
Requirements Engineering

Lecture 2

1 Chapter 4 Requirements engineering

Requirements engineering

 The process of establishing the services that the

customer requires from a system and the constraints

under which it operates and is developed.

 The requirements themselves are the descriptions of

the system services and constraints that are generated

during the requirements engineering process.

 It may range from a high-level abstract statement of a service

or of a system constraint to a detailed mathematical functional

specification.

2 Chapter 4 Requirements engineering

Outline

 Requirements and their types

 Requirements specification

 Requirements engineering process

 Requirements elicitation and analysis

 Requirements validation

 Requirements management

 UML Use Case diagram

3 Chapter 4 Requirements engineering

Requirements and their Types

Lecture 2/Part 1

4 Chapter 4 Requirements engineering

Types of requirements

 User requirements

 Statements in natural language plus diagrams of the services the

system provides and its operational constraints. Written for

customers.

 System requirements

 A structured document setting out detailed descriptions of the

system’s functions, services and operational constraints.

Defines what should be implemented so may be part of a

contract between client and contractor.

5 Chapter 4 Requirements engineering

User and system requirements

6 Chapter 4 Requirements engineering

Readers of different types of requirements

specification

7 Chapter 4 Requirements engineering

Functional and non-functional requirements

 Functional requirements

 Statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

 May state what the system should not do.

 Non-functional requirements

 Properties and constraints on the services offered by the
system such as timing, reliability and security constraints,
constraints on the development process, platform, standards, etc.

 Often apply to the system as a whole rather than individual
features or services.

8 Chapter 4 Requirements engineering

Functional requirements for the MHC-PMS

 A user shall be able to search the appointments lists for

all clinics.

 The system shall generate each day, for each clinic, a

list of patients who are expected to attend appointments

that day.

 Each staff member using the system shall be uniquely

identified by his or her 8-digit employee number.

9 Chapter 4 Requirements engineering

Requirements precision, completeness

and consistency

 Precise

 They should have just one interpretation in the system context,

which is enforced by the following two properties.

 Complete

 They should include descriptions of all facilities required.

 Consistent

 There should be no conflicts or contradictions in the descriptions

of the system facilities.

 In practice, it is very hard (sometimes impossible) to

produce a complete and consistent requirements

document.

10 Chapter 4 Requirements engineering

Non-functional requirements classification

 Product requirements

 Requirements which specify that the delivered product must

behave with a certain quality e.g. execution speed, reliability, etc.

 Organisational requirements

 Requirements which are a consequence of organisational

policies and procedures e.g. process standards used,

implementation requirements, etc.

 External requirements

 Requirements which arise from factors which are external to the

system and its development process e.g. interoperability

requirements, legislative requirements, etc.

11 Chapter 4 Requirements engineering

Types of non-functional requirements

(excerpt)

12 Chapter 4 Requirements engineering

Examples of non-functional requirements in

the MHC-PMS

Product requirement
The MHC-PMS shall be available to all clinics during normal working
hours (Mon–Fri, 08.30–17.30). Downtime within normal working hours
shall not exceed five seconds in any one day.

Organizational requirement
Users of the MHC-PMS system shall authenticate themselves using
their health authority identity card.

External requirement
The system shall implement patient privacy provisions as set out in
HStan-03-2006-priv.

13 Chapter 4 Requirements engineering

Non-functional requirements

implementation

 Non-functional requirements may affect the overall

architecture of a system rather than the individual

components.

 For example, to ensure that performance requirements are met,

you may have to organize the system to minimize

communications between components.

 A single non-functional requirement, such as a security

requirement, may generate a number of related

functional requirements that define system services that

are required.

 It may also generate requirements that restrict existing

requirements.

14 Chapter 4 Requirements engineering

Verifiability of non-functional requirements

Goals vs. verifiable requirements

 Usability requirement example

 Goal: The system should be easy to use by medical staff and

should be organized in such a way that user errors are

minimized.

 Verifiable non-functional requirement: Medical staff shall be

able to use all the system functions after four hours of training.

After this training, the average number of errors made by

experienced users shall not exceed two per hour of system use.

15 Chapter 4 Requirements engineering

Metrics for specifying non-functional

requirements

Property Measure

Speed Processed transactions/second

User/event response time

Screen refresh time

Size Mbytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

16 Chapter 4 Requirements engineering

Key points

 Requirements for a software system set out what the

system should do and define constraints on its operation

and implementation.

 Functional requirements are statements of the services

that the system must provide or are descriptions of how

some computations must be carried out.

 Non-functional requirements often constrain the system

being developed and the development process being

used.

 They often relate to the emergent properties of the

system and therefore apply to the system as a whole.

 17 Chapter 4 Requirements engineering

Requirements Specification

Lecture 2/Part 2

18 Chapter 4 Requirements engineering

The software requirements document

 The software requirements document is the official

statement of what is required of the system developers.

 Should include a definition of all the above mentioned

requirements types, and may respect a number of

standards (e.g. IEEE standard).

 It is NOT a design document. As far as possible, it

should set of WHAT the system should do rather than

HOW it should do it.

 Information in requirements document depends on type

of system and the approach to development used

(plan-driven vs. agile approach).

 19 Chapter 4 Requirements engineering

The structure of a requirements document

Chapter Description

Preface This should define the expected readership of the document and describe

its version history, including a rationale for the creation of a new version
and a summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the

system’s functions and explain how it will work with other systems. It
should also describe how the system fits into the overall business or
strategic objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should

not make assumptions about the experience or expertise of the reader.

User requirements

definition

Here, you describe the services provided for the user. The nonfunctional

system requirements should also be described in this section. This
description may use natural language, diagrams, or other notations that are
understandable to customers. Product and process standards that must be

followed should be specified.

System architecture This chapter should present a high-level overview of the anticipated system

architecture, showing the distribution of functions across system modules.
Architectural components that are reused should be highlighted.

20 Chapter 4 Requirements engineering

The structure of a requirements document

Chapter Description

System

requirements
specification

This should describe the functional and nonfunctional requirements in more detail.

If necessary, further detail may also be added to the nonfunctional requirements.
Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships between

the system components and the system and its environment. Examples of
possible models are object models, data-flow models, or semantic data models.

System evolution This should describe the fundamental assumptions on which the system is based,

and any anticipated changes due to hardware evolution, changing user needs,
and so on. This section is useful for system designers as it may help them avoid
design decisions that would constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the

application being developed; for example, hardware and database descriptions.
Hardware requirements define the minimal and optimal configurations for the
system. Database requirements define the logical organization of the data used

by the system and the relationships between data.

Index Several indexes to the document may be included. As well as a normal alphabetic

index, there may be an index of diagrams, an index of functions, and so on.

21 Chapter 4 Requirements engineering

Users of a requirements document

22 Chapter 4 Requirements engineering

Ways of writing a system requirements

specification

Notation Description

Natural language The requirements are written using numbered sentences in natural language.

Each sentence should express one requirement.

Structured natural

language

The requirements are written in natural language on a standard form or

template. Each field provides information about an aspect of the
requirement.

Design description

languages

This approach uses a language like a programming language, but with more

abstract features to specify the requirements by defining an operational
model of the system. This approach is now rarely used although it can be
useful for interface specifications.

Graphical notations Graphical models, supplemented by text annotations, are used to define the

functional requirements for the system; UML use case and sequence
diagrams are commonly used.

Mathematical

specifications

These notations are based on mathematical concepts such as finite-state

machines or sets. Although these unambiguous specifications can reduce
the ambiguity in a requirements document, most customers don’t understand
a formal specification. They cannot check that it represents what they want

and are reluctant to accept it as a system contract

23 Chapter 4 Requirements engineering

Natural language specification

 Used for writing requirements because it is expressive,

intuitive and universal. This means that the requirements

can be understood by users and customers.

Guidelines:

 Invent a standard format and use it for all requirements.

 Use language in a consistent way. Use shall for mandatory

requirements, should for desirable requirements.

 Use text highlighting to identify key parts of the requirement.

 Avoid the use of computer jargon.

 Include an explanation (rationale) of why a requirement is

necessary.

Chapter 4 Requirements engineering 24

Problems with natural language

 Lack of clarity

 Precision is difficult without making the document difficult to

read.

 Requirements confusion

 Functional and non-functional requirements tend to be mixed-up.

 Requirements amalgamation

 Several different requirements may be expressed together.

Example requirements for the insulin pump

software system

3.2 The system shall measure the blood sugar and deliver
insulin, if required, every 10 minutes. (Changes in blood sugar
are relatively slow so more frequent measurement is
unnecessary; less frequent measurement could lead to
unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with
the conditions to be tested and the associated actions defined
in Table 1. (A self-test routine can discover hardware and
software problems and alert the user to the fact the normal
operation may be impossible.)

26 Chapter 4 Requirements engineering

Structured natural language specification

Works well for some types of requirements e.g.

requirements for embedded control system but is

sometimes too rigid for writing business system

requirements.

 Example notations:

 Form-based specification

 Tabular specification

Chapter 4 Requirements engineering 27

A form-based specification of a requirement

for an insulin pump

28 Chapter 4 Requirements engineering

A structured specification of a requirement

for an insulin pump

29 Chapter 4 Requirements engineering

Tabular specification of computation for an

insulin pump

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of

increase decreasing

((r2 – r1) < (r1 – r0))

CompDose = 0

Sugar level increasing and rate of

increase stable or increasing

((r2 – r1) ≥ (r1 – r0))

CompDose =

 round ((r2 – r1)/4)

If rounded result = 0 then

CompDose =

MinimumDose

30 Chapter 4 Requirements engineering

Use cases

 UML Use-cases are a scenario based technique which

identify the actors in an interaction and which describe

the interaction itself.

 A set of use cases should describe all possible

interactions with the system.

 High-level graphical model supplemented by more

detailed tabular description (see Part 4 of this lecture).

 UML Activity diagrams and Sequence diagrams may be

used to add detail to use-cases by showing the

sequence of event processing in the system.

31 Chapter 4 Requirements engineering

Use cases for the MHC-PMS

32 Chapter 4 Requirements engineering

Requirements Engineering Process

Lecture 2/Part 3

33 Chapter 4 Requirements engineering

Outline

 Requirements elicitation and analysis

 Requirements validation

 Requirements management

34 Chapter 4 Requirements engineering

Requirements engineering processes

 The processes used for RE vary widely depending on
the application domain, the people involved and the
organisation developing the requirements.

 However, there are a number of generic activities
common to all processes

 Requirements elicitation and analysis;

 Requirements validation;

 Requirements management.

 In practice, RE is an iterative activity in which these
processes are interleaved.

35 Chapter 4 Requirements engineering

A spiral view of the requirements

engineering process

36 Chapter 4 Requirements engineering

Requirements elicitation and analysis

 Software engineers work with system stakeholders:

 end-users, managers, maintenance engineers, domain experts,

trade unions, etc.

 To find out about:

 the application domain,

 the services that the system should provide,

 the required system performance,

 hardware constraints,

 other systems, etc.

Chapter 4 Requirements engineering 37

Stakeholders in the MHC-PMS

 Patients whose information is recorded in the system.

 Doctors who are responsible for assessing and treating

patients.

 Nurses who coordinate the consultations with doctors

and administer some treatments.

Medical receptionists who manage patients’

appointments.

 IT staff who are responsible for installing and maintaining

the system.

Chapter 4 Requirements engineering 38

Stakeholders in the MHC-PMS

 A medical ethics manager who must ensure that the

system meets current ethical guidelines for patient care.

 Health care managers who obtain management

information from the system.

Medical records staff who are responsible for ensuring

that system information can be maintained and

preserved, and that record keeping procedures have

been properly implemented.

Chapter 4 Requirements engineering 39

The requirements elicitation and analysis

process

40 Chapter 4 Requirements engineering

Process activities

 Requirements discovery

 Interacting with stakeholders to discover their requirements.

 Requirements classification and organisation

 Groups related requirements and organises them into coherent
clusters.

 Prioritisation and negotiation

 Prioritising requirements and resolving requirements conflicts.

 Requirements specification

 Requirements are documented and input into the next round of
the spiral.

Requirements prioritisation

MoSCoW criteria

 Must have – mandatory requirement fundamental to the system

 Should have – important requirement that may be omitted

 Could have – truly optional requirement

 Want to have – requirement that can wait for later releases

 RUP attributes

 Status – Proposed/Approved/Rejected/Incorporated

 Benefit – Critical/Important/Useful

 Effort – number of person days/functional points/etc.

 Risk – High/Medium/Low

 Stability – High/Medium/Low

 Target Release – future product version

Problems of requirements elicitation

 Stakeholders don’t know what they really want.

 Stakeholders express requirements in their own terms.

 Different stakeholders may have conflicting

requirements.

Organisational and political factors may influence the

system requirements.

 The requirements change during the analysis process.

New stakeholders may emerge and the business

environment may change.

43 Chapter 4 Requirements engineering

Interviewing

 Formal or informal interviews with stakeholders are part

of most RE processes.

 Types of interview

 Closed interviews based on pre-determined list of questions

 Open interviews where various issues are explored with

stakeholders.

 Effective interviewing

 Be open-minded, avoid pre-conceived ideas about the

requirements and are willing to listen to stakeholders.

 Prompt the interviewee to get discussions going using a

springboard question, a requirements proposal, or by working

together on a prototype system.

Chapter 4 Requirements engineering 44

Ethnography

 A social scientist spends a considerable time observing

and analysing how people actually work.

 People do not have to explain or articulate their work.

 Social and organisational factors of importance may be

observed.

 Ethnographic studies have shown that work is usually

richer and more complex than suggested by simple

system models.

45 Chapter 4 Requirements engineering

Requirements validation

 Concerned with demonstrating that the requirements

define the system that the customer really wants.

 Requirements error costs are high so validation is very

important

 Fixing a requirements error after delivery may cost up to 100

times the cost of fixing an implementation error.

46 Chapter 4 Requirements engineering

Requirements validation

 Consistency

 Are there any requirements conflicts?

 Completeness

 Are all functions required by the customer included?

 Realism

 Can the requirements be implemented given available budget

and technology

 Verifiability

 Can the requirements be checked?

47 Chapter 4 Requirements engineering

Requirements validation techniques

 Requirements reviews

 Systematic manual analysis of the requirements.

 Prototyping

 Using an executable model of the system to check requirements.

 Test-case generation

 Developing tests for requirements to check testability.

48 Chapter 4 Requirements engineering

Requirements reviews

 Regular reviews should be held while the requirements

definition is being formulated.

 Both client and contractor staff should be involved in

reviews.

 Reviews may be formal (with completed documents) or

informal. Good communications between developers,

customers and users can resolve problems at an early

stage.

49 Chapter 4 Requirements engineering

Review checks

 Besides consistency, completeness, realism and

verifiability, reviews check:

 Comprehensibility

 Is the requirement properly understood?

 Traceability

 Is the origin of the requirement clearly stated?

 Adaptability

 Can the requirement be changed without a large impact on other
requirements?

50 Chapter 4 Requirements engineering

Requirements management

 Requirements management is the process of managing

changing requirements during the requirements

engineering process and system development.

 New requirements emerge as a system is being

developed and after it has gone into use.

 You need to keep track of individual requirements and

maintain links between dependent requirements so

that you can assess the impact of requirements

changes. You need to establish a formal process for

making change proposals and linking these to system

requirements.

51 Chapter 4 Requirements engineering

Requirements evolution

52 Chapter 4 Requirements engineering

Changing requirements

 The business and technical environment of the system

always changes after installation.

 New hardware may be introduced, it may be necessary to

interface the system with other systems, business priorities

may change (with consequent changes in the system support

required), and new legislation and regulations may be

introduced that the system must necessarily abide by.

 The people who pay for a system and the users of that

system are rarely the same people.

 Large systems usually have a diverse user community,

with many users having different requirements and

priorities that may be conflicting.

Chapter 4 Requirements engineering 53

Requirements management planning

 Establishes the level of requirements management detail

that is required.

 Requirements management decisions:

 Requirements identification Each requirement must be uniquely

identified so that it can be cross-referenced with other requirements.

 A change management process This is the set of activities that

assess the impact and cost of changes.

 Traceability policies These policies define the relationships

between requirements, and between the requirements and the

system design that should be recorded.

 Tool support Tools that may be used range from specialist

requirements management systems to spreadsheets and simple

database systems.

 Chapter 4 Requirements engineering 54

Requirements change management

 Deciding if a requirements change should be accepted

 Problem analysis and change specification

• During this stage, the problem or the change proposal is analyzed

to check that it is valid. This analysis is fed back to the change

requestor who may respond with a more specific requirements

change proposal, or decide to withdraw the request.

 Change analysis and costing

• The effect of the proposed change is assessed using traceability

information and general knowledge of the system requirements.

Once this analysis is completed, a decision is made whether or not

to proceed with the requirements change.

 Change implementation

• The requirements document and the system design and

implementation are modified. Ideally, the document should be

organized so that changes can be easily implemented.
Chapter 4 Requirements engineering 55

Key points

 You can use a range of techniques for requirements

elicitation including interviews, use-cases discussion

and ethnography.

 Requirements validation is the process of checking the

requirements for validity, consistency, completeness,

realism and verifiability.

 Business, organizational and technical changes

inevitably lead to changes to the requirements for a

software system. Requirements management is the

process of managing and controlling these changes.

Chapter 4 Requirements engineering 56

UML Use Case Diagram

Lecture 2/Part 4

57 Chapter 4 Requirements engineering

Outline

 Use Case modelling

 System boundary – subject

 Use cases

 Actors

 Textual Use Case specification

 Advanced Use Case modelling

 Actor generalisation

 Use case generalisation

 «include»

 «extend»

58 Chapter 4 Requirements engineering

© Clear View Training 2010 v2.6 59

Use case modelling

 Use case modelling is a form of requirements
engineering

 Use case modelling proceeds as follows:

 Find the system boundary

 Find actors

 Find use cases

• Use case specification

• Scenarios

 It lets us identify the system boundary, who or what uses
the system, and what functions the system should offer

© Clear View Training 2010 v2.6 60

The subject

 Before we can build anything, we need to know:

 Where the boundary of the system lies

 Who or what uses the system

 What functions the system should offer to its

users

 We create a Use Case model containing:

 Subject – the edge of the system

• also known as the system boundary

 Actors – who or what uses the system

 Use Cases – things actors do with the system

 Relationships – between actors and use cases

SystemName

subject

© Clear View Training 2010 v2.6 61

What are actors?

 An actor is anything that interacts directly with the
system

 Actors identify who or what uses the system and so indicate
where the system boundary lies

 Actors are external to the system

 An Actor specifies a role that some external entity adopts
when interacting with the system

Customer

«actor»

Customer

© Clear View Training 2010 v2.6 62

Identifying Actors

When identifying actors ask:

 Who or what uses the system?

 What roles do they play in the interaction?

 Who installs the system?

 Who starts and shuts down the system?

 Who maintains the system?

 What other systems use this system?

 Who gets and provides information to the system?

 Does anything happen at a fixed time?

 Time

© Clear View Training 2010 v2.6 63

What are use cases?

 A use case is something an actor needs the system to

do. It is a “case of use” of the system by a specific actor

 Use cases are always started by an actor

 The primary actor triggers the use case

 Zero or more secondary actors interact with the use case in

some way

 Use cases are always written from the point of view of

the actors

PlaceOrder GetStatusOnOrder

© Clear View Training 2010 v2.6 64

Identifying use cases

 Start with the list of actors that interact with the system

When identifying use cases ask:

 What functions will a specific actor want from the system?

 Does the system store and retrieve information? If so, which
actors trigger this behaviour?

 What happens when the system changes state (e.g. system start
and stop)? Are any actors notified?

 Are there any external events that affect the system? What
notifies the system about those events?

 Does the system interact with any external system?

 Does the system generate any reports?

© Clear View Training 2010 v2.6 65

The use case diagram

Mail Order System

PlaceOrder

SendCatalogue

CancelOrder

CheckOrderStatus Customer

ShipProduct

ShippingCompany

Dispatcher

communication

relationship

actor

subject name

system boundary

Mail Order System use case diagram

use case

© Clear View Training 2010 v2.6 66

Textual use case specification

Use case: PaySalesTax

Primary actors:

Time

Preconditions:

1. It is the end of the business quarter.

Postconditions:

1. The Tax Authority receives the correct amount of Sales Tax.

Main flow:

The use case starts when it is the end of the business quarter.

The system determines the amount of Sales Tax owed to the Tax
Authority.
The system sends an electronic payment to the Tax Authority.

1.

2.

3.

use case name

the actors involved in the

use case

the system state before

the use case can begin

the actual steps of the use

case

the system state when the

use case has finished

Alternative flows:

None.

alternative flows

ID: 1 use case identifier

Brief description:

Pay Sales Tax to the Tax Authority at the end of the business quarter.
brief description

implicit time actor

Secondary actors:

TaxAuthority

© Clear View Training 2010 v2.6 67

Naming use cases

 Use cases describe something that happens

 They are named using verbs or verb phrases

 Naming standard 1: use cases are named using

UpperCamelCase e.g. PaySalesTax

1 UML 2 does not specify any naming standards.

All naming standards here are based on industry best practice.

© Clear View Training 2010 v2.6 68

Pre and postconditions

 Preconditions and postconditions

are constraints

 Preconditions constrain the state of

the system before the use case can

start

 Postconditions constrain the state

of the system after the use case has

executed

 If there are no preconditions or

postconditions write "None" under

the heading

Preconditions:

1. A valid user has logged on to the

system

Postconditions:

1. The order has been marked

confirmed and is saved by the system

Use case: PlaceOrder

© Clear View Training 2010 v2.6 69

Main flow

 The flow of events lists the steps in a use case

 It always begins by an actor doing something

 A good way to start a flow of events is:
1) The use case starts when an <actor> <function>

 The flow of events should be a sequence of short steps that are:

 Declarative

 Numbered,

 Time ordered

 The main flow is always the happy day or perfect world scenario

 Everything goes as expected and desired, and there are no errors,
deviations and interrupts

 Alternatives can be shown by branching or by listing under Alternative
flows (see later)

<number> The <something> <some action>

© Clear View Training 2010 v2.6 70

Branching within a flow: IF

 Use the keyword IF to

indicate alternatives

within the flow of events

 There must be a

Boolean expression

immediately after IF

 Use indentation and

numbering to indicate

the conditional part of

the flow

 Use ELSE to indicate

what happens if the

condition is false

Use case: ManageBasket

Primary actors:

Customer

Preconditions:

1. The shopping basket contents are visible.

Postconditions:

None.

Main flow:

The use case starts when the Customer selects an item in the

basket.

IF the Customer selects "delete item"

IF the Customer types in a new quantity

1.

2.

3.

The system removes the item from the basket. 2.1

The system updates the quantity of the item in the basket. 3.1

ID: 2

Brief description:

The Customer changes the quantity of an item in the basket.

Alternative flows:

None.

Secondary actors:

None.

© Clear View Training 2010 v2.6 71

Repetition within a flow: FOR

 We can use the
keyword FOR to
indicate the start of a
repetition within the
flow of events

 The iteration
expression immediately
after the FOR
statement indicates the
number of repetitions of
the indented text
beneath the FOR
statement.

ID: 3

Actors:

Customer

Preconditions:

None.

Main flow:

1. The use case starts when the Customer selects "find product".

2. The system asks the Customer for search criteria.

3. The Customer enters the requested criteria.

4. The system searches for products that match the Customer's criteria.

5. FOR each product found

 5.1. The system displays a thumbnail sketch of the product.

 5.2. The system displays a summary of the product details.

 5.3. The system displays the product price.

Postconditions:

None.

Alternative flows:

NoProductsFound

Use case: FindProduct

Brief description:

The system finds some products based on Customer search criteria and

displays them to the Customer.

© Clear View Training 2010 v2.6 72

Repetition within a flow: WHILE

 We can use the

keyword WHILE to

indicate that something

repeats while some

Boolean condition is

true

ID: 4

Primary actors:

Customer

Preconditions:

None.

Main flow:

1. The use case starts when the Customer selects "show company details".
2. The system displays a web page showing the company details.

3. WHILE the Customer is browsing the company details

4. The system searches for products that match the Customer's criteria.
 4.1. The system plays some background music.

 4.2. The system displays special offers in a banner ad.

Postconditions:

1. The system has displayed the company details.
2. The system has played some background music.

3. The systems has displayed special offers.

Alternative flows:

None.

Use case: ShowCompanyDetails

Brief description:

The system displays the company details to the Customer.

Secondary actors:

None

© Clear View Training 2010 v2.6 73

Branching: Alternative flows

 We may specify one or more
alternative flows through the flow of
events:

 Alternative flows capture errors,
branches, and interrupts

 Alternative flows never return to
the main flow

 Potentially very many alternative
flows! You need to manage this:

 Pick the most important alternative
flows and document those.

 If there are groups of similar
alternative flows - document one
member of the group as an
exemplar and (if necessary) add
notes to this explaining how the
others differ from it.

main flow

alternative flows

Use case

Only document enough alternative flows to

clarify the requirements!

© Clear View Training 2010 v2.6 74

Referencing alternative flows

 List the names of the
alternative flows at the
end of the use case

 Find alternative flows
by examining each
step in the main flow
and looking for:

 Alternatives

 Exceptions

 Interrupts

Alternative

flows

Main flow:

Use case: CreateNewCustomerAccount

Preconditions:

None.

Brief description:

The system creates a new account for the Customer.

Postconditions:

1. A new account has been created for the Customer.

Alternative flows:

InvalidEmailAddress
InvalidPassword

Cancel

The use case begins when the Customer selects "create

new customer account".
WHILE the Customer details are invalid

The system creates a new account for the Customer.

The system asks the Customer to enter his or her details

comprising email address, password and password
again for confirmation.

The system validates the Customer details.

1.

2.

3.

2.1.

2.2

ID: 5

Primary actors:

Customer

Secondary actors:

None.

© Clear View Training 2010 v2.6 75

An alternative flow example

 The alternative flow may be triggered instead of the main flow - started by an actor

 The alternative flow may be triggered after a particular step in the main flow - after

 The alternative flow may be triggered at any time during the main flow - at any time

notice how we

name and number
alternative flows

always indicate how the

alternative flow begins.
In this case it starts after
step 2.2 in the main flow

Alternative flow:

Alternative flow: CreateNewCustomerAccount:InvalidEmailAddress

Preconditions:

1. The Customer has entered an invalid email address

Primary actors:

Customer

Postconditions:

None.

The alternative flow begins after step 2.2. of the main flow.

The system informs the Customer that he or she entered an

invalid email address.

1.

2.

ID: 5.1

Brief description:

The system informs the Customer that they have entered an invalid

email address.

Secondary actors:

None.

© Clear View Training 2010 v2.6 76

Advanced Use Case modelling

We have studied basic use case analysis, but there are

relationships that we have still to explore:

 Actor generalisation

 Use case generalisation

 «include» – between use cases

 «extend» – between use cases

© Clear View Training 2010 v2.6 77

Actor generalization - example

 The Customer and the
Sales Agent actors are
very similar

 They both interact with
List products, Order
products, Accept payment

 Additionally, the Sales
Agent interacts with
Calculate commission

 Our diagram is a mess –
can we simplify it?

Sales system

ListProducts

OrderProducts

AcceptPayment

CalculateCommission

Customer

SalesAgent

© Clear View Training 2010 v2.6 78

Actor generalisation

 If two actors communicate
with the same set of use
cases in the same way,
then we can express this as
a generalisation to another
(possibly abstract) actor

 The descendent actors
inherit the roles and
relationships to use cases
held by the ancestor actor

 We can substitute a
descendent actor anywhere
the ancestor actor is
expected. This is the
substitutability principle

Sales system

ListProducts

OrderProducts

AcceptPayment

CalculateCommission

Purchaser

SalesAgent Customer

ancestor

or parent

descendents or children

generalisation

abstract actor

Use actor generalization when it simplifies

the model

© Clear View Training 2010 v2.6 79

Use case generalisation

 The ancestor use case must be a more general case of one or more
descendant use cases

 Child use cases are more specific forms of their parent

 They can inherit, add and override features of their parent

Sales system

FindProduct

FindBook FindCD

Customer

Use case generalization semantics

Use case element Inherit Add Override

Relationship Yes Yes No

Extension point Yes Yes No

Precondition Yes Yes Yes

Postcondition Yes Yes Yes

Step in main flow Yes Yes Yes

Alternative flow Yes Yes Yes

© Clear View Training 2010 v2.6 80

«include»

 The base use case executes

until the point of inclusion:

include(InclusionUseCase)

 Control passes to the
inclusion use case which

executes

 When the inclusion use case

is finished, control passes
back to the base use case
which finishes execution

 Note:

 Base use cases are not

complete without the
included use cases

 Inclusion use cases may be
complete use cases, or they
may just specify a fragment

of behaviour for inclusion
elsewhere

Personnel System

FindEmployeeDetails

ChangeEmployeeDetails

DeleteEmployeeDetails

Manager

ViewEmployeeDetails

«include»

«include»

«include»

base use case

inclusion

use case
include

relationship

When use cases share common behaviour

we can factor this out into a separate

inclusion use case and «include» it in base

use cases

© Clear View Training 2010 v2.6 81

«include» example

Use case: ChangeEmployeeDetails

Primary actors:

Manager

Preconditions:

1. The Manager is logged on to the system.

Postconditions:

1. The employee details have been changed.

Main flow:

include(FindEmployeeDetails).

The system displays the employee details.
The Manager changes the employee
details.

…

1.

2.
3.

ID: 1

Brief description:

The Manager changes the employee details.

Alternative flows:

None.

Use case: FindEmployeeDetails

Primary actors:

Manager

Preconditions:

1. The Manager is logged on to the system.

Postconditions:

1. The system has found the employee details.

Main flow:

The Manager enters the employee's ID.

The system finds the employee details.

1.

2.

ID: 4

Brief description:

The Manager finds the employee details.

Alternative flows:

None.

Seconday actors:

None

Seconday actors:

None

© Clear View Training 2010 v2.6 82

«extend»

 «extend» is a way of adding

new behaviour into the base

use case by inserting

behaviour from one or more

extension use cases

 The base use case specifies

one or more extension points

in its flow of events

 The extension use case may

contain several insertion

segments

 The «extend» relationship
may specify which of the base

use case extension points it is

extending

Library system

IssueFine BorrowBook

FindBook

Librarian

ReturnBook

«extend»

base use case

extend

relationship extension

use case

The extension use case inserts behaviour into

the base use case.

The base use case provides extension points,

but does not know about the extensions.

© Clear View Training 2010 v2.6 83

Base use case

 There is an extension point overdueBook just before step 4 of the flow of events

 Extension points are not numbered, as they are not part of the flow

Use case: ReturnBook

Secondary actors:

None.

Preconditions:

1. The Librarian is logged on to the system.

Postconditions:

1. The book has been returned.

Main flow:
The Librarian enters the borrower's ID number.

The system displays the borrower's details including the list of
borrowed books.

The Librarian finds the book to be returned in the list of books.

The Librarian returns the book.

…

1.

2.

3.

4.

ID: 9

Brief description:

The Librarian returns a borrowed book.

Alternative flows:

None.

ReturnBook

extension points

overdueBook

IssueFine

«extend»

(overdueBook)

extension point: overdueBook

extension

point

base use case

extension use case

extension

point name

Primary actors:

Librarian

© Clear View Training 2010 v2.6 84

Extension use case

 Extension use cases have one or more insertion segments which are

behaviour fragments that will be inserted at the specified extension points in

the base use case

Extension Use case: IssueFine

Primary actors:

Librarian

Segment 1 preconditions:

1. The returned book is overdue.

Segment 1 postconditions:

1. The fine has been recorded in the system.
2. The system has printed out the fine.

Segment 1 flow:

The Librarian enters details of the fine into the system.

The system prints out the fine.

1.

2.

ID: 10

Brief description:

Segment 1: The Librarian records and prints out a fine.

ReturnBook

extension points

overdueBook

IssueFine

the single insertion

segment in IssueFine is

inserted at the

overdueBook insertion

point in the ReturnBook

use case

Secondary actors:

None. «extend»

(overdueBook)

© Clear View Training 2010 v2.6 85

Multiple insertion points

 If more than one extension point is
specified in the «extend» relationship
then the extension use case must
have the same number of insertion
segments

Extension Use case: IssueFine

Secondary actors:

None.

Segment 1 preconditions:

1. The returned book is overdue.

Segment 1 postconditions:

1. The fine has been recorded in the system.
2. The system has printed out the fine.

Segment 1 flow:

The Librarian enters details of the fine into the system.

The system prints out the fine.

1.

2.

ID: 10

Brief description:

Segment 1: The Librarian records and prints out a fine.
Segment 2: The Librarian accepts payment for a fine.

ReturnBook

extension points

overdueBook
payFine

IssueFine

the first segment in IssueFine is

inserted at overdueBook and

the second segment at payFine

Segment 2 preconditions:

1. A fine is due from the borrower.

Segment 2 postconditions:

1. The fine is recorded as paid.
2. The system has printed a receipt for the fine.

Segment 2 flow:

The Librarian accepts payment for the fine from the borrower.

The Librarian enters the paid fine in the system.
The system prints out a receipt for the paid fine.

1.

2.
3.

Primary actors:

Librarian «extend»

(overdueBook, payFine)

© Clear View Training 2010 v2.6 86

Conditional extensions

 We can specify conditions on «extend» relationships

 Conditions are Boolean expressions

 The insertion is made if and only if the condition evaluates to true

IssueFine

ReturnBook

extension points

overdueBook
payFine

IssueWarning

condition

«extend»

(overdueBook)
[first offence]

«extend»

(overdueBook)
[!first offence]

© Clear View Training 2010 v2.6 87

Requirements tracing

 Given that we can capture functional requirements in a
requirements model and in a use case model we need
some way of relating the two

 There is a many-to-many relationship between
requirements and use cases:

 One use case covers many individual functional requirements

 One functional requirement may be realised by many use
cases

 Hopefully we have CASE support for requirements tracing:

 With UML tagged values, we can assign numbered
requirements to use cases

 We can capture use case names in our Requirements
Database

 If there is no CASE support, we can create a Requirements
Traceability matrix

R1

R2

R3

R4

R5

U1 U2 U3 U4

Use cases

R
e

q
u

ire
m

e
n

ts

Requirements

Traceability

Matrix

© Clear View Training 2010 v2.6 88

When to use use case analysis

 Use cases describe system behaviour from the point of

view of one or more actors. They are the best choice

when:

 The system is dominated by functional requirements

 The system has many types of user to which it delivers different

functionality

 The system has many interfaces

 Use cases are designed to capture functional

requirements. They are a poor choice when:

 The system is dominated by non-functional requirements

 The system has few users

 The system has few interfaces

© Clear View Training 2010 v2.6 89

Key points

We have seen how to capture functional requirements
with use cases

We have looked at:

 Use cases

 Actors

 Branching with IF

 Repetition with FOR and WHILE

 Alternative flows

© Clear View Training 2010 v2.6 90

Key points

We have learned about techniques for advanced use
case modelling:

 Actor generalisation

 Use case generalisation

 «include»

 «extend»

 Use advanced features with discretion only where they
simplify the model!

