execution-Based Verification 9 / 14



Explicit Model Checking

• model checking real code: C [1], Microcode [2], Simulink [3],
LLVM [4]

1. M. Musuvathi and D. Park and A. Chou and D. Engler and D. Dill. CMC: A Pragmatic
Approach to Model Checking Real Code. OSR, 36:75–88, 2002.

2. B. Schlich. Model checking of Software for Microcontrollers. PhD thesis, Aachen
University, 2008.

3. J. Barnat, J. Beran, L. Brim, T. Kratochv́ıla, and P. Ročkai. Tool Chain to Support
Automated Formal Verification of Avionics Simulink Designs. In FMICS, volume 7437 of
LNCS, pages 78–92. Springer, 2012.

4. J. Barnat, L. Brim, and P. Ročkai. Towards LTL Model Checking of Unmodified
Thread-Based C&C++ Programs. In NFM, volume 7226 of LNCS, pages 252–256.
Springer, 2012.

P. Bauch (ParaDiSe) Execution-Based Verification 10 / 14



Symbolic Model Checking

• standard representation (Binary Decision Digram) is exponential for
integer multiplication [1] → model checking with Binary Moment
Diagram [2] and Boolean Expression Diagram [3]

1. R. Bryant. On the Complexity of VLSI Implementations and Graph Representations of
Boolean Functions with Application to Integer Multiplication. IEEE Trans. Comput.,
40(2):205–213, 1991.

2. R. Bryant and Y.-A. Chen. Verification of Arithmetic Circuits with Binary Moment
Diagrams. In Proc. of DAC, pages 535–541, 1995.

3. P. Williams, A. Biere, E. Clarke, and A. Gupta. Combining Decision Diagrams and SAT
Procedures for Efficient Symbolic Model Checking. In CAV, volume 1855 of LNCS, pages
124–138. Springer, 2000.

P. Bauch (ParaDiSe) Execution-Based Verification 11 / 14



Symbolic Model Checking

• smaller state space using bounded approach, allows to use
state-of-the-art satisfiability procedures, such as SAT [1] or SMT
(satisfiability modulo theory) [2]

1. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic Model Checking
Using SAT Procedures instead of BDDs. In Proc. of DAC, pages 317–320, 1999.

2. A. Armando, J. Mantovani, and L. Platania. Bounded Model Checking of Software
Using SMT Solvers Instead of SAT Solvers. In SPIN, volume 3925 of LNCS, pages
146–162. Springer, 2006.

P. Bauch (ParaDiSe) Execution-Based Verification 11 / 14



Explicit/Symbolic Combination
handle combination of control and data -flow

• multiple explicit states in one symbolic [1,2]

• explicit property, symbolic system description [3,4]

1. A. Cimatti, M. Roveri, and P. Bertoli. Searching Powerset Automata by Combining
Explicit-State and Symbolic Model Checking. In TACAS, volume 2031 of LNCS, pages
313–327. Springer, 2001.

2. A. Duret-Lutz, K. Klai, D. Poitrenaud, and Y. Thierry-Mieg. Self-Loop Aggregation
Product — A New Hybrid Approach to On-the-Fly LTL Model Checking. In ATVA,
volume 6996 of LNCS, pages 336–350. Springer, 2011.

3. A. Biere, E. Clarke, and Y. Zhu. Multiple State and Single State Tableaux for
Combining Local and Global Model Checking. In Correct System Design, volume 1710 of
LNCS, pages 163-179. Springer, 1999.

4. R. Sebastiani, S. Tonetta, and M. Vardi. Symbolic Systems, Explicit Properties: On
Hybrid Approaches for LTL Symbolic Model Checking. In CAV, volume 3576 of LNCS,
pages 100–246. Springer, 2005.

P. Bauch (ParaDiSe) Execution-Based Verification 12 / 14



Research Goals

• combine explicit and symbolic approaches to model checking

• explicit control, symbolic data

• investigate symbolic representation for software model checking

• propose new representation for better performance

the goal is umbrellaed verification

P. Bauch (ParaDiSe) Execution-Based Verification 13 / 14



Achieved Results

• extended DiVinE with support for symbolic data representation
(multi-states)

• proposed requirements on the symbolic representation for use in
explicit model checking

• case study experiments: DVE, Simulink

• experiments show potential towards umbrellaed verification

P. Bauch (ParaDiSe) Execution-Based Verification 14 / 14


