Design of Digital Systems Il

Combinational Logic Design Practices (3)

Moslem Amiri, Vaclav P¥enosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University
Brno, Czech Republic

amiri@mail.muni.cz
prenosil@fi.muni.cz

November, 2012

Exclusive-OR and Exclusive-NOR Gates

@ An XOR gate is a 2-input gate whose output is 1 if its inputs are
different

XoyYy=X -Y+X-Y
@ An XNOR gate is a 2-input gate whose output is 1 if its inputs are the
same

Table 1: Truth table for XOR and XNOR functions.

X|Y[XaY|XaY)
ojo] o 1
01 1 0
10 1 0
1)1 0 1

2/170

Exclusive-OR and Exclusive-NOR Gates

(@) X :
L
-
[
(b) X
] F
Y

Figure 1: Multigate designs for the 2-input XOR function: (a) AND-OR; (b)
three-level NAND.

3/170

Figure 2: Equivalent symbols for (a) XOR gates; (b) XNOR gates.

@ As seen in Fig. 2, any two signals (inputs or output) of an XOR or
XNOR gate may be complemented without changing resulting logic
function

4/170

(a) 11

(b) 1

Figure 3: Cascading XOR gates: (a) daisy-chain connection; (b) tree structure.

5/ 170

o Fig. 3
o (a) is an odd-parity circuit
o lIts output is 1 if an odd number of its inputs are 1

o (b) is also an odd-parity circuit, but it is faster
o If output of either circuit is inverted, we get an even-parity circuit

6/ 70

Parity Circuits: The 74x280 9-Bit Parity Generator

74x280
(b) 8l A
°le
10 c
“Ip even |2
12 E
1? F obpl®
G
@ _® S Y
ET DL
oo

oD |
) ©)_ even
F_(3) /

(1) \
@ O]

H OoDD
| @)

Figure 4: The 74x280 9-bit odd/even parity generator: (a) logic diagram,
including pin numbers for a standard 16-pin dual in-line package; (b) traditional
logic symbol.

7170

Parity Circuits: Parity-Checking Applications

@ A parity bit is used in error-detecting codes to detect errors in
transmission and storage of data

o In an even-parity code, parity bit is chosen so that total number of 1
bits in a code word is even
o Parity circuits like 74x280 are used both to generate correct value of
parity bit when a code word is stored or transmitted, and to check
parity bit when a code word is retrieved or received

8 /70

Parity Circuits: Parity-Checking Applications

74x08
: 6 ERROR
5
D[0:7] UL
74LS04
RD 1 {>c , RDL
WR e
74x280 Memory Chips 74x541
Do 8 ‘o1
A READ
19 G2
B WRITE 500
c DINO DOUTO 21 a1
5 DOl 3
D EVEN|[> DINL DOUTI | A2
E DIN2 DOUT2 all Y
s | PI D03 5
F oDD DIN3 DOUT3 A4
DO4 o
G DIN4 DOUT4 A5
74x08 DO5 7
1 H DIN5S DOUTS A6
3 DO6 8
2 I DIN6 DOUT6 A7
u2 DO7 9
1 DIN7 DOUT? A8
PIN POUT
PO — ~—

Figure 5: Parity generation and checking for an 8-bit-wide memory.

9/170

Parity Circuits: Parity-Checking Applications

o In

o In

Fig. 5, to store a byte into memory

o Specify an address

Place byte on D[0-7]

Generate its parity bit on PIN

Assert WR

'280's ODD output is connected to PIN, so that total number of 1s
stored is even

Fig. 5, to retrieve a byte

Specify an address

Assert RD

A 74x541 drives byte onto D bus, and '280 checks its parity

If parity of 9-bit word is odd during a read, ERROR signal is asserted

10 / 70

Exclusive-OR Gates and Parity Circuits in Verilog

Table 2: Dataflow-style Verilog module for a 3-input XOR device.

module Vrxor3(A, B, C, Y);
input A, B, C;
output Y;

assign Y = A ° B ° C;
endmodule

11/ 70

Exclusive-OR Gates and Parity Circuits in Verilog

Table 3: Behavioral Verilog program for a 9-input parity checker.

module Vrparity9(I, EVEN, 0DD);
input [1:9] I;
output EVEN, ODD;
reg p, EVEN, ODD;
integer j;

always @ (I) begin
p = 1'b0;
for (j =1; j <= 9; j = j+1)

74x280

if (I[31) p = “p; ig
else p = p; 0] ¢
0DD = p; E D EVEN|[>
EVEN = “p; 13E oo |°
end He
endmodule ol

12 /70

Exclusive-OR Gates and Parity Circuits in Verilog

@ ASIC and FPGA libraries contain two- and three-input XOR and
XNOR functions as primitives

o In CMOS ASICs, these primitives are realized very efficiently at
transistor level using transmission gates

o Fast and compact XOR trees can be built using these primitives

o Typical Verilog synthesis tools are not smart enough to create an
efficient tree structure from a behavioral program like Tab. 3

o Instead, we can use a structural program to get exactly what we want

o Tab. 4

13 /70

Exclusive-OR Gates and Parity Circuits in Verilog

Table 4: Structural Verilog program for a 74x280-like parity checker.

module Vrparity9s(I, EVEN, 0DD);
input [1:9] I;
output EVEN, ODD;
wire Y1, Y2, Y3, Y3N;

Vrxor3d U1l (I[1], I[2], I[3], Y1); 743280
Vrxor3 U2 (I[4], I[5], I[6], Y2);
Vrxor3 U3 (I[7], I[8], I[9], Y3); 10
assign Y3N = "Y3; =
Vrxor3 U4 (Y1, Y2, Y3, ODD); m
Vrzor3 U5 (Y1, Y2, Y3N, EVEN);

endmodule
A (2)
3
ot
b1)
g2 y) even
E)
G \
@ © _ opp
| “)

o

“—IOTmMOO®>

EVEN

oDD

-

14 /70

@ A comparator is a circuit that compares two binary words and
indicates whether they are equal

o Magnitude comparators interpret their input words as signed or
unsigned numbers and also indicate an arithmetic relationship (greater
or less than) between words

15 / 70

Comparators: Comparator Structure

@ XOR or XNOR gates may be viewed as 1-bit comparators

@) AOjDﬂ
BO
A0
Al

DIFF1
B1
DIFF
A2 DIFF2
B2

A3 DIFF3
B3

Figure 6: Comparators using XOR gates: (a) 1-bit comparator; (b) 4-bit comparator.

@ We can build an n-bit comparator using n XOR gates and an n-input
OR gate
o Wider OR functions can be obtained by cascading individual gates
o A faster circuit is obtained by arranging gates in a tree-like structure

o Using NORs and NANDs in place of ORs makes circuit even faster
16 / 70

Comparators: Comparator Structure

o Comparators can also be built using XNOR gates
o A 2-input XNOR gate produces a 1 output if its two inputs are equal
o A multibit comparator can be constructed using one XNOR gate per bit,
and ANDing all of their outputs together
o Output of AND function is 1 if all of individual bits are pairwise equal
@ n-bit comparators in this subsection are called parallel comparators

o They look at each pair of input bits simultaneously and deliver 1-bit
comparison results in parallel to an n-input OR or AND function

17 /70

Comparators: Iterative Circuits

@ An iterative circuit contains n identical modules, each of which has
both primary inputs and outputs and cascading inputs and outputs
o Left-most cascading inputs are called boundary inputs and are
connected to fixed logic values
e Right-most cascading outputs are called boundary outputs and usually
provide important information

primary inputs

Plg cascading Ply cascading Pl,q

ﬂ input ﬂ output ﬂ
PI \\ Pl // PI
Co C1 C2 Cn1 Cp

—>|Cl module CO[———)|Cl module COf——) o o o ——p(Cl module COf——)
PO PO PO

bqundan/ boundary
inputs outputs

PO, PO, PO, 4

primary outputs

Figure 7: General structure of an iterative combinational circuit.
18 /70

Comparators: Iterative Circuits

@ lterative circuits are suited to problems that can be solved by an
iterative algorithm
@ Set (to its initial value and set i to 0
@ Use G and PI; to determine values of PO; and Cjyg
© Increment |
@ If i < n, go to step 2

19 /70

Comparators: An lterative Comparator Circuit

@ To compare two n-bit values X and Y
@ Set EQptol andsetito0
@ If EQ; is 1 and X; and Y; are equal, set EQ;.1 to 1, else set EQ;.1 to 0
© Increment |
@ If i < n, go to step 2

®) X0 YO X1 Y1l X2 Y2 X(N-1) Y(N-1)

X Y X Y X Y

cMP cMP cMP cMP
1——|EQ EQO EQ1 EQI EQO EQ2 EQI EQO Es ... EQ-D EQI EQO | EQN _

X Y cMP
()
EQO
EQI O

Figure 8: An iterative comparator circuit: (a) module for one bit; (b) complete
circuit.
20 / 70

Comparators: An lterative Comparator Circuit

o Parallel comparators are preferred over iterative ones
o lIterative comparators are very slow
o Cascading signals need time to "ripple” from leftmost to rightmost
module
o lterative circuits that process more than one bit at a time (using
modules like 74x85, discussed next) are much more likely to be used in
practical designs

21/ 70

Comparators: Standard MSI Magnitude Comparators

@ 74x85 is a 4-bit comparator which provides a greater-than output
(AGTBOUT) and a less-than output (ALTBOUT) as well as an equal

output (AEQBOUT)

o '85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN) for
combining multiple '85s to create comparators for more than four bits

74x85

10

12
11
13
14
15

ALTBIN ALTBOUT
AEQBIN AEQBOUT
AGTBIN AGTBOUT
A0
BO
Al
B1
A2
B2
A3
B3

Figure 9: Traditional logic symbol for the 74x85 4-bit comparator.

22 /70

74x85

2L ALTBIN ALTBOUT |-
3 AEQBIN AEQBOUT |2
2 AGTBIN AGTBOUT |2

rd MSI Magnitude Comparat

74x85

ALTBIN ALTBOUT

AEQBIN AEQBOUT
AGTBIN AGTBOUT

74x85

Y

o

ALTBIN ALTBOUT
AEQBIN AEQBOUT
AGTBIN AGTBOUT

7 XLTY
5 XEQY

5 XGTY

A0 A0
BO BO
Al Al
B1 B1
A2 A2
B2 B2
A3 A3
B3 B3

XD[011]

YD[011]

Figure 10: A 12-bit comparator using 74x85s.

23 / 70

Comparators: Standard MSI Magnitude Comparators

o Cascading inputs are defined so outputs of an '85 that compares
less-significant bits are connected to inputs of an '85 that compares
more-significant bits

o For each '85

AGTBOUT = (A> B)+ (A= B)-AGTBIN
AEQBOUT = (A= B) - AEQBIN
ALTBOUT = (A< B)+ (A= B)-ALTBIN
Arithmetic comparisons can be expressed using normal logic
expressions, e.g.,
(A>B)=A3-B3+
(A3® B3) - A2- B2+
(A3@ B3) - (A2@ B2)' - AL- Bl'+
(A3@ B3)' - (A2® B2)' - (Al @ B1)' - A0 - B0

24 / 70

Comparators: Standard MSI Magnitude Comparators

74x682

11
12
13
14
15
16
17
18

PO
Qo0
P1
Q1
P2
Q2
P3
Q3
P4
Q4
P5
Q5
P6
Q6
P7
Q7

PEQQ

PGTQ

19

Figure 11: Traditional logic symbol for the 74x682 8-bit comparator.

25 / 70

Comparators: Standard MSI Magnitude Comparators

Figure 12: Logic diagram for the 74x682 8-bit comparator, including pin

numbers for a standard 20-pin dual in-line package.)
26 /70

Comparators: Standard MSI Magnitude Comparators

o In Fig. 12
o Top half of circuit checks two 8-bit input words for equality
o PEQQ.L output is asserted if all eight input-bit pairs are equal
o Bottom half of circuit compares input words arithmetically
o PGTQ_L is asserted if P[7-0] > Q[7-0]
0 74x682 does not have cascading inputs and a "less than” output

o However, any desired condition can be formulated as a function of
PEQQ-L and PGTQ_L outputs

27 / 70

Comparators: Standard MSI Magnitude Comparators

74x682

74x00

1
@ PGEQ
19

us

PEQQ O

PLEQ
1

PGTQ O———¢ 74x08

1

- } PLTQ
Ul U4

Figure 13: Arithmetic conditions derived from 74x682 outputs.

28 / 70

Comparators in HDLs

o Comparing two bit-vectors for equality or inequality is done in an HDL

”

program, in relational expressions using operators such as "==" and

@ Given relational expression " (A==B)", where A and B are bit vectors
each with n elements, compiler generates the logic expression
(A1 @ B1) + (A2 @ By) + -+ -+ (A @ Bn))
e In a PLD, this is realized as a complemented sum of 2n product terms
(A1~ Bi+ Ay -Bi) + (A By + Ay Bo) + -+ + (An - B, + A - B))f
o Logic expression for " (A!'=B)" is complement of the ones above

20 / 70

Comparators in HDLs

o Given relational expression " (A<B)", where A and B are bit vectors each
with n elements, HDL compiler first builds n equations of the form

L; = (A: . (B,’ -+ L,'_1)) -+ (A,‘ -B; - L,'_1)
fori=1ton and L =0
o This is an iterative definition of less-than function, starting with LSB
o Logic equation for " (A<B)" is the equation for L,
o After creating n equations, HDL compiler collapses them into a single
equation for L, involving only A and B
o In case of a compiler that is targeting a PLD, final step is to derive a
minimal sum-of-products expression from L, equation
o Collapsing an iterative circuit into a two-level sum-of-products
realization creates an exponential expansion of product terms
o Requires 2" — 1 product terms for an n-bit comparator
o Results for ">" comparators are identical

o Logic expressions for ">=" and "<=" are complements of expressions for
"t and ">

30 / 70

Comparators in Verilog

@ Verilog has built-in comparison operators: >, >=, <, <=, ==, I=

These operators can be applied to bit vectors
Bit vectors are interpreted as unsigned numbers with the MSB on left,
regardless of how they are numbered

o Verilog-2001 also supports signed arithmetic
o Verilog matches up operands of different lengths, by adding zeros on left

Equality and inequality checkers are small and fast
o Built from n XOR or XNOR gates and an n-input AND or OR gate
Checking for greater-than or less-than
@ The number of product terms needed for an n-bit comparator grows
exponentially, on order of 2", when comparator is realized as a two-level
sum of products
o A two-level sum-of-products realization is possible only for small values
of n (4 or less)
o For larger values of n, compiler may synthesize a set of smaller
comparator modules, along the lines of 74x85 and 74x682 parts, whose
outputs may be cascaded or combined to create larger comparison result

31/ 70

Comparators in Verilog

Table 5: Verilog module with functionality similar to 74x85 magnitude comparator.

module Vr74x85(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);
input [3:0] A, B;
input AGTBIN, ALTBIN, AEQBIN;
output AGTBOUT, ALTBOUT, AEQBOUT;

reg AGTBOUT, ALTBOUT, AEQBOUT;
74x85

always @ (A or B or AGTBIN or ALTBIN or AEQBIN) S ALTBIN - ALTBOUT |
. __ AEQBIN AEQBOUT

if (A == B)] AGTBIN AGTBOUT [~
begin AGTBOUT = AGTBIN; ALTBOUT = ALTBIN; AEQBOUT = AEQBIN; end J: A0
else if (A > B) -1
begin AGTBOUT = 1'bl; ALTBOUT = 1'b0; AEQBOUT = 1'b0; end u :i
else jj A2
begin AGTBOUT = 1'bO; ALTBOUT = 1'bl; AEQBOUT = 1'b0; end =182
endmodule 1 :2

o Module of Tab. 5 does not perform an explicit check for A<B, to avoid
synthesizing another comparator
o If we missed this optimization and included A<B check, it is necessary
also to include a final else statement (Tab. 6)
o Without final else clause, compiler will infer a latch to hold previous
value of each cascading output if none of logic paths through always

block assigned a value to that output)
32 /70

Comparators in Verilog

Table 6: Verilog comparator module with three explicit comparisons.

module Vr74x85s(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);
input [3:0] A, B;
input AGTBIN, ALTBIN, AEQBIN;
output AGTBOUT, ALTBOUT, AEQBOUT;
reg AGTBOUT, ALTBOUT, AEQBOUT;

always @ (A or B or AGTBIN or ALTBIN or AEQBIN)
if (A == B)
begin AGTBOUT = AGTBIN; ALTBOUT = ALTBIN; AEQBOUT = AEQBIN; end
else if (A > B)

74x85

ALTBIN ALTBOUT
AEQBIN AEQBOUT
AGTBIN AGTBOUT |>——

IS

begin AGTBOUT = 1'bl; ALTBOUT = 1'b0O; AEQBOUT = 1'b0; end 12 A0

else if (A < B)) i(l’
begin AGTBOUT = 1'b0; ALTBOUT = 1'bl; AEQBOUT = 1'b0; end EE1)

else 2l a2
begin AGTBOUT = 1'bx; ALTBOUT = 1'bx; AEQBOUT = 1'bx; end iz B2
endmodule i

B3

33 /70

Comparators in Verilog

Table 7: Verilog comparator module with cascading from more to less

significant stages.

module Vr74x85r(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);

input [3:0] A, B;

input AGTBIN, ALTBIN, AEQBIN;
output AGTBOUT, ALTBOUT, AEQBOUT;
reg AGTBOUT, ALTBOUT, AEQBOUT;

always @ (A or B or AGTBIN or ALTBIN or AEQBIN)
if (AGTBIN)
begin AGTBOUT = 1'bl; ALTBOUT = 1'bO; AEQBOUT
else if (ALTBIN)
begin AGTBOUT = 1'b0; ALTBOUT = 1'bl; AEQBOUT
else if (AEQBIN)

begin
AGTBOUT = (A > B) 7 1'bl : 1'bO ;
AEQBOUT = (A == B) ? 1'bl : 1'b0;
ALTBOUT = ~“AGTBOUT & ~AEQBOUT;

end

else
begin AGTBOUT = 1'bx; ALTBOUT = 1'bx; AEQBOUT
endmodule

1'b0;

1'b0;

1'bx;

end

end

end

74x85

w

=

5

=

15

ALTBIN ALTBOUT
AEQBIN AEQBOUT
AGTBIN AGTBOUT
A0
BO
AL
B1
A2
B2
A3
B3

@ With a series of if-else statements, compiler synthesizes priority logic

o It checks the first condition, and only then the second, and so on

o We can use a case statement instead

34 /70

Comparators in Verilog

Table 8: Verilog comparator module using a case statement.

module Vr74x85rc(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);

input [3:0] A, B;

input AGTBIN, ALTBIN, AEQBIN;
output AGTBOUT, ALTBOUT, AEQBOUT;
reg AGTBOUT, ALTBOUT, AEQBOUT;

always @ (A or B or AGTBIN or ALTBIN or AEQBIN)
case ({AGTBIN, ALTBIN, AEQBIN})
3'b100: begin AGTBOUT = 1'bl; ALTBOUT 1'b0; AEQBOUT 1'b0; end
3'b010: begin AGTBOUT = 1'bO; ALTBOUT = 1'bl; AEQBOUT = 1'bO; end
3'b001: begin
AGTBOUT = (A > B) ? 1'b1 : 1'b0 ;

AEQBOUT = (A == B) ? 1'bl : 1'b0;
ALTBOUT = ~“AGTBOUT & ~AEQBOUT;
end
default: begin AGTBOUT = 1'bx; ALTBOUT = 1'bx; AEQBOUT = 1'bx; end
endcase
endmodule

74x85

ALTBIN ALTBOUT
AEQBIN AEQBOUT
AGTBIN AGTBOUT

— A0

35/ 70

Comparators in Verilog

Table 9: Verilog comparator module using continuous assignments.

74x85

module Vr74x85re(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);
input [3:0] A, B;
input AGTBIN, ALTBIN, AEQBIN;
output AGTBOUT, ALTBOUT, AEQBOUT;

ALTBIN ALTBOUT
AEQBIN AEQBOUT
AGTBIN AGTBOUT
A0
BO
AL

w

=

10

©

assign AGTBOUT = AGTBIN | (AEQBIN & ((A > B) 7 1'bl : 1'b0)); g1
assign AEQBOUT = AEQBIN & ((A == B) ? 1'bl : 1'b0) ; o
assign ALTBOUT = "AGTBOUT & ~AEQBOUT; =%
A3

endmodule 1

B3

36 / 70

Adders, Subtractors, and ALUs

@ The same addition rules and therefore the same adders are used for
both unsigned and two’s-complement numbers

@ An adder can perform subtraction as addition of minuend and
complemented subtrahend

o But we can also build subtractor circuits that perform subtraction
directly

@ ALUs perform addition, subtraction, or any of several other operations
according to an operation code supplied to device

37 /70

Adders, Subtractors, and ALUs: Half Adders & Full Adders

@ A half adder adds two 1-bit operands X and Y, producing a 2-bit sum

HS=XaoY
=X-Y'+X.Y
cC0O=X-Y

(HS = half sum, and CO = carry-out)

@ To add operands with more than one bit, we must provide for carries
between bit positions

o Building block for this operation is called a full adder

S=XaoY®dCN
=X Y - CIN+X"-Y-CIN+X"-Y'-CIN+X-Y-CIN
COUT =X-Y+X-CIN+Y-CIN

38 /70

Adders, Subtractors, and ALUs: Half Adders & Full Adders

full adder

X ———
Y s —* s

7 N v I
CIN

— CIN COUT |—

—/ cout }(}(

-«— COUT CIN f=—

@

i

Figure 14: Full adder: (a) gate-level circuit diagram; (b) logic symbol; (c)
alternate logic symbol suitable for cascading.

Y
%

(©

39 / 70

Adders, Subtractors, and ALUs: Ripple Adders

o A ripple adder is a cascade of n full-adder stages, each of which
handles one bit, to add two n-bit binary words

X3 Y3 X2 Y2 X1 Y1 Xo Yo

P P P P

X Y X Y X Y X Y

C3 C2 C1
¢, =—— COUT CIN COUT CIN COUT CIN COUT CIN f— Co

S S S S
! ! ! !
S3 S2 S1 So

@ ¢ is normally set to 0

Figure 15: A 4-bit ripple adder.

40 / 70

Adders, Subtractors, and ALUs: Ripple Adders

@ A ripple adder is slow

o In worst case, a carry must propagate from least significant full adder to
most significant one

o E.g., adding 11...11 and 00...01

o Total worst-case delay

tapp = txycout + (N — 2) - tcincout + tcins

o txycour: delay from X or Y to COUT in least significant stage
o tcincour: delay from CIN to COUT in middle stages
o tcins: delay from CIN to S in most significant stage

41/ 70

Adders, Subtractors, and ALUs: Subtractors

@ Binary subtraction is performed similar to binary addition, but using
borrows (bj, and b,,t) between steps, and producing a difference bit d
@ When subtracting y from x
x>y + bipp — boyt =0
x<y+bj, — boyr =1
d=x—y— bjy+2bout

Table 10: Binary subtraction table.

bin | x | y | bout | d
0|00 0 0
0 |01 1 1
0|1]0 0 1
0|11 0 0
1100 1 1
1 0|1 1 0
1 /10 0 0
1 |]1]1 1 1

42 /70

Adders, Subtractors, and ALUs: Subtractors

o Logic equations for a full subtractor

D=Xa&Ya®BIN
BOUT =X"-Y +X"-BIN+Y - BIN

o Manipulating logic equations above

BOUT =X"-Y +X'-BIN+Y - BIN
BOUT' = (X +Y')- (X + BIN') - (Y' + BIN')
=X-Y'+X-BIN + Y BIN
D=X®&Y®BIN

=XaoY @ BIN

o Comparing with equations for a full adder, we can build a full
subtractor from a full adder

o Any n-bit adder circuit can be made to function as a subtractor by
complementing subtrahend and treating carry-in and carry-out signals as
borrows with opposite active level

43 /70

Adders, Subtractors,

and ALUs: Subtractors

(@)

(©)

L4

X Y X Y
5 74x999 5 74x999 5
-~—— COUT CIN BOUT BIN [—— -~——0| BOUT BIN[O=—
S D D
B l E
@ Xp1 Yo Xp2 Yn-2 X0 Yo
1 3 13
74x04 74x04 74x04
2 4 12
1 2 1 2 1 2
X Y X Y X Y
74
s 74x999 3 by s 74x999 3 b_ln, bl s X999 5 bl
b_l, « —OBOUT BIN BOUT BIN|O coe QO BOUT BIN[O=——1
D D D
B R B
dpa dpa dO

Figure 16: Subtractor design using adders: (a) full adder; (b) full subtractor; (c)
interpreting 74x999 as a full subtractor; (d) ripple subtractor.

44 / 70

Adders, Subtractors, and ALUs: Carry-Lookahead Adders

o A faster adder than ripple can be built by obtaining each sum output
S = x; B y; @ ¢; with just two levels of logic
e This can be accomplished by expanding ¢; in terms of xp — x;_1,
Yo —Yi—1, and ¢
o More complexity is introduced by expanding XORs
o We can keep XORs and design ¢; logic using ideas of carry lookahead

Xj hSi \
Yi G Sj

Xj-1
[)
[)
Xg — Carry
v Lookahead
-1 Logic
[)
[)
Yo
Co —

Figure 17: Structure of one stage of a carry-lookahead adder.)
45 /70

Adders, Subtractors, and ALUs: Carry-Lookahead Adders

o Adder stage i is said to generate a carry if it produces a ¢i11 =1
independent of inputs on xg — x;_1, Yo — ¥i—1, and ¢y
o This happens when both of addend bits of that stage are 1
8i = Xi"Yi

o Adder stage i is said to propagate carries if it produces a ¢iy1 =1 in
presence of an input combination of xp — x;_1, yo — yi—1, and ¢ that
causesa ¢ =1

e This happens when at least one of addend bits of that stage is 1
pi = Xi + i
o Carry output of a stage can be written as

Cit1 =&+ pi-Ci

46 / 70

Adders, Subtractors, and ALUs: Carry-Lookahead Adders

o To eliminate carry ripple, we recursively expand c; term for each stage
and multiply out to obtain a two-level AND-OR expression

1 =80+ po-

G=8g1+p1
=g+ p1
=g+ p1

=g +p2-
=& tp2-
81+ p2-p1-8+PpP2-P1-Po-Co

=8+ p

G =8+1p3-
(@2+p2-g+p2-pL-8+P2-p1L-po-)
&+t p3-p2-81+pP3-pP2-pP1-8+P3-pP2:-P1L-PO"Co

=83+ p3
=83+ p3

o
o

- (g0 + po -)

“80+ P1-po-Co

(€]
(g1+p1-8+p1-po-)

a3

Hence, " Carry Lookahead Logic" in Fig. 17 has three levels of delay;
one for generate and propagate signals, and two for SOPs shown

47 / 70

Adders, Subtractors, and ALUs: MSI Adders

@ 74x283 uses carry-lookahead technique

74283
—co

—la0 sop—
—°lro

2l s1P—
—lp1

2la os2E
Llp2

-{E} A3 s3
8

Figure 18: Traditional logic symbol for the 74x283 4-bit binary adder.

48 / 70

Adders, Subtractors, and ALUs: MSI Adders

o 74x283

o It produces g/ and p!, since inverting gates are faster
e Manipulating half-sum equation

hsi = x; @ yi
:Xi'yi/+Xi/'yi
=X Y+ XXXyt iy
=(xi+yi)- (5 +yi)
= (i +yi)- (6 yi)
=pi-g

Thus, an AND gate with an inverted input is used instead of an XOR
gate to create each half-sum bit

49 / 70

Adders, Subtractors, and ALUs: MSI Adders

o 74x283

o It creates carry signals using an INVERT-OR-AND structure (=
AND-OR-INVERT), which has same delay as a single inverting gate

Cr1=g +pi-ci=pi-g&+pi-ci=pi(g+c)

(pi is always 1 when g; is 1)

€1 = Ppo

G =p1-
_—
—pr -

G =p2-
— -
— -

C4 = Pp3-
— ps-

(g3 +p2) (g3 +&+p1) (g83+8& +8g+ po)

=p3

(g3+&,+e+8 +)

50 / 70

Adders, Subtractors, and ALUs: MSI Adders

Figure 19: Logic diagram for the 74x283 4-bit binary adder.

51 /70

Adders, Subtractors, and ALUs: MSI Adders

o Propagation delay from CO input to C4 output of '283 is very short,
same as two inverting gates
o As a result, fast group-ripple adders with more than four bits can be
made by cascading carry outputs and inputs of '283s
o Total propagation delay from CO to C16 in Fig. 20 is same as that of
eight inverting gates

52 / 70

MSI Adders

X[15:0]
Y[15:0]
74x283 74x283
co co co

PO — A sofi S8
BO BO
PUR Al st %
B1 B1
A2 52 13 s2 A2 52 13 S10
B2 B2
A3 s3 10 S3 A3 s3 10 S11
B3 B3

c4 c4

74x283

74x283

co co
PRI a— A so 32
B0 BO
Al osip PR
B1 BL
PYRY A2 sz S
B2 B2
A3 s3| ¥ A3 s3|X0 5B
B3 e c8 1B P c16
U2 U4
S[15:0]

Figure 20: A 16-bit group-ripple adder.

53 / 70

Adders, Subtractors, and ALUs: MSI ALUs

@ An arithmetic and logic unit (ALU) is a combinational circuit that can
perform any of a number of different arithmetic and logical operations
on a pair of b-bit operands

e The operation to be performed is specified by a set of function-select
inputs

54 / 70

Adders, Subtractors, and ALUs: MSI ALUs

74x181

Table 11: Functions performed by the 74x181 —ﬁzg oo
4-bit ALU. i i
N R
Inputs Function 77 iloN Folod
S3|S2|S1|SO0 M =0 (arithmetic) M =1 (logic) —o[e0 “
olo[o]o0 F = A minus 1 plus CIN F=A -9 :i F1i0—
0|0]|0]1 F=A- B minus 1 plus CIN F=A+B EgAz Foloil
o|l0|1]0 F=A-B minus 1 plus CIN F=A+B 2982
0|0 |1]1 F = 1111 plus CIN F=1111 %o A rfo
o|1]0]0 F = Aplus (A+ B') plus CIN F=A.B —OB rle
01|01 F=A-Bplus(A+B')plus CIN | F =B’
o110 F = A minus B minus 1 plus CIN | F=A& B’ . .
0|1]1|1 F=A+B plusCIN F=A+8B Figure 21: Logic symbol for
1/0[0]O0 F = A plus (A+ B) plus CIN F=A"-B _hi
10|01 F = A plus B plus CIN F=A®B the 74x181 4-bit ALU.
1/0|1]|0 F=A-Bplus(A+B)plusCIN|F=8
1011 F = A+ B plus CIN F=A+B
1|1(0]0 F = A plus A plus CIN F = 0000
1 1 (0|1 F = A- B plus A plus CIN F=A.-B
11110 F=A-B plus Aplus CIN F=A-B
10111 F = Aplus CIN F=A

55 / 70

Adders, Subtractors, and ALUs: MSI ALUs

@) 74x381 () 74382
°1so °1so
6 S1 13 6 S1
I's2 S5 Ts2 owr|E
“lein P 1N cout |22
1 A0 Fo |2 1 a0 Fo |2
“IBo “1Bo
Har Rk Har R
g1 g1
19 A2 E2 11 19 A2 F2 11
18 B2 18 B2
17 A3 E3 12 17 A3 F3 12
16 B3 16 B3

Figure 22: Logic symbols for 4-bit ALUs: (a) 74x381; (b) 74x382.

56 / 70

Adders, Subtractors, and ALUs: MSI ALUs

Table 12: Functions performed by the 74x381 and 74x382 4-bit ALUs.

Inputs
S2 | S1|S0 Function
0|0 O F = 0000
0|01 F = B minus A minus 1 plus CIN
010 F = A minus B minus 1 plus CIN
0|11 F = A plus B plus CIN
1100 F=A&B
1101 F=A+8B
1110 F=A-B
1111 F=1111

57 / 70

Adders, Subtractors, and ALUs: MSI ALUs

@ '381 provides group-carry-lookahead outputs while '382 provides ripple
carry and overflow outputs

58 / 70

Adders, Subtractors, and ALUs: Group-Carry Lookahead

@ '181 and '381 provide group-carry-lookahead outputs that allow
multiple ALUs to be cascaded without rippling carries between 4-bit
groups

o Like 74x283, ALUs use carry lookahead to produce carries internally
o However, they also provide G_L and P_L outputs that are
carry-lookahead signals for entire 4-bit group

o G_L output is asserted if ALU produces a carry-out whether or not
there is a carry-in

GL=(g3+p3-g2+p3-p2-8+p3-p2-p1-8)
o P_L output is asserted if ALU produces a carry-out if there is a carry-in

P.L=(p3-p2-p1-po)

59 / 70

Adders, Subtractors, and ALUs: Group-Carry Lookahead

@ When ALUs are cascaded, group-carry-lookahead outputs may be
combined in just two levels of logic to produce carry input to each

ALU
o A lookahead carry circuit performs this operation
74x182

B[
—20lco 12
DS P
o1 e
—2olp1
oe2 9
e B
—0le3 G o=
—‘olp3 Plo—

Figure 23: Logic symbol for the 74x182 lookahead carry circuit.

60 / 70

Adders, Subtractors, and ALUs: Group-Carry Lookahead

o
o
oLt

o
sz
sl
0
o || o3 o || 3
a o
i A T ER I
Colew epmot] an
o | 0|
I PR
: =
i B
a1 9 F1 o 9 £
-
s o
2ol e "
(R A
P P P
STu w e e o
2 Ju 12 Jw
oo e
voces e
o | o5 g
a a
oL : s
= sz G G“ Pl’L = —s2 G G“ Ps’[
“lem PGL = e I’G11 =
IR) LR e S M
PRI 4 P o
EE— e P o
o o o la
e (M Frre (M
PR P P P

Figure 24: A 16-bit ALU using group-carry lookahead.

61/ 70

Adders, Subtractors, and ALUs: Group-Carry Lookahead

@ '182's carry equations

o '182 realizes each of these equations with one level of delay—an
INVERT-OR-AND gate

Civ1 =g +pi-ci = (& +pi) (& +a)
C1=(G0+ PO)- (GO0 + C0)
C2=(G1l+ P1)-(G1+ GO+ PO)- (Gl + GO+ CO)

C3=(G2+ P2)-(G2+ G1+ P1)-(G2+ G1+ GO+ PO0)
(G2 + G1+ GO+ CO)

62 / 70

Adders, Subtractors, and ALUs: Group-Carry Lookahead

@ When more than four ALUs are cascaded, they may be partitioned into
"supergroups,” each with its own '182
o E.g., a 64-bit adder would have four supergroups, each containing four
ALUs and a '182
o G_L and P_L outputs of each '182 can be combined in a next-level '182,
since they indicate whether the supergroup generates or propagates
carries

GL=((G3+P3)-(G3+ G2+ P2)-(G3+ G2+ G1+ P1)
(G3+ G2+ G1+ GO))
PL=(P0-P1-P2.P3)

63/ 70

Adders, Subtractors, and ALUs: Adders in Verilog

o Verilog has built-in addition (+) and subtraction (—) operators for bit
vectors

o Bit vectors are considered to be unsigned or two's-complement signed
numbers

o Actual addition or subtraction operation is exactly the same for either
interpretation of bit vectors

o Since exactly the same logic circuit is synthesized for either
interpretation, Verilog compiler does not need to know how we are
interpreting bit vectors

e Only handling of carry, borrow, and overflow conditions differs by
interpretation, and that is done separately from addition or subtraction
itself

64 / 70

Adders, Subtractors, and ALUs: Adders in Verilog

Table 13: Verilog program with addition of both signed and unsigned numbers.

module Vradders(A, B, C, D, S, T, OVFL, COUT);
input [7:0] A, B, C, D;
output [7:0] 8, T;
output OVFL, COUT;

// 8 and OVFL -- signed interpretation
assign S = A + B;
assign OVFL = (A[7]1==B[7]) && (S[7]1!=A[71);
// T and COUT -- unsigned interpretation
assign {COUT, T} = C + D;

endmodule

65 / 70

Adders, Subtractors, and ALUs: Adders in Verilog

SEL SEL —
(a) (b)
A :>\ A=
S adder 2-input
B—> 1 cC—> e
/ —>S adder —>S
¢ :>\ B—)|
S adder 2-input
mux
D ::)/ D—»

Figure 25: Two ways to synthesize a selectable addition: (a) two adders and a
selectable sum; (b) one adder with selectable inputs.

66 / 70

Adders, Subtractors, and ALUs: Adders in Verilog

o Addition and subtraction are expensive in terms of number of gates
required
o Most Verilog compilers attempt to reuse adder blocks whenever possible
@ Tab. 14 is a Verilog module that includes two different additions
o Fig. 25(a) shows a circuit that might be synthesized
o However, many compilers are smart enough to use approach (b)
e An n-bit 2-input multiplexer is smaller than an n-bit adder

Table 14: Verilog module that allows adder sharing.

module Vraddersh(SEL, A, B, C, D, 8);
input SEL;
input [7:0] A, B, C, D;
output [7:0] S;
reg [7:0] S;

always @ (SEL, A, B, C, D)
if (SEL) 8 = A + B;
else S =C + D;

endmodule

67 / 70

Adders, Subtractors, and ALUs: Adders in Verilog

Table 15: Alternate version of Tab. 14, using a continuous-assignment
statement.

module Vraddersc(SEL, A, B, C, D, 8);
input SEL;
input [7:0] A, B, C, D;
output [7:0] S;

assign S = (SEL) 7 A + B : C + D;
endmodule

o A typical compiler should synthesize the same circuit for either module
of Tab. 14 or 15

68 / 70

Adders in Verilog

Table 16: An 8-bit 74x381-like ALU.

module Vr74x381(S, A, B, CIN, F, G_L, P_L);
input [2:0] S;
input [7:0] A, B;
input CIN;
output [7:0] F;
output G_L, P_L;
reg [7:0] F;
reg G_L, P_L, GG, GP;
reg [7:0] G, P;
integer i;

always @ (S or A or B or CIN or G or P or GG or GP) begin
for (1 = 0; i <=7; i =1+ 1) begin
G[i] = A[i] & B[i];
P[i] = A[i] | B[i];
end
G = G[0]; GP = P[0];
for (i =1; i <=7; i =1+ 1) begin
GG = [i] | (GG & P[il);
GP = P[i] & GP;
end
G_L = 7GG;
case (8)
3'do: F
3'dl: F
3'd2: F
3'd3: F
3'd4: F
F
F
F
t

o
2

-1 + CIN;
- 1 + CIN;
+ CIN;

y o+

3'd5:
3'd6:
3'd7:
default:
endcase
end
endmodule

H

[
©EE R W
o —

oy
"
@

111113
0;

- = O W e

o~

74x381

o

S0
S1 13
S2 14
15 CIN PO—
A FO—

BO

Al FL
BL

19 A2 F2 11
18 B2

17 A3 F3 12
16

B3

o

\.
@

w

IS

i
©

N

Inputs

S2 | S1
0

%]
=1

Function

-

= 0000

F = B minus A minus 1 plus CIN
F = A minus B minus 1 plus CIN
F = A plus B plus CIN
F=A®B

F=A+B

F=A-B

F=1111

= E-E-R-N-}
H R OO R E O
HOFRORORO

69 / 70

References

¥ JoHN F. WAKERLY, Digital Design: Principles and Practices (4th
Edition), PRENTICE HALL, 2005.

70 / 70

