
Non-functional Requirements Engineering 

Lecture 3/Part 1 

1 Chapter 4 Requirements engineering 



Outline 

 Non-functional requirements classification 

 Discussion of selected 15 non-functional requirements 

 Non-functional requirements implementation 

 UML Activity diagram 

 

2 Chapter 4 Requirements engineering 



Functional and non-functional requirements 

 Functional requirements 

 Statements of services the system should provide, how the 
system should react to particular inputs and how the system 
should behave in particular situations. 

 May state what the system should not do. 

 Non-functional requirements 

 Properties and constraints on the services offered by the 
system such as timing, reliability and security constraints, 
constraints on the development process, platform, standards, etc. 

 Product, organisational and external requirements. 

 Often apply to the system as a whole rather than individual 
features or services. 

3 Chapter 4 Requirements engineering 



Non-functional requirements classification 

 Product requirements 

 Requirements which specify that the delivered product must 

behave with a certain quality e.g. execution speed, reliability, etc. 

 Organisational requirements 

 Requirements which are a consequence of organisational 

policies and procedures e.g. process standards used, 

implementation requirements, etc. 

 External requirements 

 Requirements which arise from factors which are external to the 

system and its development process e.g. interoperability 

requirements, legislative requirements, etc. 

4 Chapter 4 Requirements engineering 



Examples of non-functional requirements in 

the MHC-PMS  

Product requirement 
The MHC-PMS shall be available to all clinics during normal working 
hours (Mon–Fri, 08.30–17.30). Downtime within normal working hours 
shall not exceed five seconds in any one day. 
 
Organizational requirement 
Users of the MHC-PMS system shall authenticate themselves using 
their health authority identity card. 
 
External requirement 
The system shall implement patient privacy provisions as set out in 
HStan-03-2006-priv.  
 

5 Chapter 4 Requirements engineering 



Types of non-functional requirements 

(excerpt)  

6 Chapter 4 Requirements engineering 



Product requirements 

 Dependability 

 Availability 

 Reliability 

 Safety 

 Security 

 Efficiency 

 Performance 

 Space/resource utilization 

Modifiability 

 Testability 

 Usability 
7 

 Resilience 

 Robustness 

 Understandability 

 Adaptability 

Modularity 

 Complexity 

 Portability 

 Reusability 

 Learnability 

Chapter 24 Quality Management 



Principal dependability attributes 

8 Chapter 11 Security and Dependability 



Availability 

 The probability that a system, at a point in time, will be 
operational and able to deliver the requested services 
 

 Concerned with 

 How long the system should be operating without a failure. 

 How long a system is allowed to be out of operation. 

 Can be expressed quantitatively  

 Using mean time to failure (MTTF) and repair (MTTR) as 
MTTF / (MTTF + MTTR). 

 I.e. availability of 0.999 means that the system is up and running 

for 99.9% of the time.   

 

 9 Chapter 11 Security and Dependability 



Reliability 

 The probability of failure-free system operation over a 
specified time in a given environment for a given 
purpose 
 

 Concerned with 

 How system fault/error/failure is detected. 

 How frequently system fault/error/failure may occur. 

 What happens when a fault/error/failure occurs. 

 Can be expressed quantitatively  

 Using the probability of failure on demand (POFOD) within a 
single service or usage scenario execution, as 1 - POFOD. 

 

 
10 Chapter 11 Security and Dependability 



Reliability terminology  

Term Description 

Human error or 

mistake 

Human behavior that results in the introduction of faults into a system. For 

example, in the wilderness weather system, a programmer might decide that the 
way to compute the time for the next transmission is to add 1 hour to the current 
time. This works except when the transmission time is between 23.00 and 

midnight (midnight is 00.00 in the 24-hour clock). 
System fault A characteristic of a software system that can lead to a system error. The fault is 

the inclusion of the code to add 1 hour to the time of the last transmission, 
without a check if the time is greater than or equal to 23.00. 

System error An erroneous system state that can lead to system behavior that is unexpected 

by system users. The value of transmission time is set incorrectly (to 24.XX 
rather than 00.XX) when the faulty code is executed. 

System failure An event that occurs at some point in time when the system does not deliver a 

service as expected by its users. No weather data is transmitted because the 
time is invalid. 

11 Chapter 11 Security and Dependability 



Availability and reliability 

 It is sometimes possible to subsume system availability 
under system reliability 

 Obviously if a system is unavailable it is not delivering the 
specified system services. 

 However, it is possible to have systems with low reliability 
that must be available.  

 So long as system failures can be repaired quickly and does not 
damage data, some system failures may not be a problem. 

 Availability is therefore best considered as a separate 
attribute reflecting whether or not the system can deliver 
its services. 

12 Chapter 11 Security and Dependability 



Safety 

 Safety is a property of a system that reflects the system’s 

ability to operate, normally or abnormally, without danger 

of causing human injury or death and without damage to 

the system’s environment. 

 It is important to consider software safety as most 

devices whose failure is critical now incorporate 

software-based control systems.  

 Safety requirements are often exclusive requirements 

i.e. they exclude undesirable situations rather than 

specify required system services. These generate 

functional safety requirements. 

13 Chapter 11 Security and Dependability 



Safety terminology  

Term Definition 

Accident (or mishap) An unplanned event or sequence of events which results in human death or injury, 

damage to property, or to the environment. An overdose of insulin is an example of an 

accident. 

Hazard A condition with the potential for causing or contributing to an accident. A failure of the 

sensor that measures blood glucose is an example of a hazard. 

Damage A measure of the loss resulting from a mishap. Damage can range from many people 

being killed as a result of an accident to minor injury or property damage. Damage 

resulting from an overdose of insulin could be serious injury or the death of the user of 

the insulin pump. 

Hazard severity An assessment of the worst possible damage that could result from a particular hazard. 

Hazard severity can range from catastrophic, where many people are killed, to minor, 

where only minor damage results. When an individual death is a possibility, a 

reasonable assessment of hazard severity is ‘very high’. 

Hazard probability The probability of the events occurring which create a hazard. Probability values tend to 

be arbitrary but range from ‘probable’ (say 1/100 chance of a hazard occurring) to 

‘implausible’ (no conceivable situations are likely in which the hazard could occur). The 

probability of a sensor failure in the insulin pump that results in an overdose is probably 

low. 

Risk This is a measure of the probability that the system will cause an accident. The risk is 

assessed by considering the hazard probability, the hazard severity, and the probability 

that the hazard will lead to an accident.  The risk of an insulin overdose is probably 

medium to low. 

14 Chapter 11 Security and Dependability 



Safety and reliability 

 Safety and reliability are related but distinct 

 In general, reliability and availability are necessary but not 
sufficient conditions for system safety  

 Reliability is concerned with conformance to a given 
specification and delivery of service 

 Safety is concerned with ensuring system cannot cause 
damage irrespective of whether  
or not it conforms to its specification 

 Unsafe reliable systems 

 If the system specification is incorrect then the system can 

behave as specified but still cause an accident. 

 

15 Chapter 11 Security and Dependability 



Security 

 A system property that reflects the system’s ability to 
protect itself from accidental or deliberate external attack. 
 

 Defends the system against: 

 Threats to the confidentiality of the system and its data 

• Can disclose information to people or programs that do not have 

authorization to access that information. 

 Threats to the integrity of the system and its data 

• Can damage or corrupt the software or its data. 

 Threats to the availability of the system and its data 

• Can restrict access to the system and data for authorized users. 

 

Security is an essential pre-requisite for availability, reliability and safety. 

 16 Chapter 11 Security and Dependability 



Security terminology  

Term Definition 

Asset Something of value which has to be protected (e.g. the patients records in MHC-
PMS). The asset may be the software system itself or data used by that system. 

Exposure Possible loss or harm to a computing system, incl. e.g. the financial loss from 

patients’ legal action or loss of reputation. This can be loss or damage to data, or 
can be a loss of time and effort if recovery is necessary after a security breach. 

Vulnerability A weakness in a computer-based system that may be exploited to cause loss or 

harm (e.g. weak password). 

Attack An exploitation of a system’s vulnerability. Generally, this is from outside the 

system and is a deliberate attempt to cause some damage. 

Threats Circumstances that have potential to cause loss or harm. You can think of these 

as a system vulnerability that is subjected  to an attack (e.g. guessing the weak 
password). 

Control A protective measure that reduces a system’s vulnerability. Encryption is an 

example of a control that reduces a vulnerability of a weak access control 
system, or a password checking system in our example. 

17 Chapter 11 Security and Dependability 



Dependability attribute dependencies 

 Safe system operation depends on the system being 

available and operating reliably. 

 A system may be unreliable because its data has been 

corrupted by an external attack. 

 Denial of service attacks on a system are intended to 

make it unavailable. 

 If a system is infected with a virus, you cannot be 

confident in its reliability or safety. 

Chapter 11 Security and Dependability 18 



Performance 

 Performance is about timing – response time to events 

(interrupts, messages, requests from users, or the 

passage of time). 

 For the Web-based financial system, the response might be the 

number of transactions that can be processed in a minute.  

 For the engine control system, the response might be the 

variation in the firing time.  

 Highly sensitive to concurrency effects (number of users, 

shared resources), hardware, operating system 

implementation (e.g. scheduler strategy), etc. 

 Often accompanied by characterization of throughput 

and resource utilization. 

 
© Software Architecture in Practice  

by L. Bass, P. Clements and R. Kazman 
19 



Modifiability 

Modifiability is about the cost of change.  

What can change (the artifact)?  

 The functions that the system computes, the platform the system 

exists on (the hardware, operating system, middleware, etc.), the 

environment within which the system operates, etc.  

When is the change made and who makes it (the 

environment)?  

 During implementation (by modifying the source code), compile 

(using compile-time switches), build (by choice of libraries), 

configuration setup (by a range of techniques, including 

parameter setting) or execution (by parameter setting).  

 By a developer, an end user, or a system administrator. 

© Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

20 



Testability 

 Software testability refers to the ease with which 

software can be made to demonstrate its faults through 

(typically execution-based) testing.  

 At least 40% of the cost of developing well-engineered systems 

is taken up by testing. If the software architect can reduce this 

cost, the payoff is large. 

 The response measures for testability deal with how 

effective the tests are in discovering faults and how long 

it takes to perform the tests to some desired level of 

coverage. 

 For a system to be properly testable, it must be possible to 

control each component's internal state and inputs and then to 

observe its outputs. 
© Software Architecture in Practice  

by L. Bass, P. Clements and R. Kazman 
21 



Usability 

 Usability is concerned with how easy it is for the user to 

accomplish a desired task and the kind of user support 

the system provides.  

 

 It can be broken down into the following areas: 

 Learning system features.  

 Using a system efficiently.  

 Minimizing the impact of errors.  

 Adapting the system to user needs.  

 Increasing confidence and satisfaction.  

© Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

22 



Organisational requirements 

 Development requirements 

 Programming language, development environment, process 

standards, time to market, rollout schedule, costs, etc. 

 Operational requirements 

 Execution platform and other restrictions, system usage, 

projected lifetime, etc.  

 Environmental requirements 

 Integration with legacy systems, targeted market, etc. 

© Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

23 



Process standards [development] 

 Encapsulation of best practice 

 Avoids repetition of past mistakes. 

 Provide continuity 

 New staff can understand the organisation by understanding the 

standards that are used. 

 ISO 9001 

 International set of standards that can be used as a basis for 

developing quality management systems. 

 Applies to organizations that design, develop and maintain 

products, including software.  

 Sets out general quality principles, describes quality processes 

and lays out the organizational procedures that should be defined.  

© Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

24 



ISO 9001 core processes 

© Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

25 



Time to market [development] 

 If there is competitive pressure or a short window of 

opportunity for a system or product, development time 

becomes important.  

 This in turn leads to pressure to buy or otherwise re-use 

existing elements.  

 Time to market is often reduced by using prebuilt 

elements such as commercial off-the-shelf (COTS) 

products or elements re-used from previous projects.  

 The ability to insert or deploy a subset of the system 

depends on the decomposition of the system into 

elements. 

 © Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

26 



Rollout schedule [development] 

 If a product is to be introduced as base functionality with 

many features released later, the flexibility and 

customizability of the architecture are important.  

 Particularly, the system must be constructed with ease of 

expansion and contraction in mind. 

 

© Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

27 



Cost and benefit [development] 

 The development effort will naturally have a budget that 

must not be exceeded.  

 Different designs will yield different development costs.  

 For instance, an implementation that relies on technology (or 

expertise with a technology) not resident in the developing 

organization will be more expensive to realize than one that 

takes advantage of assets already inhouse.  

 An implementation that is highly flexible will typically be more 

costly to build than one that is rigid (although it will be less costly 

to maintain and modify). 

 

© Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

28 



Projected lifetime of the system 

[operational] 

 If the system is intended to have a long lifetime, 

modifiability, scalability, and portability become 

important.  

 But building in the additional infrastructure (such as a 

layer to support portability) will usually compromise time 

to market.  

 On the other hand, a modifiable, extensible product is 

more likely to survive longer in the marketplace, 

extending its lifetime. 

 

© Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

29 



Integration with legacy systems 

[environmental] 

 If the new system has to integrate with existing systems, 

care must be taken to define appropriate integration 

mechanisms.  

 This property is clearly of marketing importance but has 

substantial design implications.  

 For example, the ability to integrate a legacy system with an 

HTTP server to make it accessible from the Web has been a 

marketing goal in many corporations over the past decade.  

 The architectural constraints implied by this integration must be 

analyzed. 

© Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

30 



Targeted market [environmental] 

 For general-purpose (mass-market) software, the 

platforms on which a system runs as well as its feature 

set will determine the size of the potential market.  

 Thus, portability and functionality are key to market 

share.  

 To attack a large market with a collection of related 

products, a product line approach should be 

considered in which a core of the system is common 

(frequently including provisions for portability) and 

around which layers of software of increasing specificity 

are constructed.  

 © Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

31 



External requirements 

 Regulatory requirements 

 Ethic requirements 

 Legislative requirements 

 Accounting legislative 

 Safety/Security legislative 

© Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 

32 



Non-functional requirements 

implementation 

 Non-functional requirements may affect the overall 

architecture of a system rather than the individual 

components.  

 For example, to ensure that performance requirements are met, 

you may have to organize the system to minimize 

communications between components. 

 A single non-functional requirement, such as a security 

requirement, may generate a number of related 

functional requirements that define system services that 

are required.  

 It may also generate requirements that restrict existing 

requirements.  

33 Chapter 4 Requirements engineering 



Design for non-functional requirements 

Most commonly related to product requirements (non-

functional product qualities) 

 Specific to each non-functional product attribute 

 Tactics discussed later in the course. 

 Design-time reliability/performance/… prediction  

 Support of early design decisions based on the prediction of 

non-functional product qualities early in system design. 

 Commonly based on annotated UML Activity diagrams. 

34 Chapter 4 Requirements engineering 



Key points 

We have discussed examples of product, operational 

and external non-functional requirements. 

 Specific attention has been paid to: 

 Availability 

 Reliability 

 Safety 

 Security 

 Performance 

 Modifiability 

 Testability 

 Usability 

 

 
35 Chapter 4 Requirements engineering 



UML Activity Diagram 

Lecture 3/Part 2 

36 © Clear View Training 2010 v2.6 



© Clear View Training 2010 v2.6 37 

What are activity diagrams? 

 Activity diagrams are "OO flowcharts" 

 They allow us to model a process as a collection of 
nodes and edges between those nodes 

 Use activity diagrams to model the behavior of: 

 use cases 

 classes 

 interfaces 

 components 

 collaborations 

 operations and methods 

 business processes 



© Clear View Training 2010 v2.6 38 

Activities 

 Activities are networks of nodes connected by edges 

 There are three categories of node: 

 Action nodes - represent discrete units of work that are atomic 

within the activity 

 Control nodes - control the flow through the activity 

 Object nodes - represent the flow of objects around the activity 

 Edges represent flow through the activity 

 There are two categories of edge: 

 Control flows - represent the flow of control through the activity 

 Object flows - represent the flow of objects through the activity 



© Clear View Training 2010 v2.6 39 

Activity diagram syntax 

 Activities are networks of nodes 
connected by edges 

 The control flow is a type of edge 

 Activities usually start in an initial 
node and terminate in a final node 

 Activities can have preconditions and 
postconditions 

 When an action node finishes, it 
emits a token that may traverse an 
edge to trigger the next action 

 This is sometimes known as a 
transition 

 You can break an edge using: 

Address letter 

Post letter 

Write letter 
action node 

Send letter 

control flow 

activity 

initial node 

final node 

precondition: know topic for letter 

postcondition: letter sent to address 

edge 

«localPrecondition» 

address is known 

«localPostcondition» 

letter is addressed 

A A 

incoming 

connector 

outgoing 

connector 



© Clear View Training 2010 v2.6 40 

Activity diagram semantics 

 The token game 

 Token – an object, some data or a focus of control 

 Imagine tokens flowing around the activity diagram 

 Tokens traverse from a source node to a target 
node via an edge 

 The source node, edge and target node may all 
have constraints controlling the movement of tokens 

 All constraints must be satisfied before the token 
can make the traversal 

 A node executes when: 

 It has tokens on all of its input edges AND these 
tokens satisfy predefined conditions (see later) 

 When a node starts to execute it takes tokens off 
its input edges 

 When a node has finished executing it offers 
tokens on its output edges  

 

Address letter 

Post letter 

Write letter 

Send letter 

imaginary flow of control token 

«localPrecondition» 

address is known 

«localPostcondition» 

letter is addressed 



© Clear View Training 2010 v2.6 41 

Activity partitions 

Location 

Marketing Development 

Create course 

business case 
Develop course 

Scheduling 

Book trainers 

Book rooms Market course 

Course production 
dimension name 

activity partition 

Schedule 

course 

Zurich London 

 Each activity partition represents 
a high-level grouping of a set of 
related actions 

 Partitions can be hierarchical 

 Partitions can be vertical, 
horizontal or both 

 Partitions can refer to many 
different things e.g. business 
organisations, classes, 
components and so on 

 If partitions can’t be shown 
clearly using parallel lines, put 
their name in brackets directly 
above the name of the activities 

(London::Marketing) 

Market product 

(p1, p2) 

SomeAction 

multiple partitions nested partitions 



© Clear View Training 2010 v2.6 42 

Action nodes 

 Action nodes offer a token on 
all of their output edges 
when: 

 There is a token 
simultaneously on each input 
edge 

 The input tokens satisfy all 
preconditions specified by the 
node 

 Action nodes: 

 Perform an implicit fork on their 
output edges when they have 
finished executing 

Action node 

Action node 

Action node 

input token 

output token 

action node does 

not execute 

action node does 

not execute 

action node 

executes 



Types of action node 

end of month occurred 

 

 

time  

expression 

event type 

OrderEvent 

wait 30 mins 

Accept event action - waits for events detected by its owning object and  

offers the event on its output edge. 
Is enabled when it gets a token on its input edge. 
If there is no input edge it starts when its containing activity starts and is 

always enabled. 

Accept time event action - waits for a set amount of time. 

Generates time events according to it's time expression. 

action node syntax action node semantics 

Close Order 

Call action - invokes an activity, a behavior or an operation. 

The most common type of action node. 

See next slide for details. 

signal type 

OrderEvent 

Send signal action - sends a signal asynchronously. 

The sender does not wait for confirmation of signal receipt. 

It may accept input parameters to create the signal 

© Clear View Training 2010 v2.6 43 



© Clear View Training 2010 v2.6 44 

Call action node syntax 

Raise Order 
call an activity  

(note the rake icon) 

Close Order 
call a behavior 

call an  

operation 

getBalance():double 

(Account::) 

operation name 

class name 

(optional) 

Get Balance 

(Account::getBalance():double) 

node name 

operation name 

(optional) 

if self.balance <= 0: 

   self.status = INCREDIT 
else 
   self.status = OVERDRAWN 

programming 

language  
(e.g. Python) 

 The most common type of 

node 

 Call action nodes may 

invoke: 

 an activity 

 a behavior 

 an operation 

 They may contain code 

fragments in a specific 

programming language 

 The keyword 'self' refers 

to the context of the 
activity that owns the 

action 

 



© Clear View Training 2010 v2.6 45 

Sending signals and accepting events  

 Signals represent information passed 
asynchronously between objects 

 This information is modelled as attributes 
of a signal 

 A signal is a classifier stereotyped 
«signal» 

 The accept event action asynchronously 
accepts event triggers which may be 
signals or other objects 

Authorization 

Event 

Authorization 

RequestEvent 

Enter PIN 

Not authorized Authorized 

CardDetails 

[isAuthorized] [!isAuthorized] 

Validate card 

send  

signal 

accept 

event 

PIN 

CardDetails 

«signal» 

AuthorizationRequestEvent 

pin : PIN 

cardDetails : CardDetails 

«signal» 

AuthorizationEvent 

isAuthorized : Boolean 

«signal» 

SecurityEvent 



© Clear View Training 2010 v2.6 46 

Control nodes 

Activity final node – terminates an activity 

Flow final node – terminates a specific flow within an activity. The other 

flows are unaffected 

Initial node – indicates where the flow starts when an activity is invoked 

Merge node – selects one of its input edges 

Fork node – splits the flow into multiple concurrent flows 

Join node – synchronizes multiple concurrent flows 

May optionally have a join specification to modify its semantics  

F
in

a
l n

o
d

e
s
 

«decisionInput» 

decision condition 

Decision node– guard conditions on the output edges select one of them for 

traversal 
May optionally have inputs defined by a «decisionInput» 

{join spec} 

control node syntax control node semantics 

S
e

e
 e

x
a

m
p

le
s
 o

n
 n

e
x
t tw

o
 s

lid
e

s
 



© Clear View Training 2010 v2.6 47 

Decision and merge nodes 

 A decision node is a control node 
that has one input edge and two or 
more alternate output edges  

 Each edge out of the decision is 
protected by a guard condition 

 guard conditions must be mutually 
exclusive 

 The edge can be taken if and only if 
the guard condition evaluates to true 

 The keyword else specifies the path 
that is taken if none of the guard 
conditions are true 

 A merge node accepts one of several 
alternate flows 

 It has two or more input edges and 
exactly one output edge 

Bin mail Open mail 

Get mail 

[is junk] else 

Process mail 

keyword 

guard  

condition 

decision  

node 

merge node 



© Clear View Training 2010 v2.6 48 

Fork and join nodes – concurrency 

 Forks nodes model concurrent 
flows of work 

 Tokens on the single input edge are 
replicated at the multiple output 
edges 

 Join nodes synchronize two or 
more concurrent flows 

 Joins have two or more incoming 
edges and exactly one outgoing 
edge 

 A token is offered on the outgoing 
edge when there are tokens on all 
the incoming edges i.e. when the 
concurrent flows of work have all 
finished 

Design new  

product 

Market  

product 

Manufacture 

product 

Sell  

product 

Product process 

fork node 

join node 



© Clear View Training 2010 v2.6 49 

Object nodes 

 Object nodes indicate that instances of a 
particular classifier may be available 

 If no classifier is specified, then the object 
node can hold any type of instance 

 Multiple tokens can reside in an object node 
at the same time 

 The upper bound defines the maximum 
number of tokens (infinity is the default) 

 Tokens are presented to the single output 
edge according to an ordering: 

 FIFO – first in, first out (the default) 

 LIFI – last in, first out 

 Modeler defined – a selection criterion is 
specified for the object node 

OrderEvent 

Order 
object 

node 

object 

flow 

object 

node for  

signal 

classifier name 

or node name 



© Clear View Training 2010 v2.6 50 

Object node syntax 

 Object nodes have a 

flexible syntax. You 

may show: 

 upper bounds 

 ordering 

 sets of objects 

 selection criteria 

 object in state 

 

 

Order 

Set of Order 

Order 

[open] 

Order «selection» 

monthRaised = "Dec"  

order objects may be available 

sets of Order objects may be available 

select Order objects in the open state 

Order objects raised in December may be  

available 

Order 

{upperBound = 12} 

zero to 12 Order objects may be available 

Order 

{ordering = LIFO} 

last Order object in is the first out 

(FIFO is the default) 



© Clear View Training 2010 v2.6 51 

Activity parameters 

 Object nodes can provide input and output parameters to activities 

 Input parameters have one or more output object flows into the activity 

 Output parameters have one or more input object flows out of the activity 

 Draw the object node overlapping the activity boundary 

 

Design bespoke  

product 

Manufacture 

product 

Accept 

payment 

Deliver  

product 

Marketing Manufacturing Delivery 

Order 

[paid] 

CustomerRequest 

 

Set of  

BusinessConstraint 

 

Order 

[delivered] 

Bespoke product process 

Order 

input parameter 

output 

parameter 

object flow 
object in state 

ProductSpecification 

 



© Clear View Training 2010 v2.6 52 

Pins 

 Pins are object nodes for inputs to, and outputs from, 
actions 

 Same syntax as object nodes 

 Input pins have exactly one input edge 

 Output pins have exactly one output edge 

 Exception pins are marked with an equilateral triangle 

 Streaming pins are filled in black or marked with {stream} 

GetUserName 

GetPassword 

UserName[valid] 

Password[valid] 

Authenticate 

User LogError 

LogOnException 

LogOn 

A B 

A B 
{stream} 

streaming – see notes 

pin 

exception pin 



© Clear View Training 2010 v2.6 53 

«create» 

addCourse( “UML” ) 

[add] [f ind] 

Interaction overview diagrams 

 Model the high 

level flow of 

control between 

interactions 

 Show interactions 

and interaction 

occurrences 

 Have activity 

diagram syntax 

sd ref  

GetCourseOption 

sd ref  

RemoveCourse 

sd ref  

FindCourse 

:Registrar 

:RegistrationManager 

uml:Course 

sd AddCourse 

sd ref  

Logon 

[remove] 

sd ManageCourses lifelines :Registrar, :RegistrationUI, :Course 

[exit] 

else 

inline interaction 

interaction use 



© Clear View Training 2010 v2.6 54 

Key points 

 Activity diagrams can model flows of activities using: 

 Activities and connectors 

 Activity partitions 

 Action nodes 

• Call action node 

• Send signal/accept event action node 

• Accept time event action node 

 Control nodes 

• Decision and merge 

• Fork and join 

 Object nodes 

• Input and output parameters 

• Pins 

 Interaction overview diagrams as their advanced feature 

 


