Requirements Engineering

Lecture 2

Chapter 4 Requirements engineering 1

Requirements engineering —

<> The process of establishing the services that the
customer requires from a system and the constraints
under which it operates and is developed.

< The requirements themselves are the descriptions of
the system services and constraints that are generated
during the requirements engineering process.
* |tmay range from a high-level abstract statement of a service

or of a system constraint to a detailed mathematical functional
specification.

Chapter 4 Requirements engineering

Outline

< Requirements and their types
< Requirements specification

<> Requirements engineering process

= Requirements elicitation and analysis
= Requirements validation
= Requirements management

< UML Use Case diagram

Chapter 4 Requirements engineering

Requirements and their Types

Lecture 2/Part 1

Chapter 4 Requirements engineering 4

Types of requirements

< User requirements

= Statements in natural language plus diagrams of the services the
system provides and its operational constraints. Written for
customers.

< System requirements

» Astructured document setting out detailed descriptions of the
system’s functions, services and operational constraints.
Defines what should be implemented so may be part of a
contract between client and contractor.

Chapter 4 Requirements engineering 5

UMI.I AL THE
Usermn Puncinn
oep [

User and system requirements

User requirement definition

1. The MHC-PMS shall generate monthly management reports showing

the cost of drugs prescribed by each clinic during that month.

System requirements specification

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost and the prescribing clinics shall be generated.

1.2 The system shall automatically generate the report for printing after
17.30 on the last working day of the month.

1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed and the total cost of the prescribed drugs.

1.4 If drugs are available in different dose units (e.g. 10mg, 20 mg, etc)
separate reports shall be created for each dose unit.

1.5 Access to all cost reports shall be restricted to authorized users listed
on a management access control list.

4{’;‘
V Chapter 4 Requirements engineering 6
/2'? J‘h‘si_\‘

Readers of different types of requirements
specification

Client managers
System end-users
Client engineers
Contractor managers
System architects

User
requirements

System end-users
System Client engineers
requirements System architects
Software developers

V Chapter 4 Requirements engineering 7
o, W
s

U"’hi -T‘E;'."F,,, R
Functional and non-functional requirements g ; B

i Nt
3 [
g L \
OO

<> Functional requirements

= Statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

= May state what the system should not do.

<> Non-functional requirements

= Properties and constraints on the services offered by the
system such as timing, reliability and security constraints,
constraints on the development process, platform, standards, etc.

= Often apply to the system as a whole rather than individual
features or services.

Chapter 4 Requirements engineering 8

o |
Functional requirements for the MHC-PMS o ;

v

=
-
WARE ENGINEERING
- ‘

3 [
g L \
O SR

<> Auser shall be able to search the appointments lists for
all clinics.

< The system shall generate each day, for each clinic, a
list of patients who are expected to attend appointments
that day.

<> Each staff member using the system shall be uniquely
identified by his or her 8-digit employee number.

Chapter 4 Requirements engineering 9

Requirements precision, completeness
and consistency

< Precise

= They should have just one interpretation in the system context,
which is enforced by the following two properties.

< Complete
» They should include descriptions of all facilities required.

<~ Consistent

» There should be no conflicts or contradictions in the descriptions
of the system facilities.

< In practice, it is very hard (sometimes impossible) to
produce a complete and consistent requirements
document.

Chapter 4 Requirements engineering 10

U.‘!TLJ AL THE
Usermn Puncinn

Non-functional requirements classification

<> Product requirements

= Requirements which specify that the delivered product must
behave with a certain quality e.g. execution speed, reliability, etc.

<> Organisational requirements

» Requirements which are a consequence of organisational
policies and procedures e.g. process standards used,
implementation requirements, etc.

< External requirements

= Requirements which arise from factors which are external to the
system and its development process e.g. interoperability
requirements, legislative requirements, etc.

Chapter 4 Requirements engineering 11

U'n!I. 1w ie

Types of non-functional requirements
(excerpt)

Mon-functional
requirements

Product Organizational External
requirements requiremamnts requirements
Eﬁluenqr [th|:|~|!nI:Iill:llll'c"I Security Regulatorny Ethical
requiram requirements requirements requirements requirements
Usability Environmental Operational Development Legislative
requirements requirements requirements requirements requirements

Performance SpiH:E Accournting Safety,/security
regquirements requirem requirements requirememnts

Chapter 4 Requirements engineering 12

RIS I

§

g

&
IO _-,\»*

/
i,

s aas

‘2

Examples of non-functional requirements in
the MHC-PMS

Productrequirement

The MHC-PMS shall be availabletoall clinics during normal working
hours (Mon—Fri, 08.30—17.30). Downtime within normal working hours
shall not exceed five seconds in any one day.

Organizationalrequirement
Users of the MHC-PMS system shall authenticate themselves using
their health authorityidentity card.

External requirement
The system shall implement patient privacy provisions as set out in

HStan-03-2006-priv.

:‘:7 Chapter 4 Requirements engineering 13

Non-functional requirements s
implementation

<> Non-functional requirements may affect the overall
architecture of a system rather than the individual
components.
= Forexample, to ensure that performance requirements are met,

you may have to organize the system to minimize
communications between components.

< A single non-functional requirement, such as a security
requirement, may generate a number of related
functional requirements that define system services that
are required.

» |t may also generate requirements that restrict existing
requirements.

Chapter 4 Requirements engineering 14

U.‘!TLJ AL THE
Usermn Puncinn

Verifiability of non-functional requirements e

<> Goals vs. verifiable requirements

< Usability requirement example

» Goal: The system should be easy to use by medical staff and
should be organized in such a way that user errors are
minimized.

= Verifiable non-functional requirement: Medical staff shall be
able to use all the system functions after four hours of training.
After this training, the average number of errors made by
experienced users shall not exceed two per hour of system use.

Chapter 4 Requirements engineering 15

Metrics for specifying non-functional
requirements

Speed Processed transactions/second
User/event response time
Screen refresh time

Size Mbytes
Number of ROM chips
Ease of use Training time

Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

Chapter 4 Requirements engineering 16

Key points

< Requirements for a software system set out what the
system should do and define constraints on its operation
and implementation.

<> Functional requirements are statements of the services
that the system must provide or are descriptions of how
some computations must be carried out.

<> Non-functional requirements often constrain the system
being developed and the development process being
used.

< They often relate to the emergent properties of the
system and therefore apply to the system as a whole.

Chapter 4 Requirements engineering 17

Requirements Specification

Lecture 2/Part 2

Chapter 4 Requirements engineering 18

The software requirements document e < T

<> The software requirements document is the official
statement of what is required of the system developers.

<> Should include a definition of all the above mentioned
requirements types, and may respect a number of
standards (e.g. IEEE standard).

< Itis NOT a design document. As far as possible, it

should set of WHAT the system should do rather than
HOW it should do it.

< Information in requirements document depends on type

of system and the approach to development used
(plan-driven vs. agile approach).

Chapter 4 Requirements engineering 19

The structure of a requirements document

l_l.'l'IL 1 30 THE
wrmn Maxcing

Preface

Introduction

Glossary

User requirements
definition

System architecture

This should define the expected readership of the document and describe
its version history, including a rationale for the creation of a new version
and a summary of the changes made in each version.

This should describe the need for the system. It should briefly describe the
system’s functions and explain how it will work with other systems. It
should also describe how the system fits into the overall business or
strategic objectives of the organization commissioning the software.

This should define the technical terms used in the document. You should
not make assumptions aboutthe experience orexpertise of the reader.

Here, you describe the services provided for the user. The nonfunctional
system requirements should also be described in this section. This
description may use natural language, diagrams, or other notations that are
understandable to customers. Product and process standards that must be
followed should be specified.

This chapter should present a high-level overview of the anticipated system
architecture, showing the distribution of functions across system modules.
Architectural components that are reused should be highlighted.

Chapter 4 Requirements engineering 20

The structure of a requirements document g |

I.I ML 2 sni IHE
Usermn Puncinn

System
requirements
specification

System models

System evolution

Appendices

This should describe the functional and nonfunctional requirements in more detail.
If necessary, further detail may also be added to the nonfunctional requirements.
Interfaces to other systems may be defined.

This might include graphical system models showing the relationships between
the system components and the system and its environment. Examples of
possible models are object models, data-flow models, or semantic data models.

This should describe the fundamental assumptions on which the system is based,
and any anticipated changes due to hardware evolution, changing user needs,
and so on. This section is useful for system designers as it may help them avoid
design decisions that would constrain likely future changes to the system.

These should provide detailed, specific information that is related to the
application being developed; for example, hardware and database descriptions.
Hardware requirements define the minimal and optimal configurations for the
system. Database requirements define the logical organization of the data used
by the system and the relationships between data.

Several indexes to the document may be included. As well as a normal alphabetic
index, there may be an index of diagrams, an index of functions, and so on.

Chapter 4 Requirements engineering 21

Users of a requirements document

UMI.I AL THE
Usermn Puncinn
'L_J\lﬂllnlnf‘

‘i

W FACy,

AP

NRTIS I,
%,

S
g o

/
s &
RTC

System
oustomers

Specfy the requirements and
read them to check that they
miest their needs. Customers
spacify changes to the

requirements.

Mamagers

Use the requirements
document to plan a bid for
the system and to plan the
system development process.

System

ENZINEeErs

Systemn test

ENZINSErs

b b

Systern
maintemance
ENZINaers

Use the requirements to
understand what system is
to be developed.

Use the requirements to
develop validation tests for

the system.

Use the requirements to
understand the system and
the relationships between its

parts.

Chapter 4 Requirements engineering

22

Ways of writing a system requirements

specification

I.l ML 2 sni IHE
wrmn Maxcing

Natural language

Structured natural
language

Design description
languages

Graphical notations

Mathematical
specifications

T
&

P o)
4 s
2 / F
2 &
s =4 ot
5 &
Ta5 pas®

The requirements are written using numbered sentences in natural language.
Each sentence should express one requirement.

The requirements are written in natural language on a standard form or
template. Each field provides information about an aspect of the
requirement.

This approach uses a language like a programming language, but with more
abstract features to specify the requirements by defining an operational
model of the system. This approach is now rarely used although it can be
useful forinterface specifications.

Graphical models, supplemented by text annotations, are used to define the
functional requirements for the system; UML use case and sequence
diagrams are commonly used.

These notations are based on mathematical concepts such as finite-state
machines or sets. Although these unambiguous specifications can reduce
the ambiguity in a requirements document, most customers don’t understand
a formal specification. They cannot check that it represents what they want
and are reluctantto acceptit as a system contract

Chapter 4 Requirements engineering 23

Natural language specification

< Used for writing requirements because it is expressive,
Intuitive and universal. This means that the requirements
can be understood by users and customers.

< Guidelines:

Invent a standard format and use it for all requirements.

Use language in a consistent way. Use shall for mandatory
requirements, should for desirable requirements.

Use text highlighting to identify key parts of the requirement.
Avoid the use of computerjargon.

Include an explanation (rationale) of why a requirement is
necessary.

Chapter 4 Requirements engineering 24

Problems with natural language

< Lack of clarity

= Precision is difficult without making the document difficult to
read.

< Requirements confusion
» Functional and non-functional requirements tend to be mixed-up.

< Requirements amalgamation

= Several different requirements may be expressed together.

Example requirements for the insulin pump
software system

3.2 The system shall measure the blood sugar and deliver
insulin, if required, every 10 minutes. (Changes in blood sugar
are relatively slow so more frequent measurement is
unnecessary; less frequent measurement could lead to
unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with
the conditionsto be tested and the associated actions defined
in Table 1. (A self-test routine can discover hardware and
software problems and alert the user to the fact the normal
operation may be impossible.)

Chapter 4 Requirements engineering

26

Structured natural language specification

< Works well for some types of requirements e.g.
requirements for embedded control system but is
sometimes too rigid for writing business system
requirements.

< Example notations:

= Form-based specification
= Tabular specification

Chapter 4 Requirements engineering 27

A form-based specification of a requirement
for an insulin pump

Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: safe sugar level.

Description

Computes the dose of insulin to be delivered when the current
measured sugar level is in the safe zone between 3 and 7 units.

Inputs Current sugar reading (r2); the previous two readings (rO
and r1).

Source Current sugar reading from sensor. Other readings
from memory.

Outputs CompDose—the dose in insulin to be delivered.
Destination Main control loop.

:‘:7 Chapter 4 Requirements engineering 28

A structured specification of a requirement
for an insulin pump

Action

CompDose is zero if the sugar level is stable or falling or if the
level is increasing but the rate of increase is decreasing. If the
level is increasing and the rate of increase is increasing, then
CompDose is computed by dividing the difference between the
current sugar level and the previous level by 4 and rounding the
result. If the result, is rounded to zero then CompDose is set to
the minimum dose that can be delivered.

Requirements

Two previous readings so that the rate of change of sugar level
can be computed.

Pre-condition

The insulin reservoir contains at least the maximum allowed
single dose of insulin.

Post-condition r0 is replaced by r1 then r1 is replaced by r2.
Side effects None.

Chapter 4 Requirements engineering

29

Tabular specification of computation for an
insulin pump

Sugar level falling (r2 < r1) CompDose =0

Sugar level stable (r2 = r1) CompDose =0

Sugar level increasing and rate of CompDose =0
increase decreasing
((r2—=r1) < (r1 —=r0))

Sugar level increasing and rate of CompDose =

increase stable or increasing round ((r2 — r1)/4)
((r2—=r1) 2 (r1 — r0)) If rounded result = 0 then
CompDose =

MinimumDose

Chapter 4 Requirements engineering 30

Use cases

< UML Use-cases are a scenario based technique which
identify the actors in an interaction and which describe
the interaction itself.

<> A set of use cases should describe all possible
Interactions with the system.

< High-level graphical model supplemented by more
detailed tabular description (see Part 4 of this lecture).

< UML Activity diagrams and Sequence diagrams may be
used to add detail to use-cases by showing the
sequence of event processing in the system.

Chapter 4 Requirements engineering 31

Use cases for the MHC-PMS

Register
patient
View
personal info.

View record

Edit record
Setup
consultation

Chapter 4 Requirements engineering 32

Export
statistics
Generate

report

Manager
Medical receptionist

Murse

Requirements Engineering Process

Lecture 2/Part 3

Chapter 4 Requirements engineering 33

Outline

< Requirements elicitation and analysis
< Requirements validation
< Requirements management

Chapter 4 Requirements engineering 34

Requirements engineering processes

<> The processes used for RE vary widely depending on
the application domain, the people involved and the
organisation developing the requirements.

< However, there are a number of generic activities
common to all processes

» Requirements elicitation and analysis;
= Requirements validation;
= Requirements management.

< In practice, RE is an iterative activity in which these
processes are interleaved.

Chapter 4 Requirements engineering 35

U.\ﬂ.I B IHE

A spiral view of the requirements e

L v i

engineering process ==

Requirements
specification

System requirements
specification and
madeling

Lksaf requirernents
specification

Business requirements
specification

|I Requirements
walidation

Requirements
elicitation

User
redquirerments
alicitation

Protatyping

System requirements —
document

Chapter 4 Requirements engineering 36

Requirements elicitation and analysis

< Software engineers work with system stakeholders:

= end-users, managers, maintenance engineers, domain experts,
trade unions, etc.

<> To find out about:

= the application domain,

= the services that the system should provide,
= therequired system performance,

= hardware constraints,

= othersystems, etc.

Chapter 4 Requirements engineering 37

Stakeholders in the MHC-PMS

< Patients whose information is recorded in the system.

< Doctors who are responsible for assessing and treating
patients.

<> Nurses who coordinate the consultations with doctors
and administer some treatments.

< Medical receptionists who manage patients’
appointments.

< IT staff who are responsible for installing and maintaining
the system.

Chapter 4 Requirements engineering 38

Stakeholders in the MHC-PMS S

< Amedical ethics manager who must ensure that the
system meets current ethical guidelines for patient care.

< Health care managers who obtain management
information from the system.

< Medical records staff who are responsible for ensuring
that system information can be maintained and
preserved, and that record keeping procedures have
been properly implemented.

Chapter 4 Requirements engineering 39

U;ﬁ.l B IHE

Turmn Maxcing

The requirements elicitation and analysis
process

1. Requirements
discovery

2. Requirements
classification and
organization

4. Requirements
spedification

3. Requirements
prioritization and
negotiation

V Chapter 4 Requirements engineering 40
yy N

Process activities

< Requirements discovery
= |nteracting with stakeholders to discover their requirements.
<> Requirements classification and organisation

= Groups related requirements and organises them into coherent
clusters.

<> Prioritisation and negotiation
» Prioritising requirements and resolving requirements conflicts.
< Requirements specification

» Requirements are documented and input into the next round of
the spiral.

Requirements prioritisation

<> MoSCoW criteria

= Must have — mandatory requirement fundamental to the system
= Should have — important requirement that may be omitted

= Could have — truly optional requirement

= Want to have — requirement that can wait for later releases

<> RUP attributes

» Status — Proposed/Approved/Rejected/Incorporated
Benefit — Critical/Important/Useful

Effort — number of person days/functional points/etc.
Risk — High/Medium/Low

Stability — High/Medium/Low

Target Release — future product version

Problems of requirements elicitation = ; 5

< Stakeholders don’t know what they really want.
<> Stakeholders express requirements in their own terms.

< Different stakeholders may have conflicting
requirements.

< Organisational and political factors may influence the
system requirements.

< The requirements change during the analysis process.
New stakeholders may emerge and the business
environment may change.

Chapter 4 Requirements engineering 43

Interviewing

<> Formal or informal interviews with stakeholders are part
of most RE processes.

< Types of interview

» Closed interviews based on pre-determined list of questions
= Openinterviews where various issues are explored with
stakeholders.

< Effective interviewing

= Be open-minded, avoid pre-conceived ideas about the
requirements and are willing to listen to stakeholders.

= Promptthe interviewee to get discussions going using a
springboard question, a requirements proposal, or by working
together on a prototype system.

Chapter 4 Requirements engineering 44

Ethnography

< A social scientist spends a considerable time observing
and analysing how people actually work.

<> People do not have to explain or articulate their work.

<> Social and organisational factors of importance may be
observed.

< Ethnographic studies have shown that work is usually
richer and more complex than suggested by simple
system models.

Chapter 4 Requirements engineering 45

Requirements validation

<> Concerned with demonstrating that the requirements
define the system that the customer really wants.

< Requirements error costs are high so validation is very
Important

» Fixing a requirements error after delivery may cost up to 100
times the cost of fixing an implementation error.

Chapter 4 Requirements engineering 46

Requirements validation

< Consistency

= Are there any requirements conflicts?

<> Completeness

= Are all functions required by the customerincluded?

<> Realism

= Canthe requirements be implemented given available budget
and technology

<> Verifiability

= Canthe requirements be checked?

Chapter 4 Requirements engineering a7

Requirements validation techniques

< Requirements reviews
» Systematic manual analysis of the requirements.

< Prototyping

= Using an executable model of the system to check requirements.

<> Test-case generation
= Developing tests for requirements to check testability.

Chapter 4 Requirements engineering 48

Requirements reviews

< Regular reviews should be held while the requirements
definition is being formulated.

< Both client and contractor staff should be involved in
reviews.

<> Reviews may be formal (with completed documents) or
informal. Good communications between developers,
customers and users can resolve problems at an early
stage.

Chapter 4 Requirements engineering 49

Review checks =

<> Besides consistency, completeness, realism and
verifiability, reviews check:

< Comprehensibility

» |sthe requirement properly understood?

< Traceability

» |sthe origin of the requirement clearly stated?
< Adaptability

= Canthe requirement be changed without a large impact on other
requirements?

:‘7 Chapter 4 Requirements engineering 50

Requirements management

< Requirements management is the process of managing

changing requirements during the requirements
engineering process and system development.

< New requirements emerge as a system is being
developed and after it has gone into use.

<> You need to keep track of individual requirements and
maintain links between dependent requirements so
that you can assess the impact of requirements
changes. You need to establish a formal process for

making change proposals and linking these to system
requirements.

Chapter 4 Requirements engineering

51

Requirements evolution

Initial
understanding
of problem

Initial

Changed
understanding
of problem

Changed

requirements

requirements

Time

V Chapter 4 Requirements engineering
% M &
SN

52

Changing requirements

<> The business and technical environment of the system
always changes after installation.
= New hardware may be introduced, it may be necessary to
interface the system with other systems, business priorities
may change (with consequent changes in the system support

required), and new legislation and regulations may be
Introduced that the system must necessarily abide by.

< The people who pay for a system and the users of that
system are rarely the same people.

< Large systems usually have a diverse user community,
with many users having different requirements and
priorities that may be conflicting.

Chapter 4 Requirements engineering 53

Requirements management planning

< Establishes the level of requirements management detail
that is required.

< Requirements management decisions:

» Requirements identification Each requirement must be uniquely
identified so that it can be cross-referenced with other requirements.

= A change managementprocess This is the set of activities that
assess the impact and cost of changes.

» Traceability policies These policies define the relationships
between requirements, and between the requirements and the
system design that should be recorded.

» Tool supportTools that may be used range from specialist
requirements management systems to spreadsheets and simple
database systems.

:‘7 Chapter 4 Requirements engineering 54

Requirements change management

< Deciding if a requirements change should be accepted

= Problem analysis and change specification

» During this stage, the problem or the change proposal is analyzed
to check that it is valid. This analysis is fed back to the change
requestor who may respond with a more specific requirements
change proposal, or decide to withdraw the request.

= Change analysis and costing

» The effect of the proposed change is assessed using traceability
information and general knowledge of the system requirements.
Once this analysis is completed, a decision is made whether or not
to proceed with the requirements change.

» Change implementation

* The requirements document and the system design and
implementation are modified. Ideally, the document should be

Py organized so that changes can be easily implemented.
:‘7 , Chapter 4 Requirements engineering 55

Key points

<> You can use a range of techniques for requirements
elicitation including interviews, use-cases discussion
and ethnography.

< Requirements validation is the process of checking the
requirements for validity, consistency, completeness,
realism and verifiability.

< Business, organizational and technical changes
inevitably lead to changes to the requirements for a
software system. Requirements management is the
process of managing and controlling these changes.

Chapter 4 Requirements engineering 56

UML Use Case Diagram

Lecture 2/Part 4

Chapter 4 Requirements engineering 57

Outline

< Use Case modelling

= System boundary — subject
= Usecases
= Actors

< Textual Use Case specification

< Advanced Use Case modelling

= Actor generalisation

= Use case generalisation
= «include»

= «extend»

Chapter 4 Requirements engineering

58

Use case modelling

< Use case modelling is a form of requirements
engineering

<> Use case modelling proceeds as follows:

= Findthe system boundary
= Find actors
= Find use cases

» Use case specification
» Scenarios

< It lets us identify the system boundary, who or what uses
the system, and what functions the system should offer

© Clear View Training 2010 v2.6 59

The subject m N

B
< Before we can build anything, we need to know: g pject
= Where the boundary of the system lies \
= Who or what uses the system SystemName
= What functions the system should offer to its
users

< We create a Use Case model containing:
= Subject — the edge of the system

» also known as the system boundary
= Actors — who or what uses the system

= Use Cases - things actors do with the system
= Relationships — between actors and use cases

© Clear View Training 2010 v2.6 60

What are actors? e,

< An actor is anything that interacts directly with the
system

= Actors identify who or what uses the system and so indicate
where the system boundary lies

< Actors are external to the system

< An Actor specifies a role that some external entity adopts
when interacting with the system

«actor»
Customer

Customer

© Clear View Training 2010 v2.6 61

Identifying Actors

< When identifying actors ask:

Who or what uses the system?

What roles do they play in the interaction?

Who installs the system?

Who starts and shuts down the system?

Who maintains the system?

What other systems use this system?

Who gets and provides information to the system?
Does anything happen at a fixed time?

© Clear View Training 2010 v2.6

Time

62

What are use cases?

< Ause case is something an actor needs the system to
do. It is a “case of use” of the system by a specific actor

< Use cases are always started by an actor

= The primary actor triggers the use case

= Zero or more secondary actors interact with the use case in
some way

< Use cases are always written from the point of view of
the actors

PlaceOrder GetStatusOnOrder

© Clear View Training 2010 v2.6 63

Identifying use cases

< Start with the list of actors that interact with the system

< When identifying use cases ask:

What functions will a specific actor want from the system?

Does the system store and retrieve information? If so, which
actors trigger this behaviour?

What happens when the system changes state (e.g. system start
and stop)? Are any actors notified?

Are there any external events that affect the system? What
notifies the system about those events?

Does the system interact with any external system?
Does the system generate any reports?

© Clear View Training 2010 v2.6 64

l_l ML 2 sni IHE
Usermn Puncinn

The use case diagram e |

Mail Order System use case diagram)

Mail Order System ___— subjectname
communication
relationship system boundary
-
PlaceOrder
/ ShipProduct
CancelOrder
T oo
ShippingCompany
Customer \ CheckOrderStatus
actor SendCatalogue
™ usecase
Dispatcher

i‘:; © Clear View Training 2010 v2.6 65

Textual use case specification

use case name

use case identifier

brief description

the actors involved in the
use case

Use case: PaySalesTax

ID: 1

Brief description:
Pay Sales Tax to the Tax Authority at the end of the business quarter.

Primary actors:
Time

the system state before
the use case can begin

the actual steps of the use {
case

Secondary actors:
TaxAuthority

Preconditions:
1.t is the end of the business quarter.

the system state when the
use case hasfinished

alternative flows

s 1
- K \;,J/',
g -y,
: \=f =
4 E
3 &
s &
N VA
5 S
Tas aas®

Main flow: /implicittime actor

1. Theuse case starts whenit is the end of the business quarter.

2. The systemdeterminesthe amountof Sales Tax owed to the Tax
Authority.

3. Thesystem sendsan electronic paymentto the Tax Authority.

Postconditions:
1. The Tax Authority receives the correctamount of Sales Tax.

Alternative flows:
None.

© Clear View Training 2010 v2.6 66

Naming use cases

<> Use cases describe something that happens
< They are named using verbs or verb phrases

<> Naming standard ': use cases are named using
UpperCamelCase e.g. PaySalesTax

1 UML 2 does not specify any naming standards.
All naming standards here are based on industry best practice.

© Clear View Training 2010 v2.6 67

Pre and postconditions

< Preconditions and postconditions
are constraints

<> Preconditions constrain the state of
the system before the use case can
start

< Postconditions constrain the state
of the system afterthe use case has
executed

< If there are no preconditions or
postconditions write "None" under
the heading

Use case: PlaceOrder

Preconditions:
1. A valid user has logged on to the
system

R —
S

Postconditions:
1. The order has been marked
confirmed and is saved by the system

© Clear View Training 2010 v2.6 68

Main flow = : . 2

<number> The <something> <some action>

< The flow of events lists the stepsin a use case

< Italways begins by an actor doing something

= Agood way to start a flow of events is:
1) The use case starts when an <actor> <function>

<> The flow of events should be a sequence of short steps that are:

= Declarative
= Numbered,
= Time ordered

<> The main flow is always the happy day or perfect world scenario

= Everything goes as expected and desired, and there are no errors,
deviations and interrupts

... Alternatives can be shown by branching or by listing under Alternative

ﬂOWS (See Iater) © Clear View Training 2010 v2.6

69

Branching within a flow: IF

I..l.ﬂL!nn HE
Usermn Puncinn
i [

< Use the keyword IF to

indicate alternatives

within the flow of events

= There must be a
Boolean expression
immediately after IF

Use indentation and
numbering to indicate
the conditional part of
the flow

Use ELSE to indicate
what happens if the
condition is false

Use case: ManageBasket

ID: 2

Brief description:
The Customer changes the quantity of an item in the basket.

Primary actors:
Customer

Secondary actors:
None.

Preconditions:
1. The shopping basket contents are visible.

Main flow:
1. Theuse case starts when the Customer selects an item in the
basket.

2. |IF the Customer selects "delete item"
2.1 The system removes the item from the basket.
3. IF the Customer types in a new quantity

3.1 Thesystem updates the quantity of the item in the basket.

Postconditions:
None.

Alternative flows:
None.

© Clear View Training 2010 v2.6 70

Repetition within a flow: FOR

l_l ML 2 sni IHE
wrmn Maxcing

<> We can use the

keyword FOR to
indicate the start of a
repetition within the
flow of events

The iteration

expression immediately
after the FOR
statement indicates the
number of repetitions of
the indented text
beneath the FOR
statement.

Use case: FindProduct

ID:3

Brief description:
The system finds some products based on Customer search criteria and
displays themto the Customer.

Actors:
Customer

Preconditions:
None.

Main flow:
1. The use case starts when the Customer selects "find product".
2. The system asks the Customer for search criteria.
3. The Customer enters the requested criteria.
4. The system searches for products that match the Customer's criteria.
5. FOR each product found
5.1. The system displays a thumbnail sketch of the product.
5.2. The system displays a summary of the product details.
5.3. The system displays the productprice.

Postconditions:
None.

Alternative flows:
NoProductsFound

© Clear View Training 2010 v2.6 71

I.l ML 2 sni IHE
Usermn Puncinn
i [

Repetition within a flow: WHILE =N

<> We can use the Use case: ShowCompanyDetails

keyword WHILE to D:4
indicate that something | 3/ef descrieton:

The system displays the company details to the Customer.

repeats while some Srmary s
Boolean condition is Customer

Secondary actors:

true None

Preconditions:
None.

Main flow:
1. The use case starts when the Customer selects "show company details".
2. The system displays a web page showing the company details.
3. WHILE the Customer is browsing the company details
4. The system searches for products that match the Customer's criteria.
4.1. The system plays some background music.
4.2. The system displays special offersin a banner ad.

Postconditions:

1. The system has displayed the company details.
2. The system has played some background music.
3. The systems has displayed special offers.

Alternative flows:
None.

© Clear View Training 2010 v2.6 72

Branching: Alternative flows m\; o

< We may specify one or more
alternative flows through the flow of
events:

Use case

= Alternative flows capture errors,
branches, and interrupts

= Alternative flows never return to
the main flow

N

alternative flows

< Potentially very many alternative
flows! You need to manage this:

» Pick the most important alternative
flows and document those.

= [fthere are groups of similar main flow
alternative flows - document one
member of the group as an @

exemplarand (if necessary) add
notes?o this e>(<plaining hor\sllv)the Only document enough alternative flows to

others differ from it. clarify the requirements!

o)

_/
© Clear View Training 2010 v2.6 73

l..l ML 2 wwmie

Usermn Puncinn
i [

Referencing alternative flows = |

Use case: CreateNewCustomerAccount

ID: 5

<> List the names of the e T
alte rn atlve f IOWS at th e The system creates a new account for the Customer.

Primary actors:

end of the use case Customer

Secondary actors:

. . None.
< Find alternative flows Precondons:
. . one.
by examining each Main flow:
" I 1. The use case begins when the Customer selects "create
step in the main flow The use case begins wh
an d |Ooki n g for- 2. WHILE the Customer details are invalid
2.1. The system asks the Customer to enter his or her details
- I comprising email address, password and password
Alternatlves again for confirmation.
- EXCG ptionS 2.2 The system validates the Customer details.

3. The system creates a new account for the Customer.

= [nterrupts

Postconditions:
1. A new account has been created for the Customer.

Alternative flows:
. InvalidEmailAddress
Alternative InvalidPassword
flows Cancel

© Clear View Training 2010 v2.6 74

l..l ML 2 wwmie

Usermn Puncinn
i [

An alternative flow example = |

notice how we
name and number

Alternative flow: CreateNewCustomerAccount:InvalidEmailAddress

alternative flows ID: 5.1

Brief description:
The system informs the Customerthat they have entered an invalid
email address.

Primary actors:
Customer

Secondary actors:
None.

Preconditions:
1. The Customer has entered an invalid email address

always indicate how the Alternative flow:
alternative flow begins. > 1. The alternative flow begins after step 2.2. of the main flow.
In this case it starts after 2. The system informs the Customer that he or she entered an

.) invalid email address.
step 2.2 in the main flow vl !

Postconditions:
None.

< Thealternative flow may be triggered instead of the main flow - started by an actor
< Thealternative flow may be triggered aftera particular step in the main flow - after

< Thealternative flow may be triggered at any time during the main flow - at any time
© Clear View Training 2010 v2.6 75

Advanced Use Case modelling

< We have studied basic use case analysis, but there are
relationships that we have still to explore:

= Actor generalisation

= Use case generalisation

= «include» — between use cases
= «extend» — between use cases

© Clear View Training 2010 v2.6 76

Actor generalization - example

<> The Customer and the
Sales Agent actors are

very similar
< They both interact with .

List products, Order
products, Accept payment Customer

<> Addltlo_nally, the S_ales

Agent interacts with
Calculate commission /
< Our diagram is a mess — /
—

can we simplify it?

CalculateCommission

SalesAgent

© Clear View Training 2010 v2.6 77

U ML 2w e
Usermn Puncinn
i [

Actor generalisation =
]
abstractactor
< Iftwo actors communicate /
with the same set of use Sales system
cases in the same way, ancestor
then we can express this as or parent - ListProducts
a generalisation to another
(possibly abstract) actor Purchaser

<~ The descendent actors generalisation \ OrderProducts
inherit the roles and \
O

relationships to use cases AcceptPayment
held by the ancestor actor O

< We can substitute a —CalculateCommission
descendent actor anywhere
the ancestor actor is Customer SalesAgent
expected_ This is the descendents or children

substitutability principle
Use actor generalization when it simplifies

the model

. ©

© Clear View Training 2010 v2.6 78

Use case generalisation

l_l ML 2 sni IHE
wrmn Maxcing

<> The ancestor use case must be a more general case of one or more
descendant use cases

<> Child use cases are more specific forms of their parent

<> They can inherit, add and override features of their parent

Use case generalization semantics

Use case element | Inherit | Add | Override
Relationship Yes Yes | No
Extension point Yes Yes | No
Precondition Yes Yes | Yes
Postcondition Yes Yes | Yes
Step in main flow | Yes Yes | Yes
Alternative flow Yes Yes | Yes

5
o 3RTIS Wy,
& 3
s -
A =7 A
7 Z
3 /F
, &
oy p=Y o
: =
EETRIC

© Clear View Training 2010 v2.6

Customer

Sales system

FindProduct

FindBook FindCD

79

«include»

L|.11L 1w iie

Usermn Puncinn
i [

<> The base use case executes
until the point of inclusion:
include(InclusionUseCase)

Control passesto the
inclusion use casewhich
executes

When the inclusion use case
is finished, control passes
backto the base use case
which finishes execution

< Note:

Base use cases are not
complete withoutthe
includeduse cases

Inclusion use cases may be
complete use cases, orthey
may justspecify a fragment
of behaviourforinclusion

o, €lS€Where

Manager

Personnel System

base use case

ChangeEmployeeDetails

~

ViewEmployeeDetails

/”’ «inCIUde» inclusion
DeleteEmployeeDetails)\~ .
ploy include use case
relationship

S

When use cases share common behaviour
we can factor this out into a separate
inclusion use case and «include» it in base
use cases

/
© Clear View Training 2010 v2.6 80

«include» example

E.I ML 2 sni IHE
Usarmn I

Use case: ChangeEmployeeDetails

Use case: FindEmployeeDetails

ID: 1

ID: 4

Brief description:
The Managerchangesthe employee details.

Brief description:
The Managerfinds the employee details.

Primary actors:
Manager

Primary actors:
Manager

Seconday actors:
None

Seconday actors:
None

Preconditions:
1. The Manageris logged onto the system.

Preconditions:
1. The Manageris logged on to the system.

Main flow:
1. include(FindEmployeeDetails).

2. The systemdisplays the employee details. <=

3. The Managerchangesthe employee
details.

Main flow:
1. The Managerenters the employee'sID.
2. The systemfinds the employee details.

|

Postconditions:

Postconditions:
1. The system has found the employee details.

. Alternative flows:
1. The employee details have beenchanged. None
Alternative flows:
None.
<—7 © Clear View Training 2010 v2.6 81

«extend»

U ML 2w e
Usermn Puncinn
i [

< «extend» is a way of adding
new behaviour into the base
use case by inserting
behaviour from one or more
extension use cases

= The base use case specifies
one or more extension points
in its flow of events

The extension use case may
contain several insertion
segments

The «extend» relationship
may specify which of the base
use case extension points it is
extending

Librarian

i

Library system
base use case

ReturnBook k<

N

“s_«extend»
A

N

BorrowBook

extend

relationship ~€Xtension

FindBook Use case

)

o)

The extension use case inserts behaviourinto
the base use case.

The base use case provides extension points,
but does not know about the extensions.

—/

© Clear View Training 2010 v2.6

82

Base use case

I.l ML 2 sni IHE

Usermn Puncinn

base use case

ReturnBook

Use case: ReturnBook

ID:9

Brief description:
The Librarian returns a borrowed book.

extension points

«extend»
(overdueBook)

extension /

point name

7

extension use case

Primary actors:
Librarian

Secondary actors:
None.

Preconditions:
1. The Librarian is logged on to the system.

extension

point \

Main flow:
1. The Librarian enters the borrower's ID number.
2. The system displays the borrower's details including the list of
borrowed books.
. 3. The Librarian finds the book to be returned in the list of books.
extension point: overdueBook

4. The Librarian returns the book.

Postconditions:
1. The book has been returned.

Alternative flows:

None.

< Thereis an extension point overdueBook justbefore step 4 of the flow of events

< Extension points are notnumbered, as they are not part of the flow
© Clear View Training 2010 v2.6

83

Extension use case

L|.11L 1w iie

Usermn Puncinn
i [

«extend»
(overdueBook)

the single insertion
segmentin IssueFineis
inserted at the
overdueBook insertion
pointin the ReturnBook
use case

ReturnBook

extension points
overdueBook

Extension Use case: IssueFine

ID:10

Brief description:
Segment 1: The Librarian records and prints out a fine.

Primary actors:
Librarian

Secondary actors:
None.

Segment 1 preconditions:
1. The returned book is overdue.

Segment 1 flow:

1. The Librarian enters details of the fine into the system.
2. The system prints out the fine.

Segment 1 postconditions:
1. The fine has been recorded in the system.
2. The system has printed out the fine.

< Extension use cases have one or more insertion segments which are
behaviour fragments that will be inserted at the specified extension points in
the base use case

© Clear View Training 2010 v2.6 84

Multiple insertion points

I.I ML 2 sni IHE

Usermn Puncinn
i [

Extension Use case: IssueFine

Returnm

ID: 10

extension points
overdueBook
payFine

Brief description:
Segment 1: The Librarian records and prints out a fine.
Segment 2: The Librarian accepts payment for a fine.

«extend»

Primary actors:
Librarian

(overdueBook, payFine)

Secondary actors:
None.

/

the first segment in IssueFine is

Segment 1 preconditions:
1. The returned book is overdue.

inserted at overdueBook and
the second segment at payFine

Segment 1 flow:
1. The Librarian enters details of the fine into the system.
2. The system prints out the fine.

Segment 1 postconditions:
1. The fine has been recorded in the system.
2. The system has printed out the fine.

If more than one extension point is

Segment 2 preconditions:
1. A fine is due from the borrower.

specified in the «extend» relationship
then the extension use case must
have the same number of insertion

Segment 2 flow:
1. The Librarian accepts payment for the fine from the borrower.
2. The Librarian enters the paid fine in the system.
3. The system prints out a receipt for the paid fine.

segments

© Clear View Trait

Segment 2 postconditions:
1. The fine is recorded as paid.

85

1iggEB‘i(§\/[§t%m has printed a receipt for the fine.

U ML 2w e
Usermn Puncinn
i [

Conditional extensions e [

ReturnBook

extension points
overdueBook

payFine
«extend» ," N «extend»
(overdueBook) ’,’ v (overdueBook)
[firstoffence] N [ffirstoffence]

! \

1 \
1 \

IssueWarning

condition

< We can specify conditions on «extend» relationships

= Conditions are Boolean expressions
= The insertion is made if and only if the condition evaluates to true

© Clear View Training 2010 v2.6

86

Requirements tracing

<> Given that we can capture functional requirements in a
requirements model and in a use case model we need
some way of relating the two

Use cases

< There is a many-to-many relationship between

requirements and use cases: §
= One use case covers many individual functional requirements %-
= One functional requirement may be realised by many use 3
Q)
cases =1
. . w
< Hopefully we have CASE support for requirements tracing: i
= With UML tagged values, we can assign numbered Requirements
requirements to use cases Traceability
= We can capture use case names in our Requirements Matrix
Database

< Ifthere is no CASE support, we can create a Requirements
Traceability matrix

© Clear View Training 2010 v2.6 87

When to use use case analysis

<> Use cases describe system behaviour from the point of
view of one or more actors. They are the best choice
when:

» The system is dominated by functional requirements

» The system has many types of user to which it delivers different
functionality

» The system has many interfaces

<> Use cases are designed to capture functional
requirements. They are a poor choice when:

» The system is dominated by non-functional requirements
= The system has few users
.. ™ The system has few interfaces

© Clear View Training 2010 v2.6 88

Key points

<> We have seen how to capture functional requirements
with use cases

<> We have looked at:

= Usecases

Actors

Branching with IF

Repetition with FOR and WHILE

Alternative flows

© Clear View Training 2010 v2.6 89

Key points

< We have learned about techniques for advanced use
case modelling:
= Actor generalisation

= Use case generalisation
= «include»

= «extend»

< Use advanced features with discretion only where they
simplify the model!

© Clear View Training 2010 v2.6 90

