Integration technologies in
Java

PA165 Jiri Kolar
autumn Faculty of Informatics

Masaryk University
kolar@fi.muni.cz

2012

Speaker introduction

Jiri Kolar

Phd student of Doc. Tomas Pitner
Member of LaSArIS Lab
Research in Business Process Management

Industry Partnership coordination
o Red Hat, IBM etc..

Process analyst
Background in System Integration

More on:
o http://www.fi.muni.cz/~xkolar2

Lecture summary

e Motivation

e 2 Levels of integration
o Application level, system level

e Application level: Component containers
o JBI, OSGi

BREAK 10mins;

e System Integration
o Messaging — approaches, standards, technologies
o Integration patterns
o Middleware architecture approaches
o Integration scenarios, examples

What should you learn today

e Basic idea of integration and its importance

e Rough idea why and how to integrate:

o System components together
o Systems together

e Overview of key technologies in area of
Integration

e Overview of architectonic approaches to
iIntegration

e Understand integration schemas

Integration on application level

e Integration of components within one system
o Autonomous components communicating together
iInside one application container
o Example: In one application server (J2EE)

e Operating system level:
o Standardized communication of OS kernel with
applications

e Communication among apps through OS
o Example: D-BUS Linux

Motivation for integration on

Application level

e Component based approach to SW design
o |Independent isolated components

Universal reusable components

Component encapsulation

Minimal public interfaces

Provision of services

,LComponents marketplace”

O O O O O

e Platform/environments interconnection
o Programming languages
o Runtime environments
o Operating systems

Component containers in Java

e Runtime environment for components

e \Whole container runs as a service inside
application server

e Container serve in component life-cycle

usually:

o Deploy ?

o Init | STARTING
o Start — ;qui) Stant ‘ n

o Stop (REsoweD ACTVE |
o Undeploy I [o

—»{ UNINSTALLED | STOPPING |

JBI

e First attempt to standardize a meta-container
e Proposed by SUN Microsystems

o Implemented in OpenESB a Apache Service Mix
o Lack of wide acceptance across other vendors
e Define architecture of plug-in components

o Standard does not define components
o Components communicating through messaging

e Components can serve as containers

(nesting)
o Examples:
m BPEL engine
m XSLT transformation engine

JBIl Architecture- ESB

e/ /. /]

JBI Transformation, Routing,
and Correlation Services

ServiceMix Enterprise Service Bus

JBI Binding Components
// \\er// S/ N\

OSGi framework

e Modern standard used in micro-containers
o Strong support from Eclipse Foundation
o BTW: Initial purpose was smart homes :)
o Specification defined for:
m J2EE
m Java SE
m Java ME

e Used in major JavaEE Application servers
o Lower level than JBI
o More versatile and simplified
o Make POJO sexy again

OSGi framework

e Dynamic component model
o Support of component lifecycle
o Possibility of manipulation with components in
runtime
o Dynamic classloading

e Components provide functionality as a

service
o Service management
o Service registry

STOFPING

OSGi framework components

e Components (bundles) are simple *.jar
o Component description stored in MANIFEST.MF
m Component dependencies

m Versioning
m Metadata

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-MName: HelloWorld Flug-in

Bundle-SymbolicMame: com.javaworld. sample. HelloWorld
Bundle-Version: 1.0.0

Bundle-Activator: com. javaworld. sample. helloworld. Activator
Bundle-Vendor: JAVAWORLD

Bundle-Localization: plugin

Import-Package: org.osgi.framework; versior="1.3 Q"

package com.javaworld. sample. hellowarld;
import org.osgil. framework. BundleActivator,
import org.osgl. framework. BundleContext;
public class Activator implements BundleActivator {
public void start({BundleContext context) throws Exception {
System. out. println("Hello world");
}
public void stoplBundleContext context) throws Exception {

System. out. printlni "Goodbye World");

OSGi container example:

JBoss Microcontainer

/ N
JBossAS

| Rulesem | aop | [. J
[wsiRest | [web |

OSGi conclusions

e Big hype few years ago

e Consensus of Big players

o Glassfish (SUN), SpringSource, JBoss (Red Hat),
o WebSphere (IBM), Weblogic (Oracle)..

e Strict component approach
e |dea: "From scratch and more simple”

e However: 10 years of standardization and 2
years of massive use? Hopefully not.

OSGi based products:

e Equinox— referencni implementace OSGi
(EclipseRT)

e Virgo — OSGi container (WS/AS)
(EclipseRT)

e JbOsSsSAS

e Apache ServiceMix 4.X.X (with JBI on top)

OSGi vs JBI

o JBI

o Put emphasis on integration and data transformation
o Probably "obsolete" today
o Define NMR and inter-component communication

o OSGi

o Universal, modular framework

o Specification for many programming languages, not
just Java

o Lightweight, low level

Break 10 mins

System integration

e Interconnection of autonomous systems and

autonomous environments

o (EAI — Enterprise Application Integration)

Very heterogenous environment

Various communication protocols

Various interfaces and APls

Components within one system

m Finance, E-commerce, ERP, Internal systems

e Provision of services between systems
o Business partners, Customers, Government ..

o Web Services, public APls
o Necessity of orchestration = BPM

o O O O

Motivation (System Integration)

e | egacy systems
o Old but good and reliable software
o Wrapped to provide modern interfaces (WS etc..)

e Interconnection of autonomous Enterprise

Information Systems
o Various EIS within one organisation/enterprise
o Provision of functionally to "outside world":

m Customers

m Business partners

e Acquisitions and splitting of Enterprises
e QOutsourcing of services

Messaging systems

e Messaging models
o Point to Point
o Publisher-Subscriber

e Distributed messaging (clustering)

o Messaging in

cloud
e Persistence
Delivers

Monitoring
C—
Subscribes

e Management pb—h’
Delivers

s

JMS - Messaging API in JavaEE

e Standardized messaging API
e High level, hide implementation details
e Implemented in major messaging

systems
e Used both for communication inside
and across systems s

e Application integration in J2EE
Connection
*Create;
I lh)ﬁr%%suaoge? | lCreates f Sasclon \ Creates| lchg?‘sssha"g':rl
Sgrr;ds Creates Receives

Msg

AMQP - messaging protocol

standard

e AMQP Consortium

standard

o Wire level protocol
o Define also API

e Implementations
o Qpid — Apache
o RabbitMQ — Vmware
o Red Hat Enterprise
MRG (Qpid-based)

Encoding

Types

Broker

WCF | JMS

Application

Queue | Topic Producer | Consumer

Messaging Transactions

Link

Session

Channel

Connection

Framing

Version Negotiation

Security

Security Negotiation

TCP SCTP | RDMA

UDP

Web services

e Standardized interface, widely used

e Fits well in heterogenous environment

e Most common technology in system
integration nowadays

e Need for’service registry”

e Need for orchestration (BPM)

e Significant overhead, not usable in high
throughput scenarios

e Different protocols and approaches
o SOAP
o REST

BPM: orchestration vs choreography

(More in PV207 - BPM)

e Choreography
o Services communication "logic" hardcoded in
components
o components "know about each other"
o Communication scenarios being held by
services/applications

e Orchestration
o Services are orchestrated by "conductor”
m Business Process Execution engines
m Business Rules
o Communication "logic" being held conductor

Integration patterns

e Design patterns for integration
e Like GoF, but started by Apache Foundation

e Standardization effort
e Describe "best practices” in integration

e Supported by various integration platforms
e Supported by design environments and tools

Integration patterns:

Publisher-Subscriber

—% |

Address Subscriber
Changed

Publisher Address Address Subscriber
Changed Changed

— %]

Publish-Subscribe Address Subscriber

Channel

Changed

Integration patterns:

Translator and message router

Translator

o
I
12

N

Incoming Message Translated Message

— || P ||

Tk

outGQueue 1

f%——_»

inGQueue

t—b-—/:_—

% | : outGQueue 2

ks
kS
e ﬁ

L

Message
Router

Middleware architecture concepts

e Architectonic concepts

e Describe "logic" of integration

e Different concepts can be based on the
same physical representation
(implementation) and vice versa

e Implementation of complex integration
concept can be sometimes relatively simple

Integration architecture:

Service hub

‘ Application server ! (Misc system !

Legacy app

(Legacy app

Integration architecture:

Service hub

Older approach, but still widely used

+ Smaller overhead

+ simple management

- Less flexibility in message transformation

- Not useful for more complex topologies
o EX.: cascaded / distributed integration

Integration architecture:

Enterprise Service Bus

e Messages are:
o Translated to "normalised format" (typically JMS)
o Processed by any components if required
o Translated to output format
o Translation is performed by adapters
(binding components)

e T T

JBI Transformation, Routing,
and Correlation Services

ServiceMix Enterprise Service Bus

JBI Binding Components

Integration architecture:

Enterprise Service Bus
. Event Listeners and, ... [IENOWIN [CEUNET] [Parers] .

Actions % Pluggable Architecture | Runs Within a Container or -
Provide Transport Mediation . For Integrating Infrastructure Se vices | :'Standalone |
I P ol :
| : Infrastructure Services Business Sevice Comporents| -
+ Transports |
| :
: |
' ;
5 A
l l
j; A, (4 ,
, ASCI .
XML |
| Binary :
’ i
: ;

. @D

. Visual '

! Studio I

i . |

; Exc ' I . :
— 3 ' |

! ! Aactive 3 !

! I ®endpoints Y ;

Service Bus (ESB)

e Primary in context of Java and Web Services
e + More flexible— better support of integration
patterns

e + Better for more complex topologies
o Clustering, cascading, distributed ESB etc...

e - Higher overhead (lower throughput)
e + More complicated management of flows

Scenario: Loans

e A bank run internal system for Loans
management

o There is a Cobol module computing Loan Risk value

o Bank want their resellers to be able to use this
module

o Resellers want to integrate this functionality into their
own systems

e Bank want to verify profile of client in
national database of debtors and dodgers

Scenario: Loans

Bank's private space Public space

(Internet) s \\

/

|

| Reseller's App
|

|

|

Reseller

|
|
|
|
|
l
]
Bank internal system | |
I O/;\/v /
N s
|
|
|
|
]
|
|
|
|
|

i N\
{ \
| |
»O i |
| e-Goverment :
Loan evidence WS : |
: Goan eidence apD :
| |
\ |
\ /

———————— -

Scenario: Cloud integration

An enterprise "E" use:

e Cloud based CRM
e Internal system for accounting
e Internal e-store

Enterprise "E" wants to integrate those together

-
O
—
O
-
(®))
)
i
=
O
-
o
O
O
-
4]
c
)
&
7))

oS TD G D b D D b D D D D D D D D D e e,

Cloud

CMS

JMS

lllllllllllllllllllll

e
o
0 - 0
N V c ~
@
@
2
a 5
i 4
o
c
(o]
c
\ / c
E

lllllllllllllllllll

T - - - - - - — — — — — —

Scenario: Acquisition

e A Broker "B" perform acquisition of their
smaller competitor "C"

e Competitor "C" has perfect system for stock
portfolio management

e Broker "B" has also one containing all their

clients , but not as good as the new one
o Migration is planned for 3 years

o They need to use both systems in parallel for this
period

e There are strict throughput and reliability
requirements

Scenario: Acquisition

Broker's internal system

Gystem componeD Gystem componeD Gystem componerD
\

l
|
|
|
\

I WS-SOAP
ESB
A A
Legacy
protocol L IJMS I_ I_ WS-SOAP
,/_——- ----- s -—_-~\
/ b
: Acquired Broker's system |
I : WS-SOAP
l\ System component System component]
~ ~—eer"\m ;rmm m m} - . eYFm —— o
/‘—-—— — ———\\
" Stock market \
\ r

Integration issues and problems

e Incompatible protocol implementations
e Changes in public APls

e Malformed data

o Messages validation
o Errors in data transfers

e Security

e Performance
e Isolated cloud technologies

FIN

Questions?

PA165 Jiri Kolar
qutumn Faculty of Informatics

Masaryk University
kolar@fi.muni.cz

2012

