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Timing Diagrams and Specifications
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Figure 1: A detailed timing diagram showing propagation delays and setup and
hold times with respect to the clock.
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Timing Diagrams and Specifications

o InFig. 1
o First line shows system clock and its nominal timing parameters
o Second line shows that flip-flops change their outputs at some time
between rising edge of CLOCK and time ts,q afterward
o External circuits that sample these signals should not do so while they
are changing
o Third line shows t.omp required for flip-flop output changes to propagate
through combinational logic elements, such as flip-flop excitation logic
o Excitation inputs of flip-flops and other clocked devices require a setup
time of tseryp as shown in fourth line
o For proper circuit operation: tox — tfpd — tcomb > tsetup
o Timing margins indicate how much "worse than worst-case” the
individual components of a circuit can be without causing circuit to fail
o Well-designed systems have positive, nonzero timing margins
o Setup-time margin: tox — tepd(max) — tcomb(max) — tsetup
o For proper circuit operation: tgd(min) + tcomb(min) > thold
o Hold-time margin: tetpd(min) T tcomb(min) — thold
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Timing Diagrams and Specifications

@ In most circuits, there are timing differences between different flip-flop
inputs or combinational-logic signals

o E.g., one flip-flop’s Q output may be connected directly to another
flip-flop's D input

@ teomp for that path is zero, while another’'s may go through a long
combinational path before reaching a flip-flop input

o When proper synchronous design methodology is used, these relative

timings are not critical, since none of these signals affect state of circuit
until a clock edge occurs

o Merely finding longest delay path in one clock period to determine
whether circuit will work is enough

o Requires analyzing several different paths in order to find worst-case one
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Timing Diagrams and Specifications
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Figure 2: Functional timing of a synchronous circuit.

o Functional timing diagram shows only functional behavior and is not
concerned with actual delay amounts
o Lining up everything on clock edge allows timing diagram to display
more clearly which functions are performed during each clock period
o Shading or cross-hatching is used to indicate "don't-care” signal values
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SSI Latches and Flip-Flops

@ SSI latches and flip-flops have been eliminated to a large extent in
modern designs as their functions are embedded in PLDs and FPGAs

o Nevertheless, some of them still appear in many digital systems
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Figure 3: Pinouts for SSI latches and flip-flops.
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SSI Latches and Flip-Flops

o In Fig. 3
o The only latch is 74x375, which contains four D latches

o Because of pin limitations, latches are arranged in pairs with a common
C control line for each pair

e The most important device is 74x74
o It contains two independent positive-edge-triggered D flip-flops with
preset and clear inputs
o 74x109 is a positive-edge-triggered J-K flip-flop with an active-low K
input
o Another J-K flip-flop is 74x112, which has an active-low clock input
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Switch Debouncing

@ A common application of bistables and latches is switch debouncing

@ Switches connected to sources of constant logic 0 and 1 are often used
in digital systems to supply user inputs

@ A simple make or break operation done by slow-moving humans, has

several phases in high-speed digital logic
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Figure 4: Switch input without debouncing.
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Switch Debouncing

o Fig. 4 shows how a single-pole, single-throw (SPST) switch is used to
generate a single logic input
o After wiper hits bottom contact, it bounces a few times before finally
settling

o Results in several transitions on SW_L and DSW
o This behavior is called contact bounce

o Typical switches bounce for 10-20 ms, a very long time compared to
switching speeds of logic gates

o Contact bounce is a problem if a switch is used to count or signal
some event

o We must provide a circuit to debounce switch
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Switch Debouncing
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Figure 5: Switch input using a bistable for debouncing.
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Switch Debouncing

o Fig. 5 shows a switch debouncing application for bistable element
o This circuit uses a single-pole, double-throw (SPDT) switch
o Before button is pushed
o Top contact holds SW at 0 V — a valid logic 0
o When button is pushed and contact is broken
o Feedback in bistable holds SW at Vo, — still a valid logic 0
o Vo, = output low voltage (< 0.5 V for TTL)
o When wiper hits bottom contact
o Suddenly, SW_L is shorted to ground
o A short time later, forced logic 0 on SW_L propagates through two
inverters of bistable
o At this point, top inverter output is no longer shorted to ground
o Feedback in bistable maintains logic 0 on SW_L even if wiper bounces
off bottom contact
o Advantages of this circuit
o It has a low chip count
@ No pull-up resistors are required
o Both polarities of input signal (active-high and active-low) are produced

@ In situations where momentarily shorting gate outputs must be
avoided, a S — R latch and pull-up resistors are used
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Switch Debouncing
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Figure 6: Switch input using an S — R latch for debouncing.
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Multibit Registers and Latches

@ A collection of two or more D flip-flops with a common clock input is
called a register
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Figure 7: The 74x175 4-bit register: (a) logic diagram, including pin numbers

for a standard 16-pin dual in-line package; (b) traditional logic symbol.
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Multibit Registers and Latches

@ In 74x175, both CLK and CLR_L are buffered before fanning out to
four flip-flops
o A device driving one of these inputs sees only one unit load instead of
four
@ 74x174 is similar to 74x175, except that it eliminates active-low
outputs and provides two more flip-flops instead
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Figure 8: Logic symbol for the 74x174 6-bit register.
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Multibit Registers and Latches

o Many digital systems process information 8, 16, or 32 bits at a time
o |ICs that handle eight bits are very popular
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Multibit Registers and Latches
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Figure 9: The 74x374 8-bit register: (a) logic diagram, including pin numbers

for a standard 20-pin dual in-line package; (b) traditional logic symbol.
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Multibit Registers and Latches

o 74x374

o It contains eight edge-triggered D flip-flops that all sample their inputs
and change their outputs on rising edge of a common CLK input

o Each flip-flop output drives a three-state buffer that in turn drives an
active-high output

o All of three-state buffers are enabled by a common active-low OE_L
(output enable) input

o Control inputs (CLK and OE_L) are buffered so that they present only
one unit load to a device that drives them
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Multibit Registers and Latches

@ 74x373 is a variation of 74x374 which uses D latches instead of
edge-triggered flip-flops
o lIts outputs follow corresponding inputs whenever C is asserted and latch
the last input values when C is negated
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Figure 10: Logic symbol for the 74x373 8-bit latch.
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Multibit Registers and Latches

@ 74x273 is another variation of 74x374 which has non-three-state
outputs and no OE_L input
o It uses pin 1 for an asynchronous clear input CLR_L
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Figure 11: Logic symbol for the 74x273 8-bit register.
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Multibit Registers and Latches

@ 74x377 is an edge-triggered register like '374, but it does not have

three-state outputs

o Instead, pin 1 is used as an active-low clock enable input EN_L

o If EN_L is asserted (LOW) at rising edge of clock, flip-flops are loaded
from data inputs; otherwise, they retain their present values
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Figure 12: The 74x377 8-bit register with gated clock: (a) logic symbol; (b)
logical behavior of one bit.
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Registers and Latches in Verilog

Table 1: Verilog behavioral module for a D latch.

module VrDlatch( C, D, Q, QN );
input C, D;
output Q, QN;
reg Q, QN;

always @ (C or D or Q) begin
if (C==1) Q <= D; else Q <= Q;
QN <= 1Q;
end
endmodule

e Tab. 1

o We could omit "else Q <= Q" clause and get the same results

e Such code would not say what to do when C is 0, so compiler would
infer a latch

o It is better coding style to use an explicit else clause for "latch closed”
case
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Registers and Latches in Verilog

Table 2: Behavioral Verilog for a positive-edge-triggered D flip-flop.

module VrDff (CLK, D, Q);
input CLK, D;
output Q;
reg Q;
always @ (posedge CLK)
Q <= D;
endmodule

@ To describe edge-triggered behavior in a flip-flop, we need to use
Verilog's posedge or negedge keyword in sensitivity list of an always

statement
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Registers and Latches in Verilog

Table 3: Verilog module for a 16-bit register with many features.

module Vrregl6( CLK, CLKEN, OE_L, CLR_L, D, Q );
input CLK, CLKEN, OE_L, CLR_L;
input [1:16] D;
output [1:16] Q;
reg [1:16] IQ;

always @ (posedge CLK or negedge CLR_L)
if (CLR_L==0) IQ <= 16'Db0;
else if (CLKEN==1) IQ <= D;
else IQ <= IQ;

assign Q = (0OE_L==0) ? IQ : 16'bz;

endmodule

@ Registers can be modeled by defining data inputs and outputs to be

vectors, and additional functions can be included
o Tab. 3

o Models a 16-bit register with three-state outputs and clock-enable,
output-enable, and clear inputs
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Sequential PLDs: Bipolar Sequential PLDs
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Figure 13: PAL16R8 logic diagram.

24 / 63



Sequential PLDs: Bipolar Sequential PLDs

o PAL16R8

o It is representative of first generation of sequential PLDs, which used
bipolar (TTL) technology

e It has eight primary inputs, eight outputs, and common clock and
output-enable inputs, and fits in a 20-pin package

o It has edge-triggered D flip-flops between AND-OR array and its eight
outputs, 01-08

o Each flip-flop drives an output pin through a 3-state buffer

o Registered output pins contain complement of signal produced by
AND-OR array

o Possible inputs to AND-OR array are eight primary inputs (11-18) and
eight D flip-flop outputs

o Connection from D flip-flop outputs into AND-OR array makes it easy
to design shift-registers, counters, and general state machines

o D flip-flop outputs are available to AND-OR array whether or not
01-08 three-state drivers are enabled

o Internal flip-flops can go to a next state that is a function of current
state even when O1-O8 outputs are disabled
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Sequential PLDs: Bipolar Sequential PLDs

@ Many applications require combinational as well as sequential PLD
outputs
o There are a few variants of PAL16R8 without D flip-flops on some
output pins

o PAL16R6

o It has only six registered outputs
e Two pins, 101 and 108, are bidirectional

@ They serve both as inputs and as combinational outputs with separate
3-state enables

o Possible inputs to AND-OR array are eight primary inputs (11-18), six D
flip-flop outputs, and two bidirectional pins (101, 108)
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Sequential PLDs: Bipolar Sequential PLDs
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Figure 14: PAL16R6 logic diagram.

27 / 63



Sequential PLDs: Sequential GAL Devices

o GAL16V8 electrically erasable PLD

o Two "architecture-control” fuses are used to select among three basic
configurations of this device

@ 16V8C ("complex”) configuration, which was introduced in
combinational section before

@ 16V8S ("simple”) configuration, which provides a slightly different
combinational logic capability

© 16V8R ("registered”) configuration, which allows a flip-flop to be
provided on any or all of outputs
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Sequential PLDs: Sequential GAL Devices

Figure 15: 16V8R logic diagram.
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Sequential PLDs: Sequential GAL Devices

o In Fig. 15

o Circuitry inside each dotted box is called an output logic macrocell

o Each macrocell may be individually configured to bypass flip-flop to
produce a combinational output

o It is possible to program the device to have any set of registered and
combinational outputs, up to eight total
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CLK output logic macrocell

CLK output logic macrocell

(o]
m
o
m

;L

(€Y

e —— | ' (b)

Figure 16: Output logic macrocells for the 16V8R: (a) registered; (b)
combinational.
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Sequential PLDs: Sequential GAL Devices
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Figure 17: Logic diagram for the 22V10.
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Sequential PLDs: Sequential GAL Devices

(@) CLK Registered (b) CLK Combinational
sp t AR output logic macrocell sp t AR output logic macrocell

Figure 18: Output logic macrocells for the 22V10: (a) registered; (b)
combinational.

e 22V10
o It does not have "architecture control” bits like 16V8's, but it can
realize any function that is realizable with a 16V8, and more
o Each output logic macrocell is configurable to have a register or not
o A single product term controls output buffer
o Every output has at least eight product terms available
o More product terms are available on inner pins, with 16 available on
each of two innermost pins
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Sequential PLDs: Sequential GAL Devices

e 22V10

o Clock signal on pin 1 is also available as a combinational input to any
product term
e A single product term is available to generate a global, asynchronous
reset signal that resets all internal flip-flops to 0
o A single product term is available to generate a global, synchronous
preset signal that sets all internal flip-flops to 1 on rising edge of clock
o It has programmable output polarity
@ However, in registered configuration, polarity change is made at output
of D flip-flop. This affects details of programming when polarity is
changed but does not affect overall capability of 22V10
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Counters

o A counter is a clocked sequential circuit whose state diagram contains
a single cycle

@ Modulus of a counter is the number of states in the cycle

@ A counter with m states is modulo-m counter or a divide-by-m

counter
@ The most commonly used counter type is an n-bit binary counter
o It has n flip-flops and 2" states

OO~
\\@

Figure 19: General structure of a counter’s state diagram—a single cycle.
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Counters: Ripple Counters

@ An n-bit binary counter can be constructed with just n flip-flops
o In Fig. 20, each bit of counter toggles if and only if the immediately
preceding bit changes from 1 to 0
o This corresponds to a normal binary counting sequence
o When a particular bit changes from 1 to 0, it generates a carry to next
most significant bit
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Figure 20: A 4-bit binary ripple counter. 35/ 63



Counters: Synchronous Counters

@ A ripple counter requires fewer components than any other type of
binary counter
o But it is slower than any other type of binary counter
@ A synchronous counter uses T flip-flops with enable inputs

CNTEN EN Q Qo
CLK T
- ) EN 0O Q1
L/ 1L,
] ) EN Q Q2
/1L,
L —
EN Q Q3
/L,

Figure 21: A synchronous 4-bit binary counter with serial enable logic.
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Counters: Synchronous Counters

o In Fig. 21
o All of flip-flop clock inputs are connected to same common CLK signal
o All of flip-flop outputs change at same time

o CNTEN is a master count-enable signal

o Each T flip-flop toggles if and only if CNTEN is asserted and all of
lower-order counter bits are 1

o It is called a synchronous serial counter because combinational enable
signals propagate serially from least significant to most significant bits

o If clock period is too short, there may not be enough time for a change
in counter's LSB to propagate to MSB

o This problem is eliminated in synchronous parallel counters

@ A synchronous parallel counter is the fastest binary counter structure
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Counters: Synchronous Counters
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Figure 22: A synchronous 4-bit binary counter with parallel enable logic.
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Counters: MSI Counters and Applications

@ The most popular MSI counter is 74x163, a synchronous 4-bit binary
counter with active-low load and clear inputs
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Figure 23: Traditional logic symbol for the 74x163.
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Table 4: State table for a 74x163 4-bit binary counter.

Next State

QCx

Current State

QD | QC | QB | QA

Inputs
CLR_L | LD_L | ENT | ENP

QA

QA

QA

QBx

QB

QB

0

QC

QC

0

QD=

QD

X

QD

X

40 / 63



Counters: MSI Counters and Applications

Figure 24: Logic diagram for the 74x163 synchronous 4-bit binary counter,

including pin numbers for a standard 16-pin dual in-line package. )
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Counters: MSI Counters and Applications

o 74x163

o It uses D rather than T flip-flops to facilitate load and clear functions

o Each D input is driven by a 2-input multiplexer consisting of an OR gate
and two AND gates

o Multiplexer output is 0 if CLR_L input is asserted, otherwise, top AND
gate passes data input (A, B, C, or D) to output if LD_L is asserted

o If neither CLR_L nor LD_L is asserted, bottom AND gate passes output
of an XNOR gate to multiplexer output

o XNOR gates perform counting function

@ One input of each XNOR is the corresponding count bit (QA, QB, QC,
or QD)

o Other input is 1, which complements count bit, if and only if both
enables ENP and ENT are asserted and all of lower-order count bits are 1

o RCO (ripple carry out) signal indicates a carry from most significant bit
position
o It is 1 when all of count bits are 1 and ENT is asserted
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Counters: MSI Counters and Applications

@ Even though most MSI counters have enable inputs, they are often
used in a free-running mode in which they are enabled countinuously
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Figure 25: Connections for the 74x163 to operate in a free-running mode.
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Counters: MSI Counters and Applications

o Fig. 26 shows resulting output waveforms for a free-running '163

o Starting with QA, each signal has half frequency of preceding one
o A free-running '163 can be used as a divide-by-2, -4, -8, or -16 counter,
by ignoring any unnecessary high-order output bits

w Uy yyy
S VO W W VS U W A W A W U

QB

Qc

QD
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COUNT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

Figure 26: Clock and output waveforms for a free-running divide-by-16 counter.
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Counters: MSI Counters and Applications

@ '163 is fully synchronous
o Its outputs change only on rising edge of CLK
@ 74x161 has same pinout but provides an asynchronous clear function; its
CLR_L input is connected to asynchronous clear inputs of its flip-flops
@ 74x160 and 74x162 have same pinouts and functions as '161 and '163
o Except that counting sequence is modified to go to state 0 after state 9
o These are modulo-10 counters, called decade counters

co LI LT LI LT LT LT LT LT L LT L
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COUNT 0 1 2 3 4 5 6 7 8 9 0

Figure 27: Clock and output waveforms for a free-running divide-by-10 counter.
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Counters: MSI Counters and Applications

o In Fig. 27, although QD and QC outputs have one-tenth of CLK
frequency, they do not have a 50% duty cycle
@ '163 is a modulo-16 counter, but it can be made to count in a
modulus less than 16
o Use CLR_L or LD_L input to shorten normal counting sequence
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Figure 28: Using the 74x163 as a modulo-11 counter with the counting
sequence 5,6,...,15,56,....
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Counters: MSI Counters and Applications

o Fig. 28 shows one way of using '163 as a modulo-11 counter
o RCO output, which detects state 15, is used to force next state to 5
o Circuit counts from 5 to 15, for a total of 11 states per counting cycle

o Fig. 29 shows a different approach for modulo-11 counting with '163
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Figure 29: Using the 74x163 as a modulo-11 counter with the counting
sequence 0,1,2,...,10,0,1,....
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Counters: MSI Counters and Applications

o In general, to detect state V in a binary counter that counts from 0 to
N, we need to AND only state bits that are 1 in binary encoding of N
o Excess-3 code word for each decimal digit is the corresponding BCD
code word plus 00115
o Because excess-3 code words follow a standard binary counting
sequence, standard binary counters can easily be made to count in
excess-3 code

Table 5: Decimal codes.

Decimal digit | BCD (8421) | Excess-3
0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100
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Counters: MSI Counters and Applications

o In Fig. 30, a NAND gate detects state 1100 and forces 0011 to be
loaded as next state
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Figure 30: A 74x163 used as an excess-3 decimal counter.
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Counters: MSI Counters and Applications

e In Fig. 31, Q3 output has a 50% duty cycle, which may be desirable
for some applications

cLocx J S G s

Qo

Q1

Q2

Q3

COUNT 3 4 5 6 7 8 9 10 11 12 3

Figure 31: Timing waveforms for the '163 used as an excess-3 decimal counter.
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Counters: MSI Counters and Applications

@ A binary counter with a modulus greater than 16 can be built by
cascading 74x163s as in Fig. 32
o In Fig. 32, RCO4 output is asserted if and only if low-order '163 is in
state 15 and CNTEN, master count-enable, is asserted
o Scheme of Fig. 32 can be extended to build a counter with any desired
number of bits
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cLock 2l oLk 21 CLK
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D1 ‘g oB |2 01 D5 ‘g oB |2 Q5
D2 °lc oc |22 Q2 D6 °lc oc |22 Q6
D3 °Ip op | 03 D7 °lp foyy = Q7
rRco |2 RCO4 rRCO |22 RCO8
U1 U2

Figure 32: General cascading connections for 74x163-based counters.
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Counters: MSI Counters and Applications

74x163
+5V
21 oLk
Lo clr
R 9
e [0
”_ene
RPU ) e
Ao qafs Qo0
‘Ig QB2 QL
°lc Qc |2 Q2
°fp qplX Q3
15
cLock RCO
u2
RESET_L RCO4
74%00
Go_L 74x163
12 cLK
5 RELOAD_L SOCR
oLb
”_enp
U1l 10 ENT
A oY Em—. 7Y
‘5‘ B QB 2 Q5
c  qc Q6
o ap 1; Q7
< RCO MAXCNT
U3

Figure 33: Using 74x163s as a modulo-193 counter with the counting sequence
63,64, ...,255,63,64,....
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Counters: MSI Counters and Applications

o Fig. 33
e It is a modulo-193 counter that counts from 63 to 255
o MAXCNT output detects state 255 and stops counter until GO_L is
asserted
o When GO_L is asserted, counter is reloaded with 63 and counts up to
255 again
o Value of GO_L is relevant only when counter is in state 255
o To keep counter stopped, MAXCNT must be asserted in state 255 even
while counter is stopped
o In Fig. 24, both ENP and ENT enable inputs must be asserted for
counter to count. However, ENT goes to ripple carry output as well
o Therefore, in Fig. 33, low-order counter's ENT input is always asserted,
its RCO output is connected to high-order ENT input, and MAXCNT
detects state 255 even if CNTEN is not asserted
o To enable counting, CNTEN is connected to ENP inputs in parallel
o A NAND gate asserts RELOAD_L to go back to state 63 only if GO_L is
asserted and counter is in state 255
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Counters: MSI Counters and Applications

@ Another counter with functions similar to 74x163's is 74x169
o '169 is an up/down counter
o It counts in ascending or descending binary order depending on value of
an input signal, UP/DN
o '169 counts up when UP/DN is 1 and down when UP/DN is 0

74x169

> CLK
UP/DN
LD
ENP
ENT

[

“(L%“(L@

0w >

14
13
12

0A
0B
Qc
QD 11
RCO [0

4

5
6

Figure 34: Logic symbol for the 74x169 up/down counter.
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Counters: Decoding Binary-Counter States

@ A binary counter may be combined with a decoder to obtain a set of
1-out-of-m-coded signals, where one signal is asserted in each counter
state

o This is useful when counters are used to control a set of devices where a
different device is enabled in each counter state

+5V
RPU

74x163
R 74x138

CLOCK CLK 15
6 Y0 |O—— SO_L

1
L0l cLR G1
9 4 YipX —s1L

L ‘ol G2A
7 “eon 2 o= s2 1L
valot_s3L

11
3 14 Q1 1 Y4IO——S4_L

QA A 10

o8B 13 Q2 2 Y5 Og_ S5_L
12 Q3 Bl Y6 JO—— S6_L

QD 15 u2

A
B B
—]C QC 7
D 11 Y7 IO——S7_L
RCO |—

Figure 35: A modulo-8 binary counter and decoder.
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cLock.L (5 O I O B O I

S0_L

s1 L /

s2. L

S3 L

sa_L

S5 L

S6_L

S7. L

COUNT 0 1 2 3 4 5 6 7 0 1 2

Figure 36: Timing diagram for a modulo-8 binary counter and decoder, showing
decoding glitches.
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Counters: Decoding Binary-Counter States

o Fig. 36

o Decoder outputs may contain glitches on state transitions where two or
more counter bits change, even though '163 outputs are glitch free and
'138 does not have any static hazards

o In a synchronous counter like '163, outputs don't change at exactly the
same time

o Also, multiple signal paths in a decoder like '138 have different delays

o E.g., path from B to Y1_L is faster than path from A to Y1_L

o Thus, even if input changes simultaneously from 011 to 100, decoder
may behave as if input were temporarily 001, and Y1_L output may have
a glitch

e In most applications, decoder output signals are used as control inputs
to registers, counters, and other edge-triggered devices

o In such a case, decoding glitches are not a problem
o They occur after clock tick

o Glitches would be a problem if they were applied to something like

inputs of an S — R latch

57 / 63



Counters: Decoding Binary-Counter States

@ One way to clean up glitches in Fig. 36 is to connect '138 outputs to
another register that samples stable decoded outputs on next clock
tick

o A less costly solution is to use an 8-bit "ring counter” which provides
glitch-free decoded outputs directly

74x374
RPU v
11
LK
74x163 T rC
R 74x138 e
2

CLOCK CLK 5 so LY s 2
[ A 6lgy YO 8 1D 19 RSL L
goLD s Y ¥ SLL  4lop )t Rs2L
9 5 volo —S2L  Tlap 30| Rs3 L

ENP G2B 12 S3_L 8 9
10 valpS3L 8lup 40 RS4_L
ENT 11 S4 L 13 12 -
3 14 Q1 1 Y4 O———— 5D 5Q RS5_L

—A QA A 10 S5 L 14 15
4 B o8B 13 Q2 2 B Y5 Om 6D 6Q = RS6_L
5o oc |2 Q3 e vejo—2LE lp 7Q RS7 L
g ol v7lo—STL lgnp ol _RrsoL

Q 15 u2 U3
RCO [
u1

Figure 37: A modulo-8 binary counter and decoder with glitch-free outputs.
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Counters in Verilog

Table 6: Verilog module for a 74x163-like 4-bit binary counter.

module Vr74x163( CLK, CLR_L, LD_L, ENP, ENT, D, Q, RCO ):
input CLK, CLR_L, LD_L, ENP, ENT;
input [3:0] D;
output [3:0] Q;

output RCO;
reg [3:0] Q;
reg RCO;
always @ (posedge CLK) // Create the counter f-f behavior 7ax163
if (CLR_L == 0) Q <= 4'b0; )
else if (LD_L == 0) Q <= D; T PCK
else if ((ENT == 1) &k (ENP == 1)) Q <= Q + {; D
else Q <= Q; 7 ene
—lEnT
always @ (Q or ENT) // Create RCO combinational output —jA QA%
if ((ENT == 1) && (Q == 4'd15)) RCO = 1; —18 QB
else RCO = O; S PN
endmodule roo |5

@ In Tab. 6, usual state-machine coding style is not used
o Since next-state logic is simple, it is put in the same always block with

the edge-triggered flip-flop behavior
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Counters in Verilog

Table 7: Verilog code for a 74x162-like 4-bit decimal counter.

alvays @ (posedge CLK) // Create the counter f-f behavior 24162

if (!CLR_L) Q <= 4'b0; )

else if (ILD_L) Q <= D; T

else if (ENT && ENP && (Q == 4'd9)) Q <= 4'b0; _sof;R

else if (ENT && ENP) Q<=Q+1; 7 lenp

else Q <= Q; Ot Eent

—j A oA %

alwvays @ (Q or ENT) // Create RCO combinational output —18 QB

if (ENT && (Q == 4'd9)) RCO = 1; ] PO T

else RCO = 0; rReo 15
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Counters in Verilog

Table 8: Verilog code for the excess-3 decimal counting sequence.

always @ (posedge CLK) // Create the counter f-f behavior 245163

if (!'CLR_L) Q <= 4'd3; 2

else if (ILD_L) Q <= D; P

else if (ENT &% ENP && (Q == 4'd12)) Q <= 4'd3; 2olp

else if (ENT && ENP) Q<=Q+1; —{enp

else <= Q; —ent

Q qQ —jA QA%

always @ (Q or ENT) // Create RCO combinational output 5 B QBT

if (ENT && (Q == 4'd12)) RCO = 1; ] P o

else RCO = 0; RCO |2

61/ 63



Counters in Verilog

Table 9: Verilog code for a 74x169-like 4-bit up/down counter.

always @ (posedge CLK) // Create the counter f-f behavior
if (1CLR_L ) Q <= 4'b0;
else if (!LD_L) Q <= D; 74x169
else if (!ENT_L && !'ENP_L && UPDN) Q<=0Q + 1; 7: cLK
else if (!ENT_L &% 'ENP_L & !'UPDN) Q <=0Q - 1; ——{uPoN
else Q <= Q; —Q[Lp
’ —O| ENP
20 EnT
always @ (Q or ENT_L or UPDN) // Create RCO_L combinational output 34 A QA 1:
if ('ENT_L &% UPDN && (Q == 4'd15)) RCO_L = 0; 518 QB
else if (!ENT_L &% 'UPDN && (Q == 4'd0 )) RCO_L = 0; ] PO Fra
else RCO_L = 1; RCO [0
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