Design of Digital Systems Il

Number Systems and Codes

Moslem Amiri, Vaclav P¥enosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University
Brno, Czech Republic

amiri@mail.muni.cz
prenosil@fi.muni.cz

September, 2012

Introduction

o Digital systems are built from circuits that process binary digits

o A digital system designer must establish some correspondence between
binary digits processed by digital circuits and real-life numbers, events,
and conditions

2/176

Positional Number Systems

o Positional number system

o In such a system, a number is represented by a string of digits, where
each digit position has an associated weight
o Value of a number is a weighted sum of digits

didy.d_1d_p=d;-10* +dy-10°+d_; 1071 +d ,-1072
5185.68 =5-1000+1-1004+8-104+5-1+6-0.148-0.01
Here, 10 is base or radix of number system
o Radix may be any integer r > 2
o A digit in position i has weight r’

p—1
dp-1dp-2 - dido,d-1d-2- - dp = 'Z di-r

radix point I==n

o High-order or most significant digit = the leftmost digit
o Low-order or least significant digit = the rightmost digit

3/176

Positional Number Systems

o Binary radix is normally used to represent numbers in a digital system

p—1
bp-1bp-2-+-bibobsb - bop= > bi-2

binary point f=—n

o High-order or most significant bit (MSB) = the leftmost bit
o Low-order or least significant bit (LSB) = the rightmost digit

o Example
101.001, =1-4+0-2+1-1+0-0540-0.254+1-0.125 = 5.125;9

4176

Octal and Hexadecimal Numbers

@ Radices 8 and 16 provide convenient shorthand representations for
multibit numbers in a digital system

o Used for documentation or other purposes
@ Octal number system

o Uses radix 8
o Needs 8 digits, so it uses digits 0 — 7 of decimal system

o Hexadecimal number system

o Uses radix 16
o Needs 16 digits, so it supplements decimal digits 0 — 9 with letters A— F

5/ 76

Octal and Hexadecimal Numbers

Table 1: Binary, decimal, octal, and hexadecimal numbers.

3-Bit 4-Bit

Binary Decimal Octal String Hexadecimal String
0 0 0 000 0 0000

1 1 1 001 1 0001

10 2 2 010 2 0010
11 3 3 011 3 0011
100 4 4 100 4 0100
101 5 5 101 5 0101
110 6 6 110 6 0110
111 7 7 111 7 0111
1000 8 10 — 8 1000
1001 9 11 — 9 1001
1010 10 12 — A 1010
1011 11 13 — B 1011
1100 12 14 — C 1100
1101 13 15 — D 1101
1110 14 16 — E 1110
1111 15 17 — F 1111

6/ 76

Octal and Hexadecimal Numbers

o Binary-to-octal conversion

o Starting at binary point and working left, separate bits into groups of
three and replace each group with corresponding octal digit
o Add zeros on left to make total number of bits a multiple of 3 if required

11101101110101001, = 011 101 101 110 101 001, = 355651g
o Binary-to-hexadecimal conversion

o Similar to binary-to-octal conversion, except groups of four bits are used
o Add zeros on left to make total number of bits a multiple of 4 if required

11101101110101001, = 0001 1101 1011 1010 1001, = 1DBA9+6

o If a binary number contains digits to right of binary point, convert to
octal or hexadecimal by starting at binary point and working right

o Both lefthand and righthand can be padded with zeros to get multiples
of three or four bits

10.1011001011, = 010 . 101 100 101 100, = 2.54544
= 0010 . 1011 0010 1100, = 2.B2Cs

7176

Octal and Hexadecimal Numbers

@ Octal- or hexadecimal-to-binary conversion
o Replace each octal or hexadecimal digit with corresponding 3- or 4-bit
string

2046.17g = 010 000 100 110 . 001 111,
9F .46y = 1001 1111 . 0100 0110 1100,

@ Today, majority of machines process 8-bit bytes

o Octal number system is not used much because it is difficult to extract
individual byte values in multibyte quantities in octal representation

o In hexadecimal system, two digits represent an 8-bit byte, and 2n digits
represent an n-byte word

o A 4-bit hexadecimal digit is called a nibble

o Hexadecimal numbers are often used to describe a computer's memory
address space

8/ 76

General Positional-Number-System Conversions

o Radix-r-to-decimal conversion
o Value of a number in any radix r

p—1
dp1dp o---dido.d 1d 5---d_, = Z di-rl

i=—n

o Value of number can be found by converting each digit to its radix-10
equivalent and expanding formula using radix-10 arithmetic

F1A3;5 =15-16%+1-16% +10- 16 + 3-16° = 61859
43655 =4-8%4+3-81+6-8°+5-8"1 =286.6251
1323, =1-42+3.4' +2.4° 1 3.471 =30.75

o A shortcut for converting whole numbers to radix 10
p—1
D=d,1dp2---didy = Z di-r
i=0

() T Gpa)) b d) e (1)

9/76

General Positional-Number-System Conversions

o Decimal-to-radix-r conversion
o Dividing formula (1) by r, quotient will be
Q=(((dpy-r+dpo) r+--) r+d
and remainder = dj
o Furthermore, quotient @ has the same form as (1). Therefore,
successive divisions by r yield successive digits of D from right to left

179+ 2=89 remainder 1 (LSB)

+2=44 remainder 1
+2 =22 remainder 0
+2=11 remainder 0
+2=>5remainder 1
+2=2remainder 1
+2=1 remainder 0
+2=0remainder 1 (MSE
179,7=1011001%

467+ 8=58 remainder 3 (least significant digit)
+8=7 remainder 2
+8=0remainder 7 (most significant digit)
467,,=723

3417+ 16=213 remainder 9 (least significant digit)
+16=13 remainder 5
+16=0remainder 13 (most significant dig

3417,0= D59 1076

General Positional-Number-System Conversions

Table 2: Conversion methods for common radices.

Conversion Method Example
Binary to

Octal Substitution 1011101109F 10 111 011 001 = 273%

Hexadecimal ~Substitution 10111011Q0% 101 1101 1001 = 5D9;4

Decimal Summation 1011101100F 1[1024+0 [512+ 1 (256 +1 (128 +1 (64

+0[82+1[16+1(B+0#+0(2+1(1 = 1497,

Octal to

Binary Substitution 1234= 001 010 011 109

Hexadecimal Substitution 1234= 001 010 011 109= 0010 1001 1109= 29Cg

Decimal Summation 1234= 1612 +2(B4+3[B+4 [l = 668,
Hexadecimal to

Binary Substitution CODEs = 1100 0000 1101 1130

Octal Substitution CODE; = 1100 0000 1101 1130= 1 100 000 011 011 130= 14033

Decimal Summation CODfg = 124096+ 0 [256+ 13116+ 14[1l = 49374,
Decimal to

Binary Division 10§, + 2 = 54 remainder 0 (LSB)

+2 =27 remainder 0
+2 =13 remainder 1
+2 = 6 remainder 1
3 remainder 0
= 1remainder 1
+2 =0 remainder 1 (MSB)

108,, = 1101109

Octal Division 108, + 8 = 13 remainder 4 (least significant digit)
=1 remainder 5
+8 = 0 remainder 1 (most significant digit)

108, = 154,
Hexadecimal Division 108+ 16 = 6 remainder 12 (least significant digit)
+16 = 0 remainder 6 (most significant digit)

1089 =6Cyq

11/ 76

Addition and Subtraction of Nondecimal Numbers

Table 3: Binary addition and subtraction table.

Cin or by, Xy Gut S Bout d
0 0 o0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 0 1 0 1
0 1 1 1 0 0 0
1 0 0 0 1 1 1
1 0 1 1 0 1 0
1 1 0 1 0 0 0
1 1 1 1 1 1 1

o Binary addition

o To add two binary numbers X and Y, add together LSBs with an initial

carry (Gn) of 0, producing carry (cout) and sum (s) bits
o Continue processing bits from right to left, adding carry out of each
column into next column’s sum

12 /76

Addition and Subtraction of Nondecimal Numbers

1011
X 190 1o]1)1]1l1 1 0 X 173 1 0|1 0]1)1 01
Y +141 + 1 0|o|o|1|1 0 1 Y +44 +o0o0[10[1/100
X+Y 331 10 100'10 1 1 X+Y 217 1101100 1

Figure 1: Examples of decimal and corresponding binary additions.

C 101111000 c 00101100
X 190 10111110 X 173 1010110
Y 4141 + 10001101 Y +44 + 0010110
X+Y 331 101001011 X+Y 217 1101100
C 011111110 c 00000000
X 127 01111111 X 170 1010101
Y +63 + 00111111 Y +85 + 0101010
X+Y 190 10111110 X+Y 255 1111111

13 /76

Addition and Subtraction of Nondecimal Numbers

o Binary subtraction
o Is performed similar to binary addition, using borrows (b, and boyt)
instead of carries between steps, and producing a difference bit d
o A common use of subtraction is to compare two numbers

o If X — Y produces a borrow out of MSB position, X < Y'; otherwise,
X>Y

Must borrow 1, yielding
the new subtraction 10-1 =1

After he first borrow, the new
subtrac ion for this column is
0-1, so we must borrow again.

The borrow ripples through hree columns
to reach a borrowable 1, i.e.,
100 = 011 (the modified bits)

+ 1 (the borrow)

010 l)llOlD 01010 0 110 010

minuend X 229 1 1/1/;7//1/0 1 X 210)./1/0 1/1/0)./0

subtrahend Y - 46 - 00101110 Y -109 - 01101101
difference X-Y 183 10110111 X-Y 101 01100101

Figure 2: Examples of decimal and corresponding binary subtractions.

14 / 76

Addition and Subtraction of Nondecimal Numbers

B 001111100 B 01101101
X 229 11100101 X 210 1101001
Y - 46 - 00101110 Y -109 - 0110110
X-Y 183 10110111 X-Y 101 0110010
B 010101010 B 00000000
X 170 10101010 X 221 1101110:
Y - 85 - 01010101 Y - 76 - 01001101
X=-Y 85 01010101 X-Y 145 1001000

15/ 76

Addition and Subtraction of Nondecimal Numbers

@ Two methods for octal and hexadecimal addition and subtraction
@ Convert number to decimal, calculate results, and convert back
@ Convert each column digits to decimal, do operation in decimal, and
convert result to corresponding sum and carry digits in non-decimal
radix
@ A carry is produced whenever column sum equals or exceeds radix

c 1100 1 1 0 0
X 19B916 1 9 11 9
% +C7E®616 +12 7 14 6
X+Y E 19 F16 14 17 25 15
14 16+ 16+9 15

E 1 9 F

16 / 76

Representation of Negative Numbers: Signed-Magnitude

o Signed-magnitude system
o In this system, a number consists of a magnitude and a symbol
indicating whether it is positive or negative
o In everyday business we use this system
o To apply to binary numbers, an extra bit position is used to represent
sign called sign bit
o Traditionally, MSB of a bit string is used as sign bit
o 0 = plus, 1 = minus
o Several 8-bit signed-magnitude integers and their decimal equivalents

e 01010101, = 48519 e 11010101, = —8519
e 01111111, = 412749 o 11111111, = —12749
e 00000000, = 4019 e 10000000, = —049

o There are two possible representations for zero
o This system has an equal number of positive and negative integers

—(2"71 — 1) < An n-bit integer < +(2"* — 1)

17 /76

Representation of Negative Numbers: Signed-Magnitude

o Signed-magnitude adder

e The circuit must examine signs of addends to determine what to do
with magnitudes

o If signs are the same, it must add magnitudes and give the result the
same sign

o If signs are different, it must compare magnitudes, subtract the smaller
from the larger, and give the result the sign of the larger

o "lIfs,” "adds,” "subtracts,” and "compares” translate into a lot of
logic-circuit complexity

o Signed-magnitude subtractor

o It need only change sign of subtrahend and pass it along with minuend

to an adder

18 / 76

Complement Number Systems

o A complement number system negates a number by taking its
complement as defined by the system

@ Two numbers in a complement number system can be added or
subtracted directly without sign and magnitude checks required by
signed-magnitude system

@ In any complement number system, we deal with a fixed number of
digits, say n

@ We assume the numbers are integers

o If an operation produces a result that requires more than n digits, we
throw away the extra high-order digit(s)

o If a number D is complemented twice, result is D

19 /76

Radix-Complement Representation

o Radix-complement system
o Radix-complement of an n-digit number D (in radix r) = r" — D
o In decimal number system, it is called 10’s complement
o For an n-digit number D

1<D<r"—-1—1<r"-D<r"-1

n+1 digits
D=0—r"—-D= r" T-EE

~—
100---00
o Thus, there is only one representation of zero in this system

remove extra high-order digit — 0

Table 4: Examples of 10’s and 9s’ complements using 4-digit decimal numbers.

10's 9s’
Number complement complement

1849 8151 8150
2067 7933 7932
100 9900 9899
7 9993 9992
8151 1849 1848

0 10000 (= 0) 9999

20 / 76

Radix-Complement Representation

o To avoid subtraction r” — D in computing radix complement, rewrite
r"m—(r"—1)+1
r"—D— ((r"—=1)-D)+1
o r" —1 has the form mm--- mm, where m = r — 1 and there are n m’s

E.g., 10,000 = 9,999 + 1
o If we define

Complement of a digit d = r — 1 — ¢ 2Pementing dglts of P

(r"=1)-D

Radix complement of D = (complementing individual digits of D)+1

21/ 76

Radix-Complement Representation

Table 5: Digit complements.

Complement
Digit Binary Octal Decimal Hexadecimal
0 1 7 9 F
1 0 6 8 E
2 - 5 7 D
3 - 4 6 C
4 - 3 5 B
5 - 2 4 A
6 - 1 3 9
7 - 0 2 8
8 - - 1 7
9 - - 0 6
A — — - 5
B — - — 4
C - - - 3
D - - - 2
E - - - 1
F - - - 0

22 /76

Two's-Complement Representation

@ For binary numbers, radix complement is called two’s complement
o MSB of a number serves as sign bit
Negative number +— MSB =1
o Decimal equivalent for a two's-complement binary number

o Weight of MSB = —2""! instead of +2"!
o Weight of the rest of bits is computed the same way as for an unsigned
number

o Range of representable numbers
—(2"1) < Range < +(2" 1 - 1)

23/ 76

Two's-Complement Representation

1710 =

119 =

0y =

00010002
t
11101110

+1

complement bits

11101112 = -17;,

01110111
O
10001000
+1

complement bits

10001002 = -119,

00000008
O
11111111

+1

complement bits

1 00000008 = 0y,

=999

-127;,

128|_0

1001110%
O
01100010
+1

complement bi

01100012 = 99;,

10000001
O
01111110
+1

complement bit

01111112 = 127,

100000008
O
01111111
+1

complement bit

10000000 = -128,,

24 / 76

Two's-Complement Representation

@ In two’s complement system, zero is considered positive because its
sign bit is 0
o Since there is only one representation of zero, we end up with one extra
negative number, —2"~1, with no positive counterpart
@ To convert an n-bit two's-complement number X into an m-bit one

o If m > n — sign extension: append m — n copies of X's sign bit to
left of X
o If m < n, discard X's n — m leftmost bits

o Result is valid if all of discarded bits are same as sign bit of the result

25 / 76

Diminished Radix-Complement Representation

o Diminished radix-complement system
o Complement of an n-digit number D = (r" —1) - D
o Can be obtained by complementing individual digits of D, without
adding 1
o In decimal, this is called 9s’ complement
o Examples in Tab. 4

26 / 76

Ones’-Complement Representation

@ Diminished radix-complement system for binary numbers is called
Ones’ complement
o MSB is sign, 0 if positive and 1 if negative
o Two representations of zero, positive zero (00---00) and negative zero
(11---11)
o Positive-number representations are the same for both ones’ and two's
complements
o Negative-number representations differ by 1
o Weight of MSB for decimal equivalent computing = —(2"~! — 1) rather
than —27—1
o Range of representable numbers
—(2""1 — 1) < Range < +(2"" 1 - 1)
o Advantages
o Symmetry
o Ease of complementation
o Disadvantages
o Adder design is trickier than a two's-complement adder
o Zero-detecting circuits either must check for both representations of
zero, or must always convert 11---11 to 00---00

27 / 76

Ones’-Complement Representation

170 = 0001000% -99;, = 10011109
0 0
11101119 = —179 01100013 = 9910
119, = 0111011} -127;5 = 10000009
O 0
10001009 = —119 01111113 = 1274

019 = 00000009 (positive zero)
O
1111111% = 049 (negative zero)

28 / 76

Excess Representations

o Excessive-B representation

o An m-bit string whose unsigned integer value is M (0 < M < 2™)
represents signed integer M — B
e B is called bias of number system
o E.g., excess-2™~1 system represents any number X in range
_2m—1 S X S +2m—1 —1
by m-bit binary representation of X + 2™~1 which is always nonnegative
and less than 2™
o excess-2™~! system vs. m-bit two's complement
o Their range of representations are the same
o Representations of any number in the two systems are identical except
for sign bits, which are opposite

e Most common use is in floating-point number systems

20 / 76

Two's-Complement Addition

Table 6: Decimal and 4-bit numbers.

Two's Ones’ Signed Excess
Decimal Complement Complement Magnitude 2m1
-8 1000 — — 0000
-7 1001 1000 1111 0001
-6 1010 1001 1110 0010
-5 1011 1010 1101 0011
-4 1100 1011 1100 0100
-3 1101 1100 1011 0101
-2 1110 1101 1010 0110
-1 1111 1110 1001 0111
0 0000 1111 or 0000 1000 or 0000 1000
1 0001 0001 0001 1001
2 0010 0010 0010 1010
3 0011 0011 0011 1011
4 0100 0100 0100 1100
5 0101 0101 0101 1101
6 0110 0110 0110 1110
7 0111 0111 0111 1111

30/ 76

Two's-Complement Addition

@ Tab. 6 reveals why two's complement is preferred

o Starting with 1000, (—810) and counting up, each successive number up
to 01115 (4+710) can be obtained by adding 1 to previous one

o Because ordinary addition is just an extension of counting,
two's-complement numbers can thus be added by ordinary binary
addition, ignoring any carries beyond MSB

@ Result is correct if range of number system is not exceeded

+3 0011 -2 111C
+ +4 + 0100 + -6 + 101C
+7 0111 -8 1100C
+6 0110 +4 010C
+ -3 + 1101 + -7 + 1001
+3 10011 -3 1101

31/ 76

Two's-Complement Addition

@ Another way to view two’s-complement system uses 4-bit counter
shown in Fig. 3
o Starting with arrow pointing to any number, add +n to (subtract +n
from) it by counting up n times (counting down n times), that is, by
moving arrow n positions clockwise (counterclockwise)

e n must be small enough that discontinuity between —8 and +7 is not
crossed

Subtraction of

Addition of
positive numbers

positive numbers

1001 1000 0111

Figure 3: Modular counting representation of 4-bit two’s-complement numbers.
32/76

Two's-Complement Addition

e In Fig. 3

o We can subtract n (or add —n) by moving arrow 16 — n positions
clockwise

e 16 — n = 4-bit two's complement of n = two's complement
representation of —n

o Thus, a negative number in two's-complement representation may be
added to another number by adding 4-bit representations using ordinary
binary addition

33/ 76

Two's-Complement Addition: Overflow

o Overflow occurs if an addition (of numbers of like sign) produces a
result that exceeds the range of number system
o In Fig. 3, overflow occurs during addition of positive (negative) numbers
when we count past +7 (—8)

-3 1101 +5 0101
+ -6 + 1010 + +6 + 0110
-9 10111 = +7 +11 1011= -5
-8 1000 +7 0111
+ -8 + 1000 + +7 + 0111
-16 10000 = +0 +14 1110= -2

o Overflow detection in addition

o An addition overflows if addends’ signs are the same but sum’s sign is
different from addends’

o Or equivalently, an addition overflows if ¢, into and ¢, out of sign
position are different

o Rows 4 and 5 in Tab. 3

34 /76

Two's-Complement Subtraction

@ Two's-complement numbers may be subtracted as if they were
ordinary unsigned binary numbers

@ But most circuits negate subtrahend by taking its two's complement,
and then add it to minuend using normal rules for addition

o Perform a bit-by-bit complement of subtrahend

o Add complemented subtrahend to minuend with an initial carry (c,) of
1 instead of 0

o Using this method, only one addition is needed

l_Cin 1_Cﬁn
+4 0100 0100 +3 0011 0011
- +3 -0011 + 1100 - +4 -0100 + 1011
+3 10001 -1 1111
1_Cin 1_C|n
+3 0011 0011 -3 1101 1101
- -4 - 1100 + 0011 - -4 - 1100 + 0011
+7 0111 +1 10001

35/ 76

Two's-Complement Subtraction

o Overflow detection in subtraction
o Examine signs of minuend and complemented subtrahend, using the
same rule as in addition
o Or, carries into and out of sign position can be observed and overflow
detected, using the same rule as in addition
o Negating "extra” negative number results in overflow, when we add 1 in
complementation process
—(-8) =-1000 = 0111
+ 0001
1000 =-8

However, this number can still be used in additions and subtractions as
long as final result does not exceed number range

1—c,
+4 0100 -3 1101 1101
+ -8 + 1000 - -8 -1000 + 0111
-4 1100 +5 10101

36 / 76

Ones’-Complement Addition and Subtraction

@ In Tab. 6 for ones’-complement numbers
o Starting at 1000, (—710) and counting up, we obtain each successive
ones’-complement number by adding 1 to previous one, except at
transition from 1111, (—0) to 0001, (+110)
o We must add 2 instead of 1 whenever we count past 1111,
o Counting past 1111, can be detected by observing carry out of sign bit
e End-around carry rule for adding ones’-complement numbers
o Perform a standard binary addition; if there is a carry out of sign
position, add 1 to result

+3 0011 +4 0100 +5 0101
+ +4 + 0100 + -7 + 1000 + -5+ 101C
+7 0111 -3 1100 -0 1111
-2 1101 +6 0110 -0 1111
+ -5 + 1010 +-3 + 1100 +-0 + 1111
-7 10111 +3 10010 -0 1111C
+ 1 + 1 + 1

1000 0011 1111

37/ 176

Ones’-Complement Addition and Subtraction

o Following end-around carry rule, addition of a number and its ones’
complement produces negative 0

o In fact, an addition operation using this rule can never produce positive
0 unless both addends are positive 0

@ Ones’-complement subtraction is done by complementing
subtrahend and then adding

@ Overflow rules for ones’-complement addition and subtraction are the
same as for two's-complement

38/ 76

One's-Complement Addition and Subtraction

Table 7: Summary of addition and subtraction rules for binary numbers.

Number System Addition Rules Negation Rules Subtraction Rules
Unsigned Add the numbers. Result is out dfiot applicable Subtract the subtrahend
range if a carry out of the MSB from the minuend. Result
occurs. out of range if a borrow ot

of the MSB occurs.
Signed magnitude (same sign) Add the magnitudébange the number’s Change the sign bit of the

overflow occurs if a carry out ofsign bit. subtrahend and proceed
MSB occurs; result has the same in addition.
sign.

(opposite sign) Subtract the
smaller magnitude from the larg-
er; overflow is impossible; result
has the sign of the larger.

Two’s complement Add, ignoring any carry out of Complement all bits of Complement all bits of th
the MSB. Overflow occurs if thethe number; add 1 to theubtrahend and add to th

carries into and out of MSB areresult. minuend with an initial
different. carry of 1.

Ones’ complement Add; if there is a carry out of t@®mplement all bits of Complement all bits of th
MSB, add 1 to the result. Over-the number. subtrahend and proceed
flow if carries into and out of in addition.

MSB are different.

39/ 76

Binary Multiplication

@ Unsigned binary multiplication
o Add a list of shifted multiplicands computed according to digits of

multiplier
11 1011 multiplicand
x 13 x 1101 multiplier
33 1011
1 0000 shifted multiplicand
143 1011
1011

10001111 product

o This method lists all shifted multiplicands and then adds
o Difficult to implement in a digital system

40 / 76

Binary Multiplication

o In a digital system, it is more convenient to add each shifted

multiplicand as it is created to a partial product

11 1011
x 13 x 1101
0000

1011

01011

oooo

001011

1011,
0110111

1011
10001111

@ n-bit number x m-bit number

multiplicand
multiplier
partial product
shifted multiplicant
partial product
shifted multiplicant
partial product
shifted multiplicant
partial product
shifted multiplicant
product

o Resulting product requires at most n+ m bits

o Shift-and-add algorithm requires m partial products and additions

41/ 76

Binary Multiplication

o Signed multiplication
o Perform an unsigned multiplication of magnitudes
o Make product positive if operands had same sign, negative if different
signs
o Convenient in signed-magnitude systems
o In two’s-complement system, obtaining magnitude of a negative number
and negating unsigned product are nontrivial operations

o Two’s-complement multiplication
o Can be performed by a sequence of two's-complement additions of
shifted multiplicands, except for the last step
e MSB in a two's-complement number has a negative weight
o The shifted multiplicand corresponding to MSB of multiplier must be
negated before it is added to partial product

42/ 76

Binary Multiplication

-5 1011 multiplicand
x =3 X 1101 multiplier
00000 partial product
11011 shifted multiplicand
111011 partial product
00000 shifted multiplicand
1111011 partial product
1101L . shifted multiplicand
11100111 partial product
00101 .. shifted and negated multiplica
00001111 product

@ One significant bit is gained at each step, and numbers are signed
o Before adding each shifted multiplicand and k-bit partial product,
change them to k + 1 significant bits by sign extension, as shown in
color above
o Each resulting sum has k + 1 bits; any carry out of MSB of k + 1-bit
sum is ignored

43/ 76

@ The simplest binary division is based on shift-and-subtract method
o Mentally compare reduced dividend with multiples of divisor to

determine which multiple of shifted divisor to subtract

Table 8: Example of long division for unsigned decimal and binary numbers.

19
11)217

11
107
99

8

10011
1011)11011001
1011
0101
0000
~ 1010
0000
10100
1011
10011
1011
1000

quotient
dividend
shifted divisor

reduced dividend
shifted divisor

reduced dividend
shifted divisor

reduced dividend
shifted divisor

reduced dividend
shifted divisor
remainder

44/ 76

@ In a typical division algorithm
Dividend: (n 4+ m) bits
Divisor: n bits
Quotient: m bits

Remainder: n bits

@ A division overflows if

o Divisor is zero
e Or quotient would take more than m bits to express

o In most division circuits, n = m
o Signed division

o Perform an unsigned division of magnitudes

e Make quotient positive if operands had the same sign, negative if
different signs

o Remainder should be given the same sign as dividend

o There are special techniques for performing division directly on
two's-complement numbers (as in multiplication)

45/ 76

Binary Codes for Decimal Numbers

@ Binary numbers are appropriate for internal computations of a digital
system

o External interfaces of a digital system may read or display decimal
numbers

o People prefer to deal with decimal numbers
o A decimal number is represented in a digital system by a string of bits
o Some digital devices actually process decimal numbers directly

o Code

o A set of n-bit strings in which different bit strings represent different
numbers

o A particular combination of n bit-values is called a code word

o There may or may not be an arithmetic relationship between bit values
in a code word and what it represents

o At least four bits are needed to represent ten decimal digits

46 / 76

Binary Codes for Decimal Numbers

Table 9: Decimal codes.

Decimal digit ~ BCD (8421) 2421 Excess-3 Biquinary 1-out-of-10

0 0000 0000 0011 0100001 100000000(
1 0001 0001 0100 0100010 010000000t
2 0010 0010 0101 0100100 001000000t
3 0011 0011 0110 0101000 000100000t
4 0100 0100 0111 0110000 000010000t
5 0101 1011 1000 1000001 000001000t
6 0110 1100 1001 1000010 000000100t
7 0111 1101 1010 1000100 000000010¢
8 1000 1110 1011 1001000 000000001(
9 1001 1111 1100 1010000 000000000:

Unused code words

1010 0101 0000 0000000 000000000t
1011 0110 0001 0000001 000000001
1100 0111 0010 0000010 000000010:
1101 1000 1101 0000011 0000000111
1110 1001 1110 0000101 000000011:
1111 1010 1111 o mun|

47/ 76

Binary Codes for Decimal Numbers

o Binary-coded decimal (BCD)
o Encodes 0 through 9 by their 4-bit unsigned binary representations,
0000 through 1001
o Code words 1010 through 1111 are not used
o Conversion between BCD and decimal representations are a direct
substitution of four bits for each decimal digit
o Packed-BCD representation

o Two BCD digits placed in one 8-bit byte
@ Thus, one byte may represent 0 to 99 as opposed to 0 to 255 for a
normal unsigned 8-bit binary number

o Signed BCD numbers have one extra digit position for sign
o Signed-magnitude representation

o Encoding of sign bit string is arbitrary
o 10’s-complement representation
o 0000 = plus, 1001 = minus

48 / 76

Binary Codes for Decimal Numbers

o Addition of BCD digits
o Similar to adding 4-bit unsigned binary numbers
o But if a result exceeds 1001, it is corrected by adding 6
o Carry is produced into next digit position if either initial binary addition
or correction-factor addition produces a carry

5 0101 4 0100
+ 9 + 1001 + 5 + 0101
14 1110 9 1001
+ 0110 — correction
104 10100
8 1000 9 1001
+ 8 + 1000 +9 + 1001
-16 10000 18 10010
+ 0110 — correction + 0110 — correctior
1046 10110 168 11000

49 / 76

Binary Codes for Decimal Numbers

o Weighted code
o In a weighted code, each decimal digit can be obtained from its code
word by assigning a fixed weight to each code-word bit
o E.g., BCD (= 8421 code) in which the weights for bits are 8,4,2,1
o 2421 code is self-complementing
o Code word for 9s’ complement of any digit may be obtained by
complementing individual bits of digit's code word
o Excess-3 code
o A self-complementing code
o Code word for each decimal digit is corresponding BCD code word plus
0011,
o Because code words follow a standard binary counting sequence,
standard binary counters can be made to count in excess-3 code

50 / 76

Binary Codes for Decimal Numbers

@ One advantage of using more than minimum number of bits in a code
is an error-detecting property
o Biquinary code

Uses seven bits

First two bits indicate range of number, 0-4 or 5-9
Last five bits indicate number in the selected range
Has error-detecting property

o If any one bit is accidentally flipped, result is not a decimal digit
o Of 128 possible 7-bit code words, only 10 are valid; the rest can be
flagged as errors if appear

o l-out-of-10 code

o The sparsest encoding for decimal digits
o Uses 10 out of 1024 possible 10-bit code words

51/ 76

@ In electromechanical applications of digital systems, sometimes an
input sensor should produce a digital value that indicates a mechanical

position
111 000
110 001
LAK]
0|01
101 010
100 011

Figure 4: A mechanical encoding disk using a 3-bit binary code.

o In Fig. 4, dark areas of disk are connected to a signal source
corresponding to logic 1, and light areas are unconnected (logic 0)

52/ 76

o In Fig. 4
o Problem when disk is positioned at certain boundaries between regions
o E.g., if disk is positioned right on boundary between 001 and 010
regions
o Both 001 and 010 are acceptable
o But because mechanical assembly is not perfect, incorrect reading of 000
or 011 is possible
e This sort of problem can occur at any boundary where more than one
bit changes

@ Encoding-disk problem can be solved by Gray code

o A digital code in which only one bit changes between each pair of
successive code words

53 / 76

Table 10: A comparison of 3-bit binary code and Gray code.

Decimal Binary Gray
number code code
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

54 / 76

100 000

101 001

o

111 011

110 010

Figure 5: A mechanical encoding disk using a 3-bit Gray code.

55 / 76

o Gray code is a reflected code; it can be constructed recursively (with
any number of bits)
@ A 1-bit Gray code has two code words, 0 and 1
@ First 2" code words of an (n+ 1)-bit Gray code equal code words of an
n-bit Gray code, written in order with a leading 0 appended
© Last 2" code words of an (n + 1)-bit Gray code equal code words of an
n-bit Gray code, but written in reverse order with a leading 1 appended

@ A method to derive an n-bit Gray-code code word directly from
corresponding n-bit binary code word
@ Bits of an n-bit binary or Gray-code code word are numbered from right

to left, fromOton—1
@ Bit i/ of a Gray-code code word is 0 if bits / and 7 + 1 of corresponding
binary code word are the same, else bit i is 1

@ When i+ 1 = n, bit n of binary code word is considered to be 0

56 / 76

Character Codes

@ Most of information processed by computers is nonnumeric
@ Text is the most common type of nonnumeric data
o Strings of characters from some character set
e Each character is represented by a bit string according to an established
convention
o ASCII (American Standard Code for Information Interchange)

o The most commonly used character code
o Each character is represented with a 7-bit string
o A total of 128 different characters

57 / 76

Character Codes

Table 11: ASCII, Standard No. X3.4-1968 of the American National Standards

Institute.
bgbsb, (column)
Row 000 001 010 011 100 101 110 111
bsbobiby, (hex) 0 1 2 3 4 5 6 7
0000 0 NUL DLE SP 0 @ P ' p
0001 1 SOH DC1 ! 1 A Q a q
0010 2 STX DC2 " 2 B R b r
0011 3 ETX DC3 # 3 C S c s
0100 4 EOT DC4 $ 4 D T d t
0101 5 ENQ NAK % 5 E U e u
0110 6 ACK SYN & 6 F \% f
0111 7 BEL ETB ' 7 G w g w
1000 8 BS CAN (8 H X h X
1001 9 HT EM) 9 | Y i y
1010 A LF SuB * : J z z
1011 B VT ESC + ; K [k {
1100 C FF FS , < L \ |
1101 D CR GS - = M] m }
1110 E SO RS . > N A n ~
1111 F SI us / ? o o DEL

58 / 76

Character Codes

Table 12: ASCII, Standard No. X3.4-1968 of the American National Standards

Institute.

Control codes

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
sl
SP

Null

Start of heading
Start of text

End of text

End of transmission
Enquiry
Acknowledge
Bell

Backspace
Horizontal tab
Line feed
Vertical tab
Form feed
Carriage return
Shift out

Shift in

Space

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM

SUB
ESC
FS

GS

RS

us

DEL

Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronize

End transmitted block
Cancel

End of medium
Substitute

Escape

File separator

Group separator
Record separator
Unit separator

Delete or rubout

59 / 76

Codes for Actions, Conditions, and States

@ Numbers, positions, and characters are " data”
o In digital system design, we often encounter nondata applications

o A string of bits must be used to control an action, to flag a condition,
or to represent current state of hardware

@ The most commonly used type of code for such an application is a
binary code

o If there are n different actions, conditions, or states, represent them
with a b-bit binary code with b = [log, n]
o Consider a traffic-light controller

o N-S: north-south street

o E-W: east-west street

o Signals at intersection of N-S and E-W street might be in any of six
states listed in Tab. 13

60 / 76

Codes for Actions, Conditions, and States

Table 13: States in a traffic-light controller.

Lights

N-S N-S N-S E-wW E-W E-W Code

State green yellow red green yellow red word
N-S go ON off off off off ON 000
N-S wait off ON off off off ON 001
N-S delay off off ON off off ON 010
E-W go off off ON ON off off 100
E-W wait off off ON off ON off 101
E-W delay off off ON off off ON 110

o In Tab. 13
o Six states can be encoded in three bits
o Only six of eight possible 3-bit code words are used, and assignment of
them to states is arbitrary, so many other encodings possible
o An encoding which minimizes circuit cost or optimizes some other
parameter (like design time) should be chosen

61/ 76

Codes for Actions, Conditions, and States

o Consider a system with n devices, each can perform a certain action
o Devices may be enabled to operate only one at a time
o Binary code
o Shown in Fig. 6 (a)
o Control unit produces a binary-coded " device-select” word with [log, n]
bits to indicate which device is enabled at any time
o "Device-select” code word is applied to each device, which compares it
with its own "device ID"” to determine whether it is enabled
o Binary code has fewest bits, but is not always the best choice
o 1l-out-of-n code
@ An n-bit code in which valid code words have one bit equal to 1 and the
rest of bits equal to 0
o Shown in Fig. 6 (b)
o Each bit of code word is connected directly to enable input of a
corresponding device
o Simplifies design of devices, since they no longer have device IDs
o Inverted 1-out-of-n code
o Valid code words have one 0 bit and the rest of bits equal to 1

@ In complex systems, a combination of coding techniques may be used

62/ 76

Codes for Actions, Conditions, and States

binary-coded device select
Control
Unit
< < <
device device device
@ compare |<):| D compare |<):| D compare D
I_, device I_, device A device
enable enable enable
Device Device Device
1-out-of-n coded device select
Control :
Unit L
device device device
(b) enable enable enable
e o o
Device Device Device

Figure 6: Control structure for a digital system with n devices: (a) using a

binary code; (b) using a 1-out-of-n code.
63 /76

Codes for Actions, Conditions, and States

o m-out-of-n code

o A generalization of 1-out-of-n code

Valid code words have m bits equal to 1 and the rest of bits equal to 0
Can be detected with an m-input AND gate

Total number of code words = (")

e 8B10B code

A variation of an m-out-of-n code

Used in 802.3z Gigabit Ethernet standard

Uses 10 bits to represent 256 valid code words, or 8 bits worth of data
Most code words use a 5-out-of-10 coding

Since (150) = 252, some 4- and 6-out-of-10 words are also used

64 / 76

Codes for Serial Data Transmission and Storage

o Parallel data
o Most digital systems transmit and store data in a parallel format
o In parallel data transmission, a separate signal line is provided for each
bit of a data word
o In parallel data storage, all of bits of a data word can be written or read
simultaneously
o Serial data
o Serial formats allow data to be transmitted or stored one bit at a time

o Serial formats can reduce cost and simplify certain design problems

CLOCK

SERDATA

SYNC

bit number

time ——

L

bit time

L

1L

L

L

L

1L

L

L

1L

bit cell

bit cell

bit cell

bit cell

bit cell

bit cell

bit cell

bit cell

bit cell

bit cell

1

2

3

4

5

6

7

8

1

Figure 7: Basic concepts of serial data transmission.

65/ 76

Codes for Serial Data Transmission and Storage

o Clock signal defines the rate at which bits are transmitted, one bit per
clock cycle

Bit rate in bits per second (bps) equals clock frequency in cycles per
second (Hz)
o Reciprocal of bit rate is called bit time and equals clock period in
seconds (s)

The time occupied by each bit is called a bit cell

Format of actual signal that appears on line during each bit cell
depends on line code
Non-Return-to-Zero (NRZ)
e The simplest line code
o A 1 is transmitted by placing a 1 on line for entire bit cell, and a 0 is
transmitted as a 0
Synchronization signal
o A serial data-transmission or storage system needs some way of

identifying significance of each bit in serial stream
o In Fig. 7, SYNC is 1 for the first bit of each byte

66 / 76

Codes for Serial Data Transmission and Storage

@ A minimum of three signals are needed to recover a serial data stream
e a clock, a synchronization signal, and serial data itself
e In some applications, a separate wire is used for each of these signals
o Reducing number of wires from n to three is savings enough

e But in many applications, cost of having three separate signals is still
too high

@ Such systems combine all three signals into a single serial data stream

o They use sophisticated analog and digital circuits to recover clock and
synchronization information from data stream

67 / 76

Serial Line Codes

time ——=

bit value 0 1 1 1 0 0 1 0
NRZ
NRZI
Rz
BPRZ I

1 C

Figure 8: Commonly used line codes for serial data.

68 / 76

Serial Line Codes

o NRZ code

o Each bit value is sent on line for the entire bit cell

o The simplest and most reliable coding scheme for short-distance
transmission

o It requires a clock signal to be sent along with data to define bit cells

o E.g., without a clock signal, NRZ waveform in Fig. 8 might be
interpreted as 01010

o Digital phase-locked loop (DPLL)

o An analog/digital circuit used to recover a clock signal from a serial
data stream

o DPLL works only if serial data stream contains enough 0-to-1 and 1-to-0
transitions

o With NRZ-coded data, DPLL works only if data does not contain any
long, continuous streams of 1s or Os

69 / 76

Serial Line Codes

o Transition-sensitive media
o They cannot transmit or store absolute 0 or 1 levels, only transitions
between two discrete levels
o E.g., a magnetic disc or tape stores information by changing polarity of
medium’s magnetization in regions corresponding to the stored bits
o NRZ format cannot be used on transition-sensitive media
o Data in Fig. 8 might be interpreted as 01110010 or 10001101
o Non-Return-to-Zero Invert-on-1s (NRZI)
o Can be used on transition-sensitive media
o Sends a 1 as opposite of the level that was sent during previous bit cell,
and a 0 as same level
o A DPLL can recover clock from NRZI-coded data as long as data does
not contain any long, continuous streams of Os
o Return-to-Zero (RZ)
o Similar to NRZ except that, for a 1 bit, 1 level is transmitted only for a
fraction of bit time, usually 1/2
o Data with a lot of 1s create lots of transitions for a DPLL to use to
recover clock
o A long string of Os makes clock recovery impossible

70 / 76

Serial Line Codes

o DC balance

o DC balanced serial data stream has an equal number of 1s and Os

o Required by some transmission media, e.g. high-speed fiber-optic links
o NRZ, NRZI or RZ data have no guarantee of DC balance

User data streams usually have more 1s than Os or vice versa

o Balanced code

o Each code word has an equal number of 1s and Os
o Can be achieved by using a few extra bits to code user data

o Eg.,

]
o
o

8B10B code

Codes 8 bits into 10 bits in a mostly 5-out-of-10 code

Only (%) = 252 balanced, but () = (%)) = 210 unbalanced

8B10B associates with each extra 8-bit value a pair of unbalanced code
words, one 4-out-of-10 ("light") and the other 6-out-of-10 (" heavy")
Coder keeps track of running disparity, a bit of information indicating
whether the last unbalanced code word transmitted was heavy or light
When transmitting another unbalanced code word, coder selects the one
of the pair with opposite weight

252 4+ 210 = 462 code words to encode 8 bits

Not all unbalanced code words are used

71/ 76

Serial Line Codes

@ A DPLL can recover a clock signal, but not byte synchronization
o Byte synchronization is achieved by embedding special patterns into
long-term serial data stream, recognizing them digitally, and then
"locking” onto them
o E.g., if IDLE = 1011011000 which is sent continuously at system
startup, then beginning of code word can be recognized as the bit after
three Os in a row
o Successive code words, even if not IDLE, can be expected to begin at
every tenth bit time thereafter
e Bipolar Return-to-Zero (BPRZ) code
o Transmits three signals levels: +1,0, —1
o Is like RZ except 1s are alternatively transmitted as +1 and —1
o Is DC balanced, hence possible to send BPRZ streams over transmission
media that cannot tolerate a DC component
o BPRZ code has been used in T1 digital telephone links for decades
Possible to recover a clock signal if there are not too many Os in a row
Zero-code suppression
o If one of bytes is all 0s, The Phone Company changes second-LSB to 1
o In data applications of T1 links, LSB of each byte is set to 1
64-Kbps channel — 56-Kbps

72/ 76

Serial Line Codes

@ Manchester or diphase code

o Provides at least one transition per bit cell, regardless of transmitted

data pattern

Makes it very easy to recover clock

A 0 is encoded as a 0-to-1 transition in the middle of bit cell, and a 1 as

a 1-to-0 transition

Its weakness is that it has more transitions per bit cell than other codes
o Requires more media bandwidth to transmit a given bit rate

Is DC balanced

73/ 76

Serial Line Codes

o UART (Universal Asynchronous Receiver/Transmitter)
o A circuit that takes bytes of data and transmits individual bits in a
sequential fashion
o At destination, a second UART re-assembles bits into complete bytes
o Serial line is high during IDLE state
o Serial bit stream uses following sequence
@ Start bit (a low bit): For synchronization
@ Data bits (LSB first): No. of data bits per frame configurable
© Parity bit (if enabled): Type of parity configurable
@ Stop bits (at least one high bit): Indicates end of a frame - returns serial
line to IDLE state - length of bits configurable

Start Data (5/6/7/8) Parity (if erjabled) Stop (1/1.5/2)

Serial Line i Dﬁ
sdceae | LU L L L LT L

Figure 9: Standard serial data format.

74/ 76

Serial Line Codes

o UART baud generator

o Programmable

o

User-defined value in read-write divisor register

o Operates at system clock frequency
o Creates a baud rate clock
Divisor register value = (system clock frequency) / (baud rate x 16)

Transmitter shifts data out at baud rate

o Creates a receiver reference clock

Sent along with serial data to receiver

Baud rate x 16 clock output

Each data bit is as long as 16 clock pulses

Receiver tests state of incoming signal on each clock pulse, looking for
beginning of start bit

If apparent start bit lasts at least one-half of bit time, it is valid, if not,
the pulse is ignored

After waiting a further bit time, state of line is again sampled and
resulting level clocked into a shift register

After required number of bit periods (5 to 8 bits) have elapsed, contents
of shift register is made available (in parallel fashion) to receiving system

75/ 76

References

¥ JoHN F. WAKERLY, Digital Design: Principles and Practices (4th
Edition), PRENTICE HALL, 2005.

76 / 76

