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Introduction

o Voltages, currents, and other physical quantities in real circuits take on
values that are infinitely variable
o Stability and accuracy in physical quantities are difficult to obtain, hence
they cannot be used to represent real numbers
o Also, many mathematical and logical operations can be difficult or
impossible to perform with analog quantities
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Logic Signals and Gates

o Digital logic hides pitfalls of analog world by mapping infinite set of
real values for a physical quantity into two subsets corresponding to
two logic values—0 and 1

o A logic value, 0 or 1, is called a binary digit, or bit
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Logic Signals and Gates

Table 1: Physical states representing bits in different logic and memory techs.

Technology

Pneumatic logic
Relay logic

Complementary metal-oxide
semiconductor (CMOS) logic

Transistor-transistor logic (TTL)
Dynamic memory

Nonvolatile, erasable memory
Microprocessor on-chip serial number
Polymer memory

Fiber optics

Magnetic disk or tape

Compact disc (CD)

Writeable compact disc (CD-R)

State Representing Bit
0 1
Fluid at low pressure Fluid at high pressure
Circuit open Circuit closed
0-1.5V 3.5-50V
0-08V 2.0-50V
Capacitor discharged Capacitor charged

Electrons trapped
Fuse blown

Molecule in state A
Light off

Flux direction “north”
No pit

Dye in crystalline state

Electrons released
Fuse intact

Molecule in state B
Light on

Flux direction “south™
Pit

Dye in noncrystalline state

@ In Tab. 1, with most phenomena, there is an undefined region between
0 and 1 states, so that 0 and 1 states can be unambiguously defined
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Logic Signals and Gates

@ When discussing electronic logic circuits such as CMOS and TTL
o LOW: A signal in the range of lower voltages, which is interpreted as a
logic 0
o HIGH: A signal in the range of higher voltages, which is interpreted as a
logic 1
o Positive logic
o Assignment of 0 to LOW and 1 to HIGH
o Negative logic
o Assignment of 1 to LOW and 0 to HIGH
o A wide range of physical values represent the same binary value

e Hence, digital logic is immune to component and power-supply
variations and noise
o Buffer circuits can also be used to regenerate or amplify weak values
into strong ones
o E.g., a buffer for CMOS logic converts any HIGH (LOW) input voltage
into an output very close to 5.0 V (0.0 V)
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Logic Signals and Gates

Inputs

Output

X —
logic circuit

Y —]

Z —

- F

Figure 1: "Black-box" representation of a 3-input, 1-output logic circuit.

o Black-box representation of a logic circuit does not describe how the

circuit responds to input signals

o It takes a lot of information to describe electrical behavior of a circuit
e But, a circuit's logical operation can be described with a table
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Logic Signals and Gates

o Combinational circuit
o A logic circuit whose outputs depend only on its current inputs
o Its operation is fully described by a truth table
o Truth table lists all combinations of input values and the output value(s)
produced by each one

Table 2: Truth table for a combinational logic circuit with three inputs X, Y,
and Z and a single output F.
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Logic Signals and Gates

o Sequential circuit

o A circuit with memory, whose outputs depend on current input and
sequence of past inputs
o Its behavior may be described by a state table

o State table specifies its output and next state as functions of its current
state and input
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Logic Signals and Gates

@ Three basic logic functions, AND, OR, and NOT can be used to build

any combinational digital logic circuit

X X
@ v | X AND Y (b) v XORY © X NOT X
— XY X+Y X'

X Y XANDY X Y
0 0 0 0 o0
0o 1 0 0 1
1 0 0 1 0
1 1 1 1 1

XORY

= O

1
1

X NOT X

0 1
1 0

Figure 2: Basic logic elements: (a) AND; (b) OR; (c) NOT (inverter).

@ The circle on inverter symbol’s output is called an inversion bubble

o Used to denote "inverting” behavior
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Logic Signals and Gates

@ Two more logic functions are obtained by combining inversion with an

AND or OR function in a single gate

X
@ v ) X NAND Y )
— XYy

X NAND Y

Y
0 1
1
0
1

P P O O|X

1
1
0

X
Y

P P O O|X

X NOR Y
X+Y)

Y XNORY

0 1

1 0

0 0

1 0

Figure 3: Inverting gates: (a) NAND; (b) NOR.

@ Symbols and truth tables for AND, OR, NAND, and NOR may be
extended to gates with any number of inputs
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Logic Signals and Gates

4 / | W A
VA AV .Y =

TIME ——

Figure 5: Timing diagram for the logic circuit shown in Fig. 4.
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Logic Families

o Electronic logic circuit development

In 1930s, the first electronically controlled logic circuits, developed at
Bell Laboratories, were based on relays
In mid-1940s, the first electronic digital computer, Eniac, used logic
circuits based on vacuum tubes
In late 1950s, semiconductor diode and bipolar junction transistor
were invented
o Allowed development of smaller, faster, and more capable computers
In 1960s, integrated circuit (IC) was invented
o Allowed multiple diodes, transistors, and other components to be
fabricated on a single chip
In 1960s, the first IC logic families were also introduced
o A logic family is a collection of different IC chips that have similar
input, output, and internal circuit characteristics, but that perform
different logic functions
o Chips from same family can be interconnected
o Chips from different families may not be compatible
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Logic Families

o Transistor-transistor logic (TTL)
e The most successful bipolar logic family
o Based on bipolar junction transistors
o First introduced in 1960s
o TTL evolved into a family of logic families that were compatible with
each other but differed in speed, power consumption, and cost
o Metal-oxide semiconductor field-effect transistor (MOSFET) or
simply MOS transistor
o lIts principles were introduced ten years before bipolar junction transistor
o Difficult to fabricate in early days until 1960s
o Even in 1960s, MOS circuits were slower than bipolar ones, but
attractive in a few applications because of their lower power
consumption and higher levels of integration
e Beginning in mid-1980s, advances in design of MOS circuits, in
particular complementary MOS (CMOS) circuits, tremendously
increased their performance and popularity
o Almost all new SSI, MSI, and LSI ICs use CMOS with equivalent
functionality or better than TTL, higher speed and lower power
consumption
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CMOS Logic: CMOS Logic Levels

o A typical CMOS logic circuit operates from a 5-volt power supply

o Any voltage in range 0-1.5 V — logic 0
o Any voltage in range 3.5-5.0 V — logic 1
o Voltages in intermediate range (1.5-3.5 V) are not expected to occur
except during signal transitions
o They yield undefined logic values
@ A circuit may interpret them as either 0 or 1

50V
Logic 1 (HIGH)
35V .
undefined
logic level
15V
Logic 0 (LOW)
0.0V

Figure 6: Logic levels for typical CMOS logic circuits.
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CMOS Logic: MOS Transistors

o A MOS transistor can be modeled as a 3-terminal device that acts like
a voltage-controlled resistance

o An input voltage applied to one terminal controls resistance between
remaining two terminals

o Off transistor

o lIts resistance is very high
@ On transistor

o Its resistance is very low

Figure 7: The MOS transistor as a voltage-controlled resistance.
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CMOS Logic: MOS Transistors

@ Two types of MOS transistors

o n-channel
o p-channel

e n-channel MOS (NMOS) transistor

Voltage-controlled resistance:

drain i ==
gate increase Vg ==> decrease Ryg
"\ |
Vs —

source
Note: normally, Vgs >0

Figure 8: Circuit symbol for an n-channel MOS (NMOS) transistor.
o In Fig. 8
o Orientation shows that drain is normally at a higher voltage than source

o Vg =0 — Rys is very high
o As we increase Vs, Rgs decreases to a very low value
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CMOS Logic: MOS Transistors

o p-channel MOS (PMOS) transistor

Voltage-controlled resistance:
decrease Vg ==> decrease Ry

v.—
gs
+/ | source
gate

drain

Note: normally, Vgs <0

Figure 9: Circuit symbol for a p-channel MOS (PMOS) transistor.

o In Fig. 9
o Orientation shows that source is normally at a higher voltage than drain
o Vg =0 — Rys is very high
o As we decrease Vs, Rys decreases to a very low value
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CMOS Logic: MOS Transistors

o Gate of a MOS transistor
o Gate is capacitively coupled to source and drain
o Power needed to charge and discharge this capacitance on each
input-signal transition accounts for a nontrivial portion of a circuit’s
power consumption
o Gate is separated from source and drain by an insulating material with a
very high resistance
@ Almost no current flows from gate to source, or from gate to drain
o Small amount of current that flows across this resistance is very small,
less than one A, and is called a leakage current
o Gate voltage creates an electric field that enhances or retards flow of
current between source and drain
o This is "field effect” in "MOSFET" name
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CMOS Logic: Basic CMQOS Inverter Circuit

o NMOS and PMOS transistors are used together in a complementary
way to form CMOS logic
o Logic inverter
o The simplest CMOS circuit

o Requires only one of each type of transistor

Vpp =+5.0V
@)

(b) Vin Q1 Q2 Vour

0.0 (L) off on 5.0 (H)
50(H) on off 0.0 (L)

(c) IN —| >0—— OuT

Figure 10: CMOS inverter: (a) circuit diagram; (b) functional behavior; (c)
logic symbol.

Q2
(p-channel)

Vour

Vin (n-channel)
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CMOS Logic: Basic CMQOS Inverter Circuit

Vpp =+5.0V Vpp =+5.0 V

@) (b) E

V=L o --

Vour=H Vin=H B Vour=L
Figure 11: Switch model for CMOS inverter: (a) LOW input; (b) HIGH input.
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CMOS Logic: Basic CMQOS Inverter Circuit

@ Another way of drawing CMOS circuits is shown in Fig. 12
o Different symbols are used for p- and n-channel transistors to reflect

their logical behavior
o Inversion bubble on p-channel indicates its inverting behavior (compared

to n-channel)

Vpp = +5.0V

on when

- ————
(p-channel) VIN is low

Vout

- - onwhen

Vin (n-channel) Vyy is high

Figure 12: CMOS inverter logical operation.
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CMOS Logic: CMOS NAND and NOR Gates

@ A k-input NAND or NOR gate uses k p-channel and k n-channel
transistors

Vbp
()
(b) A B Q1 Q2 Q3 Q4 Z
—ol 2 4
—Q E L L off on off on H
L H off on on off H
z H L on off off on H
H H on off on off L
A g || @
|| A |
Bo——| qs © 5 _ | z

Figure 13: CMOS 2-input NAND gate: (a) circuit diagram; (b) function table;
(c) logic symbol.
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CMOS Logic: CMOS NAND and NOR Gates

®) Vbp © Vbp

Figure 14: Switch model for CMOS 2-input NAND gate: (a) both inputs LOW;
(b) one input HIGH; (c) both inputs HIGH.
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CMOS Logic: CMOS NAND and NOR Gates

Vbp

Q2

L

(b)

(©

>
w

Q1

Q2

Q3

Q4

I ITrr

off
off
on
on

Ir Ir

on
on
off
off

off
on

off
on

on
off
on
off

rrrI

o
i o— Z
B

Figure 15: CMOS 2-input NOR gate: (a) circuit diagram; (b) function table; (c)

logic symbol.
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CMOS Logic: CMOS NAND and NOR Gates

o NAND vs. NOR
o An n-channel transistor has lower "on" resistance than a p-channel
o When transistors are put in series, k n-channel transistors have lower
"on" resistance than do k p-channel ones
o As a result, a k-input NAND gate is faster than a k-input NOR gate
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CMOS Logic: Fan-In

o Logic family’s fan-in
o Number of inputs that a gate can have in a particular logic family
@ An n-input gate has n series and n parallel transistors

V
@ >® ®)
ABC Q1 Q2 Q3 Q4 Q5 Q6 Z
—°| Q2 [:QI4 Q6 L L L off on off on off on H
L L H off on of on on off H
L HL off on on off off on H
L HH off on on off on off H
\ nz H L L on off of on off on H
H L H on off of on on off H
A | Q1 H H L on off on off off on H
| HHH on off on off on off L
B o || @3
(©) A
: }Z
Co———| o c

Figure 16: CMOS 3-input NAND gate: (a) circuit diagram; (b) function
table; (c) logic symbol.
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CMOS Logic: Fan-In

o Additive "on" resistance of series transistors limits fan-in of CMOS
gates, typically to 4 for NOR gates and 6 for NAND gates

o As number of inputs is increased, designers may compensate by
increasing the size of series transistors to reduce their resistance and
corresponding switching delay

o At some point, this becomes inefficient

o Gates with a large number of inputs can be made faster and smaller by

cascading gates with fewer inputs

11 o0— 1

12 o0— 2

13 0— 3|

14 o—— o

ouT — 5 } ouT

15 0— 6 — |

16 0—

7o 17—

18 | 18 —

Figure 17: Logic diagram equivalent to the internal structure of an 8-input
CMOS NAND gate; (total delay through a 4-input NAND, a 2-input NOR,
an inverter) < (delay of a one-level 8-input NAND).
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CMOS Logic: Noninverting Gates

o In CMOS, the simplest gates are inverters, and then NAND and NOR
o Inversion comes for free
o Not possible to design a noninverting gate with a smaller number of
transistors than an inverting one
@ CMOS noninverting buffer, AND, and OR gates are obtained by

connecting an inverter to output of corresponding inverting gate
Vpp = +5.0V

(@)

() A QL Q2 Q3 Q4 Z

L off on on off L
z H on off off on H

Figure 18: CMOS noninverting buffer: (a) circuit diagram; (b) function table;
(c) logic symbol.
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CMOS Logic: Noninverting Gates

() ?

—f oo

Bo——| q3

— | o

Figure 19: CMOS 2-input AND gate: (a) circuit diagram; (b) function table;

(c) logic symbol.
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CMOS Logic: AND-OR-INVERT, OR-AND-INVERT Gates

Vbp
(@ H (b) ABCD QL Q2 Q3 Q4 Q5 Q6 Q7 Q8 Z
A D__ol | @2 _ol | Q4 L LLL off on off on off on off on H
L LLH off on off on off on on off H
B o L LHL off on off on on off off on H
L LHH of on off on on off on off L
— — L HLL off on on off of on off on H
°| _QG _ol _QS L HLH off on on off off on on off H
IV L HHL off on on off on off off on H
o Z L HHH off on on off on off on off L
H L L L on off off on off on off on H
| = | HLLH on off of on off on on off H
co || @5 —| Q3 HLHL on off of on on off off on H
H L HH on off of on on off on off L
:I HHLL on off on off off on off on L
o HHLH on off on off off on on off L
P g Q1 HHHL on off on off on off off on L
HHHH on off on off on off on off L

Q
Figure 20: CMOS AND-OR-INVERT (AOI) gate: (a) circuit diagram; (b)

function table.
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CMOS Logic: AND-OR-INVERT, OR-AND-INVERT Gates

@ CMOS circuits can perform two levels of logic with just a single " level”
of transistors
o Fig. 20
o A 2-wide, 2-input CMOS AND-OR-INVERT (AOI) gate
o Transistors can be added to or removed from this circuit to obtain an
AOI function with a different number of ANDs or inputs per AND
o Q1-Q8 depend only on input signal connected to the corresponding
transistor’s gate
o Z never connected to both Vpp and ground for any input combination
o Otherwise output would be a nonlogic value somewhere between LOW
and HIGH, and output structure would consume excessive power due to
low-impedance connection between Vpp and ground
A

B

C

D

Figure 21: Logic diagram for CMOS AOI gate shown in Fig. 20.
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CMOS Logic: AND-OR-INVERT, OR-AND-INVERT Gates

Vbp
(a) (b)
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Figure 22: CMOS OR-AND-INVERT (OAl) gate: (a) circuit diagram; (b)
function table.
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CMOS Logic: AND-OR-INVERT, OR-AND-INVERT Gates

[}

D

Figure 23: Logic diagram for CMOS OAI gate shown in Fig. 22.

@ CMOS AOI and OAI gates are very appealing

o They perform two levels of logic with one level of delay
o HDL synthesis tools can automatically convert AND/OR logic into AOI
gates when appropriate

33 /53



CMOS Logic: Transmission Gates

o CMOS transmission gate
o A p-channel and n-channel transistor pair connected together to form a
logic-controlled switch

/EN
- b

normally A B

complementary \
—

Figure 24: CMOS transmission gate.

o In Fig. 24
o Input signals EN and EN_L are always at opposite levels
o Once the gate is enabled, propagation delay from A to B (or vice versa)
is very short
o Because of their short delays and simplicity, these gates are often used
internally in larger-scale CMOS devices such as multiplexers and
flip-flops
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CMOS Logic: Transmission Gates

Vee

&

I
s

<

Figure 25: Two-input multiplexer using CMOS transmission gates.

4|o——|>oJ
:

o In Fig. 25
o When S is LOW, X input is connected to Z output
o When S is HIGH, Y is connected to Z
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CMOS Logic: Transmission Gates

@ In transmission gate

e An "on” p-channel cannot conduct a LOW voltage between A and B
very well

e An "on" n-channel cannot conduct a HIGH voltage between A and B
very well

o But parallel transistors cover entire voltage range fine
o Hence two transistors are used

/EN
- b

A

ENJ

normally
complementary
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Vour }

CMOS Logic: Schmitt-Trigger Inputs

undefined

undefined HIGH

LOW

Figure 26: Typical input-output transfer characteristic of a CMOS inverter.
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CMOS Logic: Schmitt-Trigger Inputs

o A Schmitt trigger is a circuit that uses feedback internally to shift
switching threshold depending on whether input is changing from
LOW to HIGH or from HIGH to LOW

Vout

@ v ®
T

5.0— - | > o

0.0 I I I VIN
21 29 50
Figure 27: A Schmitt-trigger inverter: (a) input-output transfer characteristic;
(b) logic symbol.
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CMOS Logic: Schmitt-Trigger Inputs

o In Fig. 27
o Switching threshold for positive-going input changes (V) is 2.9V,
and for negative-going input changes (Vr_) is 2.1 V
o Difference between the two thresholds is called hysteresis
o Schmitt-trigger inverter provides about 0.8 V of hysteresis
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CMOS Logic: Schmitt-Trigger Inputs

VIN
(@) 5.0
Vi, =29 A /_\/\
v os . /\ ~ \A L
T=4 /\/ NV A4 V\

Vour
Low

Vour

(b)

@ HIGH

| |

t

Figure 28: Device operation with slowly changing inputs: (a) a noisy, slowly
changing input; (b) output produced by an ordinary inverter; (c) output
produced by an inverter with 0.8 V of hysteresis.
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CMOS Logic: Schmitt-Trigger Inputs

o In Fig. 28

o (a) shows an input signal with long rise and fall times and about 0.5 V
of noise on it

o An ordinary inverter, without hysteresis, has same switching threshold
for both positive-going and negative-going transitions, V1 ~ 2.5V

o Ordinary inverter responds to noise, producing multiple output changes
each time noisy input voltage crosses switching threshold

o A Schmitt-trigger inverter does not respond to noise, because its
hysteresis is greater than noise amplitude

@ Schmitt-trigger inputs have better noise immunity than ordinary gate
inputs for signals with transmission-line reflections or long rise and fall
times

o Such signals occur in physically long connections, such as input-output
buses and computer interface cables
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CMOS Logic: Three-State Outputs

o Logic outputs have two normal states, LOW (0) and HIGH (1)

@ Some outputs have a third electrical state that is not a logic state,
called high-impedance, Hi-Z, or floating state

o In this state, output behaves as if it is not connected to circuit

o An output with three possible states is called a three-state output or a
tri-state output

o Three-state devices have an extra input, called "output enable” or
"output disable,” for placing device's output(s) in high-impedance state

o A three-state bus is created by wiring several three-state outputs
together

o At most one output should be enabled at any time
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CMOS Logic: Three-State Outputs

@ The most basic three-state device is three-state buffer (= three-state

driver)
V,
@ = ®)
ENA B C D Q1 Q20UT
EN o c LLHHL off of Hiz
Q2 LHHHL off of Hi-z
HLLHH on off L
ouT HHLLL off on H
A o— D
B Q1 (c) EN

Figure 29: CMOS three-state buffer: (a) circuit diagram; (b) function table; (c)
logic symbol.
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CMOS Logic: Three-State Outputs

@ Devices with three-state outputs are designed so that output-enable
delay (Hi-Z to LOW or HIGH) is somewhat longer than output-disable
delay (LOW or HIGH to Hi-Z)

e Thus, if a control circuit activates one device's output-enable input and
simultaneously deactivates a second’s, the second device is guaranteed
to enter Hi-Z state before the first places a HIGH or LOW level on bus

o If two three-state outputs on the same bus are enabled at the same
time and try to maintain opposite states, a nonlogic voltage is
produced on bus

o If fighting is only momentary, devices probably will not be damaged

o But large current drain through tied outputs can produce noise pulses
that affect circuit behavior elsewhere in system
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CMOS Logic: Open-Drain Outputs

@ p-channel transistors in CMOS output structures provide active

pull-up

o They actively pull up output voltage on a LOW-to-HIGH transition
o These transistors are omitted in gates with open-drain outputs

(@ Vee

&

An—| Q1
Bo—]| Q2

(b)

(©

A

@

Q1

ITrr

off
off
on
on

IrIr

off
on
off
on

>

T -

Figure 30: Open-drain CMOS NAND gate: (a) circuit diagram; (b) function

table; (c) logic symbol.

o In Fig. 30, drain of topmost n-channel is left unconnected internally

o If output is not LOW, it is "open”
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CMOS Logic: Open-Drain Outputs

@ An open-drain output requires an external pull-up resistor to provide
passive pull-up to HIGH level

+5V
pull-up

resistor
T § R=15kQ

e [
T f | {>C

open-drain
output D }
E j > |—

Figure 31: Open-drain CMOS NAND gate driving a load.
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CMOS Logic: Open-Drain Outputs

@ For the highest possible speed, an open-drain output’s pull-up resistor
should be as small as possible
o This minimizes RC time constant for LOW-to-HIGH transitions (rise
time)
e The minimum resistance is determined by open-drain output’s maximum

sink current, lofmax
e E.g., in HC- and HCT-series CMOS

5.0V
loLmax = 4 mA — pull-up resistor,;, = A 1.25 kQ2
m

o Since this is an order of magnitude greater than "on" resistance of
p-channel transistors, LOW-to-HIGH output transitions are much slower
for an open-drain gate than for standard gate with active pull-up
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CMOS Logic: Open-Drain Outputs

o Example: in Fig. 31
o Open-drain gate is HC-series CMOS — "on" resistance of output in
LOW state =80 Q2
o Pull-up resistance = 1.5 kQ
o Load capacitance = 100 pF
RC time constant for a HIGH-to-LOW transition = output’s fall time
=80 x 100 pF =8 ns
RC time constant for a LOW-to-HIGH transition = output's rise time
= 1.5 kQ x 100 pF = 150 ns
Vout
5V

3.5V

15V

oV T
0

——

T T T T T T
50 100 150 200 250 300 time

| t

f T

Figure 32: Rising and falling transitions of an open-drain CMOS output.
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CMOS Logic: Multisource Buses

@ Open-drain outputs can be tied together to allow several devices, one
at a time, to put information on a common bus
o At any time all but one of outputs are in their HIGH (open) state
o Control circuitry selects particular device that is allowed to drive the bus
at any time
o In Fig. 33
o At most one control bit is HIGH at any time, enabling complement of
corresponding data bit to be passed through bus

Vee
R
l_ DATAOUT
Datal e Data3 ¢ Data5 —| ¢ Data? ¢
Enablel Enable3 Enable5 — Enable7
Data2 e Data4 ¢ Data6 —] e Data8 ¢
Enable2 Enable4 Enable6 — Enable8

Figure 33: Eight open-drain outputs driving a bus.
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CMOS Logic: Wired Logic

o If outputs of several open-drain gates are tied together with a single
pull-up resistor, wired logic is performed
@ An AND function is obtained, since wired output is HIGH iff all of
individual gate outputs are HIGH (open)
o Any output going LOW is sufficient to pull wired output LOW

Vee

T
V&c

Ao—]| @
Bo—|| @ Co—]| @
Do—|| @

2-input T/'
open-drain

NAND gates =

Figure 34: Wired-AND function on three open-drain NAND-gate outputs.
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CMOS Logic: Wired Logic

o In Fig. 34
o If any of individual 2-input NAND gates has both inputs HIGH, it pulls
wired output LOW
o Otherwise, pull-up resistor R pulls wired output HIGH

o Wired logic cannot be performed using gates with active pull-up

o Fighting: Two such outputs wired together and trying to maintain
opposite logic values result in a very high current flow and an abnormal
output voltage

o Exact output voltage depends on relative strengths of fighting transistors

o If outputs fight continuously for more than a few seconds, chips can get
hot enough to sustain internal damage
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CMOS Logic: Wired Logic

trying to pull HIGH

P
Q2|—c| Q4

HIGH _| Q1
Low n——| Q3

5v
v, =2V o0ma
T Room * Ruem (¢ or HET

HIGH — [ @
= trying to pull LOW
HIGH n——| Q3

Figure 35: Two outputs trying to maintain opposite logic values on the same line
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