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Clocked Synchronous State-Machine Analysis 
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State-Machine Structure 
• General structure of a clocked synchronous state machine (Mealy machine): 

 

 

 

 

 

 

 

 

• State memory is a set of n flip-flops that store current state of machine, and has 2n 

distinct states. 

• Flip-flops are all connected to a common clock signal that causes flip-flops to 

change state at each tick of clock. 
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State-Machine Structure 
• For positive-edge-triggered D and J-K flip-flops considered in this section, a tick is 

rising edge of clock signal. 

• In previous figure, both F and G are combinational logic circuits. 

 Next state = F (current state, input) 

 Output = G (current state, input) 
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Output Logic 
• A sequential circuit whose output depends on both state and input as shown in 

previous figure is called a Mealy machine. 

• In some sequential circuits, output depends on state alone: 

 Output = G (current state) 

 such a circuit is called a Moore machine: 
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Characteristic Equations 
• Functional behavior of a latch or flip-flop can be described formally by a 

characteristic equation that specifies flip-flop’s next state (Q*) as a function of its 

current state (Q) and inputs. 
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Device Type Characteristic Equation 

S-R latch Q* = S + R’.Q 

D latch Q* = D  

Edge-triggered D flip-flop Q* = D 

D flip-flop with enable Q* = EN.D + EN’.Q 

Master/slave S-R flip-flop Q* = S + R’.Q 

Master/slave J-K flip-flop Q* = J.Q’ + K’.Q 

Edge-triggered J-K flip-flop Q* = J.Q’ + K’.Q 

T flip-flop Q* = Q’ 

T flip-flop with enable Q* = EN.Q’ + EN’.Q 



Analysis of State Machines with D Flip-Flops 
• Formal definition of a state machine: 

 Next state = F (current state, input) 

 Output = G (current state, input) 

• Recalling that “state” embodies all we need to know about past history of circuit, 

first equation tells us that what we next need to know can be determined from 

what we currently know and current input. 

• Second equation tells us that current output can be determined from the same 

information. 

• Goal of sequential circuit analysis is to determine next-state and output functions 

so that behavior of a circuit can be predicted.  
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Analysis of State Machines with D Flip-Flops 
• Analysis of a clocked synchronous state machine has three steps: 

 1) Determine next-state and output functions F and G, 

 2) Use F and G to construct a state/output table that completely specifies next 

state and output of circuit for every possible combination of current state and 

input, 

 3) (Optional) Draw a state diagram that presents information from previous step in 

graphical form. 

 

8 



Analysis of State Machines with D Flip-Flops 
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Analysis of State Machines with D Flip-Flops 
• To determine next-state function F, we must first consider behavior of state 

memory. At rising edge of clock signal, each D flip-flop samples its D input and 

transfers this value to its Q output; characteristic equation of a D flip-flop is Q*=D. 

Therefore, to determine Q*, we must first determine current value of D. 

• In previous figure, there are two D flip-flops with signal names on their outputs Q0 

and Q1. These two outputs are state variables; their value is current state of 

machine. 

• Signals on D inputs, D0 and D1, provide excitation for D flip-flops at each clock tick. 

• Logic equations that express excitation signals as functions of current state and 

input are called excitation equations and can be derived from circuit diagram: 

 D0 = Q0.EN’ + Q0’.EN 

 D1 = Q1.EN’ + Q1’.Q0.EN + Q1.Q0’.EN 
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Analysis of State Machines with D Flip-Flops 
• Using characteristic equation of D flip-flops, Q* = D, we can describe next-state 

function of example machine with equations for next value of state variables: 

 Q0* = D0 

 Q1* = D1  

• Substituting excitation equations for D0 and D1, we can write 

 Q0* = Q0.EN’ + Q0’.EN 

 Q1* = Q1.EN’ + Q1’.Q0.EN + Q1.Q0’.EN 

 These equations, which express next value of state variables as a function of 

current state and input, are called transition equations. 

• For each combination of current state and input value, transition equations predict 

next state. Each state is described by two bits, current values of Q0 and Q1:        

(Q1 Q0) = 00, 01, 10, or 11. For each state, our example machine has just two 

possible input values, EN = 0 or EN = 1, so there are a total of 8 state/input 

combinations. 
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Analysis of State Machines with D Flip-Flops 
• In general, a machine with s state bits and i inputs has 2s+i state/input 

combinations.  

• Transition (a), state (b), and state/output (c) tables for our example machine: 

 

 

 

 

 

             

            (a)               (b)               (c)  

• Transition table (a) is created by evaluating transition equations for every possible 

state/input combination. 

• Function of our example machine is apparent from its transition table – it is a 2-bit 

binary counter with an enable input EN. 12 

 
Q1Q0 

EN 

0 1 

00 00 01 

01 01 10 

10 10 11 

11 11 00 

Q1*Q0* 

 
S 

EN 

0 1 

A A B 

B B C 

C C D 

D D A 

S* 

 
S 

EN 

0 1 

A A, 0 B, 0 

B B, 0 C, 0 

C C, 0 D, 0 

D D, 0 A, 1 

S*, MAX 



Analysis of State Machines with D Flip-Flops 
• We can assign alphanumeric state names to each state. Substituting state names 

for combinations of Q1 and Q0 (and Q1* and Q0*) in previous table (a) produces 

state table in (b). 

• Here “S” denotes current state, and “S*” denotes next state of machine.  

• In complex machines we can use state names that have meaning. So, a state table 

is easier to understand but contains less information than a transition table. 

• In our example (a Mealy machine), there is a single output equation: 

 MAX = Q1.Q0.EN 

• Output behavior can be combined with next-state information to produce a 

state/output table as shown in previous table (c). 
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Analysis of State Machines with D Flip-Flops 
• State/output tables for Moore machines are slightly simpler. For example, in 

circuit of example machine suppose we removed EN signal from AND gate that 

produces MAX output, producing a Moore-type output MAXS. 

• MAXS is a function of state only, and state/output table can list MAXS in a single 

column, independent of input values: 
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S 

EN  
MAXS 0 1 

A A B 0 

B B C 0 

C C D 0 

D D A 1 

S* 



Analysis of State Machines with D Flip-Flops 
• A state diagram presents information from state/output table in a graphical format. 

It has one circle (or node) for each state, and an arrow (or directed arc) for each 

transition. 

• State diagram for our example state machine: 
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Analysis of State Machines with D Flip-Flops 
• In state diagram for a Moore machine, output values can be shown inside each 

state circle, since they are functions of state only. 
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Analysis of State Machines with D Flip-Flops 
• Using transition, state, and output tables, we can construct a timing diagram that 

shows behavior of a state machine for any desired starting state and input 

sequence. For our example machine: 

 

 

 

 

 

 

 

 

• Since MAX is a Mealy-type output, its value is affected by EN at all times. Value of 

a Moore-type output MAXS depends only on state. Also, combinational-logic 

delay of output circuits is reflected in slightly later changes in MAX and MAXS. 
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Analysis of State Machines with D Flip-Flops 
• In summary, detailed steps for analyzing a clocked synchronous state machine are 

as follows: 

 1) Determine excitation equations for flip-flop control inputs, 

 2) Substitute excitation equations into the flip-flop characteristic equations to 

obtain transition equations, 

 3) Use transition equations to construct a transition table, 

 4) Determine output equations, 

 5) Add output values to transition table for each state (Moore) or state/input 

combination (Mealy) to create a transition/output table, 

 6) Name states and substitute state names for state-variable combinations in 

transition/output table to obtain a state/output table, 

 7) (Optional) Draw a state diagram corresponding to state/output table. 
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Analysis of State Machines with D Flip-Flops 
• Analyze following clocked synchronous state machine: 
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Analysis of State Machines with D Flip-Flops 
• Excitation equations: 

 D0 = Q1’.X + Q0.X’ + Q2 

 D1 = Q2’.Q0.X + Q1.X’ + Q2.Q1 

 D2 = Q2.Q0’ + Q0’.X’.Y 

• Substituting into characteristic equation for D flip-flops, we obtain transition 

equations: 

 Q0* = Q1’.X + Q0.X’ + Q2 

 Q1* = Q2’.Q0.X + Q1.X’ + Q2.Q1 

 Q2* = Q2.Q0’ + Q0’.X’.Y 

• A transition table based on these equations is shown in following table (a). 

• Two output equations: 

 Z1 = Q2 + Q1’ + Q0’ 

 Z2 = Q2.Q1 + Q2.Q0’ 

• Resulting output values are shown in last column of (a). 20 



Analysis of State Machines with D Flip-Flops 
• Transition/output and state/output tables: 

 

 

 

 

 

 

 

 

 

 

                                       (a)                                                                            (b) 

• Assigning state names A-H, we obtain state/output table shown in (b). 
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Q2Q1Q0 

XY  
Z1Z2 00 01 10 11 

000 000 100 001 001 10 

001 001 001 011 011 10 

010 010 110 000 000 10 

011 011 011 010 010 00 

100 101 101 101 101 11 

101 001 001 001 001 10 

110 111 111 111 111 11 

111 011 011 011 011 11 

Q2*Q1*Q0* 

 
S 

XY  
Z1Z2 00 01 10 11 

A A E B B 10 

B B B D D 10 

C C G A A 10 

D D D C C 00 

E F F F F 11 

F B B B B 10 

G H H H H 11 

H D D D D 11 

S* 



Analysis of State Machines with D Flip-Flops 
• A state diagram for example machine: 

 

 

 

 

 

 

 

 

 

 

• Since our example is a Moore machine, output values are written with each state. 
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Analysis of State Machines with D Flip-Flops 
• In previous diagram, each arc is labeled with a transition expression; a transition is 

taken for input combinations for which transition expression is 1. Transitions 

labeled “1” are always taken. 

• Transition expressions on arcs leaving a particular state must be mutually 

exclusive and all inclusive, as explained below: 

 a) No two transition expressions can equal 1 for same input combination, since a 

machine can’t have two next states for one input combination. 

 b) For every possible input combination, some transition expression must equal 1, 

so that all next states are defined. 

• Starting with state table, a transition expression for a particular current state and 

next state can be written as a sum of minterms for input combinations that cause 

that transition. If desired, the expression can then be minimized to give 

information in a more compact form. 
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Analysis of State Machines with J-K Flip-Flops 
• Clocked synchronous state machines built from J-K flip-flops can also be analyzed 

by the basic procedure in preceding subsection.  

• Only difference is that there are two excitation equations for each flip-flop – one 

for J and other for K. To obtain transition equations, both of these must be 

substituted into J-K’s characteristic equation, Q* = J.Q’ + K’.Q. 
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Analysis of State Machines with J-K Flip-Flops 
• An example clocked synchronous state machine using J-K flip-flops: 
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Analysis of State Machines with J-K Flip-Flops 
• Excitation equations: 

 J0 = X.Y’ 

 K0 = X.Y’ + Y.Q1 

 J1 = X.Q0 + Y 

 K1 = Y.Q0’ + X.Y’.Q0 

• Substituting into characteristic equation for J-K flip-flops, we obtain transition 

equations: 

 Q0* = J0.Q0’ + K0’.Q0 

         = X.Y’.Q0’ + (X.Y’ + Y.Q1)’.Q0 

         = X.Y’.Q0’ + X’.Y’.Q0 + X’.Q1’.Q0 + Y.Q1’.Q0  

 Q1* = J1.Q1’ + K1’.Q1 

         = (X.Q0 + Y).Q1’ + (Y.Q0’ + X.Y’.Q0)’.Q1 

         = X.Q1’.Q0 + Y.Q1’ + X’.Y’.Q1 + Y’.Q1.Q0’ + X’.Q1.Q0 + Y.Q1.Q0 

• A transition table based on these equations is shown in next table (a). 26 



Analysis of State Machines with J-K Flip-Flops 
• Transition/output and state/output tables: 

 

 

 

 

 

 

 

                                       (a)                                                                        (b) 

• Output equation: 

 Z = X.Q1.Q0 + Y.Q1’.Q0’ 

• Assigning state names A – D, we obtain state/output table shown in (b). 
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Q1Q0 

XY 

00 01 10 11 

00 00, 0 10, 1 01, 0 10, 1 

01 01, 0 11, 0 10, 0 11, 0 

10 10, 0 00, 0 11, 0 00, 0 

11 11, 0 10, 0 00, 1 10, 1 

Q1*Q0*, Z 

 
S 

XY 

00 01 10 11 

A A, 0 C, 1 B, 0 C, 1 

B B, 0 D, 0 C, 0 D, 0 

C C, 0 A, 0 D, 0 A, 0 

D D, 0 C, 0 A, 1 C, 1 

S*, Z 



Analysis of State Machines with J-K Flip-Flops 
• A corresponding state diagram that uses transition expressions is shown here: 
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Clocked Synchronous State-Machine Design 
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Introduction 
• Steps for designing a clocked synchronous state machine, starting from a word 

description or specification, are reverse of analysis steps: 

 1) Construct a state/output table corresponding to word description or 

specification, using mnemonic names for states (it is also possible to start with a 

state diagram), 

 2) (Optional) Minimize number of states in state/output table, 

 3) Choose a set of state variables and assign state-variable combinations to named 

states, 

 4) Substitute state-variable combinations into state/output table to create a 

transition/output table that shows desired next state-variable combination and 

output for each state/input combination, 

 5) Choose a flip-flop type (e.g., D or J-K) for state memory, 

 6) Construct an excitation table that shows excitation values required to obtain 

desired next state for each state/input combination, 
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Introduction 
 7) Derive excitation equations from excitation table, 

 8) Derive output equations from transition/output table, 

 9) Draw a logic diagram that shows state-variable storage elements and realizes 

required excitation and output equations. 
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State-Table Design Example  
• Design a clocked synchronous state machine with two inputs, A and B, and a single 

output Z that is 1 if: 

 - A had the same value at each of two previous clock ticks, or 

 - B has been 1 since the last time that the first condition was true. 

 Otherwise, output should be 0. 

• If meaning of a specification is ambiguous, as an additional “hint” or requirement, 

state-table design problems often include timing diagrams that show state 

machine’s expected behavior for one or more sequences of inputs. 

• Following figure is such a timing diagram for our example state machine: 
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State-Table Design Example 
• First step in state-table design is to construct a template. 

• From word description, we know that our example is a Moore machine (output 

depends on what happened in previous clocks). Thus, we provide one next-state 

column for each possible input combination and a single column for output values: 

 

 

 

 

• We have written order of input combinations in Karnaugh-map order to simplify 

derivation of excitation equations later. 

• In a Mealy machine we would omit output column and write output values along 

with next-state values under each input combination. 

• Leftmost column is a reminder of meaning of each state or the “history” associated 

with it. 
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State-Table Design Example  
• We assume that when power is first applied to system, machine enters an initial 

state. We can also fill in value of Z for INIT state; it should be 0 because there were 

no inputs beforehand. 

• Next, we must fill in next-state entries for INIT row. Z output can’t be 1 until we 

have seen at least two inputs on A, so we will provide two states, A0 and A1, that 

“remember” value of A on previous clock tick: 

 

 

 

 

• In both of these states, Z is 0, since we have not satisfied conditions for a 1 output 

yet. 

• A0 means “Got A=0 on previous tick, A≠0 on tick before that, and B≠1 at some time 

since the previous pair of equal A inputs”. State A1 is defined similarly. 
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State-Table Design Example  
• In state A0 (A was 0 at previous clock tick), if A is 0 again, we go to a new state OK 

with Z=1: 

 

 

 

 

• If A is 1, we don’t have two equal inputs in a row, so we go to state A1 to remember 

that we just got a 1. 

• Likewise in state A1, we go to OK if we get a second 1 input in a row, or to A0 if we 

get a 0: 
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State-Table Design Example  
• Once we get into OK state, machine description tells us we can stay there as long as 

B=1, irrespective of A input: 

 

 

 

 

• If B=0, we have to look for two 1s or two 0s in a row on A again. However, we have 

a problem in this case. Current A input may or may not be the second equal input 

in a row. We defined OK state too broadly. Problem is solved by splitting OK into 

two states, OK0 and OK1, that “remember” previous A input: 
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State-Table Design Example  
• All of next states for OK0 and OK1 can be selected from existing states: 

 

 

 

 

 

 

 

 

 

• We have achieved “closure” of state table, which now describes a finite-state 

machine. 
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State Minimization 
• We designed a “minimal” state table for our original word description in previous 

section, in sense that it contains fewest possible states.   

• However, following figure shows other state tables, with more states, that also do 

the job: 

 

 

 

 

 

 

 

• A pair of equivalent states can be replaced by a single state. 
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State Minimization 
• Two states S1 and S2 are equivalent if two conditions are true: 

 1) S1 and S2 must produce same values at state-machine output(s); in a Mealy 

machine, this must be true for all input combinations, 

 2) For each input combination, S1 and S2 must have either same next state or 

equivalent next states. 

• In previous figure (a), states OK00 and OKA0 are equivalent because they produce 

same output and their next-state entries are identical. Since states are equivalent, 

state OK00 may be eliminated and its occurrences in table replaced by OKA0, or 

vice versa. 

• Likewise, states OK11 and OKA1 are equivalent. 
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State Minimization 
• In following figure, states OK00, A110, and AE10 all produce same output and have 

almost identical next-state entries, so they might be equivalent. They are 

equivalent only if A001 and AE01 are equivalent. 

• Similarly, OK11, A001, and AE01 are equivalent only if A110 and AE10 are 

equivalent. 

• In other words, states in first set are equivalent if states in second set are, and vice 

versa. So, they are equivalent. 
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State Assignment 
• Next step in design process is to determine how many binary variables are 

required to represent states in state table, and to assign a specific combination to 

each named state. 

• Total number of states in a machine with n flip-flops is 2n, so the number of flip-

flops needed to code s states is              . 

• State/output table of our example machine: 

41 
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S 

AB  
Z 00 01 11 10 

INIT A0 A0 A1 A1 0 

A0 OK0 OK0 A1 A1 0 

A1 A0 A0 OK1 OK1 0 

OK0 OK0 OK0 OK1 A1 1 

OK1 A0 OK0 OK1 OK1 1 

S* 



State Assignment 
• Above table has five states, so it requires three flip-flops. There will be 8 – 5 = 3 

unused states. 

• Simplest assignment of s coded states to 2n possible states is to use first s binary 

integers in binary counting order, as shown in first assignment column of following 

table: 
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State 
name 

Assignment 

Simplest 
Q1-Q3 

Decomposed 
Q1-Q3 

One-hot 
Q1-Q5 

Almost one-hot 
Q1-Q4 

INIT 000 000 00001 0000 

A0 001 100 00010 0001 

A1 010 101 00100 0010 

OK0 011 110 01000 0100 

OK1 100 111 10000 1000 



State Assignment 
• Simplest state assignment does not always lead to simplest excitation equations, 

output equations, and resulting logic circuit. 

• State assignment often has a major effect on circuit cost, and may interact with 

other factors, such as choice of storage elements (e.g., D vs. J-K flip-flops) and 

realization approach for excitation and output logic (e.g., SOPs, POSs, or ad hoc). 

• In general, only formal way to find best assignment is to try all assignments. That 

is too much work. 

• Several practical guidelines for making reasonable state assignments: 

 - Choose an initial coded state into which machine can easily be forced at reset 

(00… 00 or 11… 11 in typical circuits). 

 - Minimize number of state variables that change on each transition. 

 - Maximize number of state variables that don’t change in a group of related states 

(i.e., a group of states in which most of transitions stay in the group). 
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State Assignment 
 - Exploit symmetries in problem specification and corresponding symmetries in 

state table. That is, suppose that one state or group of states means almost the 

same thing as another. Once an assignment has been established for the first, a 

similar assignment, differing only in one bit, should be used for the second. 

 - If there are unused states, then choose best of available state-variable 

combinations to achieve foregoing goals. That is, don’t limit choice of coded states 

to first s n-bit integers. 

 - Decompose set of state variables into individual bits or fields where each bit or 

field has a well-defined meaning with respect to input effects or output behavior of 

machine. 

 - Consider using more than minimum number of state variables to make a 

decomposed assignment possible. 
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State Assignment 
• Some of above ideas are incorporated in “decomposed” state assignment in 

previous table:  

 - Initial state is 000, which is easy to force either asynchronously (applying RESET 

signal to flip-flop CLR inputs) or synchronously (by ANDing RESET’ with all of D flip-

flop inputs). 

 - Assignment takes advantage of fact that there are only four states in addition to 

INIT, which is a fairly special state that is never re-entered once the machine gets 

going. Therefore, Q1 can be used to indicate whether or not machine is in INIT 

state, and Q2 and Q3 can be used to distinguish among four non-INIT states. 

 - Q3 gives previous value of A, and Q2 indicates that conditions for a 1 output are 

satisfied in current state. By decomposing state-bit meanings in this way, we can 

expect next-state and output logic to be simpler than in a random assignment of 

Q2,Q3 combinations.  
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State Assignment 
• One-hot assignment can be adapted to any state machine. 

• This assignment uses more than minimum number of state variables – it uses one 

bit per state. 

• A one-hot assignment is simple, and usually leads to small excitation equations, 

since only one flip-flop must be set to 1 for transitions into each state. 

• A disadvantage of a one-hot assignment, especially for machines with many states, 

is that it requires (many) more than minimum number of flip-flops. 

• One-hot encoding is ideal for a machine with s states that is required to have a set 

of 1-out-of-s coded outputs indicating its current state. The one-hot-coded flip-flop 

outputs can be used directly for this purpose, with no additional combinational 

output logic. 
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State Assignment 
• Last column of previous table is an “almost one-hot assignment” that uses “no-

hot” combination for initial state. This makes sense for two reasons: 

 - It is easy to initialize most storage devices to all-0s state, 

 - Initial state in this machine is never revisited once machine gets going.  
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State Assignment 
• Considering unused states, there are two approaches that make sense, depending 

on application requirements: 

 Minimal risk: This approach assumes that it is possible for state machine to get into 

one of unused (illegal) states, perhaps because of a hardware failure, an 

unexpected input, or a design error. Therefore, all of unused state-variable 

combinations are identified, and explicit next-state entries are made so that, for 

any input combination, unused states go to “initial” state, “idle” state, or some 

other “safe” state. 

 Minimal cost: This approach assumes that machine will never enter an unused 

state. Therefore, in transition and excitation tables, next-state entries of unused 

states can be marked as “don’t-cares”. In most cases, this simplifies excitation logic. 

However, machine’s behavior if it ever does enter an unused state may be pretty 

weird. 
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Synthesis Using D Flip-Flops 
• Coded states are substituted for named states in state table to obtain a transition 

table. Transition table shows next coded state for each combination of current 

coded state and input. 

• Following table (right) shows transition and output table that is obtained from 

example state machine (left) using decomposed assignment we had before: 
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Q1Q2Q3 

AB  
Z 00 01 11 10 

000 100 100 101 101 0 

100 110 110 101 101 0 

101 100 100 111 111 0 

110 110 110 111 101 1 

111 100 110 111 111 1 

Q1*Q2*Q3* 

 
S 

AB  
Z 00 01 11 10 

INIT A0 A0 A1 A1 0 

A0 OK0 OK0 A1 A1 0 

A1 A0 A0 OK1 OK1 0 

OK0 OK0 OK0 OK1 A1 1 

OK1 A0 OK0 OK1 OK1 1 

S* 



Synthesis Using D Flip-Flops 
• Next step is to write an excitation table that shows, for each combination of coded 

state and input, flip-flop excitation input values needed to make the machine go to 

desired next coded state. 

• Structure and content of this table depend on type of flip-flops that are used (D,    

J-K, T, etc.). 

• Each D flip-flop in a state machine has a single excitation input, D, and excitation 

table must show value required at each flip-flop’s D input for each coded-

state/input combination. Excitation table for our example problem: 
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Q1Q2Q3 

AB  
Z 00 01 11 10 

000 100 100 101 101 0 

100 110 110 101 101 0 

101 100 100 111 111 0 

110 110 110 111 101 1 

111 100 110 111 111 1 

D1D2D3 



Synthesis Using D Flip-Flops 
• Since D = Q*, excitation table is identical to transition table, except for labeling of 

its entries. We call the first table a transition/excitation table. 

• Excitation table is like a truth table for three combinational logic functions (D1, D2, 

D3) of five variables (A, B, Q1, Q2, Q3). 

• We can transfer information in excitation table to Karnaugh maps (called excitation 

maps) and find a minimal SOPs or POSs expression for each function. 

• Excitation maps for our example state machine are shown below: 
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Synthesis Using D Flip-Flops 
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Q1Q2Q3 

AB  
Z 00 01 11 10 

000 100 100 101 101 0 
100 110 110 101 101 0 
101 100 100 111 111 0 
110 110 110 111 101 1 
111 100 110 111 111 1 

D1D2D3 



Synthesis Using D Flip-Flops 
• Each function, such as D1, has five variables and therefore uses a 5-variable 

Karnaugh map. A 5-variable map is drawn as a pair of 4-variable maps.  

• In excitation table, next-state information for unused states, 001, 010, and 011, is 

not specified. Here we must make a choice between a minimal-risk and a minimal-

cost strategy for handling unused states. 

• Previous figure has taken minimal-risk approach: next state for each unused state 

and input combination is 000, the INIT state. Three rows of colored 0s in each 

Karnaugh map are result of this choice. 

• Minimal SOPs expressions for flip-flop excitation inputs: 

 D1 = Q1 + Q2’.Q3’ 

 D2 = Q1.Q3’.A’ + Q1.Q3.A + Q1.Q2.B 

 D3 = Q1.A + Q2’.Q3’.A 

• Output equation is a function of state only and can easily be developed: 

 Z = Q1.Q2.Q3’ + Q1.Q2.Q3 = Q1.Q2 
53 



Synthesis Using D Flip-Flops 
• If we choose in our example to derive minimal-cost excitation equations, we write 

“don’t-cares” in next-state entries for unused states. Colored d’s in next figure are 

result of this choice. 

• Excitation equations obtained from this map: 

 D1 = 1 

 D2 = Q1.Q3’.A’ + Q3.A + Q2.B 

 D3 = A 

• For a minimal-cost output function, value of Z is a “don’t-care” for unused states. 

Therefore: 

 Z = Q2 
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Synthesis Using D Flip-Flops 
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Q1Q2Q3 

AB  
Z 00 01 11 10 

000 100 100 101 101 0 
100 110 110 101 101 0 
101 100 100 111 111 0 
110 110 110 111 101 1 
111 100 110 111 111 1 

D1D2D3 



Synthesis Using D Flip-Flops 
• Logic diagram for minimal-cost solution: 
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Synthesis Using J-K Flip-Flops 
• Up through state-assignment step, design procedure with J-K flip-flops is basically 

the same as with D flip-flops. The only difference is that a designer might select a 

slightly different state assignment, knowing sort of behavior that can easily be 

obtained from J-K flip-flops (e.g., “toggling” by setting J and K to 1). 

• Big difference occurs in derivation of an excitation table from transition table. With 

D flip-flops, two tables are identical; using D’s characteristic equation, Q*=D, we 

simply substitute D=Q* for each entry. 

• A J-K flip-flop’s characteristic equation, Q*=J.Q’+K’.Q, cannot be rearranged to 

obtain independent equations for J and K. Instead, required values for J and K are 

expressed as functions of Q and Q* in a J-K application table: 

57 

Q Q* J K 

0 0 0 d 

0 1 1 d 

1 0 d 1 

1 1 d 0 



Synthesis Using J-K Flip-Flops 
• Each desired transition can be obtained by either of two different combinations on 

J and K inputs, so we get a “don’t-care” entry in each row of application table. 

• To obtain a J-K excitation table, designer must look at both current and desired 

next value of each state bit in transition table and substitute corresponding pair of 

J and K values from application table. 

• Following are transition and excitation tables. Excitation maps for J1, K1, J2, K2, J3, 

and K3, assuming that unused states go to state 000 (minimal-risk approach), are 

shown afterward. Colored entries in Karnaugh maps result from taking minimal-risk 

approach. 
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Synthesis Using J-K Flip-Flops 
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Q1Q2Q3 

AB  
Z 00 01 11 10 

000 100 100 101 101 0 

100 110 110 101 101 0 

101 100 100 111 111 0 

110 110 110 111 101 1 

111 100 110 111 111 1 

Q1*Q2*Q3* 

 
Q1Q2Q3 

AB  
Z 00 01 11 10 

000 1d, 0d, 0d 1d, 0d, 0d 1d, 0d, 1d 1d, 0d, 1d 0 

100 d0, 1d, 0d d0, 1d, 0d d0, 0d, 1d d0, 0d, 1d 0 

101 d0, 0d, d1 d0, 0d, d1 d0, 1d, d0 d0, 1d, d0 0 

110 d0, d0, 0d d0, d0, 0d d0, d0, 1d d0, d1, 1d 1 

111 d0, d1, d1  d0, d0, d1 d0, d0, d0 d0, d0, d0 1 

J1K1, J2K2, J3K3 



Synthesis Using J-K Flip-Flops 
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Synthesis Using J-K Flip-Flops 
• Even though “safe” next state for unused states is 000, we didn’t just put 0s in 

corresponding map cells, as we were able to do in D case. Instead, we still had to 

work with application table to determine proper combination of J and K needed to 

get Q*=0 for each unused state entry. 

• Using maps, we can derive SOPs excitation equations: 

 J1 = Q2’.Q3’    K1 = 0 

 J2 = Q1.Q3’.A’ + Q1.Q3.A  K2 = Q1’ + Q3’.A.B’ + Q3.A’.B’ 

 J3 = Q2’.A + Q1.A   K3 = Q1’ + A’ 

• Adopting minimal-cost approach, we put d’s in all of unused state entries. SOPs 

excitation equations will be: 

 J1 = 1    K1 = 0 

 J2 = Q1.Q3’.A’ + Q3.A   K2 = Q3’.A.B’ + Q3.A’.B’ 

 J3 = A     K3 = A’ 
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Synthesis Using J-K Flip-Flops 
• State encoding for J-K circuit is same as in D circuit, so output equation is same,      

Z = Q1.Q2 for minimal risk, Z = Q2 for minimal cost. 

• A logic diagram corresponding to minimal-cost equations: 
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State-Machine Design Using D Flip-Flops: Example 1 
• “1s-counting machine”: 

 Design a clocked synchronous state machine with two inputs, X and Y, and one 

output, Z. The output should be 1 if the number of 1 inputs on X and Y since reset is 

a multiple of 4, and 0 otherwise. 
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State-Machine Design Using D Flip-Flops: Example 1 
• “1s-counting machine”: 

 Design a clocked synchronous state machine with two inputs, X and Y, and one 

output, Z. The output should be 1 if the number of 1 inputs on X and Y since reset is 

a multiple of 4, and 0 otherwise. 

• State and output table: 

 

 

 

 

 

 

• Since output indicates number of inputs received modulo 4, four states are 

sufficient. S0 is initial state and total number of 1s received in Si is i modulo 4. 
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Meaning 

 
S 

XY  
Z 00 01 11 10 

Got zero 1s (modulo 4) S0 S0 S1 S2 S1 1 

Got one 1 (modulo 4) S1 S1 S2 S3 S2 0 

Got two 1s (modulo 4) S2 S2 S3 S0 S3 0 

Got three 1s (modulo 4) S3 S3 S0 S1 S0 0 

S* 



State-Machine Design Using D Flip-Flops: Example 1 
• 1s-counting machine can use two state variables to code its four states, with no 

unused states. In this case, there are 4! possible assignments of coded states to 

named states. 

• We will assign coded states to named states in Karnaugh-map order (00, 01, 11, 

10) for two reasons: 

 - It minimizes number of state variables that change for most transitions, 

potentially simplifying excitation equations; 

 - It simplifies mechanical transfer of information to excitation maps. 

• Transition/excitation 

 and output table: 
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Q1Q2 

XY  
Z 00 01 11 10 

00 00 01 11 01 1 

01 01 11 10 11 0 

11 11 10 00 10 0 

10 10 00 01 00 0 

Q1*Q2* or D1D2 



State-Machine Design Using D Flip-Flops: Example 1 
• Corresponding Karnaugh maps for D1 and D2: 

 

 

 

 

 

 

 

 

• Since there are no unused states, no choice is required between minimal-risk and 

minimal-cost approaches. 
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State-Machine Design Using D Flip-Flops: Example 1 
• Excitation equations can be read from maps, and output equation can be read 

directly from transition/excitation table: 

 D1 = Q2.X’.Y + Q1’.X.Y + Q1.X’.Y’ + Q2.X.Y’ 

 D2 = Q1’.X’.Y + Q1’.X.Y’ + Q2.X’.Y’ + Q2’.X.Y 

 Z = Q1’.Q2’ 

• A logic diagram using D flip-flops and AND-OR or NAND-NAND excitation logic can 

be drawn from these equations. 
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State-Machine Design Using D Flip-Flops: Example 2 
• A “Combination lock” state machine that activates an “unlock” output when a 

certain binary input sequence is received: 

 Design a clocked synchronous state machine with one input, X, and two outputs, 

UNLK and HINT. The UNLK output should be 1 if and only if X is 0 and the sequence 

of inputs received on X at the preceding seven clock ticks was 0110111. The HINT 

output should be 1 if and only if the current value of X is the correct one to move 

the machine closer to being in the “unlocked” state (with UNLK=1).  

 

 

68 



State-Machine Design Using D Flip-Flops: Example 2 
• This is a Mealy machine. UNLK output depends on both past history of inputs and 

X’s current value, and HINT depends on both state and current X (if current X 

produces HINT=0, then clued-in user will want to change X before clock tick). 

• State and output table for combination-lock machine: 
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Meaning 

 
S 

X 

0 1 

Got zip A B, 01 A, 00 

Got 0 B B, 00 C, 01 

Got 01 C B, 00 D, 01 

Got 011 D E, 01 A, 00 

Got 0110 E B, 00 F, 01 

Got 01101 F B, 00 G, 01 

Got 011011 G E, 00 H, 01 

Got 0110111 H B, 11 A, 00 

S*, UNLK HINT 



State-Machine Design Using D Flip-Flops: Example 2 
• Combination lock’s eight states can be coded with three state variables, leaving no 

unused states. 

• There are 8! state assignments to choose from. To keep things simple, we will use 

the simplest, and assign states in binary counting order. 

• Transition/excitation table for combination-lock machine: 
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Q1Q2Q3 

X 

0 1 

000 001, 01 000, 00 

001 001, 00 010, 01 

010 001, 00 011, 01 

011 100, 01 000, 00 

100 001, 00 101, 01 

101 001, 00 110, 01 

110 100, 00 111, 01 

111 001, 11 000, 00 

Q1*Q2*Q3*, UNLK HINT 



State-Machine Design Using D Flip-Flops: Example 2 
• Corresponding Karnaugh maps for D1, D2, and D3: 

 

 

 

 

 

 

 

 

• Excitation equations can be read from maps: 

 D1 = Q1.Q2’.X + Q1’.Q2.Q3.X’ + Q1.Q2.Q3’ 

 D2 = Q2’.Q3.X + Q2.Q3’.X 

 D3 = Q1.Q2’.Q3’ + Q1.Q3.X’ + Q2’.X’ + Q3’.Q1’.X’ + Q2.Q3’.X 
71 



State-Machine Design Using D Flip-Flops: Example 2 
• Output values are transferred from transition/excitation and output table to 

another set of maps: 

 

 

 

 

 

 

 

 

• Corresponding output equations are: 

 UNLK = Q1.Q2.Q3.X’ 

 HINT = Q1’.Q2’.Q3’.X’ + Q1.Q2’.X + Q2’.Q3.X + Q2.Q3.X’ + Q2.Q3’.X 
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State-Machine Design Using D Flip-Flops: Example 2 
• Some product terms are repeated in excitation and output equations, yielding a 

slight savings in cost of AND-OR realization. 
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Exercises 
• 1) Analyze the clocked synchronous state machine in the following figure. Write 

excitation equations, excitation/transition table, and state/output table (use state 

names A-H for Q1Q2Q3=000-111). 
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Exercises 
• 2) Analyze the clocked synchronous state machine in the following figure. Write 

excitation equations, transition equations, transition table, and state/output table 

(use state names A-D for Q1Q0=00-11). Draw a state diagram, and draw a timing 

diagram for CLK, EN, Q1, and Q0 for 10 clock ticks, assuming that the machine 

starts in state 00 and EN is continuously 1. 
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Exercises 
• 3) Using D flip-flops, design a 3-bit counter that will count in the cyclic pattern of 

even numbers: 0, 2, 4, 6. 

• 4) Using D flip-flops, design a BCD to Excess-3 code converter: a serially transmitted  

binary coded decimal (BCD word) is to be converted into an Excess-3 encoded serial 

bit stream (An Excess-3 code word is obtained by adding 3 (0011) to the value of 

the BCD word). 

• 5) Repeat Exercises 3 and 4 using J-K flip-flops.  
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