
Course Organization

Lecture 1/Part 1

1

Outline

 About me

 About the course

 Lectures

 Seminars

 Evaluation

 Literature

2

About me:

 Ing. RNDr. Barbora Bühnová, Ph.D.

 Industrial experience

 Research

 Quality of software architecture

 LaSArIS

 Teaching

 Courses on UML, Java, .NET, Automata and grammars,

Algorithm design, and others

 Colaboration with students

 Seminar tutoring

 Bachelor/Master theses

3

About the course:

 PB007 Software Engineering I

 Lectures

1. Software process, role of the UML language.

2. Functional requirements specification, UML Use Case diagram.

3. Nonfunctional requirements specification, UML Activity diagram.

4. System analysis and design, structured vs. object-oriented A&D.

5. Object oriented analysis, UML Class, Object and Interaction diagrams.

6. Structured analysis, data modelling, ERD.

7. System design and attributes of a high-quality design, UML State diagram.

8. Software architecture, UML Component and Deployment diagram.

9. User interface design.

10. Testing, verification and validation.

11. Operation, maintenance and system evolution.

12. Software development management - processes, tools and frameworks.

13. Advanced software engineering techniques.

4

About the course:

 PB007 Software Engineering I

 Seminars

1. Visual Paradigm introduction, project assignment.

2. Project start, initial Use Case diagram.

3. Detailed Use Case diagram, textual specification of UC

4. Specification of use cases (textual if not finished, Activity diagram).

5. Analytical Class diagram, Object diagram.

6. Finalization of analytical Class diagram, Use Case diagram update.

7. Data modelling, Entity Relationship diagram.

8. Refinement of use cases with Interaction diagrams.

9. Finalization of Interaction diagrams, Class diagram update.

10. State diagram.

11. Design-level Class diagram, interfaces, implementation details.

12. User interface design.

13. Packages, Component diagram, Deployment diagram.

5

About the course:

 PB007 Software Engineering I

 Lectures

 13 teaching weeks + 1 week free

 Seminars

 Team project on UML modelling

 2-3 students per team

 Obligatory attendance and weekly task delivery

 Penalty for absence (-5/-10) and task delivery (-5/-10 points)

 Evaluation

 Exam = test (50 points) + on-site modelling (50 points)

 Grades: 90-100 A, 80-89 B, 70-79 C, 60-69 D, 50-59 E, 0-49 F

6

Literature

 Software Engineering, 9/E

 Author: Ian Sommerville

 Publisher: Addison-Wesley

 Copyright: 2011

 UML 2 and the Unified Process, 2/E

 Author: Jim Arlow and Ila Neustadt

 Publisher: Addison-Wesley

 Copyright: 2005

7

Software process

Lecture 1/Part 2

Chapter 2 Software Processes 8

Outline

 Software engineering

 Software process activities

 Software process models

Chapter 2 Software Processes 9

Software engineering

 The economies and human lifes of ALL developed

nations are dependent on software.

More and more systems are software controlled

 Software engineering is concerned with theories,

methods and tools for professional software

development.

 Software engineering is concerned with cost-effective

development of high-quality software systems .

Chapter 1 Introduction

Frequently asked questions about software

engineering

Chapter 1 Introduction 11

Question Answer

What is software? Computer programs and associated documentation.

Software products may be developed for a particular
customer or may be developed for a general market.

What are the attributes of good software? Good software should deliver the required functionality

and performance to the user and should be
maintainable, dependable and usable (among others).

What is software engineering? Software engineering is an engineering discipline that is

concerned with all aspects of software production.

What are the fundamental software

engineering activities?

Software specification, software development, software

validation and software evolution.

What is the difference between software

engineering and computer science?

Computer science focuses on theory and fundamentals;

software engineering is concerned with the practicalities
of developing and delivering useful software.

What is the difference between software

engineering and system engineering?

System engineering is concerned with all aspects of

computer-based systems development including
hardware, software and process engineering. Software
engineering is part of this more general process.

Software versus System engineering

Chapter 10 Sociotechnical Systems 12

Software products

Generic products

 Stand-alone systems that are marketed and sold to any

customer who wishes to buy them.

 Examples – PC software such as graphics programs, project

management tools; CAD software.

 Customized products

 Software that is commissioned by a specific customer to meet

their own needs.

 Examples – embedded control systems, air traffic control

software, traffic monitoring systems.

Chapter 1 Introduction 13

Application types

 Stand-alone applications

 Interactive transaction-based applications

 Embedded control systems

 Batch processing systems

 Entertainment systems

 Systems for modeling and simulation

 Data collection and monitoring systems

 Systems of systems

 Chapter 1 Introduction 14

Software engineering fundamentals

 Some fundamental principles apply to all types of

software system, irrespective of the development

techniques used:

 Systems should be developed using a managed and

understood development process. Of course, different

processes are used for different types of software.

 Dependability and performance are important for all types of

system.

 Understanding and managing the software specification and

requirements (what the software should do) are important.

 Where appropriate, you should reuse software that has already

been developed rather than write new software.

Chapter 1 Introduction 15

The software process

 A structured set of activities required to develop a

software system.

Many different software processes but all involve:

 Specification

 Development

• Analysis and design

• Implementation

 Validation

 Evolution

 A software process model is an abstract representation

of a process – from some particular perspective.

Chapter 2 Software Processes 16

Software process activities

 Software specification, where customers and engineers

define the software and the constraints on its operation.

 Software analysis and design, where the requirements

are refined into system design.

 Software implementation, where the software is

implemented.

 Software validation, where the software is checked to

ensure that it is what the customer requires.

 Software evolution, where the software is modified to

reflect changing customer and market requirements.

17 Chapter 2 Software Processes

Software process models

 The waterfall model

 Plan-driven model. Separate and distinct phases of specification

and development.

 Incremental development

 Specification, development and validation are interleaved. May

be plan-driven or agile (respecting agile development principles).

 Reuse-oriented software engineering

 The system is assembled from existing components. May be

plan-driven or agile.

 In practice, most large systems are developed using a

process that incorporates elements from all of these

models.
Chapter 2 Software Processes 18

The waterfall model

Chapter 2 Software Processes 19

Waterfall model problems

 Inflexible partitioning of the project into distinct stages

makes it difficult to respond to changing customer

requirements.

 Therefore, this model is only appropriate when the requirements

are well-understood and changes will be fairly limited during the

design process.

 Few business systems have stable requirements.

 The waterfall model is mostly used for large systems

engineering projects where a system is developed at

several sites, and for generic products.

 In those circumstances, the plan-driven nature of the waterfall

model helps coordinate the work.

Chapter 2 Software Processes 20

Incremental development

Chapter 2 Software Processes 21

Incremental development benefits

 The cost of accommodating changing customer

requirements is reduced.

 The amount of analysis and documentation that has to be

redone is much less than is required with the waterfall model.

 It is easier to get customer feedback on the development

work that has been done.

 Customers can comment on demonstrations of the software and

see how much has been implemented.

More rapid delivery and deployment of useful software to

the customer is possible.

 Customers are able to use and gain value from the software

earlier than is possible with a waterfall process.

Chapter 2 Software Processes 22

Incremental development problems

 The process is not visible.

 Managers need regular deliverables to measure progress. If

systems are developed quickly, it is not cost-effective to produce

documents that reflect every version of the system.

 System structure tends to degrade as new increments

are added.

 Unless time and money is spent on refactoring to improve the

software, regular change tends to corrupt its structure.

Incorporating further software changes becomes increasingly

difficult and costly.

Chapter 2 Software Processes 23

Reuse-oriented software engineering

 Based on systematic reuse where systems are

integrated from existing components or COTS

(Commercial-off-the-shelf) systems.

 Process stages

 Component analysis;

 Requirements modification;

 System design with reuse;

 Development and integration.

 Reuse is now the standard approach for building many

types of business system

Chapter 2 Software Processes 24

Reuse-oriented software engineering

Chapter 2 Software Processes 25

Key points

 There are many different types of system and each

requires appropriate software engineering tools and

techniques for their development.

 The fundamental ideas of software engineering are applicable to

all types of software system.

 Software engineering is an engineering discipline that is

concerned with all aspects of software production.

 The high-level activities of specification, development (analysis

and design, and implementation), validation and evolution are

part of all software processes.

Chapter 1 Introduction 26

Key points

 Software processes are the activities involved in

producing a software system. Software process models

are abstract representations of these processes.

General process models describe the organization of

software processes. Examples of these general models

include the ‘waterfall’ model, incremental development,

and reuse-oriented development.

Chapter 2 Software Processes 27

UML in Software Development

Lecture 1/Part 3

28 Chapter 5 System modeling

Outline

 System modeling

 Structural models

 Interaction models

 Behavioral models

29 Chapter 5 System modeling

System modeling

 System modeling is the process of developing abstract

models of a system, with each model presenting a

different view or perspective of that system.

 System modeling has now come to mean representing a

system using some kind of graphical notation, which is

now almost always based on notations in the Unified

Modeling Language (UML).

 System modelling helps the analyst to understand the

functionality of the system and models are used to

communicate with colleagues and customers.

Chapter 5 System modeling 30

System perspectives

 An external perspective, where you model system

boundary, the context and/or environment of the system.

 A structural perspective, where you model the

organization of a system or the structure of the data that

is processed by the system.

 An interaction perspective, where you model the

interactions between a system and its environment, or

between the components of a system.

 A behavioral perspective, where you model the

dynamic behavior of the system and how it responds to

events.

 Chapter 5 System modeling 31

UML diagram types

 External perspective

 Use case diagram

 Structural perspective

 Class diagram, Object diagram, Component diagram, Package

diagram, Deployment diagram, Composite structure diagram

 Interaction perspective

 Sequence diagram, Communication diagram, Interaction

overview diagram, Timing diagram

 Behavioral perspective

 Activity diagram, State diagram

Chapter 5 System modeling 32

Popular UML diagrams

 Use case diagrams, which show the interactions

between a system and its environment.

 Class diagrams, which show the object classes in the

system and the associations between these classes.

 Sequence diagrams, which show interactions between

actors and the system and between system components.

 Activity diagrams, which show the activities involved in

a process or in data processing.

Chapter 5 System modeling 33

UML Use case diagram:

 Medical receptionist in health care system

Chapter 5 System modeling 34

UML Class diagram:

 Health care system

Chapter 5 System modeling 35

UML Sequence diagram:

 View patient information in health care system

Chapter 5 System modeling 36

UML Activity diagram:

 Process model of involuntary detention

Chapter 5 System modeling 37

Key points

 A model is an abstract view of a system that ignores system

details. Complementary system models can be developed to

show the system’s context, structure, behavior and

interactions.

 Context models show how a system that is being modeled is

positioned in an environment with other systems.

 Structural models show the organization and architecture of

a system. Class diagrams are used to define the static

structure of classes in a system and their associations.

 Interaction models are used to describe the interactions

between system elements and Behavioral models to detail

the internal dynamic behavior of system elements/processes.

 Chapter 5 System modeling 38

