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Introduction

o Combinational logic circuit

o A circuit whose outputs depend only on its current inputs
o May contain an arbitrary number of logic gates and inverters but no
feedback loops

o A feedback loop is a signal path that allows output of a gate to
propagate back to input of that same gate
@ Such a loop creates sequential circuit behavior

o Combinational circuit analysis
o We start with a logic diagram and proceed to a formal description of
function performed by that circuit, such as a truth table or a logic
expression
o Combinational circuit synthesis

o Reverse of analysis
o Starting with a formal description and proceeding to a logic diagram
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Switching Algebra

o Boolean algebra

o A two-valued algebraic system

o Is used to formulate propositions that are true or false, combine them to
make new propositions, and determine truth or falsehood of the new
propositions

o Switching algebra

o Adaptation of Boolean algebra to analyze and describe behavior of
circuits

o A physical condition—voltage HIGH or LOW, capacitor charged or
discharged, and so on—is represented by a variable X that can have one
of two possible values, 0 or 1

3/ 69



Switching Algebra: Axioms

@ Axioms or postulates
o A minimal set of basic definitions that we assume to be true, from

which all other information about system can be derived
o The first two axioms of switching algebra embody digital abstraction

(A1) X=0 ifX#1 (A1) X=1 ifX#0
o The only difference between Al and Al’ is interchange of 0 and 1

o This is a characteristic of all axioms of switching algebra
@ This is basis of duality principle

If X denotes an inverter’s input signal, X’ denotes its output value
(A2) If X =0, then X' =1 (A2") If X =1, then X’ =0

o AND and OR operations (AND has precedence)
(A3) 0-0=0 (A3) 1+1=1
(A4) 1-1=1 (A4) 0+0=0
(A5) 0-1=1-0=0 (A5) 140=0+1=1

The five pairs of axioms, A1-A5 and A1’-A%’, completely define
switching algebra
o All other facts about system can be proved using these axioms as a
staring point
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Switching Algebra: Single-Variable Theorems

o Switching-algebra theorems
o True statements that allow us to manipulate algebraic expressions to
allow simpler analysis or more efficient synthesis of corresponding circuits

Table 1: Switching-algebra theorems with one variable.

(T1) xX+0=X (T1) xMO=Xx (ldentities)

(T2) x+1=1 (T2") XMM=0 (Null elements)
(T3) X+X=X (T3") XX =X (ldempotency)
(T4) (X)'=x (Involution)
(T5) X+x'=1 (T5") X IX'=0 (Complements)

o Perfect induction
o A technique to prove theorems in switching algebra
o Since a variable can take on only 0 and 1, prove a theorem involving a
single variable X by proving that it is true for both X =0 and X =1
o E.g., to prove T1
[X =0] — 0+ 0 =0 — true, according to axiom A4’
[X =1] — 14+ 0 =1 — true, according to axiom A5’
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Switching Algebra: Two- and Three-Variable Theorems

Table 2: Switching-algebra theorems with two or three variables.

(T6) X+Y=Y+X (T6) XDOr=Y X (Commutativity)
(T7) X+Y)+Z=X+(Y+2) (T7)  (XOv)Z=xXQY &) (Associativity)
(T8) XD¥+xkZ=xX0OY+2) (T8)  (X+Y)OX+2Z)=X+Y[Z (Distributivity)
(T9) X +XO¥ =X (T9) XOX+Y)=X (Covering)
(T10) XDr+xOv'=Xx (T10) (X +Y)OX+Y)=X (Combining)
(T1l) Xy +X' [Z+Y[Z=XLr+X [Z (Consensus)

(T1T) (X+Y)OX' +Z2) QY +2)=(X+Y)OX'+2)

@ Theorems in Tab. 2 are proved by perfect induction, by evaluating
theorem statements for all possible combinations of X and Y (and Z)
@ Proof of TO: X+ X - Y=X-14X-Y=X-(14Y)=X-1=X
o InT1l,if Y-Z =1, either XY or X' - Z must also be 1
o Thus, Y -Z term is redundant
o Consensus theorem is used to eliminate certain timing hazards

@ It is possible to replace each variable in Tab. 2 with a logic expression
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Switching Algebra: n-Variable Theorems

Table 3: Switching-algebra theorems with n variables.

(T12) X+ X+ +X=X (Generalized idempotency)
(T12) XX O-- X=X

(T13) Xy DX O X)) =X+ X+ + X)) (DeMorgan’s theorems)

(T13)  (Xy+ Xp# = + X)) =X DXy O+ X,

(T14) [F(X1.X5,.... X, O = F(X{' XS .., X, O +) (Generalized DeMorgan’s theoren
(T15) F(X1.X5,...,X,) = X1 [F(1X,,....Xp) + Xy [F(0Xs,...,. X)) (Shannon’s expansion theorems)

(T15)  F(Xy.Xp... . Xp) = [Xg+ FOXp, ..., Xp)] OXq' + F(1Xs,.... X,)]

@ Theorems in Tab. 3 are proved using finite induction

@ Basis step: prove theorem is true for n = 2

@ Induction step: if theorem is true for n =i, it is also true for n =i +1
o Example: T12

@ For n=2, T12 = T3, therefore true

@ Ifitis true for a logical sum of i X's, it is also true for a sum of i+1 X's

XAXAX 4+ X=X+ X+AX 4 +X)=X+(X)EX
~~ — =~
i+1 X's i X's if T12 is true for n=i
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Switching Algebra: n-Variable Theorems

X XY o X oy
@ YWZ—(X v) © Y:Do— z=(xY)
%
X
(b) . v Z=X+Y' (d) i:Df Z=X'+Y

Figure 1: Equivalent circuits according to DeMorgan's theorem T13: (a) AND-NOT; (b)
NOT-OR; (c) logic symbol for a NAND gate; (d) equivalent symbol for a NAND gate.

X+Y
(a) ﬁ + Z=(X+YY (© i:Dof Z=(X+YYy
¥
X X
(b) , v Z=X"Y (d) Yﬂ Z=X"Y

Figure 2: Equivalent circuits according to DeMorgan's theorem T13’: (a) OR-NOT; (b)
NOT-AND; (c) logic symbol for a NOR gate; (d) equivalent symbol for a NOR gate.
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Switching Algebra: Duality

o Principle of duality

o Any theorem or identity in switching algebra remains true if 0 and 1 are
swapped and - and + are swapped throughout

o This is true because duals of all axioms are true, so duals of all
switching-algebra theorems can be proved using duals of axioms

o Dual of a logic expression

FP(X1, Xa, ..oy Xy 4, ) = F(X1, Xy oo o, Xy, +,)
o Generalized DeMorgan's theorem

[F(X1, X2, -, X, +, ) = F(X{, X3, ..., X}, -, +)

=FP(X{, X5,.... X!, +,")

s /\no
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Switching Algebra: Duality

(@ X

type lf——7
y —

X Y A
LOW Low | Low
LOW HIGH | LOW
HIGH LOwW | Low
HIGH HIGH | HIGH

Figure 3: A "type-1" logic gate: (a) electrical function table; (b) logic function table and
symbol with positive logic; (c) logic function table and symbol with negative logic.

o x z “X+Y
Y

(@ X —
type2f——Z
Y —
X Y z
LOW LOwW | Low
LOW HIGH | HIGH
HIGH LOW | HIGH
HIGH HIGH | HIGH

Figure 4. A "type-2" logic gate: (a) electrical function table; (b) logic function table and
symbol with positive logic; (c) logic function table and symbol with negative logic.
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Switching Algebra: Duality

Figure 5: Circuit for a logic function using inverters and type-1 and type-2 gates under a
positive-logic convention.

Xy
Xy |
X3 |
X4

. 1 2
s DXy, Xy y
.. }. FO(XY, Xy oo X,)
:

Figure 6: Negative-logic interpretation of the previous circuit.
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Switching Algebra: Duality

o Figs. 5and 6

o Fig. 5 shows a circuit corresponding to expression F (X1, Xz, ..., X,)
following positive-logic convention
o Circuit of Fig. 6 is that of Fig. 5 without change, but logic convention
is changed from positive to negative
o For every possible combination of input voltages (HIGH and LOW), the
circuit still produces the same output voltage
o But from point of view of switching algebra, output value—0 or 1—is
opposite of what it was under positive-logic convention
o Likewise, each input value is opposite of what it was
o Therefore, for each possible input combination to circuit in Fig. 5,
output is opposite of that produced by opposite input combination
applied to circuit in Fig. 6

F(X1, Xa, .-, X)) = [FP(X{, X5, ..., X1
By complementing both sides, we get generalized DeMorgan’s theorem
[F(X1, Xa, ..., X)) = FP(X{, X3,...,X")
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Standard Representations of Logic Functions

@ The most basic representation of a logic function is truth table
o It lists output of circuit for every possible input combination

Table 4: General truth table Table 5: Truth table for a particular

structure for a 3-variable logic 3-variable logic function,

function, F(X,Y, 2). F(X,Y,2).

Row X Y z F Row X Y Z F

0 0 0 0 F0,00) 0 0 0 0 1
1 0 0 1 F001) 1 0 0 1 O
2 0 1 0 F0,1,0) 2 0 1 0 O
3 0 1 1 F011) 3 0 1 1 1
4 1 0 0 F@1,00 4 1 0 0 1
5 1 0 1 F1,01) 5 1 0 1 0
6 1 1 0 F11,0) 6 1 1 0 1
7 1 1 1 FQL1L1) 7 1 1 1 1
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Standard Representations of Logic Functions

o Literal
o A variable or complement of a variable
o Examples: X, Y, X', Y/
o Product term
o A single literal or a logical product of two or more literals
o Examples: Z/, W - XY, X-Y' - Z W .Y .Z
@ Sum-of-products expression
o A logical sum of product terms
o Example: Z/4+ W - X - Y+ X - Y- Z4+W .Y .Z
o Sum term
o A single literal or a logical sum of two or more literals
o Examples: Z/, W+ X+ Y, X+Y' +2Z W +Y' +Z
o Product-of-sums expression

o A logical product of sum terms
o Example: Z/- (W +X+Y)- (X+Y' +2)- (W +Y' +2)
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Standard Representations of Logic Functions

o Normal term

o A product or sum term in which no variable appears more than once

o A nonnormal term can always be simplified to a constant or a normal
term

o Examples of nonnormal terms:
W-X- XY W+W+X+Y, X- XY
o Examples of normal terms: W - XY/, W+ X' +Y
@ n-variable minterm
o A normal product term with n literals
o There are 2" such product terms
o Examples of 4-variable minterms:
w.x.y.zw-x-vy.z w.x.v.z
@ n-variable maxterm
o A normal sum term with n literals
o There are 2" such sum terms
o Examples of 4-variable maxterms:
W+X+Y +2Z2, W+ X +Y' +Z W+ X +Y+Z
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Standard Representations of Logic Functions

o Correspondence between truth table and minterms and maxterms
o A minterm is defined as a product term that is 1 in exactly one row of
truth table
o A maxterm is defined as a sum term that is 0 in exactly one row of truth
table

Table 6: Minterms and maxterms for a 3-variable logic function, F(X, Y, Z).

Row X Y Z F Minterm Maxterm
0 0 0 0 F(,0,0 X'y [z’ X+Y+2Z
1 0 0 1 F(0,0,1) X' Y[z X+Y+2'
2 0 1 0 F(0,1,0 XY (z’ X+Y'+Z
3 0 1 1 F(O,1,1) X'[¥ [z X+Y'+2Z'
4 1 0 0 F(,0,0 XLy z’ X'+Y+Z
5 1 0 1 F{1,0,1) Xy [z X'+Y+2Z'
6 1 1 0 F(@1,10 XLy [z’ X'+Y'+Z
7 1 1 1 F1,121 Xy [z X'+Y'+2'
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Standard Representations of Logic Functions

o Minterm i

e The minterm corresponding to row i of truth table
o A variable is complemented if corresponding bit in binary is 0
o Example: row 5 — binary: 101 — minterm 5: X - Y’ . Z

o Maxterm i

e The maxterm corresponding to row i of truth table

o A variable is complemented if corresponding bit in binary is 1

o Example: row 5 — binary: 101 — maxterm 5: X' + Y + 27’
@ Canonical sum of a logic function

o A sum of minterms corresponding to truth-table rows (input
combinations) for which the function produces a 1 output

e Canonical product of a logic function

o A product of maxterms corresponding to input combinations for which
the function produces a 0 output
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Standard Representations of Logic Functions

o In Tab. 5
o Canonical sum
F= > 1(0,346,7)

X,Y,Z
=X'.Y'.Z+X .Y Z4+X- Y- Z+X- Y- Z4+X-Y - Z

Notation ), y »(0,3,4,6,7) is a minterm list or on-set
o Canonical product

F=J] 25 =X+Y+2Z) (X+Y'+2)- (X' +Y+2)
X,Y,Z

Notation [[x y ~(1,2,5) is a maxterm list or off-set

Pyl
9
S

~N oA ®WN RO

P P R P O OO O X
P P OOPRrroo|l<
P ORr OFRr ORr oO|N
P P OR PR OORH T
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Standard Representations of Logic Functions

o Conversion between a minterm list and a maxterm list
o For a function of n variables, possible minterm and maxterm numbers
are in the set {0,1,...,2" — 1}
o To switch between list types, take the set complement

o Example
> (0,1,2,3)= [] (4,5,6,7)

A,B,C A,B,C
2(1 [10.2,3)
X, Y

> (0,1,2,3,5,7,11,13): II (4.6.8,9,10,12,14,15)
wW.X,Y,Z wW.X,Y,Z

@ Each of these representations specifies exactly the same information
@ A truth table
@ An algebraic sum of minterms, the canonical sum
© A minterm list using > notation
@ An algebraic product of maxterms, the canonical product
@ A maxterm list using ] notation
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Combinational-Circuit Analysis

o We analyze a combinational logic circuit by obtaining a formal
description of its logic function
o Operations possible after obtaining a formal description
o Determining behavior of logic circuit for various input combinations
e Manipulating an algebraic description to suggest different circuit
structures
o Transforming an algebraic description into a standard form
corresponding to an available circuit structure
o E.g., a sum-of-products expression corresponds directly to circuit
structure used in PLAs, and a truth table corresponds to lookup memory
used in most FPGAs
o Using an algebraic description of circuit's functional behavior in analysis
of a larger system that includes the circuit
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Combinational-Circuit Analysis

@ The most basic functional description is truth table

00001111
X ———— 00001111
11001111
y 00110011 {>C 11001100
01000101
5 01010101 01010101
01100101
DC 11110000
00110011 L \ 00100000
10101010 |_—/

2" input combinations

o Obtain truth table of an n-input circuit by working the way through all

e For each input combination, determine all of gate outputs produced by

that input, propagating information from circuit inputs to outputs

o Truth table is written by transcribing output sequence of final gate

Figure 7: Gate outputs created by

all input combinations.
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Combinational-Circuit Analysis

Table 7: Truth table for the logic circuit of Fig. 7.

Row

N o o~ wWNPRP O

P P P P O OO o X
P B, OO R r o o<
P Or OFr Oor ofN
P OkFr OO0R R o™

@ The number of input combinations of a logic circuit grows
exponentially with the number of inputs

o Instead of exhaustive approach, we normally use an algebraic approach
o Complexity of algebraic approach is linearly proportional to size of circuit
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Combinational-Circuit Analysis

o Algebraic approach
o Build up a parenthesized logic expression corresponding to logic
operators and structure of circuit
o Start at circuit inputs and propagate expressions through gates toward
output
o Simplify expressions while going, or defer all algebraic manipulations
until an output expression is obtained

X+Y')-Z

y F=(X+Y)Z) + (X Y- Z)
[ ﬂ R
L/

Figure 8: Logic expressions for signal lines.
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Combinational-Circuit Analysis

o In Fig. 8, a sum of products is obtained by " multiplying out” output
function

F=(X+Y)-2)+(X'-Y-Z)
=X-Z+Y - Z+X -v.-Z

This new expression corresponds to a different circuit for the same
logic function, as shown in Fig. 9

X ) Xz

Y
r

}
t{ L

—) N\ F=XZ+Y-Z+X:Y-Z

Y
:

Figure 9: Two-level AND-OR circuit.
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Combinational-Circuit Analysis

@ Similarly, a product of sums is obtained by "adding out” output
function of Fig. 8

F=((X+Y)2)+(X -Y-2Z)
=X4+Y +X) X+Y +Y) X+Y' +Z)(Z+X)(Z+Y)-(Z+2Z)
=1-1.X+Y'+Z) X +2)-(Y+2)-1
=(X+Y +2Z)- X' +2)-(Y+2)

4 X' +Z — O\ F=(X+Y+2) (X+2)(Y+2)
X — J

Figure 10: Two-level OR-AND circuit.
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Combinational-Circuit Analysis

(W-Xy Yy

.

=[((W-X) Y)Y + (W + X+Y)
+(W+2)T

(W +X+YY)

[>o—

Figure 11: Algebraic analysis of a logic circuit with NAND and NOR gates.

F

(WX Y)Y + (W X+ YT+ (W Z)T
(W/+X)I+ Yl)/ . (le Y)/ . (WI‘Z/)I
(
(

W-X)-Y) (W +X+Y) (W+2)
W +X)- V) (W+X+Y') (W+2)

[
(
(
(
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Combinational-Circuit Analysis

o DeMorgan’s theorem can be applied graphically to simplify algebraic
analysis

o We can cancel out some of inversions
o In Fig. 12, this manipulation leads us to a simplified output expression

directly
F=(W+X)-Y)- (W +X+Y)-(W+2) (1)
W : W+ X
X X
Y

—Dc v
;:DO(V\“ X+YYy
v
{>C 3 \ F
W2y [ W) wex+Y)
z ) S(W+2)

Figure 12: Algebraic analysis of the circuit in Fig. 11 after substituting some
NAND and NOR symbols.
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Combinational-Circuit Analysis

@ When we simplify a logic expression, we get an expression
corresponding to a different physical circuit
o E.g., simplified expression (1) corresponds to circuit of Fig. 13

W+ X

(W +X)Y
Y
_[>o w

LT\ Wa+x+y ] \ E
’—L/ J (W £X)-Y)- (W + X+Y)
S(W+2)

v’

W+Z
)

Figure 13: A different circuit for same logic function.

@ We could also multiply out and add out expression (1) to obtain
sum-of-products and product-of-sums expressions corresponding to two
more physically different circuits for same logic function
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Combinational-Circuit Analysis

@ Logic expressions are not always used to convey information about
physical structure of a circuit
o An expression might describe more than one circuit structure
o The only sure way to determine a circuit's structure is via its drawing
o But, for certain classes of circuits, structural information could be
described without reference to drawing
o E.g., "a two-level NAND-NAND circuit for W-X-Y 4+ Y .Z"

@ w W-X-Y (b) (W-X-Y)
X

(©

Figure 14: Three circuits for G(W,X,Y,Z) =W - X Y + Y - Z: (a) two-level AND-OR;
(b) two-level NAND-NAND:; (c) with 2-input gates only.
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Com.-Circuit Synthesis: Circuit Descriptions and Designs

@ Sometimes, a logic circuit description is a list of input combinations,
verbal equivalent of a truth table or Y or [] notation

o Example (prime-number detector): " Given a 4-bit input combination

N = N3N, Ny Np, produce a 1 output for N =1,2,3,5,7,11,13 and 0

otherwise”
o A logic function described in this way can be designed directly from

canonical sum or product expression

F= > (1,2,3,57,11,13)
N3, No, Ny, Ny
= N3 - Ny Np-No+Nj-Nj- Ny No+Ng- Ny Ny No
—‘rNéNQN{N0+N§N2N1N0+N3N£N1No
+N3'N2-N{-No
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Com.-Circuit Synthesis: Circuit Descriptions and Designs

N3
Na T\ Moo Ny N
_DC Ng' _/
[\ NN NN
N No — /
2 [\ NN g N
e ®,
ﬂ N3"N2'N1"NO F
N M
! N\ N Na NN
ﬁ N3 Ny’ - Ng - Ng
N No —
0 ﬁ N3Ny Ny"* Ng
D No' /

Figure 15: Canonical-sum design for 4-bit prime-number detector.
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Com.-Circuit Synthesis: Circuit Descriptions and Designs

o Often, we describe a logic function using English-language connectives
"and,” "or,” and "not”
o Example (alarm circuit): "ALARM output is 1 if PANIC input is 1, or if
ENABLE input is 1, EXITING input is 0, and house is not secure; house
is secure if WINDOW, DOOR, and GARAGE inputs are all 1"

o Such a description can be translated directly into algebraic expressions
ALARM = PANIC + ENABLE - EXITING - SECURE’
SECURE = WINDOW - DOOR - GARAGE
ALARM = PANIC 4 ENABLE - EXITING' - (WINDOW - DOOR - GARAGE)’

PANIC
ENABLE

ALARM

EXITING

{>c
WINDOW ——— |
DOOR \ SECURE DI
GARAGE —'_—/

Figure 16: Alarm circuit derived from logic expression.
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Com.-Circuit Synthesis: Circuit Descriptions and Designs

@ Having an expression for a logic function, we can do some other
operations
o We can manipulate it to get different circuits
o E.g., ALARM expression can be multiplied out to get sum-of-products
circuit
o We can construct the truth table for the expression and use any of
synthesis methods that apply to truth tables
o E.g., canonical sum or product method and minimization methods

PANIC
ENABLE

EXITING

ALARM = PANIC
WINDOW + ENABLE - EXITING' - WINDOW'

+ ENABLE - EXITING' - DOOR'
DOOR + ENABLE - EXITING' - GARAGE'

GARAGE DC 3

Figure 17: Sum-of-products version of alarm circuit.
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Combinational-Circuit Synthesis: Circuit Manipulations

@ We can translate any logic expression into an equivalent
sum-of-products expression by multiplying it out
e Such an expression may be realized directly with AND and OR gates
o By substituting gates: two-level AND-OR — two-level NAND-NAND

©

Figure 18: Alternative sum-of-products realizations: (a) AND-OR; (b) AND-OR
with extra inverter pairs; (c) NAND-NAND.
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Combinational-Circuit Synthesis: Circuit Manipulations

Figure 19: Another two-level sum-of-products circuit: (a) AND-OR; (b)
AND-OR with extra inverter pairs; () NAND-NAND.
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Combinational-Circuit Synthesis: Circuit Manipulations

@ We can translate any logic expression into an equivalent
product-of-sums expression by adding it out
o Such an expression has both OR-AND and NOR-NOR circuit realizations

=) > =D
= >

o i

Figure 20: Realizations of a product-of-sums expression: (a) OR-AND;
OR-AND with extra inverter pairs; (c) NOR-NOR.
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Combinational-Circuit Synthesis: Circuit Manipulations

3z =i
s

) transformation

ﬁ?

Figure 21: Logic-symbol manipulations: (a) original circuit;
with a nonstandard gate; (c) inverter used to eliminate nonstandard gate; (d)

preferred inverter placement; one level of gate delay is eliminated, and bottom
gate becomes a NOR instead of AND.
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Combinational-Circuit Synthesis: Minimization

o Conmbinational-circuit-minimization methods have as their starting
point a truth table or, equivalently, a minterm list or maxterm list
o Given a logic function that is not expressed in this form, we must
convert it to an appropriate form before using these methods
@ Minimization methods reduce cost of a two-level AND-OR, OR-AND,
NAND-NAND, or NOR-NOR circuit in three ways
@ By minimizing number of first-level gates

@ By minimizing number of inputs on each first-level gate
© By minimizing number of inputs on second-level gate

o This is a side effect of the first reduction
@ Minimization methods do not consider cost of input inverters
e They assume both true and complemented versions of all input variables
are available
o Not always the case in gate-level or ASIC design
o But, appropriate for PLD-based design where both true and
complemented versions of all input variables are available for free
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Combinational-Circuit Synthesis: Minimization

@ Most minimization methods are based on combining theorems, T10
and T10’

given product term - Y 4+ given product term - Y’ = given product term

(given sum term + Y) - (given sum term + Y’) = given sum term

@ Applying this method repeatedly to combine minterms 1, 3, 5, and 7 of
prime-number detector shown in Fig. 15

F= > (1,3,57,211,13)
N3, No,Nq,No
=Nz Ny-Nj-No+Ng-Ny-Nyp-No+ Ng-Np-Np-No+ Ny-Np-Ny-No+---
= (Nj - Nj- Ny - No+ N5 NNy No)+ (Nj-No- Ny~ No+ N No-Ny-No)+---
=Nz Ng-No+ Ni-No-No+---
=Ny -No+---
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Combinational-Circuit Synthesis: Minimization

N3 N3" N2 N2"Ng Np" N No'
| I (O R R |

;

= >

" B
’ L _\ N3'-N2"-Np -No'
. L>C |
[\ N3 Np'"Np-Np
|/
>C _\ N3Ny Nj' N
No |/
I_>C

Figure 22: Simplified sum-of-products realization for 4-bit prime-number

detector.

@ Working more on preceding expression, we could save a couple more

first-level gate inputs
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Combinational-Circuit Synthesis: Karnaugh Maps

o Karnaugh map
o A graphical representation of a logic function’s truth table
e Map for an n-input logic function is an array with 2" cells, one for each
possible input combination or minterm
o Number inside each cell is corresponding minterm number in truth table
o Truth-table inputs are labeled alphabetically from left to right (e.g.,

X,Y,Z)
o E.g., cell 13 in 4-variable map corresponds to truth table row in which
WXYZ = 1101
wx W
YZ\ 00 01 11 10
X X 00 0 4 12 8
X — XY —_—
1 5 13 9
y\ 0o 1 z\ 00 01 11 10 01
z
0 0 2 0 0 2 6 4 11 3 7 15 11
Y
NERE ]Y NERERENE :IZ w0l2 [¢ [ [©
| I | I
() (b) Y (©) X

Figure 23: Karnaugh maps: (a) 2-variable; (b) 3-variable; (c) 4-variable.
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Combinational-Circuit Synthesis: Karnaugh Maps

o To represent a logic function on a Karnaugh map, we copy 1s and 0Os
from truth table or equivalent to the corresponding cells of map

w
WX 1
yz\ 00 01 11 10
0 4 12 8
x 2 XY X 0% [0 |00
T 1 5 13 9
y\ 0o 1 z\ 00 01 11 10 Ol (110
0 2 0 2 6 4 3 7 15 11 z
0l oo Ol 1 (o |1]1 v M5 |1 ]o
1 3 1 3 7 5 2 6 14 10
1o | 1 ]Y1 Tol|1]1]0 ]Z 011 {ofo]o
| | | IS |
() X

Figure 24: Karnaugh maps for logic functions: (a) F =} x (3); (b)
F=Yxy2(0,3.4,67); (c) F=Yyxy2(1,2357,11,13).
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Com.-Circuit Synthesis: Minimizing Sums of Products

@ Particular order of row and column numbers in a Karnaugh map makes
each cell correspond to an input combination that differs from each of
its immediately adjacent neighbors in only one variable

o Corresponding cells on left/right or top/bottom borders also differ in
one variable and hence neighbors; e.g., cells 12 and 14 in 4-variable map

@ Each input combination with a "1" in truth table corresponds to a
minterm in logic function's canonical sum

o Pairs of adjacent "1" cells in map have minterms that differ in only one
variable
o Thus, minterm pairs can be combined into a single product term
term - Y + term - Y/ = term
e Thus, we can use a Karnaugh map to simplify canonical sum of a logic
function
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Com.-Circuit Synthesis: Minimizing Sums of Products

X Y- Z
X X
XY 1 XY 1
00 01 11 10 00 \01 11 10
z z X-Z
0 |2 |6 |4 . -
o[ |1 |0 |0 0

S a2 aa0000 | X
2~ nh0O0~a-200 | <
~o0o—_,r0-_20-=0|N
o200~ =0|m

1 11 30 71 51 ]Z 1:3 E::IZ
| I | I vz
@ _+ v v 1 0) Y (©) M

Figure 25: F =3y y 7(1,2,5,7): (a) truth table; (b) Karnaugh map; (c)
combining adjacent 1-cells.

o In Fig. 25(b)

For cells 5 and 7: For cells 1 and 5:

F=...+X.Y .- Z4+X-Y - Z F=X"-Y' - Z+X-Y - Z+...
= +X-2)Y+(X-2)- Y =X (Y -2)+X- (Y- -2)+---
=4+ X-Z =Y .Z+...
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Com.-Circuit Synthesis: Minimizing Sums of Products

@ We can simplify a logic function by first combining pairs of adjacent
1-cells (minterms) wherever possible and then selecting a set of
product terms that covers all of 1-cells and summing them

o Fig. 25(c) shows the result for our example logic function
o Corresponding AND-OR circuit is shown in Fig. 26

X ) X-z

g
—

N
_/

_>OX_‘— XYz
z >o Z

Figure 26: Minimized AND-OR circuit.
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Com.-Circuit Synthesis: Minimizing Sums of Products

@ In many logic functions, cell-combining procedure can be extended to
combine more than two 1-cells into a single product term
o Number of cells combined is always a power of 2

o Example
F= > (01,4,5,6)
X,Y,Z

=X'"Y. . Z+X' Y. Z+X- Y. Z+ XY . Z+X-Y -Z
=[X"-Y)-Z+X'-Y) Z|+[(X-Y)-Z+(X- Y- Z|+X-Y-Z
=X""Y4+X.-Y4+X.Y -Z

=X -(Y)+X-(Y)N+X-Y-Z

=Y +X-Y-Z

o 2/ 1-cells may be combined to form a product term containing n — i
literals (n = number of variables in function)

o A set of 2' 1-cells are combined if there are i variables that take on all
2 possible combinations within that set, while remaining n — i variables
have the same value throughout that set

o Corresponding product term has n — i literals, where a variable is
complemented if it is O in all of 1-cells, and uncomplemented if it is 1
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Com.-Circuit Synthesis: Minimizing Sums of Products

o Graphically, we circle rectangular sets of 2/ 1s, stretching definition of
rectangular to account for wraparound at edges of map

For each variable, if a circle covers only areas of map where it is 0, the
variable is complemented in product term

If a circle covers only areas of map where the variable is 1, the variable
is uncomplemented in product term

If a circle covers areas of map where the variable is 0 as well as areas
where it is 1, the variable does not appear in product term

Finally, a sum-of-products expression for a function must contain
product terms that cover all of 1s and none of Os on map

By circling largest possible set of 1s, a less expensive realization of logic
function is found
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Com.-Circuit Synthesis: Minimizing Sums of Products

X X
XY —_— XY —
z\OO 01 11 10 z\OO 01 11 10 <
0 o1 2 61 41 o7 ) @ }/

(a)

Figure 27: F =%y v 7(0,1,4,5,6): (a) initial Karnaugh map; (b) Karnaugh
map with circled product terms; (c) AND/OR circuit.
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Com.-Circuit Synthesis: Minimizing Sums of Products

@ N3 (b) NoN N3
{3 N, L— 3 N2 —
N; No 00 01 11 10 N; No 00 01 11 10 S Na- Ny’ No
0 4 12 8
00 00

wl? [ ] 10|L1_J| S Ny Np N
| I N3z'"Np' Ny | I—
NZ N2
F = Snanznino(1,2,35,7,11,13) F = Ny-Np + Ng'-Np'*Nj + Ny’ -Ng-Ng + Na- Ny’ -Ng

(©

E N3’ No

Ng' Ny’ Ny

"
N
Ny 2’
L[>0N2 [ )
A R i = ) ‘
1
1\ N NN
N, No

I_]_
‘ NNy~ No
0 =D

Figure 28: Prime-number detector: (a) initial Karnaugh map; (b) circled
product terms; (c) minimized circuit.

49 / 69



Com.-Circuit Synthesis: Minimizing Sums of Products

e Minimal sum of a logic function F(Xi,...,X,)

@ Has the fewest possible product terms
@ Within constraint 1, has the fewest possible literals

e A logic function P(Xi,...,X,) implies a logic function F(Xi,...,X,)
if for every input combination such that P =1, then F =1 too
o "Pimplies F" =" F includes P" ="F covers P" = P= F
e Prime implicant of a logic function F(Xi,..., X))

o A normal product term P(Xi,..., X,) that implies F, such that if any
variable is removed from P, resulting product term does not imply F

o In Karnaugh map, a prime implicant of F is a circled set of 1-cells, such
that if we make it larger (twice as many cells), it covers one or more Os

o Prime-implicant theorem
o A minimal sum is a sum of prime implicants
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Com.-Circuit Synthesis: Minimizing Sums of Products

a w b w
(@) W X — (b) W X —
vz 00 01 11 10 yzZ\ 00 01 11 10
0 [4 |12 Je — WX
00 1 00 1]
X-Z — |

1 5 13 9
01 111 , 01 1)1 ,
3 7 15 11
11 111 11 1)1
Y Y

2 6 14 |10 10 &J

10 1
| | | |
X X
F = Zwxvy z(5.7,12,13,14,15) F=XZ+WX

Figure 29: F =3y x v 7(5,7,12,13,14,15): (a) Karnaugh map; (b) prime
implicants.

o Complete sum
e Sum of all prime implicants of a logic function
o Is not always minimal
o E.g., logic function shown in Fig. 30 has five prime implicants, but
minimal sum includes only three of them
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Com.-Circuit Synthesis: Minimizing Sums of Products

w w
@ W X — © W X —
yz\_ 00 01 11 10 yz\_ 00 01 11 10 “y
—
0 4 12 8
00 11 00 1 (1 | w7z

1 5 13 9 ] _
0l |11 |1 o oonpafia fafira
3 7 15 11 z Yz z
1% 11 1)1 1 u
Y Y

2 e |14 [10 -L
10 L) X -7

10 1
— — WX
F=Swxy,z(134,5911,12,13,14,15) F=X Y +X:Z+WX

Figure 300 F =3\ x.y.z(1,3,4,5,9,11,12,13,14,15): (a) Karnaugh map;
(b) prime implicants and distinguished 1-cells.

o Distinguished 1-cell of a logic function

e An input combination that is covered by only one prime implicant
o Essential prime implicant of a logic function

o A prime implicant that covers one or more distinguished 1-cells
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Com.-Circuit Synthesis: Minimizing Sums of Products

o First step in prime-implicant selection process

o lIdentify distinguished 1-cells and corresponding essential prime
implicants, and include them in minimal sum

o In Fig. 30, three distinguished 1-cells are shaded, and corresponding
essential prime implicants are circled with heavier lines

o All of 1-cells are covered by essential prime implicants, so we need go no
further

o In Fig. 31, all of prime implicants are essential, and so all are included in
minimal sum
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Com.-Circuit Synthesis: Minimizing Sums of Products

w w
@ WX — ) WX —
vzZ\ 00 01 11 10 yzZ\ 00 01 11 10 WX
0 4 12 |8 R
00 1 00 1 .
ol P I 1° o1 1] 1)
z z
Sl R AP e u|@ZZD
Y Y
% % [ ]" w01 |1 ~— v.z
F= Sy xv2(23456,711,13,15) F=W:Y+W:X+XZ+Y2Z

Figure 31: F =3y x v 2(2,3,4,5,6,7,11,13,15): (a) Karnaugh map; (b)
prime implicants and distinguished 1-cells.
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Com.-Circuit Synthesis: Minimizing Sums of Products

w w w
@) W X — (b) W X — (c) WX —
YZ\ 00 01 11 10 YZ\ 00 01 11 10 YZ\ 00 01 11 10

0 4 12 | W-Z
00 L

8
01 |(|[1

1 5 13 |9
ot |y % z
3 7 15 1"
REREER
Y

01F i|z
am

0% 1° 1% 1" 10| |1 10 1 xov.z
[ WX [
X W-X-Y X
F=Zwxyz0,123457,14,15) F=W-Y +WX +W-X'Y+W-Z

Figure 320 F =3y x v 7(0,1,2,3,4,5,7,14,15): (a) Karnaugh map; (b)
prime implicants and distinguished 1-cells; (c) reduced map after removal of
essential prime implicants and covered 1-cells.

o In Fig. 32, by removing essential prime implicants and the 1-cells they
cover, we obtain a reduced map with only a single 1-cell and two prime
implicants that cover it

o We use W’ - Z product term because it has fewer inputs and therefore

lower cost
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Com.-Circuit Synthesis: Minimizing Sums of Products

o Eclipse

o Given two prime implicants P and Q in a reduced map, P is said to

eclipse Q@ (P 2 Q) if P covers at least all 1-cells covered by Q

o If P eclipses Q, then @ can be ignored when finding a minimal sum
o In Fig. 33(c), X - Y - Z eclipses the other two prime implicants

o X-Y-Zis asecondary essential prime implicant that must be

included in minimal sum

w

w
(a) WX — (b) WX —
00 01 11 10 00 01 11 10
YZ YZ
o [+ [z [s
00 00
BN ERE Wy z —— =
o1 1% o1 B
z —r
ul 71 15i 11 " 1
Y Y =
10 21 61 @ |10 10 [—1 1
— WYz —

F = Sy x.v,2(2,6,7,9,13,15)

prime implicants and covered 1-cells.

w
(c) WX —
yz\ 00 01 11 10
WX
00 L

8

@
U

X

F=W-Y-Z+W-Y-Z+XYZ

Figure 33: F =3y x v 2(2,6,7,9,13,15): (a) Karnaugh map; (b) prime
implicants and distinguished 1-cells; (c) reduced map after removal of essential
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Com.-Circuit Synthesis: Minimizing Sums of Products

WX

w

[ —
Yz\ 00 01 11 10
(a) ool® |4 |2 [8
D BEERE
o1 1 1
3 [7 [ [
" 11 ]
Y 0]z |8 [# o
—
X
W

(c

WX —
YZ\ 00 01 11 10
) 00

o1 1]

T

1] 1)

W-Y-Z

|
X

W-X-Z

F=W-X-Z+W-Y-Z+X-Y-Z

Figure 341 F =3 « v 7(1,5,7,9,11,15): (a) Karnaugh map; (b) prime
implicants (no essential); (c) a minimal sum; (d) another minimal sum.

w

WX —
vyzZ\_ 00 01 11 10
) 00

[T

[

G0
10
—_
X
WX v
vyZ\_ 00 01 11 10
00 L
o1 [ 1)
11 ([
10
—_

X

F=XY-Z+W-X-Z+W:-Y"Z
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Com.-Circuit Synthesis: Minimizing Product of Sums

@ Using principle of duality, we can minimize product-of-sums
expressions by looking at Os on a Karnaugh map
o Each 0 on map corresponds to a maxterm in canonical product of logic

function
o To find minimal product, we write sum terms corresponding to circled
sets of Os
o In Fig. 35
F=X+Y'+2)- X' +2Z)-(Y+2Z)
X Y z F X+Y'+
XY X XY X
0o 0 0 1 — —
00 1 o0 z\ 00 01 11 10 z\ 00\01 11 10 N
o 1 0 0 olo, T2, e, T* @ F
0 1 1 1 1 0|1 1 0
1 0 0 1 1 3 7 5 N B
1 0 1 0 ol 1]o]o ] ‘ 1--_2] © »:IZ
1.1 0 1 | I | I | v+7
@ 11 1 0 ) Y © Y

Figure 35: F = []x y 7(1,2,5,7): (a) truth table; (b) Karnaugh map; (c)
combining adjacent O-cells.
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Com.-Circuit Synthesis: Minimizing Product of Sums

@ Indirect method to find minimal product
For circled sets of Os in Karnaugh map, write product terms
Equate F’ to minimal sum
Use DeMorgan’s theorem to find F
E.g., for Fig. 35(c), product terms of circled Os are:
X.y.-z, X-zZ,Y-Z
FF=X.Y-Z+X-Z+Y'-Z
[FT=X"-Y-Z+X-Z+Y' 2]
F=X+Y'+2)-X'+2Z)-(Y+2Z)
o PLD minimization
o PLDs have an AND-OR array corresponding to sum-of-products form
o Most PLDs, also have an inverter/buffer at output of AND-OR array,
which can be programmed to invert or not
o Thus, PLD can utilize the equivalent of minimal sum by using AND-OR
array to realize complement of desired function and then programming
inverter/buffer to invert

@ Most logic-minimization programs for PLDs find both minimal sum and
minimal product and select the one that requires fewer terms
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Timing Hazards

o Predicting steady-state behavior of combinational logic circuits
o Predicting a circuit’'s output as a function of its inputs under assumption
that inputs have been stable for a long time, relative to delays in
circuit’s electronics
o Circuit delay is ignored
o But actual delay from an input change to corresponding output change
in a real circuit is nonzero
o Transient behavior of a combinational logic circuit
o Considers circuit delays
o May differ from what is predicted by a steady-state analysis
o A circuit's output may produce a short pulse, called a glitch, at a time
when steady-state analysis predicts that output should not change
A hazard exists when a circuit has possibility of producing such a glitch
A logic designer must eliminate hazards
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Timing Hazards: Static Hazards

o Static-1 hazard
e A pair of input combinations that
@ Differ in only one input variable
@ Both give a 1 output
such that it is possible for a momentary 0 output to occur during a
transition in the differing input variable

1
z
(@ (b) 0
1
_ XzP zP
X zp 0
z 1
F YZ
E 0
YZ .
R e — XzP
0
£l
0

Figure 36: Circuit with a static-1 hazard: (a) logic diagram; (b) timing diagram
(X=1,Y=1,7Z:1— 0, propagation delay through each gate or inverter is
one unit time).
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Timing Hazards: Static Hazards

o Static-0 hazard

e A pair of input combinations that
@ Differ in only one input variable
@ Both give a 0 output
such that it is possible for a momentary 1 output to occur during a
transition in the differing input variable

(b) z

ZP

YZ

WXZP

O P O R O R O R O K

Figure 37: Circuit with static-0 hazards: (a) logic diagram; (b) timing diagram.
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Timing Hazards: Static Hazards

o A Karnaugh map can be used to detect static hazards in a two-level

sum-of-products or product-of-sums circuit
o A properly designed two-level sum-of-products (AND-OR) circuit has
no static-0 hazards
o A static-0 hazard would exist only if both a variable and its complement
were connected to the same AND gate, which would be silly
o But the circuit may have static-1 hazards

@) X (b) X

\ 00 01 11 10/>< z \ 00 01 11 10/ "z
(1]1] 1| 1]
il M1]1) :|z AT :|z

Y-Z | I | Y-Z | IS XY
Y Y
F=X2ZzZ+Y-Z F=X-Z+YZ+XY

Figure 38: Karnaugh map for the circuit of Fig. 36: (a) as originally designed;
(b) with static-1 hazard eliminated.
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Timing Hazards: Static Hazards

o In Fig. 38
o There is no single product term that covers both input combinations
X,Y,Z=111and X,Y,Z =110
o Possible for output to glitch momentarily to 0 if AND gate output that
covers one of combinations goes to 0 before AND gate output covering
the other input combination goes to 1
o To eliminate hazard, include an extra product term (AND gate) to cover
hazardous input pair

o The extra product term to be added is consensus of the two original
terms

X XZP
ZP

el

T
1

Figure 39: Circuit of Fig. 36 with static-1 hazard eliminated.
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Timing Hazards: Static Hazards

XYz

w w
(@ W X — (b) W X —
YZ\ 00 \01 11 10 YZ\ 00 01 11 10

w-z \00,_&_1) WX Y 00 _ 1
o1l 1 _1] _ :|z 01[65 ]
|:11 [(1 1J]11 D)

Y

10 [1 1~ w-v 10 [[Q1\Y'Z
N T Wx-z
X X
F=XY-Z+W-Z+W-Y F=XY-Z+W-Z+W-Y

+WXY Y Z o+ WX Z

Figure 40: Karnaugh map for another sum-of-products circuit: (a) as originally
designed; (b) with extra product terms to cover static-1 hazards.
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Timing Hazards: Static Hazards

o A properly designed two-level product-of-sums (OR-AND) circuit has
no static-1 hazards

o But, it may have static-0 hazards

@ These hazards can be detected and eliminated by studying adjacent Os
in Karnaugh map

(a) X (b) X
Z\ 00 01 11 10— ez \oo 01 1_10/””Z
an oo)
1 No o] :|z
Y+z

1| o |lo) :|z

I Y +2Z L 1 X +Y'
Y Y

F=(X+2) (Y'+2)

F=X+2) (Y+2Z) (X+Y)
Figure 41: Karnaugh map for a product-of-sums circuit: (a) as originally
designed; (b) with extra sum term to cover the static-0 hazard
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Timing Hazards: Dynamic Hazards

o Dynamic hazard
o Possibility of an output changing more than once as the result of a
single input transition
o Multiple output transitions can occur if there are multiple paths with
different delays from the changing input to the changing output

w 0 0-1
0-1 ]slow
0 0-1-0
Y 1-0 1-0-1-0
slower 1-0
1-0

1-0

> —1

7 1

x

Figure 42: Circuit with a dynamic hazard.
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Timing Hazards: Dynamic Hazards

o In Fig. 42

o Three different paths with different delays from input X to output F

o If all of gates except the two marked "slow" and "slower” are very fast,
the transitions shown in black occur first, and output goes to 0

o Then, output of "slow” OR gate changes, creating transitions shown in
nonitalic color, and output goes to 1

o Finally, output of "slower” OR gate changes, creating transitions shown
in italic color, and output goes to 0

@ Dynamic hazards do not occur in a properly designed two-level
AND-OR or OR-AND circuit

e In such a circuit, no variable and its complement are connected to the
same first-level gate
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