
Jiří Kolář
Faculty of Informatics
Masaryk University
kolar@fi.muni.cz

Integration technologies in
Java

PA165
autumn
2012

Speaker introduction

Jiří Kolář
● Phd student of Doc. Tomas Pitner
● Member of LaSArIS Lab
● Research in Business Process Management
● Industry Partnership coordination

○ Red Hat, IBM etc..
● Process analyst
● Background in System Integration
● More on:

○ http://www.fi.muni.cz/~xkolar2

Lecture summary

● Motivation
● 2 Levels of integration

○ Application level, system level
● Application level: Component containers

○ JBI , OSGi
BREAK 10mins;
● System Integration

○ Messaging – approaches, standards, technologies
○ Integration patterns
○ Middleware architecture approaches
○ Integration scenarios, examples

What should you learn today

● Basic idea of integration and its importance
● Rough idea why and how to integrate:

○ System components together
○ Systems together

● Overview of key technologies in area of
integration

● Overview of architectonic approaches to
integration

● Understand integration schemas

Integration on application level

● Integration of components within one system
○ Autonomous components communicating together

inside one application container
○ Example: In one application server (J2EE)

● Operating system level:
○ Standardized communication of OS kernel with

applications

● Communication among apps through OS
○ Example: D-BUS Linux

Motivation for integration on
Application level

● Component based approach to SW design
○ Independent isolated components
○ Universal reusable components
○ Component encapsulation
○ Minimal public interfaces
○ Provision of services
○ „Components marketplace“

● Platform/environments interconnection
○ Programming languages
○ Runtime environments
○ Operating systems

Component containers in Java

● Runtime environment for components
● Whole container runs as a service inside

application server
● Container serve in component life-cycle

usually:
○ Deploy
○ Init
○ Start
○ Stop
○ Undeploy

● First attempt to standardize a meta-container
● Proposed by SUN Microsystems

○ Implemented in OpenESB a Apache Service Mix
○ Lack of wide acceptance across other vendors

● Define architecture of plug-in components
○ Standard does not define components
○ Components communicating through messaging

● Components can serve as containers
(nesting)
○ Examples:

■ BPEL engine
■ XSLT transformation engine

JBI

JBI Architecture- ESB

● Modern standard used in micro-containers
○ Strong support from Eclipse Foundation
○ BTW: Initial purpose was smart homes :)
○ Specification defined for:

■ J2EE
■ Java SE
■ Java ME

● Used in major JavaEE Application servers
○ Lower level than JBI
○ More versatile and simplified
○ Make POJO sexy again

OSGi framework

● Dynamic component model
○ Support of component lifecycle
○ Possibility of manipulation with components in

runtime
○ Dynamic classloading

● Components provide functionality as a
service
○ Service management
○ Service registry

OSGi framework

OSGi framework components

● Components (bundles) are simple *.jar
○ Component description stored in MANIFEST.MF

■ Component dependencies
■ Versioning
■ Metadata

OSGi container example:
JBoss Microcontainer

● Big hype few years ago
● Consensus of Big players

○ Glassfish (SUN), SpringSource, JBoss (Red Hat),
○ WebSphere (IBM), Weblogic (Oracle)..

● Strict component approach
● Idea: ”From scratch and more simple”

● However: 10 years of standardization and 2
years of massive use? Hopefully not.

OSGi conclusions

OSGi based products:

● Equinox– referenční implementace OSGi
(EclipseRT)

● Virgo – OSGi container (WS/AS)
(EclipseRT)

● JbossAS

● Apache ServiceMix 4.X.X (with JBI on top)

OSGi vs JBI

● JBI
○ Put emphasis on integration and data transformation
○ Probably "obsolete" today
○ Define NMR and inter-component communication

● OSGi
○ Universal, modular framework
○ Specification for many programming languages, not

just Java
○ Lightweight, low level

Break 10 mins

● Interconnection of autonomous systems and
autonomous environments
○ (EAI – Enterprise Application Integration)
○ Very heterogenous environment
○ Various communication protocols
○ Various interfaces and APIs
○ Components within one system

■ Finance, E-commerce, ERP, Internal systems
● Provision of services between systems

○ Business partners, Customers, Government ..
○ Web Services, public APIs
○ Necessity of orchestration = BPM

System integration

● Legacy systems
○ Old but good and reliable software
○ Wrapped to provide modern interfaces (WS etc..)

● Interconnection of autonomous Enterprise
Information Systems
○ Various EIS within one organisation/enterprise
○ Provision of functionally to "outside world":

■ Customers
■ Business partners

● Acquisitions and splitting of Enterprises
● Outsourcing of services

Motivation (System Integration)

Messaging systems

● Messaging models
○ Point to Point
○ Publisher-Subscriber

● Distributed messaging (clustering)
○ Messaging in

cloud
● Persistence
● Monitoring
● Management

JMS – Messaging API in JavaEE
● Standardized messaging API
● High level, hide implementation details
● Implemented in major messaging

systems
● Used both for communication inside

and across systems
● Application integration in J2EE

● AMQP Consortium
standard
○ Wire level protocol
○ Define also API

● Implementations
○ Qpid – Apache
○ RabbitMQ – Vmware
○ Red Hat Enterprise

MRG (Qpid-based)

AMQP - messaging protocol
standard

Web services

● Standardized interface, widely used
● Fits well in heterogenous environment
● Most common technology in system

integration nowadays
● Need for”service registry”
● Need for orchestration (BPM)
● Significant overhead, not usable in high

throughput scenarios
● Different protocols and approaches

○ SOAP
○ REST

BPM: orchestration vs choreography
(More in PV207 - BPM)

● Choreography
○ Services communication "logic" hardcoded in

components
○ components "know about each other"
○ Communication scenarios being held by

services/applications
● Orchestration

○ Services are orchestrated by "conductor"
■ Business Process Execution engines
■ Business Rules

○ Communication "logic" being held conductor

Integration patterns

● Design patterns for integration
● Like GoF, but started by Apache Foundation

● Standardization effort
● Describe ”best practices” in integration

● Supported by various integration platforms
● Supported by design environments and tools

Integration patterns:
Publisher-Subscriber

Integration patterns:
Translator and message router

● Architectonic concepts
● Describe "logic" of integration
● Different concepts can be based on the

same physical representation
(implementation) and vice versa

● Implementation of complex integration
concept can be sometimes relatively simple

Middleware architecture concepts

Integration architecture:
Service hub

Integration architecture:
Service hub

● Older approach, but still widely used
● + Smaller overhead
● + simple management
● - Less flexibility in message transformation
● - Not useful for more complex topologies

○ Ex.: cascaded / distributed integration

Integration architecture:
Enterprise Service Bus

● Messages are:
○ Translated to "normalised format" (typically JMS)
○ Processed by any components if required
○ Translated to output format
○ Translation is performed by adapters

(binding components)

Integration architecture:
Enterprise Service Bus

● Primary in context of Java and Web Services
● + More flexible– better support of integration

patterns
● + Better for more complex topologies

○ Clustering, cascading, distributed ESB etc...
● - Higher overhead (lower throughput)
● + More complicated management of flows

Service Bus (ESB)

Scenario: Loans

● A bank run internal system for Loans
management
○ There is a Cobol module computing Loan Risk value
○ Bank want their resellers to be able to use this

module
○ Resellers want to integrate this functionality into their

own systems
● Bank want to verify profile of client in

national database of debtors and dodgers

Scenario: Loans

Scenario: Cloud integration

An enterprise "E" use:

● Cloud based CRM
● Internal system for accounting
● Internal e-store

Enterprise "E" wants to integrate those together

Scenario: Cloud integration

● A Broker "B" perform acquisition of their
smaller competitor "C"

● Competitor "C" has perfect system for stock
portfolio management

● Broker "B" has also one containing all their
clients , but not as good as the new one
○ Migration is planned for 3 years
○ They need to use both systems in parallel for this

period
● There are strict throughput and reliability

requirements

Scenario: Acquisition

Scenario: Acquisition

Integration issues and problems

● Incompatible protocol implementations
● Changes in public APIs

● Malformed data
○ Messages validation
○ Errors in data transfers

● Security

● Performance
● Isolated cloud technologies

FIN
Questions?

Jiří Kolář
Faculty of Informatics
Masaryk University
kolar@fi.muni.cz

PA165
autumn
2012

