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Introduction

Digital systems are built from circuits that process binary digits

A digital system designer must establish some correspondence between
binary digits processed by digital circuits and real-life numbers, events,
and conditions
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Positional Number Systems

Positional number system
In such a system, a number is represented by a string of digits, where
each digit position has an associated weight
Value of a number is a weighted sum of digits

d1d0.d−1d−2 = d1 · 101 + d0 · 100 + d−1 · 10−1 + d−2 · 10−2

5185.68 = 5 · 1000 + 1 · 100 + 8 · 10 + 5 · 1 + 6 · 0.1 + 8 · 0.01

Here, 10 is base or radix of number system

Radix may be any integer r ≥ 2

A digit in position i has weight r i

dp−1dp−2 · · · d1d0.
↑

radix point

d−1d−2 · · · d−n =

p−1∑
i=−n

di · r i

High-order or most significant digit = the leftmost digit
Low-order or least significant digit = the rightmost digit
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Positional Number Systems

Binary radix is normally used to represent numbers in a digital system

bp−1bp−2 · · · b1b0.
↑

binary point

b−1b−2 · · · b−n =

p−1∑
i=−n

bi · 2i

High-order or most significant bit (MSB) = the leftmost bit
Low-order or least significant bit (LSB) = the rightmost digit

Example

101.0012 = 1 · 4 + 0 · 2 + 1 · 1 + 0 · 0.5 + 0 · 0.25 + 1 · 0.125 = 5.12510
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Octal and Hexadecimal Numbers

Radices 8 and 16 provide convenient shorthand representations for
multibit numbers in a digital system

Used for documentation or other purposes

Octal number system
Uses radix 8
Needs 8 digits, so it uses digits 0− 7 of decimal system

Hexadecimal number system
Uses radix 16
Needs 16 digits, so it supplements decimal digits 0− 9 with letters A−F
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Octal and Hexadecimal Numbers

Table 1: Binary, decimal, octal, and hexadecimal numbers.24 Chapter 2 Number Systems and Codes
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If a binary number contains digits to the right of the binary point, we can
convert them to octal or hexadecimal by starting at the binary point and working
right. Both the left-hand and right-hand sides can be padded with zeroes to get
multiples of three or four bits, as shown in the example below: 

Converting in the reverse direction, from octal or hexadecimal to binary, is
very easy. We simply replace each octal or hexadecimal digit with the corre-
sponding 3- or 4-bit string, as shown below:

The octal number system was quite popular 25 years ago because of certain
minicomputers that had their front-panel lights and switches arranged in groups
of three. However, the octal number system is not used much today, because of
the preponderance of machines that process 8-bit bytes. It is difficult to extract
individual byte values in multibyte quantities in the octal representation; for

Ta b l e  2 - 1
Binary, decimal,
octal, and
hexadecimal 
numbers.

Binary Decimal Octal
3-Bit

String Hexadecimal
4-Bit

String

0 0 0 000 0 0000

1 1 1 001 1 0001

10 2 2 010 2 0010

11 3 3 011 3 0011

100 4 4 100 4 0100

101 5 5 101 5 0101

110 6 6 110 6 0110

111 7 7 111 7 0111

1000 8 10 — 8 1000

1001 9 11 — 9 1001

1010 10 12 — A 1010

1011 11 13 — B 1011

1100 12 14 — C 1100

1101 13 15 — D 1101

1110 14 16 — E 1110

1111 15 17 — F 1111

10.10110010112 = 010 . 101 100 101 1002 = 2.54548
= 0010 . 1011 0010 11002 = 2.B2C16

13578 = 001 011 101 1112
2046.178 = 010 000 100 110 . 001 1112

BEAD16 = 1011 1110 1010 11012

9F.46C16 = 1001 111 . 0100 0110 11002

octal or hexadecimal to 
binary conversion

byte
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Octal and Hexadecimal Numbers

Binary-to-octal conversion
Starting at binary point and working left, separate bits into groups of
three and replace each group with corresponding octal digit
Add zeros on left to make total number of bits a multiple of 3 if required

111011011101010012 = 011 101 101 110 101 0012 = 3556518

Binary-to-hexadecimal conversion
Similar to binary-to-octal conversion, except groups of four bits are used
Add zeros on left to make total number of bits a multiple of 4 if required

111011011101010012 = 0001 1101 1011 1010 10012 = 1DBA916

If a binary number contains digits to right of binary point, convert to
octal or hexadecimal by starting at binary point and working right

Both lefthand and righthand can be padded with zeros to get multiples
of three or four bits

10.10110010112 = 010 . 101 100 101 1002 = 2.54548

= 0010 . 1011 0010 11002 = 2.B2C16
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Octal and Hexadecimal Numbers

Octal- or hexadecimal-to-binary conversion
Replace each octal or hexadecimal digit with corresponding 3- or 4-bit
string

2046.178 = 010 000 100 110 . 001 1112

9F .46C16 = 1001 1111 . 0100 0110 11002

Today, majority of machines process 8-bit bytes
Octal number system is not used much because it is difficult to extract
individual byte values in multibyte quantities in octal representation
In hexadecimal system, two digits represent an 8-bit byte, and 2n digits
represent an n-byte word
A 4-bit hexadecimal digit is called a nibble
Hexadecimal numbers are often used to describe a computer’s memory
address space
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General Positional-Number-System Conversions

Radix-r-to-decimal conversion
Value of a number in any radix r

dp−1dp−2 · · · d1d0.d−1d−2 · · · d−n =

p−1∑
i=−n

di · r i

Value of number can be found by converting each digit to its radix-10
equivalent and expanding formula using radix-10 arithmetic

F 1A316 = 15 · 163 + 1 · 162 + 10 · 161 + 3 · 160 = 6185910

436.58 = 4 · 82 + 3 · 81 + 6 · 80 + 5 · 8−1 = 286.62510

132.34 = 1 · 42 + 3 · 41 + 2 · 40 + 3 · 4−1 = 30.7510

A shortcut for converting whole numbers to radix 10

D = dp−1dp−2 · · · d1d0 =

p−1∑
i=0

di · r i

= ((· · · ((dp−1) · r + dp−2) · r + · · · ) · r + d1) · r + d0 (1)
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General Positional-Number-System Conversions

Decimal-to-radix-r conversion
Dividing formula (1) by r , quotient will be

Q = (· · · ((dp−1 · r + dp−2) · r + · · · ) · r + d1

and remainder = d0

Furthermore, quotient Q has the same form as (1). Therefore,
successive divisions by r yield successive digits of D from right to left

26 Chapter 2 Number Systems and Codes
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A shortcut for converting whole numbers to radix 10 is obtained by rewrit-
ing the expansion formula as follows:

D = ((· · ·((dp–1)·r + dp–2)·r + · · ·) · · ·r + d1)·r + d0

That is, we start with a sum of 0; beginning with the leftmost digit, we multiply
the sum by r and add the next digit to the sum, repeating until all digits have been
processed. For example, we can write

F1AC16 = (((15)·16 + 1·16 + 10)·16 + 12

Although this formula is not too exciting in itself, it forms the basis for a
very convenient method of converting a decimal number D to a radix r. Consider
what happens if we divide the formula by r. Since the parenthesized part of the
formula is evenly divisible by r, the quotient will be

Q = (· · ·((dp–1)·r + dp–2)·r + · · ·)·r + d1

and the remainder will be d0. Thus, d0 can be computed as the remainder of the
long division of D by r. Furthermore, the quotient Q has the same form as the
original formula. Therefore, successive divisions by r will yield successive dig-
its of D from right to left, until all the digits of D have been derived. Examples
are given below:

179 ÷ 2 = 89 remainder 1 (LSB)
÷2 = 44 remainder 1

÷2 = 22 remainder 0 
÷2 = 11 remainder 0 

÷2 = 5 remainder 1 
÷2 = 2 remainder 1 

÷2 = 1 remainder 0 
÷2 = 0 remainder 1 (MSB)

17910 = 101100112

467 ÷ 8 = 58 remainder 3 (least significant digit)
÷8 = 7 remainder 2 

÷ 8 = 0 remainder 7 (most significant digit) 
46710 = 7238

3417 ÷ 16 = 213 remainder 9 (least significant digit)
 ÷ 16 = 13 remainder 5 

 ÷ 16 = 0 remainder 13 (most significant digit)
341710 = D5916

Table 2-2 summarizes methods for converting among the most common radices.

decimal to radix-r 
conversion
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General Positional-Number-System Conversions

Table 2: Conversion methods for common radices.
Section 2.3 General Positional Number System Conversions 27
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Ta b l e  2 - 2 Conversion methods for common radices.

Conversion Method Example

Binary to

Octal Substitution 101110110012 = 10 111 011 0012 = 27318

Hexadecimal Substitution 101110110012 = 101 1101 10012 = 5D916

Decimal Summation 101110110012 = 1 ⋅ 1024 + 0 ⋅ 512 + 1 ⋅ 256 + 1 ⋅ 128 + 1 ⋅ 64
 + 0 ⋅ 32 + 1 ⋅ 16 + 1 ⋅ 8 + 0 ⋅ 4 + 0 ⋅ 2 + 1 ⋅ 1 =  149710

Octal to

Binary Substitution 12348 = 001 010 011 1002

Hexadecimal Substitution 12348 = 001 010 011 1002 =  0010 1001 11002 = 29C16

Decimal Summation 12348 = 1 ⋅ 512 + 2 ⋅ 64 + 3 ⋅ 8 + 4 ⋅ 1  =  66810

Hexadecimal to

Binary Substitution C0DE16 = 1100 0000 1101 11102

Octal Substitution C0DE16 = 1100 0000 1101 11102 = 1 100 000 011 011 1102 = 1403368

Decimal Summation C0DE16 = 12 ⋅ 4096 + 0 ⋅ 256 + 13 ⋅ 16 + 14 ⋅ 1 = 4937410

Decimal to

Binary Division 10810 ÷ 2 = 54 remainder 0 (LSB)
          ÷2 = 27 remainder 0
          ÷2 = 13 remainder 1
          ÷2 = 6 remainder 1
          ÷2 = 3 remainder 0
          ÷2 = 1 remainder 1 
          ÷2 = 0 remainder 1 (MSB)
10810 = 11011002

Octal Division 10810 ÷ 8 = 13 remainder 4 (least significant digit)
÷8 = 1 remainder 5 

÷8 = 0 remainder 1 (most significant digit)
10810 = 1548

Hexadecimal Division 10810 ÷ 16 = 6 remainder 12 (least significant digit)
÷16 = 0 remainder 6 (most significant digit)

10810 = 6C16

Moslem Amiri, Václav Přenosil Design of Digital Systems II September, 2012 11 / 76



Addition and Subtraction of Nondecimal Numbers

Table 3: Binary addition and subtraction table.28 Chapter 2 Number Systems and Codes
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2.4 Addition and Subtraction of Nondecimal Numbers
Addition and subtraction of nondecimal numbers by hand uses the same tech-
nique that we learned in grammar school for decimal numbers; the only catch is
that the addition and subtraction tables are different.

Table 2-3 is the addition and subtraction table for binary digits. To add two
binary numbers X and Y, we add together the least significant bits with an initial
carry (cin) of 0, producing carry (cout) and sum (s) bits according to the table. We
continue processing bits from right to left, adding the carry out of each column
into the next column’s sum.

Two examples of decimal additions and the corresponding binary additions
are shown in Figure 2-1, using a colored arrow to indicate a carry of 1. The same
examples are repeated below along with two more, with the carries shown as a
bit string C:

Binary subtraction is performed similarly, using borrows (bin and bout)
instead of carries between steps, and producing a difference bit d. Two examples
of decimal subtractions and the corresponding binary subtractions are shown in
Figure 2-2. As in decimal subtraction, the binary minuend values in the columns
are modified when borrows occur, as shown by the colored arrows and bits. The

Ta b l e  2 - 3
Binary addition and 
subtraction table.

cin or bin x y cout s bout d

0 0 0 0 0 0 0

 0 0 1 0 1 1 1

 0 1 0 0 1 0 1

 0 1 1 1 0 0 0

 1 0 0 0 1 1 1

 1 0 1 1 0 1 0

 1 1 0 1 0 0 0

 1 1 1 1 1 1 1

C
X
Y

190
+141

101111000
10111110

+ 10001101

C
X
Y

173
+ 44

001011000
10101101

+ 00101100
X + Y 331 101001011 X + Y 217 11011001

C
X
Y

127
+ 63

011111110
01111111

+ 00111111

C
X
Y

170
+ 85

000000000
10101010

+ 01010101

X + Y 190 10111110 X + Y 255 11111111

binary addition

binary subtraction

minuend
subtrahend

Binary addition
To add two binary numbers X and Y , add together LSBs with an initial
carry (cin) of 0, producing carry (cout) and sum (s) bits
Continue processing bits from right to left, adding carry out of each
column into next column’s sum
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Addition and Subtraction of Nondecimal Numbers
Section 2.4 Addition and Subtraction of Nondecimal Numbers 29
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examples from the figure are repeated below along with two more, this time
showing the borrows as a bit string B:

A very common use of subtraction in computers is to compare two numbers. For
example, if the operation X − Y produces a borrow out of the most significant bit
position, then X is less than Y; otherwise, X is greater than or equal to Y. The rela-
tionship between carries and borrow in adders and subtractors will be explored
in Section 5.10.

Addition and subtraction tables can be developed for octal and hexadeci-
mal digits, or any other desired radix. However, few computer engineers bother
to memorize these tables. If you rarely need to manipulate nondecimal numbers,

B
X
Y

229
− 46

001111100
11100101

− 00101110

B
X
Y

210
−109

011011010
11010010

− 01101101

X − Y 183 10110111 X − Y 101 01100101

B
X
Y

170
− 85

010101010
10101010

− 01010101

B
X
Y

221
− 76

000000000
11011101

− 01001100

X − Y 85 01010101 X − Y 145 10010001

190
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331

1

1
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+
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Figure 2-1 Examples of decimal and corresponding binary additions.
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0

1

1

0

1

1

0

0

1

0

0

1

1

0

0

0

1

1

The borrow ripples through hree columns
to reach a borrowable 1, i.e.,
100 = 011 (the modified bits)
         +   1 (the borrow)

After he first borrow, the new
subtrac ion for this column is
0–1, so we must borrow again.

Must borrow 1, yielding
the new subtraction 10–1 = 1

1 0 0 1

1

1

0

1

1

1 1 1 0 11

Figure 2-2
Examples of decimal 
and corresponding 
binary subtractions.

comparing numbers

Figure 1: Examples of decimal and corresponding binary additions.

28 Chapter 2 Number Systems and Codes
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2.4 Addition and Subtraction of Nondecimal Numbers
Addition and subtraction of nondecimal numbers by hand uses the same tech-
nique that we learned in grammar school for decimal numbers; the only catch is
that the addition and subtraction tables are different.

Table 2-3 is the addition and subtraction table for binary digits. To add two
binary numbers X and Y, we add together the least significant bits with an initial
carry (cin) of 0, producing carry (cout) and sum (s) bits according to the table. We
continue processing bits from right to left, adding the carry out of each column
into the next column’s sum.

Two examples of decimal additions and the corresponding binary additions
are shown in Figure 2-1, using a colored arrow to indicate a carry of 1. The same
examples are repeated below along with two more, with the carries shown as a
bit string C:

Binary subtraction is performed similarly, using borrows (bin and bout)
instead of carries between steps, and producing a difference bit d. Two examples
of decimal subtractions and the corresponding binary subtractions are shown in
Figure 2-2. As in decimal subtraction, the binary minuend values in the columns
are modified when borrows occur, as shown by the colored arrows and bits. The

Ta b l e  2 - 3
Binary addition and 
subtraction table.

cin or bin x y cout s bout d

0 0 0 0 0 0 0

 0 0 1 0 1 1 1

 0 1 0 0 1 0 1

 0 1 1 1 0 0 0

 1 0 0 0 1 1 1

 1 0 1 1 0 1 0

 1 1 0 1 0 0 0

 1 1 1 1 1 1 1

C
X
Y

190
+141

101111000
10111110

+ 10001101

C
X
Y

173
+ 44

001011000
10101101

+ 00101100
X + Y 331 101001011 X + Y 217 11011001

C
X
Y

127
+ 63

011111110
01111111

+ 00111111

C
X
Y

170
+ 85

000000000
10101010

+ 01010101

X + Y 190 10111110 X + Y 255 11111111

binary addition

binary subtraction

minuend
subtrahend
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Addition and Subtraction of Nondecimal Numbers

Binary subtraction
Is performed similar to binary addition, using borrows (bin and bout)
instead of carries between steps, and producing a difference bit d
A common use of subtraction is to compare two numbers

If X − Y produces a borrow out of MSB position, X < Y ; otherwise,
X ≥ Y

Section 2.4 Addition and Subtraction of Nondecimal Numbers 29
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examples from the figure are repeated below along with two more, this time
showing the borrows as a bit string B:

A very common use of subtraction in computers is to compare two numbers. For
example, if the operation X − Y produces a borrow out of the most significant bit
position, then X is less than Y; otherwise, X is greater than or equal to Y. The rela-
tionship between carries and borrow in adders and subtractors will be explored
in Section 5.10.

Addition and subtraction tables can be developed for octal and hexadeci-
mal digits, or any other desired radix. However, few computer engineers bother
to memorize these tables. If you rarely need to manipulate nondecimal numbers,

B
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Figure 2-1 Examples of decimal and corresponding binary additions.
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The borrow ripples through hree columns
to reach a borrowable 1, i.e.,
100 = 011 (the modified bits)
         +   1 (the borrow)

After he first borrow, the new
subtrac ion for this column is
0–1, so we must borrow again.

Must borrow 1, yielding
the new subtraction 10–1 = 1

1 0 0 1

1

1

0

1

1

1 1 1 0 11

Figure 2: Examples of decimal and corresponding binary subtractions.
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Addition and Subtraction of Nondecimal Numbers

Section 2.4 Addition and Subtraction of Nondecimal Numbers 29
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examples from the figure are repeated below along with two more, this time
showing the borrows as a bit string B:

A very common use of subtraction in computers is to compare two numbers. For
example, if the operation X − Y produces a borrow out of the most significant bit
position, then X is less than Y; otherwise, X is greater than or equal to Y. The rela-
tionship between carries and borrow in adders and subtractors will be explored
in Section 5.10.

Addition and subtraction tables can be developed for octal and hexadeci-
mal digits, or any other desired radix. However, few computer engineers bother
to memorize these tables. If you rarely need to manipulate nondecimal numbers,
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Figure 2-1 Examples of decimal and corresponding binary additions.
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         +   1 (the borrow)
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0–1, so we must borrow again.

Must borrow 1, yielding
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and corresponding 
binary subtractions.
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Addition and Subtraction of Nondecimal Numbers

Two methods for octal and hexadecimal addition and subtraction
1 Convert number to decimal, calculate results, and convert back
2 Convert each column digits to decimal, do operation in decimal, and

convert result to corresponding sum and carry digits in non-decimal
radix

A carry is produced whenever column sum equals or exceeds radix

30 Chapter 2 Number Systems and Codes
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then it’s easy enough on those occasions to convert them to decimal, calculate
results, and convert back. On the other hand, if you must perform calculations in
binary, octal, or hexadecimal frequently, then you should ask Santa for a pro-
grammer’s “hex calculator” from Texas Instruments or Casio.

If the calculator’s battery wears out, some mental shortcuts can be used to
facilitate nondecimal arithmetic. In general, each column addition (or subtrac-
tion) can be done by converting the column digits to decimal, adding in decimal,
and converting the result to corresponding sum and carry digits in the nondeci-
mal radix. (A carry is produced whenever the column sum equals or exceeds the
radix.) Since the addition is done in decimal, we rely on our knowledge of the
decimal addition table; the only new thing that we need to learn is the conversion
from decimal to nondecimal digits and vice versa. The sequence of steps for
mentally adding two hexadecimal numbers is shown below:

2.5 Representation of Negative Numbers
So far, we have dealt only with positive numbers, but there are many ways to rep-
resent negative numbers. In everyday business, we use the signed-magnitude
system, discussed next. However, most computers use one of the complement
number systems that we introduce later.

2.5.1 Signed-Magnitude Representation
In the signed-magnitude system, a number consists of a magnitude and a symbol
indicating whether the magnitude is positive or negative. Thus, we interpret dec-
imal numbers +98, −57, +123.5, and −13 in the usual way, and we also assume
that the sign is “+” if no sign symbol is written. There are two possible represen-
tations of zero, “+0” and “−0”, but both have the same value.

The signed-magnitude system is applied to binary numbers by using an
extra bit position to represent the sign (the sign bit). Traditionally, the most sig-
nificant bit (MSB) of a bit string is used as the sign bit (0 = plus, 1 = minus), and
the lower-order bits contain the magnitude. Thus, we can write several 8-bit
signed-magnitude integers and their decimal equivalents:

C
X
Y +

1
1
C

1
9
7

0
B
E

0
9
6

16
16 +

1
1

12

1
9
7

0
11
14

0
9
6

X + Y E 1 9 F16 14
14
E

17
16+1

1

25
16+9

9

15
15
F

010101012 = +8510 110101012 = –8510

011111112 = +12710 111111112 = –12710

000000002 = +010 100000002 = –010

hexadecimal addition

signed-magnitude 
system

sign bit
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Representation of Negative Numbers: Signed-Magnitude

Signed-magnitude system
In this system, a number consists of a magnitude and a symbol
indicating whether it is positive or negative
In everyday business we use this system
To apply to binary numbers, an extra bit position is used to represent
sign called sign bit

Traditionally, MSB of a bit string is used as sign bit
0 = plus, 1 = minus

Several 8-bit signed-magnitude integers and their decimal equivalents

010101012 = +8510

011111112 = +12710

000000002 = +010

110101012 = −8510

111111112 = −12710

100000002 = −010

There are two possible representations for zero
This system has an equal number of positive and negative integers

−(2n−1 − 1) ≤ An n-bit integer ≤ +(2n−1 − 1)
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Representation of Negative Numbers: Signed-Magnitude

Signed-magnitude adder
The circuit must examine signs of addends to determine what to do
with magnitudes
If signs are the same, it must add magnitudes and give the result the
same sign
If signs are different, it must compare magnitudes, subtract the smaller
from the larger, and give the result the sign of the larger
”Ifs,” ”adds,” ”subtracts,” and ”compares” translate into a lot of
logic-circuit complexity

Signed-magnitude subtractor
It need only change sign of subtrahend and pass it along with minuend
to an adder
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Complement Number Systems

A complement number system negates a number by taking its
complement as defined by the system

Two numbers in a complement number system can be added or
subtracted directly without sign and magnitude checks required by
signed-magnitude system

In any complement number system, we deal with a fixed number of
digits, say n

We assume the numbers are integers

If an operation produces a result that requires more than n digits, we
throw away the extra high-order digit(s)

If a number D is complemented twice, result is D
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Radix-Complement Representation

Radix-complement system
Radix-complement of an n-digit number D (in radix r) = rn − D
In decimal number system, it is called 10’s complement
For an n-digit number D

1 ≤ D ≤ rn − 1 −→ 1 ≤ rn − D ≤ rn − 1

D = 0 −→ rn − D = rn︸︷︷︸
100···00

n+1 digits−−−−−−→ remove extra high-order digit −→ 0

Thus, there is only one representation of zero in this system

Table 4: Examples of 10’s and 9s’ complements using 4-digit decimal numbers.32 Chapter 2 Number Systems and Codes
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another number between 1 and r n − 1. If D is 0, the result of the subtraction is rn,
which has the form 100 ⋅ ⋅ ⋅ 00, where there are a total of n + 1 digits. We throw
away the extra high-order digit and get the result 0. Thus, there is only one rep-
resentation of zero in a radix-complement system.

It seems from the definition that a subtraction operation is needed to com-
pute the radix complement of D. However, this subtraction can be avoided by
rewriting r n as (rn − 1) + 1 and rn − D as ((r n − 1) − D) + 1. The number r n − 1
has the form mm ⋅ ⋅ ⋅ mm, where m = r − 1 and there are n m’s. For example,
10,000 equals 9,999 + 1. If we define the complement of a digit d to be r − 1 − d,
then (r n − 1) − D is obtained by complementing the digits of D. Therefore, the
radix complement of a number D is obtained by complementing the individual

Ta b l e  2 - 4
Examples of 10’s and 
9s’ complements.

Number
10’s 

complement
9s’ 

complement

1849 8151 8150

2067 7933 7932

100 9900 9899

7 9993 9992

8151 1849 1848

0 10000 (= 0) 9999

Ta b l e  2 - 5
Digit complements.

Complement

Digit Binary Octal Decimal Hexadecimal

0 1 7 9 F

1 0 6 8 E

2 – 5 7 D

3 – 4 6 C

4 – 3 5 B

5 – 2 4 A

6 – 1 3 9

7 – 0 2 8

8 – – 1 7

9 – – 0 6

A – – – 5

B – – – 4

C – – – 3

D – – – 2

E – – – 1

F – – – 0

computing the radix 
complement
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Radix-Complement Representation

To avoid subtraction rn − D in computing radix complement, rewrite

rn −→ (rn − 1) + 1
rn − D −→ ((rn − 1)− D) + 1

rn − 1 has the form mm · · ·mm, where m = r − 1 and there are n m’s
E.g., 10, 000 = 9, 999 + 1
If we define

Complement of a digit d = r − 1− d
complementing digits of D−−−−−−−−−−−−−−−→ (rn − 1)−D

Radix complement of D = (complementing individual digits of D)+1
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Radix-Complement Representation

Table 5: Digit complements.
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another number between 1 and r n − 1. If D is 0, the result of the subtraction is rn,
which has the form 100 ⋅ ⋅ ⋅ 00, where there are a total of n + 1 digits. We throw
away the extra high-order digit and get the result 0. Thus, there is only one rep-
resentation of zero in a radix-complement system.

It seems from the definition that a subtraction operation is needed to com-
pute the radix complement of D. However, this subtraction can be avoided by
rewriting r n as (rn − 1) + 1 and rn − D as ((r n − 1) − D) + 1. The number r n − 1
has the form mm ⋅ ⋅ ⋅ mm, where m = r − 1 and there are n m’s. For example,
10,000 equals 9,999 + 1. If we define the complement of a digit d to be r − 1 − d,
then (r n − 1) − D is obtained by complementing the digits of D. Therefore, the
radix complement of a number D is obtained by complementing the individual

Ta b l e  2 - 4
Examples of 10’s and 
9s’ complements.

Number
10’s 

complement
9s’ 

complement

1849 8151 8150

2067 7933 7932

100 9900 9899

7 9993 9992

8151 1849 1848

0 10000 (= 0) 9999

Ta b l e  2 - 5
Digit complements.

Complement

Digit Binary Octal Decimal Hexadecimal

0 1 7 9 F

1 0 6 8 E

2 – 5 7 D

3 – 4 6 C

4 – 3 5 B

5 – 2 4 A

6 – 1 3 9

7 – 0 2 8

8 – – 1 7

9 – – 0 6

A – – – 5

B – – – 4

C – – – 3

D – – – 2

E – – – 1

F – – – 0

computing the radix 
complement
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Two’s-Complement Representation

For binary numbers, radix complement is called two’s complement
MSB of a number serves as sign bit

Negative number ←→ MSB = 1

Decimal equivalent for a two’s-complement binary number

Weight of MSB = −2n−1 instead of +2n−1

Weight of the rest of bits is computed the same way as for an unsigned
number

Range of representable numbers

−(2n−1) ≤ Range ≤ +(2n−1 − 1)
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Two’s-Complement Representation

Section 2.5 Representation of Negative Numbers 33
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digits of D and adding 1. For example, the 10’s complement of 1849 is 8150+ 1,
or 8151. You should confirm that this trick also works for the other 10’s-comple-
ment examples above. Table 2-5 lists the digit complements for binary, octal,
decimal, and hexadecimal numbers.

2.5.4 Two’s-Complement Representation
For binary numbers, the radix complement is called the two’s complement. The
MSB of a number in this system serves as the sign bit; a number is negative if
and only if its MSB is 1. The decimal equivalent for a two’s-complement binary
number is computed the same way as for an unsigned number, except that the
weight of the MSB is −2n−1 instead of +2n−1. The range of representable num-
bers is−(2n−1) through +(2n−1 −1). Some 8-bit examples are shown below:

A carry out of the MSB position occurs in one case, as shown in color above. As
in all two’s-complement operations, this bit is ignored and only the low-order n
bits of the result are used.

In the two’s-complement number system, zero is considered positive
because its sign bit is 0. Since two’s complement has only one representation of
zero, we end up with one extra negative number, −(2n−1), that doesn’t have a pos-
itive counterpart. 

We can convert an n-bit two’s-complement number X into an m-bit one, but
some care is needed. If m > n, we must append m − n copies of X’s sign bit to the
left of X (see Exercise 2.23). That is, we pad a positive number with 0s and a
negative one with 1s; this is called sign extension. If m < n, we discard X’s n − m

1710 = 00010001
⇓

11101110

+1

2

complement bits
−9910 = 10011101

⇓
01100010

+1

2

complement bits

111011112 = −1710 011000112 = 9910

11910 = 01110111
⇓

10001000
+1

complement bits
−12710 = 10000001

⇓
01111110

+1

complement bits

100010012 = −11910 011111112 = 12710

010 = 00000000
⇓

11111111

+1

2

complement bits
−12810 = 10000000

⇓
01111111

+1

2

complement bits

1 000000002 = 010 100000002 = −12810

two’s complement

weight of MSB

extra negative number

sign extension
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Two’s-Complement Representation

In two’s complement system, zero is considered positive because its
sign bit is 0

Since there is only one representation of zero, we end up with one extra
negative number, −2n−1, with no positive counterpart

To convert an n-bit two’s-complement number X into an m-bit one

If m > n −→ sign extension: append m − n copies of X ’s sign bit to
left of X
If m < n, discard X ’s n −m leftmost bits

Result is valid if all of discarded bits are same as sign bit of the result
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Diminished Radix-Complement Representation

Diminished radix-complement system
Complement of an n-digit number D = (rn − 1)− D

Can be obtained by complementing individual digits of D, without
adding 1

In decimal, this is called 9s’ complement

Examples in Tab. 4
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Ones’-Complement Representation

Diminished radix-complement system for binary numbers is called
Ones’ complement

MSB is sign, 0 if positive and 1 if negative
Two representations of zero, positive zero (00 · · · 00) and negative zero
(11 · · · 11)
Positive-number representations are the same for both ones’ and two’s
complements
Negative-number representations differ by 1
Weight of MSB for decimal equivalent computing = −(2n−1 − 1) rather
than −2n−1

Range of representable numbers

−(2n−1 − 1) ≤ Range ≤ +(2n−1 − 1)
Advantages

Symmetry
Ease of complementation

Disadvantages
Adder design is trickier than a two’s-complement adder
Zero-detecting circuits either must check for both representations of
zero, or must always convert 11 · · · 11 to 00 · · · 00
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Ones’-Complement Representation

34 Chapter 2 Number Systems and Codes
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leftmost bits; however, the result is valid only if all of the discarded bits are the
same as the sign bit of the result (see Exercise 2.24).

Most computers and other digital systems use the two’s-complement sys-
tem to represent negative numbers. However, for completeness, we’ll also
describe the diminished radix-complement and ones’-complement systems.

*2.5.5 Diminished Radix-Complement Representation
In a diminished radix-complement system, the complement of an n-digit number
D is obtained by subtracting it from r n−1. This can be accomplished by comple-
menting the individual digits of D, without adding 1 as in the radix-complement
system. In decimal, this is called the 9s’ complement; some examples are given
in the last column of Table 2-4 on page 32.

*2.5.6 Ones’-Complement Representation
The diminished radix-complement system for binary numbers is called the ones’
complement. As in two’s complement, the most significant bit is the sign, 0 if
positive and 1 if negative. Thus there are two representations of zero, positive
zero (00⋅ ⋅ ⋅ 00) and negative zero (11⋅ ⋅ ⋅ 11). Positive number representations
are the same for both ones’ and two’s complements. However, negative number
representations differ by 1. A weight of −(2n−1 − 1), rather than −2n−1, is given
to the most significant bit when computing the decimal equivalent of a ones’-
complement number. The range of representable numbers is −(2n−1 − 1) through
+(2n−1 − 1). Some 8-bit numbers and their ones’ complements are shown below:

The main advantages of the ones’-complement system are its symmetry
and the ease of complementation. However, the adder design for ones’-
complement numbers is somewhat trickier than a two’s-complement adder (see
Exercise 7.67). Also, zero-detecting circuits in a ones’-complement system

* Throughout this book, optional sections are marked with an asterisk.

1710 = 000100012
⇓

111011102 = −1710

−9910 = 100111002
⇓

011000112 = 9910

11910 = 011101112
⇓

100010002 = −11910

−12710 = 100000002
⇓

011111112 = 12710

010 = 000000002 (positive zero)

⇓
111111112 = 010 (negative zero)

diminished radix-
complement system

9s’ complement

ones’ complement
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Excess Representations

Excessive-B representation
An m-bit string whose unsigned integer value is M (0 ≤ M < 2m)
represents signed integer M − B
B is called bias of number system
E.g., excess-2m−1 system represents any number X in range

−2m−1 ≤ X ≤ +2m−1 − 1

by m-bit binary representation of X + 2m−1 which is always nonnegative
and less than 2m

excess-2m−1 system vs. m-bit two’s complement

Their range of representations are the same
Representations of any number in the two systems are identical except
for sign bits, which are opposite

Most common use is in floating-point number systems
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Two’s-Complement Addition

Table 6: Decimal and 4-bit numbers.
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2.6.2 A Graphical View
Another way to view the two’s-complement system uses the 4-bit “counter”
shown in Figure 2-3. Here we have shown the numbers in a circular or
“modular” representation. The operation of this counter very closely mimics that
of a real up/down counter circuit, which we’ll study in Section 8.4. Starting

Ta b l e  2 - 6 Decimal and 4-bit numbers.

 Decimal
Two’s

Complement
Ones’

Complement
Signed

Magnitude
Excess

2m−1

 −8 1000 — — 0000

 −7 1001 1000 1111 0001

 −6 1010 1001 1110 0010

 −5 1011 1010 1101 0011

 −4 1100 1011 1100 0100

 −3 1101 1100 1011 0101

 −2 1110 1101 1010 0110

 −1 1111 1110 1001 0111

 0 0000 1111 or 0000 1000 or 0000 1000

 1 0001 0001 0001 1001

 2 0010 0010 0010 1010

 3 0011 0011 0011 1011

 4 0100 0100 0100 1100

 5 0101 0101 0101 1101

 6 0110 0110 0110 1110

 7 0111 0111 0111 1111

0000

1000

0001

0010

0011

01011011

1100

1101

1110

1111

01101010

01111001

0100

+0

–8

+1–1

+7–7

+2–2

+3–3

+4–4

+5–5

+6–6

Subtraction of
positive numbers

Addition of
positive numbers

Figure 2-3
A modular counting 
representation of 4-bit 
two’s-complement 
numbers.
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Two’s-Complement Addition

Tab. 6 reveals why two’s complement is preferred

Starting with 10002 (−810) and counting up, each successive number up
to 01112 (+710) can be obtained by adding 1 to previous one
Because ordinary addition is just an extension of counting,
two’s-complement numbers can thus be added by ordinary binary
addition, ignoring any carries beyond MSB

Result is correct if range of number system is not exceeded
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either must check for both representations of zero, or must always convert
11 ⋅ ⋅ ⋅ 11 to 00⋅ ⋅ ⋅ 00. 

*2.5.7 Excess Representations
Yes, the number of different systems for representing negative numbers is exces-
sive, but there’s just one more for us to cover. In excess-B representation, an
m-bit string whose unsigned integer value is M (0 ≤ M < 2m) represents the
signed integer M − B, where B is called the bias of the number system.

For example, an excess−2m−1 system represents any number X in the range
−2m−1 through +2m−1 − 1 by the m-bit binary representation of X + 2m−1 (which
is always nonnegative and less than 2m). The range of this representation is
exactly the same as that of m-bit two’s-complement numbers. In fact, the repre-
sentations of any number in the two systems are identical except for the sign bits,
which are always opposite. (Note that this is true only when the bias is 2m−1.)

The most common use of excess representations is in floating-point num-
ber systems (see References).

2.6 Two’s-Complement Addition and Subtraction

2.6.1 Addition Rules
A table of decimal numbers and their equivalents in different number systems,
Table 2-6, reveals why the two’s complement is preferred for arithmetic opera-
tions. If we start with 10002 (−810) and count up, we see that each successive
two’s-complement number all the way to 01112 (+710) can be obtained by add-
ing 1 to the previous one, ignoring any carries beyond the fourth bit position.
The same cannot be said of signed-magnitude and ones’-complement numbers.
Because ordinary addition is just an extension of counting, two’s-complement
numbers can thus be added by ordinary binary addition, ignoring any carries
beyond the MSB. The result will always be the correct sum as long as the range
of the number system is not exceeded. Some examples of decimal addition and
the corresponding 4-bit two’s-complement additions confirm this: 

+3
+ +4

0011
+ 0100

−2
+ −6

1110
+ 1010

+7 0111 −8 11000

+6
+ −3

0110
+ 1101

+4
+ −7

0100
+ 1001

+3 10011 −3 1101

excess-B representation

bias
excess-2m−1 system

two’s-complement 
addition
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Two’s-Complement Addition

Another way to view two’s-complement system uses 4-bit counter
shown in Fig. 3

Starting with arrow pointing to any number, add +n to (subtract +n
from) it by counting up n times (counting down n times), that is, by
moving arrow n positions clockwise (counterclockwise)
n must be small enough that discontinuity between −8 and +7 is not
crossed

36 Chapter 2 Number Systems and Codes

  
  
  
  
  
  
  
  
  
Copyright © 1999 by John F. Wakerly Copying Prohibited

2.6.2 A Graphical View
Another way to view the two’s-complement system uses the 4-bit “counter”
shown in Figure 2-3. Here we have shown the numbers in a circular or
“modular” representation. The operation of this counter very closely mimics that
of a real up/down counter circuit, which we’ll study in Section 8.4. Starting

Ta b l e  2 - 6 Decimal and 4-bit numbers.

 Decimal
Two’s

Complement
Ones’

Complement
Signed

Magnitude
Excess

2m−1

 −8 1000 — — 0000

 −7 1001 1000 1111 0001

 −6 1010 1001 1110 0010

 −5 1011 1010 1101 0011

 −4 1100 1011 1100 0100

 −3 1101 1100 1011 0101

 −2 1110 1101 1010 0110

 −1 1111 1110 1001 0111

 0 0000 1111 or 0000 1000 or 0000 1000

 1 0001 0001 0001 1001

 2 0010 0010 0010 1010

 3 0011 0011 0011 1011

 4 0100 0100 0100 1100

 5 0101 0101 0101 1101

 6 0110 0110 0110 1110

 7 0111 0111 0111 1111

0000

1000

0001

0010

0011

01011011

1100

1101

1110

1111

01101010

01111001

0100

+0

–8

+1–1

+7–7

+2–2

+3–3

+4–4

+5–5

+6–6

Subtraction of
positive numbers

Addition of
positive numbers

Figure 2-3
A modular counting 
representation of 4-bit 
two’s-complement 
numbers.

Figure 3: Modular counting representation of 4-bit two’s-complement numbers.
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Two’s-Complement Addition

In Fig. 3

We can subtract n (or add −n) by moving arrow 16− n positions
clockwise
16− n = 4-bit two’s complement of n = two’s complement
representation of −n
Thus, a negative number in two’s-complement representation may be
added to another number by adding 4-bit representations using ordinary
binary addition
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Two’s-Complement Addition: Overflow

Overflow occurs if an addition (of numbers of like sign) produces a
result that exceeds the range of number system

In Fig. 3, overflow occurs during addition of positive (negative) numbers
when we count past +7 (−8)
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with the arrow pointing to any number, we can add +n to that number by
counting up n times, that is, by moving the arrow n positions clockwise. It is also
evident that we can subtract n from a number by counting down n times, that is,
by moving the arrow n positions counterclockwise. Of course, these operations
give correct results only if n is small enough that we don’t cross the discontinuity
between −8 and +7.

What is most interesting is that we can also subtract n (or add −n) by mov-
ing the arrow 16 − n positions clockwise. Notice that the quantity 16 − n is what
we defined to be the 4-bit two’s complement of n, that is, the two’s-complement
representation of −n. This graphically supports our earlier claim that a negative
number in two’s-complement representation may be added to another number
simply by adding the 4-bit representations using ordinary binary addition. Add-
ing a number in Figure 2-3 is equivalent to moving the arrow a corresponding
number of positions clockwise.

2.6.3 Overflow
If an addition operation produces a result that exceeds the range of the number
system, overflow is said to occur. In the modular counting representation of
Figure 2-3, overflow occurs during addition of positive numbers when we count
past +7. Addition of two numbers with different signs can never produce over-
flow, but addition of two numbers of like sign can, as shown by the following
examples:

Fortunately, there is a simple rule for detecting overflow in addition: An
addition overflows if the signs of the addends are the same and the sign of the
sum is different from the addends’ sign. The overflow rule is sometimes stated in
terms of carries generated during the addition operation: An addition overflows
if the carry bits cin into and cout out of the sign position are different. Close exam-
ination of Table 2-3 on page 28 shows that the two rules are equivalent—there
are only two cases where cin ≠ cout, and these are the only two cases where x = y
and the sum bit is different.

2.6.4 Subtraction Rules
Two’s-complement numbers may be subtracted as if they were ordinary
unsigned binary numbers, and appropriate rules for detecting overflow may be
formulated. However, most subtraction circuits for two’s-complement numbers

−3
+ −6

1101
+ 1010

+5
+ +6

0101
+ 0110

−9 10111 = +7 +11 1011 = −5

−8
+ −8

1000
+ 1000

+7
+ +7

0111
+ 0111

−16 10000 = +0 +14 1110 = −2

overflow

overflow rules

two’s-complement 
subtraction

Overflow detection in addition
An addition overflows if addends’ signs are the same but sum’s sign is
different from addends’
Or equivalently, an addition overflows if cin into and cout out of sign
position are different

Rows 4 and 5 in Tab. 3
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Two’s-Complement Subtraction

Two’s-complement numbers may be subtracted as if they were
ordinary unsigned binary numbers

But most circuits negate subtrahend by taking its two’s complement,
and then add it to minuend using normal rules for addition

Perform a bit-by-bit complement of subtrahend
Add complemented subtrahend to minuend with an initial carry (cin) of
1 instead of 0

Using this method, only one addition is needed
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do not perform subtraction directly. Rather, they negate the subtrahend by taking
its two’s complement, and then add it to the minuend using the normal rules for
addition.

Negating the subtrahend and adding the minuend can be accomplished
with only one addition operation as follows: Perform a bit-by-bit complement of
the subtrahend and add the complemented subtrahend to the minuend with an
initial carry (cin) of 1 instead of 0. Examples are given below: 

Overflow in subtraction can be detected by examining the signs of the min-
uend and the complemented subtrahend, using the same rule as in addition. Or,
using the technique in the preceding examples, the carries into and out of the
sign position can be observed and overflow detected irrespective of the signs of
inputs and output, again using the same rule as in addition.

An attempt to negate the “extra” negative number results in overflow
according to the rules above, when we add 1 in the complementation process: 

However, this number can still be used in additions and subtractions as long as
the final result does not exceed the number range: 

2.6.5 Two’s-Complement and Unsigned Binary Numbers
Since two’s-complement numbers are added and subtracted by the same basic
binary addition and subtraction algorithms as unsigned numbers of the same
length, a computer or other digital system can use the same adder circuit to han-
dle numbers of both types. However, the results must be interpreted differently

+4
− +3

0100
− 0011

1
0100

+ 1100

— cin

+3
− +4

0011
− 0100

1
0011

+ 1011

— cin

+3 10001 −1 1111

+3
− −4

0011
− 1100

1
0011

+ 0011

— cin

−3
− −4

1101
− 1100

1
1101

+ 0011

— cin

+7 0111 +1 10001

−(−8) = −1000 = 0111
+ 0001

1000 = −8

+4
+ −8

0100
+ 1000

−3
− −8

1101
− 1000

1
1101

+ 0111

— cin

−4 1100 +5 10101
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Two’s-Complement Subtraction

Overflow detection in subtraction
Examine signs of minuend and complemented subtrahend, using the
same rule as in addition
Or, carries into and out of sign position can be observed and overflow
detected, using the same rule as in addition
Negating ”extra” negative number results in overflow, when we add 1 in
complementation process
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do not perform subtraction directly. Rather, they negate the subtrahend by taking
its two’s complement, and then add it to the minuend using the normal rules for
addition.

Negating the subtrahend and adding the minuend can be accomplished
with only one addition operation as follows: Perform a bit-by-bit complement of
the subtrahend and add the complemented subtrahend to the minuend with an
initial carry (cin) of 1 instead of 0. Examples are given below: 

Overflow in subtraction can be detected by examining the signs of the min-
uend and the complemented subtrahend, using the same rule as in addition. Or,
using the technique in the preceding examples, the carries into and out of the
sign position can be observed and overflow detected irrespective of the signs of
inputs and output, again using the same rule as in addition.

An attempt to negate the “extra” negative number results in overflow
according to the rules above, when we add 1 in the complementation process: 

However, this number can still be used in additions and subtractions as long as
the final result does not exceed the number range: 

2.6.5 Two’s-Complement and Unsigned Binary Numbers
Since two’s-complement numbers are added and subtracted by the same basic
binary addition and subtraction algorithms as unsigned numbers of the same
length, a computer or other digital system can use the same adder circuit to han-
dle numbers of both types. However, the results must be interpreted differently

+4
− +3

0100
− 0011

1
0100

+ 1100

— cin

+3
− +4

0011
− 0100

1
0011

+ 1011

— cin

+3 10001 −1 1111

+3
− −4

0011
− 1100

1
0011

+ 0011

— cin

−3
− −4

1101
− 1100

1
1101

+ 0011

— cin

+7 0111 +1 10001

−(−8) = −1000 = 0111
+ 0001

1000 = −8

+4
+ −8

0100
+ 1000

−3
− −8

1101
− 1000

1
1101

+ 0111

— cin

−4 1100 +5 10101

However, this number can still be used in additions and subtractions as
long as final result does not exceed number range
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do not perform subtraction directly. Rather, they negate the subtrahend by taking
its two’s complement, and then add it to the minuend using the normal rules for
addition.

Negating the subtrahend and adding the minuend can be accomplished
with only one addition operation as follows: Perform a bit-by-bit complement of
the subtrahend and add the complemented subtrahend to the minuend with an
initial carry (cin) of 1 instead of 0. Examples are given below: 

Overflow in subtraction can be detected by examining the signs of the min-
uend and the complemented subtrahend, using the same rule as in addition. Or,
using the technique in the preceding examples, the carries into and out of the
sign position can be observed and overflow detected irrespective of the signs of
inputs and output, again using the same rule as in addition.

An attempt to negate the “extra” negative number results in overflow
according to the rules above, when we add 1 in the complementation process: 

However, this number can still be used in additions and subtractions as long as
the final result does not exceed the number range: 

2.6.5 Two’s-Complement and Unsigned Binary Numbers
Since two’s-complement numbers are added and subtracted by the same basic
binary addition and subtraction algorithms as unsigned numbers of the same
length, a computer or other digital system can use the same adder circuit to han-
dle numbers of both types. However, the results must be interpreted differently

+4
− +3

0100
− 0011

1
0100

+ 1100

— cin

+3
− +4

0011
− 0100

1
0011

+ 1011

— cin

+3 10001 −1 1111

+3
− −4

0011
− 1100

1
0011

+ 0011

— cin

−3
− −4

1101
− 1100

1
1101

+ 0011

— cin

+7 0111 +1 10001

−(−8) = −1000 = 0111
+ 0001

1000 = −8

+4
+ −8

0100
+ 1000

−3
− −8

1101
− 1000

1
1101

+ 0111

— cin

−4 1100 +5 10101
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Ones’-Complement Addition and Subtraction

In Tab. 6 for ones’-complement numbers
Starting at 10002 (−710) and counting up, we obtain each successive
ones’-complement number by adding 1 to previous one, except at
transition from 11112 (−0) to 00012 (+110)
We must add 2 instead of 1 whenever we count past 11112

Counting past 11112 can be detected by observing carry out of sign bit

End-around carry rule for adding ones’-complement numbers
Perform a standard binary addition; if there is a carry out of sign
position, add 1 to result
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*2.7 Ones’-Complement Addition and Subtraction
Another look at Table 2-6 helps to explain the rule for adding ones’-complement
numbers. If we start at 10002 (−710) and count up, we obtain each successive
ones’-complement number by adding 1 to the previous one, except at the transi-
tion from 11112 (negative 0) to 00012 (+110). To maintain the proper count, we
must add 2 instead of 1 whenever we count past 11112. This suggests a technique
for adding ones’-complement numbers: Perform a standard binary addition, but
add an extra 1 whenever we count past 11112.

Counting past 11112 during an addition can be detected by observing the
carry out of the sign position. Thus, the rule for adding ones’-complement num-
bers can be stated quite simply:

• Perform a standard binary addition; if there is a carry out of the sign posi-
tion, add 1 to the result. 

This rule is often called end-around carry. Examples of ones’-complement addi-
tion are given below; the last three include an end-around carry:  

Following the two-step addition rule above, the addition of a number and
its ones’ complement produces negative 0. In fact, an addition operation using
this rule can never produce positive 0 unless both addends are positive 0.

As with two’s complement, the easiest way to do ones’-complement sub-
traction is to complement the subtrahend and add. Overflow rules for ones’-
complement addition and subtraction are the same as for two’s complement.

Table 2-7 summarizes the rules that we presented in this and previous sec-
tions for negation, addition, and subtraction in binary number systems.

+3
+ +4

0011
+ 0100

+4
+ −7

0100
+ 1000

+5
+ −5

0101
+ 1010

+7 0111 −3 1100 −0 1111

−2
+ −5

1101
+ 1010

+6
+ −3

0110
+ 1100

−0
+ −0

1111
+ 1111

−7 10111
+ 1

+3 10010
+ 1

−0 11110
+ 1

1000 0011 1111

ones’-complement 
addition

end-around carry

ones’-complement 
subtraction
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Ones’-Complement Addition and Subtraction

Following end-around carry rule, addition of a number and its ones’
complement produces negative 0

In fact, an addition operation using this rule can never produce positive
0 unless both addends are positive 0

Ones’-complement subtraction is done by complementing
subtrahend and then adding

Overflow rules for ones’-complement addition and subtraction are the
same as for two’s-complement
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One’s-Complement Addition and Subtraction

Table 7: Summary of addition and subtraction rules for binary numbers.
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*2.8 Binary Multiplication
In grammar school we learned to multiply by adding a list of shifted multipli-
cands computed according to the digits of the multiplier. The same method can
be used to obtain the product of two unsigned binary numbers. Forming the
shifted multiplicands is trivial in binary multiplication, since the only possible
values of the multiplier digits are 0 and 1. An example is shown below: 

Ta b l e  2 - 7 Summary of addition and subtraction rules for binary numbers.

Number System Addition Rules Negation Rules Subtraction Rules

Unsigned Add the numbers. Result is out of 
range if a carry out of the MSB 
occurs.

Not applicable Subtract the subtrahend 
from the minuend. Result is 
out of range if a borrow out 
of the MSB occurs.

Signed magnitude (same sign) Add the magnitudes; 
overflow occurs if a carry out of 
MSB occurs; result has the same 
sign.
(opposite sign) Subtract the 
smaller magnitude from the larg-
er; overflow is impossible; result 
has the sign of the larger.

Change the number’s 
sign bit.

Change the sign bit of the 
subtrahend and proceed as 
in addition.

Two’s complement Add, ignoring any carry out of 
the MSB. Overflow occurs if the 
carries into and out of MSB are 
different.

Complement all bits of 
the number; add 1 to the 
result.

Complement all bits of the 
subtrahend and add to the 
minuend with an initial
carry of 1.

Ones’ complement Add; if there is a carry out of the 
MSB, add 1 to the result. Over-
flow if carries into and out of 
MSB are different.

Complement all bits of 
the number.

Complement all bits of the 
subtrahend and proceed as 
in addition.

11
× 13

1011
× 1101

multiplicand
multiplier

33
11

1011
0000 }shifted multiplicands

143 1011
1011

10001111 product

shift-and-add 
multiplication

unsigned binary 
multiplication
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Binary Multiplication

Unsigned binary multiplication
Add a list of shifted multiplicands computed according to digits of
multiplier
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*2.8 Binary Multiplication
In grammar school we learned to multiply by adding a list of shifted multipli-
cands computed according to the digits of the multiplier. The same method can
be used to obtain the product of two unsigned binary numbers. Forming the
shifted multiplicands is trivial in binary multiplication, since the only possible
values of the multiplier digits are 0 and 1. An example is shown below: 

Ta b l e  2 - 7 Summary of addition and subtraction rules for binary numbers.

Number System Addition Rules Negation Rules Subtraction Rules

Unsigned Add the numbers. Result is out of 
range if a carry out of the MSB 
occurs.

Not applicable Subtract the subtrahend 
from the minuend. Result is 
out of range if a borrow out 
of the MSB occurs.

Signed magnitude (same sign) Add the magnitudes; 
overflow occurs if a carry out of 
MSB occurs; result has the same 
sign.
(opposite sign) Subtract the 
smaller magnitude from the larg-
er; overflow is impossible; result 
has the sign of the larger.

Change the number’s 
sign bit.

Change the sign bit of the 
subtrahend and proceed as 
in addition.

Two’s complement Add, ignoring any carry out of 
the MSB. Overflow occurs if the 
carries into and out of MSB are 
different.

Complement all bits of 
the number; add 1 to the 
result.

Complement all bits of the 
subtrahend and add to the 
minuend with an initial
carry of 1.

Ones’ complement Add; if there is a carry out of the 
MSB, add 1 to the result. Over-
flow if carries into and out of 
MSB are different.

Complement all bits of 
the number.

Complement all bits of the 
subtrahend and proceed as 
in addition.

11
× 13

1011
× 1101

multiplicand
multiplier

33
11

1011
0000 }shifted multiplicands

143 1011
1011

10001111 product

shift-and-add 
multiplication

unsigned binary 
multiplication

This method lists all shifted multiplicands and then adds

Difficult to implement in a digital system
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Binary Multiplication

In a digital system, it is more convenient to add each shifted
multiplicand as it is created to a partial product

42 Chapter 2 Number Systems and Codes

  
  
  
  
  
  
  
  
  
Copyright © 1999 by John F. Wakerly Copying Prohibited

Instead of listing all the shifted multiplicands and then adding, in a digital
system it is more convenient to add each shifted multiplicand as it is created to a
partial product. Applying this technique to the previous example, four additions
and partial products are used to multiply 4-bit numbers: 

In general, when we multiply an n-bit number by an m-bit number, the resulting
product requires at most n + m bits to express. The shift-and-add algorithm
requires m partial products and additions to obtain the result, but the first addi-
tion is trivial, since the first partial product is zero. Although the first partial
product has only n significant bits, after each addition step the partial product
gains one more significant bit, since each addition may produce a carry. At the
same time, each step yields one more partial product bit, starting with the right-
most and working toward the left, that does not change. The shift-and-add
algorithm can be performed by a digital circuit that includes a shift register, an
adder, and control logic, as shown in Section 8.7.2.

Multiplication of signed numbers can be accomplished using unsigned
multiplication and the usual grammar school rules: Perform an unsigned multi-
plication of the magnitudes and make the product positive if the operands had
the same sign, negative if they had different signs. This is very convenient in
signed-magnitude systems, since the sign and magnitude are separate.

In the two’s-complement system, obtaining the magnitude of a negative
number and negating the unsigned product are nontrivial operations. This leads
us to seek a more efficient way of performing two’s-complement multiplication,
described next.

Conceptually, unsigned multiplication is accomplished by a sequence of
unsigned additions of the shifted multiplicands; at each step, the shift of the mul-
tiplicand corresponds to the weight of the multiplier bit. The bits in a two’s-
complement number have the same weights as in an unsigned number, except
for the MSB, which has a negative weight (see Section 2.5.4). Thus, we can per-
form two’s-complement multiplication by a sequence of two’s-complement
additions of shifted multiplicands, except for the last step, in which the shifted

11
× 13

1011
× 1101

multiplicand
multiplier

0000
1011

partial product
shifted multiplicand

01011
0000↓

partial product
shifted multiplicand

001011
1011↓↓

partial product
shifted multiplicand

0110111
1011↓↓↓

partial product
shifted multiplicand

10001111 product

partial product

signed multiplication

two’s-complement 
multiplication

n-bit number × m-bit number

Resulting product requires at most n + m bits
Shift-and-add algorithm requires m partial products and additions
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Binary Multiplication

Signed multiplication
Perform an unsigned multiplication of magnitudes
Make product positive if operands had same sign, negative if different
signs
Convenient in signed-magnitude systems
In two’s-complement system, obtaining magnitude of a negative number
and negating unsigned product are nontrivial operations

Two’s-complement multiplication
Can be performed by a sequence of two’s-complement additions of
shifted multiplicands, except for the last step
MSB in a two’s-complement number has a negative weight
The shifted multiplicand corresponding to MSB of multiplier must be
negated before it is added to partial product
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Binary Multiplication

Section *2.9 Binary Division 43
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multiplicand corresponding to the MSB of the multiplier must be negated before
it is added to the partial product. Our previous example is repeated below, this
time interpreting the multiplier and multiplicand as two’s-complement numbers:

Handling the MSBs is a little tricky because we gain one significant bit at each
step and we are working with signed numbers. Therefore, before adding each
shifted multiplicand and k-bit partial product, we change them to k + 1 signifi-
cant bits by sign extension, as shown in color above. Each resulting sum has
k + 1 bits; any carry out of the MSB of the k + 1-bit sum is ignored.

*2.9 Binary Division
The simplest binary division algorithm is based on the shift-and-subtract method
that we learned in grammar school. Table 2-8 gives examples of this method for
unsigned decimal and binary numbers. In both cases, we mentally compare the

−5
× −3

1011
× 1101

multiplicand
multiplier

00000
11011

partial product
shifted multiplicand

111011
00000↓

partial product
shifted multiplicand

1111011
11011↓↓

partial product
shifted multiplicand

11100111
00101↓↓↓

partial product
shifted and negated multiplicand

00001111 product

11
19

)217 1011
10011

)11011001
quotient
dividend

Ta b l e  2 - 8
Example of 
long division.

11 1011 shifted divisor

107
99

0101
0000

reduced dividend
shifted divisor

8  1010
0000

reduced dividend
shifted divisor

10100
1011

reduced dividend
shifted divisor

10011
1011

reduced dividend
shifted divisor

1000 remainder

shift-and-subtract 
division

unsigned division

One significant bit is gained at each step, and numbers are signed
Before adding each shifted multiplicand and k-bit partial product,
change them to k + 1 significant bits by sign extension, as shown in
color above
Each resulting sum has k + 1 bits; any carry out of MSB of k + 1-bit
sum is ignored
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Binary Division

The simplest binary division is based on shift-and-subtract method
Mentally compare reduced dividend with multiples of divisor to
determine which multiple of shifted divisor to subtract

Table 8: Example of long division for unsigned decimal and binary numbers.
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multiplicand corresponding to the MSB of the multiplier must be negated before
it is added to the partial product. Our previous example is repeated below, this
time interpreting the multiplier and multiplicand as two’s-complement numbers:

Handling the MSBs is a little tricky because we gain one significant bit at each
step and we are working with signed numbers. Therefore, before adding each
shifted multiplicand and k-bit partial product, we change them to k + 1 signifi-
cant bits by sign extension, as shown in color above. Each resulting sum has
k + 1 bits; any carry out of the MSB of the k + 1-bit sum is ignored.

*2.9 Binary Division
The simplest binary division algorithm is based on the shift-and-subtract method
that we learned in grammar school. Table 2-8 gives examples of this method for
unsigned decimal and binary numbers. In both cases, we mentally compare the

−5
× −3

1011
× 1101

multiplicand
multiplier

00000
11011

partial product
shifted multiplicand

111011
00000↓

partial product
shifted multiplicand

1111011
11011↓↓

partial product
shifted multiplicand

11100111
00101↓↓↓

partial product
shifted and negated multiplicand

00001111 product

11
19

)217 1011
10011

)11011001
quotient
dividend

Ta b l e  2 - 8
Example of 
long division.

11 1011 shifted divisor

107
99

0101
0000

reduced dividend
shifted divisor

8  1010
0000

reduced dividend
shifted divisor

10100
1011

reduced dividend
shifted divisor

10011
1011

reduced dividend
shifted divisor

1000 remainder

shift-and-subtract 
division

unsigned division
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Binary Division

In a typical division algorithm

Dividend: (n + m) bits

Divisor: n bits

Quotient: m bits

Remainder: n bits

A division overflows if
Divisor is zero
Or quotient would take more than m bits to express

In most division circuits, n = m

Signed division
Perform an unsigned division of magnitudes
Make quotient positive if operands had the same sign, negative if
different signs
Remainder should be given the same sign as dividend
There are special techniques for performing division directly on
two’s-complement numbers (as in multiplication)
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Binary Codes for Decimal Numbers

Binary numbers are appropriate for internal computations of a digital
system

External interfaces of a digital system may read or display decimal
numbers

People prefer to deal with decimal numbers
A decimal number is represented in a digital system by a string of bits
Some digital devices actually process decimal numbers directly

Code
A set of n-bit strings in which different bit strings represent different
numbers
A particular combination of n bit-values is called a code word
There may or may not be an arithmetic relationship between bit values
in a code word and what it represents
At least four bits are needed to represent ten decimal digits
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Binary Codes for Decimal Numbers

Table 9: Decimal codes.
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tions, 0000 through 1001. The code words 1010 through 1111 are not used.
Conversions between BCD and decimal representations are trivial, a direct sub-
stitution of four bits for each decimal digit. Some computer programs place two
BCD digits in one 8-bit byte in packed-BCD representation; thus, one byte may
represent the values from 0 to 99 as opposed to 0 to 255 for a normal unsigned 8-
bit binary number. BCD numbers with any desired number of digits may be
obtained by using one byte for each two digits.

As with binary numbers, there are many possible representations of nega-
tive BCD numbers. Signed BCD numbers have one extra digit position for the

Ta b l e  2 - 9 Decimal codes.

Decimal digit BCD (8421) 2421 Excess-3 Biquinary 1-out-of-10

0 0000 0000 0011 0100001 1000000000

1 0001 0001 0100 0100010 0100000000

2 0010 0010 0101 0100100 0010000000

3 0011 0011 0110 0101000 0001000000

4 0100 0100 0111 0110000 0000100000

5 0101 1011 1000 1000001 0000010000

6 0110 1100 1001 1000010 0000001000

7 0111 1101 1010 1000100 0000000100

8 1000 1110 1011 1001000 0000000010

9 1001 1111 1100 1010000 0000000001

Unused code words

1010 0101 0000 0000000 0000000000

1011 0110 0001 0000001 0000000011

1100 0111 0010 0000010 0000000101

1101 1000 1101 0000011 0000000110

1110 1001 1110 0000101 0000000111

1111 1010 1111 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

BINOMIAL
COEFFICIENTS

The number of different ways to choose m items from a set of n items is given by

a binomial coefficient, denoted , whose value is . For a 4-bit

decimal code, there are  different ways to choose 10 out of 16 4-bit code

words, and 10! ways to assign each different choice to the 10 digits. So there are

⋅ 10! or 29,059,430,400 different 4-bit decimal codes.

n
m 

  n!
m! n m!–( )⋅
------------------------------

16
10 

 

16!
10! 6!⋅
-----------------

packed-BCD 
representation
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Binary Codes for Decimal Numbers

Binary-coded decimal (BCD)
Encodes 0 through 9 by their 4-bit unsigned binary representations,
0000 through 1001
Code words 1010 through 1111 are not used
Conversion between BCD and decimal representations are a direct
substitution of four bits for each decimal digit
Packed-BCD representation

Two BCD digits placed in one 8-bit byte
Thus, one byte may represent 0 to 99 as opposed to 0 to 255 for a
normal unsigned 8-bit binary number

Signed BCD numbers have one extra digit position for sign
Signed-magnitude representation

Encoding of sign bit string is arbitrary

10’s-complement representation

0000 = plus, 1001 = minus

Moslem Amiri, Václav Přenosil Design of Digital Systems II September, 2012 48 / 76



Binary Codes for Decimal Numbers

Addition of BCD digits

Similar to adding 4-bit unsigned binary numbers
But if a result exceeds 1001, it is corrected by adding 6
Carry is produced into next digit position if either initial binary addition
or correction-factor addition produces a carry
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sign. Both the signed-magnitude and 10’s-complement representations are pop-
ular. In signed-magnitude BCD, the encoding of the sign bit string is arbitrary; in
10’s-complement, 0000 indicates plus and 1001 indicates minus.

Addition of BCD digits is similar to adding 4-bit unsigned binary numbers,
except that a correction must be made if a result exceeds 1001. The result is cor-
rected by adding 6; examples are shown below:

Notice that the addition of two BCD digits produces a carry into the next digit
position if either the initial binary addition or the correction factor addition pro-
duces a carry. Many computers perform packed-BCD arithmetic using special
instructions that handle the carry correction automatically.

Binary-coded decimal is a weighted code because each decimal digit can
be obtained from its code word by assigning a fixed weight to each code-word
bit. The weights for the BCD bits are 8, 4, 2, and 1, and for this reason the code
is sometimes called the 8421 code. Another set of weights results in the 2421
code shown in Table 2-9. This code has the advantage that it is self-
complementing, that is, the code word for the 9s’ complement of any digit may
be obtained by complementing the individual bits of the digit’s code word.

Another self-complementing code shown in Table 2-9 is the excess-3 code.
Although this code is not weighted, it has an arithmetic relationship with the
BCD code—the code word for each decimal digit is the corresponding BCD
code word plus 00112. Because the code words follow a standard binary count-
ing sequence, standard binary counters can easily be made to count in excess-3
code, as we’ll show in Figure 8-37 on page 600.

Decimal codes can have more than four bits; for example, the biquinary
code in Table 2-9 uses seven. The first two bits in a code word indicate whether
the number is in the range 0–4 or 5–9, and the last five bits indicate which of the
five numbers in the selected range is represented.

One potential advantage of using more than the minimum number of bits in
a code is an error-detecting property. In the biquinary code, if any one bit in a
code word is accidentally changed to the opposite value, the resulting code word

5
+ 9

0101
+ 1001

4
+ 5

0100
+ 0101

14 1110
+ 0110 — correction

9 1001

10+4 1 0100

8
+ 8

1000
+ 1000

9
+ 9

1001
+ 1001

−16 1 0000
+ 0110 — correction

18 1 0010
+ 0110 — correction

10+6 1 0110 10+8 1 1000

BCD addition

weighted code

8421 code
2421 code
self-complementing 

code

excess-3 code

biquinary code
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Binary Codes for Decimal Numbers

Weighted code
In a weighted code, each decimal digit can be obtained from its code
word by assigning a fixed weight to each code-word bit
E.g., BCD (= 8421 code) in which the weights for bits are 8, 4, 2, 1
2421 code is self-complementing

Code word for 9s’ complement of any digit may be obtained by
complementing individual bits of digit’s code word

Excess-3 code
A self-complementing code
Code word for each decimal digit is corresponding BCD code word plus
00112

Because code words follow a standard binary counting sequence,
standard binary counters can be made to count in excess-3 code
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Binary Codes for Decimal Numbers

One advantage of using more than minimum number of bits in a code
is an error-detecting property

Biquinary code
Uses seven bits
First two bits indicate range of number, 0-4 or 5-9
Last five bits indicate number in the selected range
Has error-detecting property

If any one bit is accidentally flipped, result is not a decimal digit
Of 128 possible 7-bit code words, only 10 are valid; the rest can be
flagged as errors if appear

1-out-of-10 code
The sparsest encoding for decimal digits
Uses 10 out of 1024 possible 10-bit code words
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Gray Code

In electromechanical applications of digital systems, sometimes an
input sensor should produce a digital value that indicates a mechanical
position

Figure 4: A mechanical encoding disk using a 3-bit binary code.

In Fig. 4, dark areas of disk are connected to a signal source
corresponding to logic 1, and light areas are unconnected (logic 0)
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Gray Code

In Fig. 4

Problem when disk is positioned at certain boundaries between regions
E.g., if disk is positioned right on boundary between 001 and 010
regions

Both 001 and 010 are acceptable
But because mechanical assembly is not perfect, incorrect reading of 000
or 011 is possible

This sort of problem can occur at any boundary where more than one
bit changes

Encoding-disk problem can be solved by Gray code
A digital code in which only one bit changes between each pair of
successive code words
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Table 10: A comparison of 3-bit binary code and Gray code.48 Chapter 2 Number Systems and Codes
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signed the encoding disk using this code as shown in Figure 2-6. Only one bit of
the new disk changes at each border, so borderline readings give us a value on
one side or the other of the border.

There are two convenient ways to construct a Gray code with any desired
number of bits. The first method is based on the fact that Gray code is a reflected
code; it can be defined (and constructed) recursively using the following rules:

1. A 1-bit Gray code has two code words, 0 and 1.

2. The first 2n code words of an n+1-bit Gray code equal the code words of
an n-bit Gray code, written in order with a leading 0 appended.

3. The last 2n code words of an n+1-bit Gray code equal the code words of an
n-bit Gray code, but written in reverse order with a leading 1 appended.

If we draw a line between rows 3 and 4 of Table 2-10, we can see that rules 2
and 3 are true for the 3-bit Gray code. Of course, to construct an n-bit Gray code
for an arbitrary value of n with this method, we must also construct a Gray code
of each length smaller than n.

Ta b l e  2 - 1 0
A comparison of 3-bit 
binary code and 
Gray code.

Decimal 
number

Binary 
code

Gray 
code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

000100

001

010110

011

101

111

0 0 1

Figure 2-6
A mechanical encoding 
disk using a 3-bit Gray 
code.

reflected code
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signed the encoding disk using this code as shown in Figure 2-6. Only one bit of
the new disk changes at each border, so borderline readings give us a value on
one side or the other of the border.

There are two convenient ways to construct a Gray code with any desired
number of bits. The first method is based on the fact that Gray code is a reflected
code; it can be defined (and constructed) recursively using the following rules:

1. A 1-bit Gray code has two code words, 0 and 1.

2. The first 2n code words of an n+1-bit Gray code equal the code words of
an n-bit Gray code, written in order with a leading 0 appended.

3. The last 2n code words of an n+1-bit Gray code equal the code words of an
n-bit Gray code, but written in reverse order with a leading 1 appended.

If we draw a line between rows 3 and 4 of Table 2-10, we can see that rules 2
and 3 are true for the 3-bit Gray code. Of course, to construct an n-bit Gray code
for an arbitrary value of n with this method, we must also construct a Gray code
of each length smaller than n.

Ta b l e  2 - 1 0
A comparison of 3-bit 
binary code and 
Gray code.

Decimal 
number

Binary 
code

Gray 
code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

000100

001

010110

011

101

111

0 0 1

Figure 2-6
A mechanical encoding 
disk using a 3-bit Gray 
code.

reflected code

Figure 5: A mechanical encoding disk using a 3-bit Gray code.
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Gray code is a reflected code; it can be constructed recursively (with
any number of bits)

1 A 1-bit Gray code has two code words, 0 and 1
2 First 2n code words of an (n + 1)-bit Gray code equal code words of an

n-bit Gray code, written in order with a leading 0 appended
3 Last 2n code words of an (n + 1)-bit Gray code equal code words of an

n-bit Gray code, but written in reverse order with a leading 1 appended

A method to derive an n-bit Gray-code code word directly from
corresponding n-bit binary code word

1 Bits of an n-bit binary or Gray-code code word are numbered from right
to left, from 0 to n − 1

2 Bit i of a Gray-code code word is 0 if bits i and i + 1 of corresponding
binary code word are the same, else bit i is 1

When i + 1 = n, bit n of binary code word is considered to be 0
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Character Codes

Most of information processed by computers is nonnumeric

Text is the most common type of nonnumeric data

Strings of characters from some character set
Each character is represented by a bit string according to an established
convention

ASCII (American Standard Code for Information Interchange)

The most commonly used character code
Each character is represented with a 7-bit string
A total of 128 different characters
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Character Codes

Table 11: ASCII, Standard No. X3.4-1968 of the American National Standards
Institute.
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Ta b l e  2 - 1 1 American Standard Code for Information Interchange (ASCII), Standard No. 
X3.4-1968 of the American National Standards Institute.

b6b5b4 (column)

b3b2b1b0

Row
(hex)

000
0

001
1

010
2

011
3

100
4

101
5

110
6

111
7

0000 0 NUL DLE SP 0 @ P ‘ p

0001 1 SOH DC1 ! 1 A Q a q

0010 2 STX DC2 " 2 B R b r

0011 3 ETX DC3 # 3 C S c s

0100 4 EOT DC4 $ 4 D T d t

0101 5 ENQ NAK % 5 E U e u

0110 6 ACK SYN & 6 F V f v

0111 7 BEL ETB ’ 7 G W g w

1000 8 BS CAN ( 8 H X h x

1001 9 HT EM ) 9 I Y i y

1010 A LF SUB * : J Z j z

1011 B VT ESC + ; K [ k {

1100 C FF FS , < L \ l |

1101 D CR GS – = M ] m }

1110 E SO RS . > N ^ n ~

1111 F SI US / ? O _ o DEL

Control codes

NUL Null DLE Data link escape
SOH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronize
BEL Bell ETB End transmitted block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape

FF Form feed FS File separator
CR Carriage return GS Group separator
SO Shift out RS Record separator
SI Shift in US Unit separator

SP Space DEL Delete or rubout
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Character Codes

Table 12: ASCII, Standard No. X3.4-1968 of the American National Standards
Institute.
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Ta b l e  2 - 1 1 American Standard Code for Information Interchange (ASCII), Standard No. 
X3.4-1968 of the American National Standards Institute.

b6b5b4 (column)

b3b2b1b0

Row
(hex)

000
0

001
1

010
2

011
3

100
4

101
5

110
6

111
7

0000 0 NUL DLE SP 0 @ P ‘ p

0001 1 SOH DC1 ! 1 A Q a q

0010 2 STX DC2 " 2 B R b r

0011 3 ETX DC3 # 3 C S c s

0100 4 EOT DC4 $ 4 D T d t

0101 5 ENQ NAK % 5 E U e u

0110 6 ACK SYN & 6 F V f v

0111 7 BEL ETB ’ 7 G W g w

1000 8 BS CAN ( 8 H X h x

1001 9 HT EM ) 9 I Y i y

1010 A LF SUB * : J Z j z

1011 B VT ESC + ; K [ k {

1100 C FF FS , < L \ l |

1101 D CR GS – = M ] m }

1110 E SO RS . > N ^ n ~

1111 F SI US / ? O _ o DEL

Control codes

NUL Null DLE Data link escape
SOH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronize
BEL Bell ETB End transmitted block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape

FF Form feed FS File separator
CR Carriage return GS Group separator
SO Shift out RS Record separator
SI Shift in US Unit separator

SP Space DEL Delete or rubout
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Ta b l e  2 - 1 1 American Standard Code for Information Interchange (ASCII), Standard No. 
X3.4-1968 of the American National Standards Institute.

b6b5b4 (column)

b3b2b1b0

Row
(hex)

000
0

001
1

010
2

011
3

100
4

101
5

110
6

111
7

0000 0 NUL DLE SP 0 @ P ‘ p

0001 1 SOH DC1 ! 1 A Q a q

0010 2 STX DC2 " 2 B R b r

0011 3 ETX DC3 # 3 C S c s

0100 4 EOT DC4 $ 4 D T d t

0101 5 ENQ NAK % 5 E U e u

0110 6 ACK SYN & 6 F V f v

0111 7 BEL ETB ’ 7 G W g w

1000 8 BS CAN ( 8 H X h x

1001 9 HT EM ) 9 I Y i y

1010 A LF SUB * : J Z j z

1011 B VT ESC + ; K [ k {

1100 C FF FS , < L \ l |

1101 D CR GS – = M ] m }

1110 E SO RS . > N ^ n ~

1111 F SI US / ? O _ o DEL

Control codes

NUL Null DLE Data link escape
SOH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronize
BEL Bell ETB End transmitted block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape

FF Form feed FS File separator
CR Carriage return GS Group separator
SO Shift out RS Record separator
SI Shift in US Unit separator

SP Space DEL Delete or rubout
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Codes for Actions, Conditions, and States

Numbers, positions, and characters are ”data”

In digital system design, we often encounter nondata applications

A string of bits must be used to control an action, to flag a condition,
or to represent current state of hardware
The most commonly used type of code for such an application is a
binary code

If there are n different actions, conditions, or states, represent them
with a b-bit binary code with b = dlog2 ne
Consider a traffic-light controller

N-S: north-south street
E-W: east-west street
Signals at intersection of N-S and E-W street might be in any of six
states listed in Tab. 13
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Codes for Actions, Conditions, and States

Table 13: States in a traffic-light controller.
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of the six states listed in Table 2-12. These states can be encoded in three bits, as
shown in the last column of the table. Only six of the eight possible 3-bit code
words are used, and the assignment of the six chosen code words to states is arbi-
trary, so many other encodings are possible. An experienced digital designer
chooses a particular encoding to minimize circuit cost or to optimize some other
parameter (like design time—there’s no need to try billions and billions of pos-
sible encodings).

Another application of a binary code is illustrated in Figure 2-7(a). Here,
we have a system with n devices, each of which can perform a certain action.
The characteristics of the devices are such that they may be enabled to operate
only one at a time. The control unit produces a binary-coded “device select”
word with log2 n bits to indicate which device is enabled at any time. The
“device select” code word is applied to each device, which compares it with its
own “device ID” to determine whether it is enabled.Although its code words
have the minimum number of bits, a binary code isn’t always the best choice for
encoding actions, conditions, or states. Figure 2-7(b) shows how to control n
devices with a 1-out-of-n code, an n-bit code in which valid code words have one
bit equal to 1 and the rest of the bits equal to 0. Each bit of the 1-out-of-n code
word is connected directly to the enable input of a corresponding device. This
simplifies the design of the devices, since they no longer have device IDs; they
need only a single “enable” input bit.

The code words of a 1-out-of-10 code were listed in Table 2-9. Sometimes
an all-0s word may also be included in a 1-out-of-n code, to indicate that no
device is selected. Another common code is an inverted 1-out-of-n code, in
which valid code words have one 0~bit and the rest of the bits equal to 1.

In complex systems, a combination of coding techniques may be used. For
example, consider a system similar to Figure 2-7(b), in which each of the n
devices contains up to s subdevices. The control unit could produce a device

Ta b l e  2 - 1 2 States in a traffic-light controller.

Lights

State
N-S 

green
N-S 

yellow
N-S 
red

E-W 
green

E-W 
yellow

E-W 
red

Code 
word

N-S go ON off off off off ON 000

N-S wait off ON off off off ON 001

N-S delay off off  ON off off ON 010

E-W go off off  ON ON off off 100

E-W wait off off  ON off ON off 101

E-W delay off off  ON off off ON 110

1-out-of-n code

inverted 1-out-of-n code

In Tab. 13
Six states can be encoded in three bits
Only six of eight possible 3-bit code words are used, and assignment of
them to states is arbitrary, so many other encodings possible

An encoding which minimizes circuit cost or optimizes some other
parameter (like design time) should be chosen
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Consider a system with n devices, each can perform a certain action
Devices may be enabled to operate only one at a time
Binary code

Shown in Fig. 6 (a)
Control unit produces a binary-coded ”device-select” word with dlog2 ne
bits to indicate which device is enabled at any time
”Device-select” code word is applied to each device, which compares it
with its own ”device ID” to determine whether it is enabled
Binary code has fewest bits, but is not always the best choice

1-out-of-n code
An n-bit code in which valid code words have one bit equal to 1 and the
rest of bits equal to 0
Shown in Fig. 6 (b)
Each bit of code word is connected directly to enable input of a
corresponding device
Simplifies design of devices, since they no longer have device IDs

Inverted 1-out-of-n code
Valid code words have one 0 bit and the rest of bits equal to 1

In complex systems, a combination of coding techniques may be used
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select code word with a 1-out-of-n coded field to select a device, and a log2 s-
bit binary-coded field to select one of the s subdevices of the selected device. 

An m-out-of-n code is a generalization of the 1-out-of-n code in which
valid code words have m bits equal to 1 and the rest of the bits equal to 0. A valid
m-out-of-n code word can be detected with an m-input AND gate, which produc-
es a 1 output if all of its inputs are 1. This is fairly simple and inexpensive to do,
yet for most values of m, an m-out-of-n code typically has far more valid code
words than a 1-out-of-n code. The total number of code words is given by the

binomial coefficient , which has the value . Thus, a 2-out-of-4

code has 6 valid code words, and a 3-out-of-10 code has 120.
An important variation of an m-out-of-n code is the 8B10B code used in the

802.3z Gigabit Ethernet standard. This code uses 10 bits to represent 256 valid
code words, or 8 bits worth of data. Most code words use a 5-out-of-10 coding.

However, since  is only 252, some 4- and 6-out-of-10 words are also used to

complete the code in a very interesting way; more on this in Section 2.16.2.

device
ID

compare

device
enable

Device

device
ID

compare

device
enable

Device

device
ID

compare

device
enable

Device

binary-coded device select

device
enable

Device

device
enable

Device

device
enable

Device

Control
Unit

(a)

(b)

1-out-of-n coded device select

Control
Unit

Figure 2-7 Control structure for a digital system with n devices: (a) using 
a binary code; (b) using a 1-out-of-n code.

m-out-of-n code

n
m 

  n!
m! n m–( )!⋅
------------------------------

8B10B code

5
10 

 

Figure 6: Control structure for a digital system with n devices: (a) using a
binary code; (b) using a 1-out-of-n code.
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m-out-of-n code
A generalization of 1-out-of-n code
Valid code words have m bits equal to 1 and the rest of bits equal to 0
Can be detected with an m-input AND gate
Total number of code words =

(
n
m

)
8B10B code

A variation of an m-out-of-n code
Used in 802.3z Gigabit Ethernet standard
Uses 10 bits to represent 256 valid code words, or 8 bits worth of data
Most code words use a 5-out-of-10 coding
Since

(
10
5

)
= 252, some 4- and 6-out-of-10 words are also used
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Codes for Serial Data Transmission and Storage

Parallel data
Most digital systems transmit and store data in a parallel format
In parallel data transmission, a separate signal line is provided for each
bit of a data word
In parallel data storage, all of bits of a data word can be written or read
simultaneously

Serial data
Serial formats allow data to be transmitted or stored one bit at a time
Serial formats can reduce cost and simplify certain design problemsSection 2.16 Codes for Serial Data Transmission and Storage 65
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2.16 Codes for Serial Data Transmission and Storage

2.16.1 Parallel and Serial Data
Most computers and other digital systems transmit and store data in a parallel
format. In parallel data transmission, a separate signal line is provided for each
bit of a data word. In parallel data storage, all of the bits of a data word can be
written or read simultaneously.

Parallel formats are not cost-effective for some applications. For example,
parallel transmission of data bytes over the telephone network would require
eight phone lines, and parallel storage of data bytes on a magnetic disk would
require a disk drive with eight separate read/write heads. Serial formats allow
data to be transmitted or stored one bit at a time, reducing system cost in many
applications.

Figure 2-16 illustrates some of the basic ideas in serial data transmission.
A repetitive clock signal, named CLOCK in the figure, defines the rate at which
bits are transmitted, one bit per clock cycle. Thus, the bit rate in bits per second
(bps) numerically equals the clock frequency in cycles per second (hertz, or Hz).

The reciprocal of the bit rate is called the bit time and numerically equals
the clock period in seconds (s). This amount of time is reserved on the serial data
line (named SERDATA in the figure) for each bit that is transmitted. The time
occupied by each bit is sometimes called a bit cell. The format of the actual sig-
nal that appears on the line during each bit cell depends on the line code. In the
simplest line code, called Non-Return-to-Zero (NRZ), a 1 is transmitted by plac-
ing a 1 on the line for the entire bit cell, and a 0 is transmitted as a 0. However,
more complex line codes have other rules, as discussed in the next subsection.

parallel data

serial data

bit number 1 2 3 4 5 6 7 8 1

bit cell bit cell bit cell bit cell bit cell bit cell bit cell bit cell bit cell

2

bit cell

time

bit time

SYNC

SERDATA

CLOCK

Figure 2-16 Basic concepts for serial data transmission.

bit rate, bps

bit time

bit cell
line code
Non-Return-to-Zero 

(NRZ)

Figure 7: Basic concepts of serial data transmission.
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Codes for Serial Data Transmission and Storage

Clock signal defines the rate at which bits are transmitted, one bit per
clock cycle

Bit rate in bits per second (bps) equals clock frequency in cycles per
second (Hz)

Reciprocal of bit rate is called bit time and equals clock period in
seconds (s)

The time occupied by each bit is called a bit cell

Format of actual signal that appears on line during each bit cell
depends on line code
Non-Return-to-Zero (NRZ)

The simplest line code
A 1 is transmitted by placing a 1 on line for entire bit cell, and a 0 is
transmitted as a 0

Synchronization signal
A serial data-transmission or storage system needs some way of
identifying significance of each bit in serial stream
In Fig. 7, SYNC is 1 for the first bit of each byte

Moslem Amiri, Václav Přenosil Design of Digital Systems II September, 2012 66 / 76



Codes for Serial Data Transmission and Storage

A minimum of three signals are needed to recover a serial data stream

a clock, a synchronization signal, and serial data itself
In some applications, a separate wire is used for each of these signals

Reducing number of wires from n to three is savings enough

But in many applications, cost of having three separate signals is still
too high

Such systems combine all three signals into a single serial data stream
They use sophisticated analog and digital circuits to recover clock and
synchronization information from data stream
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Regardless of the line code, a serial data transmission or storage system
needs some way of identifying the significance of each bit in the serial stream. For
example, suppose that 8-bit bytes are transmitted serially. How can we tell which
is the first bit of each byte? A synchronization signal, named SYNC in
Figure 2-16, provides the necessary information; it is 1 for the first bit of each byte.

Evidently, we need a minimum of three signals to recover a serial data
stream: a clock to define the bit cells, a synchronization signal to define the word
boundaries, and the serial data itself. In some applications, like the interconnec-
tion of modules in a computer or telecommunications system, a separate wire is
used for each of these signals, since reducing the number of wires per connec-
tion from n to three is savings enough. We’ll give an example of a 3-wire serial
data system in Section 8.5.4.

In many applications, the cost of having three separate signals is still too
high (e.g., three phone lines, three read/write heads). Such systems typically
combine all three signals into a single serial data stream and use sophisticated
analog and digital circuits to recover the clock and synchronization information
from the data stream.

*2.16.2 Serial Line Codes
The most commonly used line codes for serial data are illustrated in Figure 2-17.
In the NRZ code, each bit value is sent on the line for the entire bit cell. This is
the simplest and most reliable coding scheme for short distance transmission.
However, it generally requires a clock signal to be sent along with the data to
define the bit cells. Otherwise, it is not possible for the receiver to determine how
many 0s or 1s are represented by a continuous 0 or 1 level. For example, without
a clock to define the bit cells, the NRZ waveform in Figure 2-17 might be erro-
neously interpreted as 01010.

synchronization signal

NRZ

bit value 1 1 10 00 1 0

NRZI

RZ

Manchester

BPRZ

time
Figure 2-17
Commonly used line 
codes for serial data.

Figure 8: Commonly used line codes for serial data.
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Serial Line Codes

NRZ code
Each bit value is sent on line for the entire bit cell
The simplest and most reliable coding scheme for short-distance
transmission
It requires a clock signal to be sent along with data to define bit cells
E.g., without a clock signal, NRZ waveform in Fig. 8 might be
interpreted as 01010

Digital phase-locked loop (DPLL)
An analog/digital circuit used to recover a clock signal from a serial
data stream
DPLL works only if serial data stream contains enough 0-to-1 and 1-to-0
transitions
With NRZ-coded data, DPLL works only if data does not contain any
long, continuous streams of 1s or 0s
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Serial Line Codes

Transition-sensitive media
They cannot transmit or store absolute 0 or 1 levels, only transitions
between two discrete levels
E.g., a magnetic disc or tape stores information by changing polarity of
medium’s magnetization in regions corresponding to the stored bits
NRZ format cannot be used on transition-sensitive media

Data in Fig. 8 might be interpreted as 01110010 or 10001101

Non-Return-to-Zero Invert-on-1s (NRZI)
Can be used on transition-sensitive media
Sends a 1 as opposite of the level that was sent during previous bit cell,
and a 0 as same level
A DPLL can recover clock from NRZI-coded data as long as data does
not contain any long, continuous streams of 0s

Return-to-Zero (RZ)
Similar to NRZ except that, for a 1 bit, 1 level is transmitted only for a
fraction of bit time, usually 1/2
Data with a lot of 1s create lots of transitions for a DPLL to use to
recover clock
A long string of 0s makes clock recovery impossible
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Serial Line Codes

DC balance
DC balanced serial data stream has an equal number of 1s and 0s
Required by some transmission media, e.g. high-speed fiber-optic links
NRZ, NRZI or RZ data have no guarantee of DC balance

User data streams usually have more 1s than 0s or vice versa

Balanced code
Each code word has an equal number of 1s and 0s
Can be achieved by using a few extra bits to code user data
E.g., 8B10B code

Codes 8 bits into 10 bits in a mostly 5-out-of-10 code
Only

(
10
5

)
= 252 balanced, but

(
10
4

)
=

(
10
6

)
= 210 unbalanced

8B10B associates with each extra 8-bit value a pair of unbalanced code
words, one 4-out-of-10 (”light”) and the other 6-out-of-10 (”heavy”)
Coder keeps track of running disparity, a bit of information indicating
whether the last unbalanced code word transmitted was heavy or light
When transmitting another unbalanced code word, coder selects the one
of the pair with opposite weight
252 + 210 = 462 code words to encode 8 bits
Not all unbalanced code words are used
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Serial Line Codes

A DPLL can recover a clock signal, but not byte synchronization
Byte synchronization is achieved by embedding special patterns into
long-term serial data stream, recognizing them digitally, and then
”locking” onto them
E.g., if IDLE = 1011011000 which is sent continuously at system
startup, then beginning of code word can be recognized as the bit after
three 0s in a row
Successive code words, even if not IDLE, can be expected to begin at
every tenth bit time thereafter

Bipolar Return-to-Zero (BPRZ) code
Transmits three signals levels: +1, 0,−1
Is like RZ except 1s are alternatively transmitted as +1 and −1
Is DC balanced, hence possible to send BPRZ streams over transmission
media that cannot tolerate a DC component

BPRZ code has been used in T1 digital telephone links for decades

Possible to recover a clock signal if there are not too many 0s in a row
Zero-code suppression

If one of bytes is all 0s, The Phone Company changes second-LSB to 1
In data applications of T1 links, LSB of each byte is set to 1
64-Kbps channel −→ 56-Kbps
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Manchester or diphase code

Provides at least one transition per bit cell, regardless of transmitted
data pattern
Makes it very easy to recover clock
A 0 is encoded as a 0-to-1 transition in the middle of bit cell, and a 1 as
a 1-to-0 transition
Its weakness is that it has more transitions per bit cell than other codes

Requires more media bandwidth to transmit a given bit rate

Is DC balanced
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Serial Line Codes

UART (Universal Asynchronous Receiver/Transmitter)
A circuit that takes bytes of data and transmits individual bits in a
sequential fashion
At destination, a second UART re-assembles bits into complete bytes
Serial line is high during IDLE state
Serial bit stream uses following sequence

1 Start bit (a low bit): For synchronization
2 Data bits (LSB first): No. of data bits per frame configurable
3 Parity bit (if enabled): Type of parity configurable
4 Stop bits (at least one high bit): Indicates end of a frame - returns serial

line to IDLE state - length of bits configurable

www.quicklogic.com © 2008 QuickLogic Corporation
•
• 
•
•
•
•

Universal Asynchronous Receiver/Transmitter (UART) Data Sheet Rev. C

12  

Divisor Registers
The baud generator divides the system clock by the user-defined value in these read-write registers, and 
generates a new clock at the frequency of baud rate X 16. The receiving UART on the other side of the serial 
line can use this clock as its reference clock. The most significant byte and least significant byte of the Divisor 
Registers are individually accessible.

UART Functional and Module Description

UART Standard Serial Data Format
Standard UART characters are contained within frames consisting of start/stop indicators, data, and parity 
information. The serial bitstream uses the following sequence:

• Start bit

• Data bits

• Parity bit (if enabled)

• Stop bit(s)

When there is nothing to be sent, the serial line is high. The first low bit is the start bit, which indicates the 
beginning of a new frame. The next five to eight bits are data bits, which convey the actual information to be 
sent, least significant bit first. The number of data bits per frame is configurable.

If enabled, a parity bit will be sent on the serial line after the data bits. Finally, the serial line is held high again 
for at least one bit to indicate the end of a frame. This is called the stop bit, which also returns the serial line 
to the idle state. The type of parity and length of stop bits are also configurable. Figure 3 shows the waveform 
of a frame.

Figure 3: Standard Serial Data Format 

 Table 1: Divisor Register

Bit 
Number

Function

[15:0] Divisor value = (system clock frequency) / (baud rate X 16)

Data (5/6/7/8) Parity (if enabled)Start Stop (1/1.5/2)

Serial Line

Baud Clock

Figure 9: Standard serial data format.
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Serial Line Codes

UART baud generator
Programmable

User-defined value in read-write divisor register

Operates at system clock frequency
Creates a baud rate clock

Divisor register value = (system clock frequency) / (baud rate × 16)

Transmitter shifts data out at baud rate

Creates a receiver reference clock
Sent along with serial data to receiver
Baud rate × 16 clock output
Each data bit is as long as 16 clock pulses
Receiver tests state of incoming signal on each clock pulse, looking for
beginning of start bit
If apparent start bit lasts at least one-half of bit time, it is valid, if not,
the pulse is ignored
After waiting a further bit time, state of line is again sampled and
resulting level clocked into a shift register
After required number of bit periods (5 to 8 bits) have elapsed, contents
of shift register is made available (in parallel fashion) to receiving system
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