
Object Oriented Analysis

Lecture 5

1 © Clear View Training 2010 v2.6

Outline

Objects and classes [Lecture 4]

 Finding analysis classes [Lecture 4]

 Relationships between objects and classes

 Links

 Associations

 Dependencies

 Inheritance and polymorphism

 Interaction diagrams

2 © Clear View Training 2010 v2.6

Relationships Between Objects and Classes

Lecture 5/Part 1

3 © Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 4

What is a relationship?

 A relationship is a connection between modelling

elements

 In this section we’ll look at:

 Links between objects

 Associations between classes

• aggregation

• composition

• association classes

 Dependencies between model elements

© Clear View Training 2010 v2.6 5

What is a link?

 Links are connections between objects

 Think of a link as a telephone line connecting you and a friend.
You can send messages back and forth using this link

 Links are the way that objects communicate

 Objects send messages to each other via links

 Messages invoke operations

 OO programming languages implement links as object
references or pointers. These are unique handles that
refer to specific objects

 When an object has a reference to another object, we say that
there is a link between the objects

© Clear View Training 2010 v2.6 6

Object diagrams

 Paths in UML

diagrams (lines to

you and me!) can

be drawn as

orthogonal,

oblique or curved

lines

 We can combine

paths into a tree if

each path has the

same properties

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

role name

link

BookClub

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

BookClub

oblique

path
style

orthogonal

path
style

preferred

object

© Clear View Training 2010 v2.6 7

What is an association?

 Associations are relationships between classes

 Associations between classes indicate that there are

links between objects of those classes

 A link is an instantiation of an association just as an

object is an instantiation of a class

bookClub:Club jim:Person
chairman

Club Person

«instantiate» «instantiate» «instantiate»

link

association

links

instantiate

associations

© Clear View Training 2010 v2.6 8

Association syntax

 An association can have role names or an association
name

 It’s bad style to have both!

 The black triangle indicates the direction in which the
association name is read:

 “A Company employs many Persons”

Company Person
1 *

employs

navigability

association

name

multiplicity

Company Person
employer employee

1 *

role names

© Clear View Training 2010 v2.6 9

Multiplicity

 Multiplicity is a constraint that

specifies the number of objects

that can participate in a

relationship at any point in time

 If multiplicity is not explicitly stated

in the model then it is undecided –

there is no default multiplicity

Company Person
employee

1 *

employer

A Company employs many People

Each Person works for one Company

multiplicity syntax: minimum..maximum

0..1 zero or 1

1 exactly 1

0..* zero or more

* zero or more

1..* 1 or more

1..6 1 to 6

© Clear View Training 2010 v2.6 10

Multiplicity exercise

 How many

 Employees can a Company have?

 Employers can a Person have?

 Owners can a BankAccount have?

 Operators can a BankAccount have?

 BankAccounts can a Person have?

 BankAccounts can a Person operate?

Company

Person

employee

1

7

employer

BankAccount

0..*

1 owner

0..*

1..* operator

© Clear View Training 2010 v2.6 11

Reflexive associations: file system example

Directory File
0..* 1 0..*

0..1

C

Windows My Documents Corel

Command

autoexec

config

To John

directories files

parent

subdirectory

reflexive association

© Clear View Training 2010 v2.6 12

Hierarchies and networks

A
0..*

0..1

a1:A

b1:A c1:A d1:A

e1:A f1:A g1:A

B
0..*

0..*

a1:B

b1:B

c1:B

d1:B e1:B

f1:B

g1:B

hierarchy network

an an association hierarchy, each

object has zero or one object directly

above it

in an association network, each object

has zero or many objects directly

above it

© Clear View Training 2010 v2.6 13

Navigability

 Navigability indicates that it
is possible to traverse from
an object of the source class
to objects of the target class

 Objects of the source class
may reference objects of
the target class using the
role name

 Even if there is no
navigability it might still be
possible to traverse the
relationship via some
indirect means. However the
computational cost of the
traversal might be very high

Order Product * *

Not navigable
A Product object does not store a list of Orders

An Order object stores a list of Products

Navigable
source target

navigability

A B

A B

A B

A B

A to B is navigable

B to A is navigable

A to B is navigable

B to A is not navigable

A to B is navigable

B to A is undefined

A to B is undefined

B to A is undefined

© Clear View Training 2010 v2.6 14

 Strict UML 2 navigability can clutter diagrams so the UML
standard suggests three possible modeling idioms:

1. Show navigability explicitly on diagrams with crosses and arrows

2. Omit all navigability from diagrams

3. Omit crosses from diagrams

• bi-directional associations have no arrows

• unidirectional associations have a single arrow

• you can't show associations that are not navigable in
either direction (not useful anyway!)

A B

A B

A to B is navigable

B to A is not navigable

A to B is navigable

B to A is navigable

standard

practice

Navigability – standard practice

© Clear View Training 2010 v2.6 15

Associations and attributes

 If a navigable relationship has a role name, it is as though the source class has a pseudo-

attribute whose attribute name is the role name and whose attribute type is the target class

 Objects of the source class can refer to objects of the target class using this pseudo-attribute

 Use associations when:

 The target class is an important part of the model

 The target class is a class that you have designed yourself and which must be shown on the model

 Use attributes when:

 The target class is not an important part of the model e.g. a primitive type such as number, string etc.

 The target class is just an implementation detail such as a bought-in component or a library

component e.g. Java.util.Vector (from the Java standard libraries)

address:Address

House

House Address
1 1

address House

address:Address

pseudo-attribute attribute

=

© Clear View Training 2010 v2.6 16

Association classes

 Not on the Person class - there is a different salary for each employment

 Not on the Company class - different Person objects have different salaries

 The salary is a property of the employment relationship itself

 every time a Person object is employed by a Company object, there is a salary

Company Person
* *

Each Person object can work for many Company objects.

Each Company object can employ many Person objects.

When a Person object is employed by a Company object, the Person has a salary.

But where do we record the Person’s salary?

employment

© Clear View Training 2010 v2.6 17

Association class syntax

 We model the association itself as an association class. One instance of

this class exists for each link between a Person object and a Company

object

 Instances of the association class are links that have attributes and operations

 Can only use association classes when there is one unique link between two

specific objects. This is because the identity of links is determined exclusively by

the identities of the objects on the ends of the link

 We can place the salary and any other attributes or operations which are

really features of the association into this class

Company Person * *

Job

salary:double

the association class

consists of the class,

the association and the

dashed line
association class

© Clear View Training 2010 v2.6 18

Using association classes

Company Person
* *

Job

salary:double

If we use an association class,

then a particular Person can

have only one Job with a

particular Company

If, however a particular

Person can have multiple

jobs with the same

Company, then we must

use a reified association
Company Person

Job

salary:double

* * 1 1

© Clear View Training 2010 v2.6 19

Qualified associations

 Qualified associations reduce
an n to many association to an n
to 1 association by specifying a
unique object (or group of
objects) from the set

 They are useful to show how we
can look up or navigate to
specific objects

 Qualifiers usually refer to an
attribute on the target class

Club

Member

1

*

Club

Member

1

0..1

memberId

memberId:String memberId:String

the combination (Club,

memberId) specifies a

unique target object

qualifier

© Clear View Training 2010 v2.6 20

Dependencies

 "A dependency is a relationship between two elements where a
change to one element (the supplier) may affect or supply
information needed by the other element (the client)". In other
words, the client depends in some way on the supplier

 Dependency is really a catch-all that is used to model several different
types of relationship. We’ve already seen one type of dependency, the
«instantiate» relationship

 Three types of dependency:

 Usage - the client uses some of the services made available by the
supplier to implement its own behavior – this is the most commonly
used type of dependency

 Abstraction - a shift in the level of abstraction. The supplier is more
abstract than the client

 Permission - the supplier grants some sort of permission for the client to
access its contents – this is a way for the supplier to control and limit
access to its contents

© Clear View Training 2010 v2.6 21

Usage dependencies

 «use» - the client makes use of the supplier to

implement its behaviour

 «call» - the client operation invokes the supplier

operation

 «parameter» - the supplier is a parameter of the client

operation

 «send» - the client (an operation) sends the supplier (a

signal) to some unspecified target

 «instantiate» - the client is an instance of the supplier

© Clear View Training 2010 v2.6 22

«use» - example

A

foo(b : B)

bar() : B

doSomething()

B

A :: doSomething()

{

 B myB = new B();

 …

}

«use»

A «use» dependency is generated between

class A and B when:

1) An operation of class A needs a

parameter of class B

2) An operation of class A returns a value

of class B

3) An operation of class A uses an object

of class B somewhere in its

implementation

the stereotype is often omitted

© Clear View Training 2010 v2.6 23

Abstraction dependencies

 «trace» - the client and the supplier represent the same

concept but at different points in development

 «substitute» - the client may be substituted for the

supplier at runtime. The client and supplier must realize

a common contract. Use in environments that don't

support specialization/generalization

 «refine» - the client represents a fuller specification of

the supplier

 «derive» - the client may be derived from the supplier.

The client is logically redundant, but may appear for

implementation reasons

© Clear View Training 2010 v2.6 24

«derive» - example

BankAccount Transaction
1 0..*

Quantity

1

1

1 balance

«derive»

BankAccount Transaction
1 0..*

Quantity

1

1

1 /balance

BankAccount Transaction
1 0..*

/balance:Quantity

Quantity

1

1

This example shows three
possible ways to express a
«derive» dependency

© Clear View Training 2010 v2.6 25

Permission dependencies

«access»

 The public contents of the supplier package are added as private

elements to the namespace of the client package

«import»

 The public contents of the supplier package are added as public

elements to the namespace of the client package

«permit»

 The client element has access to the supplier element despite

the declared visibility of the supplier

© Clear View Training 2010 v2.6 26

Key points

 Links – relationships between objects

 Associations – relationships between classes

 role names

 multiplicity

 navigability

 association classes

 qualified associations

 Dependencies – relationships between model elements

 usage

 abstraction

 permission

© Clear View Training 2010 v2.6 27

Inheritance and polymorphism

Lecture 5/Part 2

© Clear View Training 2010 v2.6 28

Generalisation

 A relationship between a more general element and a

more specific element

 The more specific element is entirely consistent with the

more general element but contains more information

 An instance of the more specific element may be used

where an instance of the more general element is

expected

Substitutability

Principle

© Clear View Training 2010 v2.6 29

Example: class generalisation

Shape

Square Circle Triangle

more general element

more specific elements

parent

superclass

base class

ancestor

child

subclass

descendent

g
e
n
e
ra

lis
a
tio

n

s
p
e
c
ia

lis
a
ti
o
n

A generalisation hierarchy

“is kind of”

© Clear View Training 2010 v2.6 30

Class inheritance

 Subclasses inherit all features of their
superclasses:

 attributes

 operations

 relationships

 stereotypes, tags, constraints

 Subclasses can add new features

 Subclasses can override superclass
operations

 We can use a subclass instance
anywhere a superclass instance is
expected

Substitutability

Principle

Shape

origin : Point = (0,0)

width : int {>0}
height : int {>0}

draw(g : Graphics)

getArea() : int
getBoundingArea() : int

Square Circle

radius : int = width/2
{width = height}

But what’s wrong with

these subclasses

© Clear View Training 2010 v2.6 31

Overriding

 Subclasses often need to override superclass behaviour

 To override a superclass operation, a subclass must provide an
operation with the same signature

 The operation signature is the operation name, return type and types
of all the parameters

 The names of the parameters don’t count as part of the signature

Shape

draw(g : Graphics)

getArea() : int
getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : int width x height p x radius2

© Clear View Training 2010 v2.6 32

Abstract operations & classes

 We can’t provide an implementation for
Shape :: draw(g : Graphics) or for
Shape :: getArea() : int
because we don’t know how to draw or calculate the area for a "shape"!

 Operations that lack an implementation are abstract operations

 A class with any abstract operations can’t be instantiated and is therefore
an abstract class

concrete

operations

Shape

draw(g : Graphics)

getArea() : int
getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : int

abstract class

concrete

classes

abstract

operations
abstract class and

operation names

must be in italics

© Clear View Training 2010 v2.6 33

Exercise

Vehicle

JaguarXJS Truck

what’s wrong

with this model?

© Clear View Training 2010 v2.6 34

Polymorphism

 Polymorphism = "many forms"

 A polymorphic operation has
many implementations

 Square and Circle provide
implementations for the
polymorphic operations
Shape::draw() and
Shape::getArea()

 All concrete subclasses of
Shape must provide concrete
draw() and getArea() operations
because they are abstract in the
superclass

 For draw() and getArea() we
can treat all subclasses of
Shape in a similar way - we
have defined a contract for
Shape subclasses

Shape

draw(g : Graphics)

getArea() : int

getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : int

polymorphic

operations

concrete subclasses

abstract

superclass

Canvas

*

1

A Canvas object has a collection of Shape objects

where each Shape may be a Square or a Circle

shapes

© Clear View Training 2010 v2.6 35

What happens?

 Each class of object
has its own
implementation of the
draw() operation

 On receipt of the
draw() message,
each object invokes
the draw() operation
specified by its class

 We can say that each
object "decides" how
to interpret the draw()
message based on
its class

:Canvas

s1:Circle

s2:Square

s3:Circle

s4:Circle

1.draw()

2.draw()

3.draw()

4.draw()

© Clear View Training 2010 v2.6 36

BankAccount example

 We have overridden the deposit() operation even though it is not abstract.

This is perfectly legal, and quite common, although it is generally considered

to be bad style and should be avoided if possible

BankAccount

withdraw()

calculateInterest()

deposit()

CheckingAccount DepositAccount

withdraw()

calculateInterest()

withdraw()

calculateInterest()

Bank
* 1

ShareAccount

withdraw()

calculateInterest()

deposit()

© Clear View Training 2010 v2.6 37

Key points

 Subclasses:

 inherit all features from their parents including constraints and

relationships

 may add new features, constraints and relationships

 may override superclass operations

 A class that can’t be instantiated is an abstract class

© Clear View Training 2010 v2.6 38

Lecture 5/Part 3

Interaction Diagrams

© Clear View Training 2010 v2.6 39

Use Case realization

 Use case realizations consist of the following elements:

 Analysis class diagrams

• These show relationships between the analysis classes that interact

to realise the UC

 Interaction diagrams

• These show collaborations between specific objects that realise the

UC. They are “snapshots” of the running system

 Special requirements

• UC realization may well uncover new requirements specific to the

use case. These must be captured

 Use case refinement

• We may discover new information during realization that means that
we have to update the original UC

© Clear View Training 2010 v2.6 40

Interactions

 Interactions are units of behavior of a context classifier

 In use case realization, the context classifier is a use
case

 The interaction shows how the behavior specified by the use
case is realized by instances of classifiers

 Interaction diagrams capture an interaction as:

 Lifelines – participants in the interaction

 Messages – communications between lifelines

© Clear View Training 2010 v2.6 41

Lifelines

 A lifeline represents a single participant in an interaction

 Shows how a classifier instance may participate in the interaction

 Lifelines have:

 name - the name used to refer to the lifeline in the interaction

 selector - a boolean condition that selects a specific instance

 type - the classifier that the lifeline represents an instance of

 They must be uniquely identifiable within an interaction by name, type or both

 The lifeline has the same icon as the classifier that it represents

 The lifeline jimsAccount represents an instance of the Account class

 The selector [id = "1234"] selects a specific Account instance with the id "1234"

jimsAccount [id = "1234"] : Account

name selector type

© Clear View Training 2010 v2.6 42

Messages

 A message represents a communication between two lifelines

synchronous

message

asynchronous

send

message

return

sender receiver/

target

creation
:A

type of

message

destruction

found

message

lost

message

calling an operation synchronously

the sender waits for the receiver to complete

calling an operation asynchronously, sending a signal

the sender does not wait for the receiver to complete

semantics

returning from a synchronous operation call

the receiver returns focus of control to the sender

the sender creates the target

the sender destroys the receiver

the message is sent from outside the scope of the interaction

the message fails to reach its destination

© Clear View Training 2010 v2.6 43

Interaction diagrams

 Sequence diagrams

 Emphasize time-ordered sequence of message sends

 Show interactions arranged in a time sequence

 Are the richest and most expressive interaction diagram

 Do not show object relationships explicitly - these can be inferred from
message sends

 Communication diagrams

 Emphasize the structural relationships between lifelines

 Use communication diagrams to make object relationships explicit

 Interaction overview diagrams

 Show how complex behavior is realized by a set of simpler interactions
(discussed earlier together with Activity diagrams)

 Timing diagrams

 Emphasize the real-time aspects of an interaction

© Clear View Training 2010 v2.6 44

Sequence diagram syntax

 All interaction diagrams may be prefixed sd to indicate their type

 You can generally infer diagram types from diagram syntax

 Activations indicate when a lifeline has focus of control - they are often omitted from
sequence diagrams

:Registrar
:RegistrationManager

uml:Course

addCourse("UML")

«create»

notes can form

a "script"
describing the
flow

lifeline
sd AddCourse

object creation message

synchronous

message

object is

created at
this point

message

return

activation

The Registrar selects

"add course".

The system creates

the new Course.

© Clear View Training 2010 v2.6 45

Deletion and self-delegation

 Self delegation is when a lifeline sends a message to itself

 Generates a nested activation

 Object deletion is shown by terminating the lifeline's tail at the point of
deletion by a large X

:Registrar
:RegistrationManager uml:Course

deleteCourse("UML")

sd DeleteCourse

object is

deleted at
this point

«destroy»

self delegation

findCourse("UML")

nested activation

© Clear View Training 2010 v2.6 46

State invariants and constraints

:Customer

:Order

:DeliveryManager :OrderManager

«create»

unpaid

paid

delivered

raiseOrder()

acceptPayment()

acceptPayment()

deliver()

deliver()

state invariant

A

B

{B – A <= 28 days}

label

sd ProcessAnOrder

constraint

© Clear View Training 2010 v2.6 47

Combined fragments

 Sequence diagrams may be divided into areas called combined fragments

 Combined fragments have one or more operands

 Operators determine how the operands are executed

 Guard conditions determine whether operands execute. Execution occurs if
the guard condition evaluates to true

 A single condition may apply to all operands OR

 Each operand may be protected by its own condition

name op

[guard condition 2]

b()

c() guard conditions must be placed above

the first event occurrence

:A :B :C

operator

operands

a()

combined fragment

[guard condition 1]

© Clear View Training 2010 v2.6 48

operator long name semantics

opt Option There is a single operand that executes if the condition is true (like if … then)

alt Alternatives The operand whose condition is true is executed. The keyword else may be used
in place of a Boolean expression (like select… case)

loop Loop This has a special syntax:

loop min, max [condition]

Iterate min times and then up to max times while condition is true

break Break The combined fragment is executed rather than the rest of the enclosing
interaction

ref Reference The combined fragment refers to another interaction

findStudent(name):Student

ref ref has a single operand that is a

reference to another interaction.

This is an interaction use.

Common operators

© Clear View Training 2010 v2.6 49

The rest of the operators

 These operators are less common

operator long name semantics

par parallel Both operands execute in parallel

seq weak
sequencing

The operands execute in parallel subject to the constraint that event
occurrences on the same lifeline from different operands must
happen in the same sequence as the operands

strict strict
sequencing

The operands execute in strict sequence

neg negative The combined fragment represents interactions that are invalid

critical critical region The interaction must execute atomically without interruption

ignore ignore Specifies that some messages are intentionally ignored in the
interaction

consider consider Lists the messages that are considered in the interaction (all others
are ignored)

assert assertion The operands of the combined fragments are the only valid
continuations of the interaction

© Clear View Training 2010 v2.6 50

Branching with opt and alt

 opt semantics:

 single operand that

executes if the

condition is true

 alt semantics:

 two or more operands

each protected by its
own condition

 an operand executes if

its condition is true

 use else to indicate the

operand that executes
if none of the

conditions are true

:A :B :C :D

opt [condition]

do this if condition is true

alt

do this if condition1 is true

[condition1]

[condition2]

do this if condition2 is true

[else]

do this if neither condition is true

sd example of opt and alt

© Clear View Training 2010 v2.6 51

Iteration with loop and break

 loop semantics:

 Loop min times, then loop (max – min)
times while condition is true

 loop syntax

 A loop without min, max or condition is
an infinite loop

 If only min is specified then max = min

 condition can be

• Boolean expression

• Plain text expression provided it is clear!

 Break specifies what happens when the
loop is broken out of:

 The break fragment executes

 The rest of the loop after the break does
not execute

 The break fragment is outside the loop
and so should overlap it as shown

:A :B

loop min, max [condition]

do something

sd examples of loop

loop [condition]

do something

loop while guard

condition is true

break on breaking out do this

do something else

must be global

relative to loop

© Clear View Training 2010 v2.6 52

Loop idioms

type of loop semantics loop expression

infinite loop keep looping forever loop *

for i = 1 to n

 {body}

repeat (n) times loop n

while(booleanExpression)

 {body}

repeat while booleanExpression
is true

loop [booleanExpression]

repeat

 {body}

while(booleanExpression)

execute once then repeat while
booleanExpression is true

loop 1, * [booleanExpression]

forEach object in collection

 {body}

Execute the loop once for each
object in a collection

loop [for each object in collection]

forEach object in ObjectType
 {body}

Execute the loop once for each
object of a particular type

loop [for each object in :ObjectType]

© Clear View Training 2010 v2.6 53

addCourse("UML")

uml = Course("UML")

addCourse("UML")

Sequence diagrams in design

:Registrar
:RegistrationUI

uml:Course

sd AddCourse - design

:RegistrationManager :DBManager

save(uml)

© Clear View Training 2010 v2.6 54

 Communication diagrams emphasize the structural aspects of an
interaction - how lifelines connect together

 Compared to sequence diagrams they are semantically weak

 Object diagrams are a special case of communication diagrams

2: addCourse("MDA")

:Registrar

:RegistrationManager

mda:Course

uml:Course

1: addCourse("UML") 1.1: «create»

2.1: «create»

sd AddCourses

link

message sequence number

lifeline

object creation

message

Communication diagram syntax

© Clear View Training 2010 v2.6 55

Iteration

 Iteration is shown by
using the iteration
specifier (*), and an
optional iteration
clause

 There is no
prescribed UML
syntax for iteration
clauses

 Use code or pseudo
code

 To show that
messages are sent in
parallel use the
parallel iteration
specifier, *//

iteration clause

1: printCourses()

:Registrar

:RegistrationManager

[i]:Course

1.1.1: print()

1.1 * [for i = 1 to n] : printCourse(i)

sd PrintCourses

iteration specifier

© Clear View Training 2010 v2.6 56

Branching

 Branching is modelled by prefixing the sequence number with a guard
condition

 There is no prescribed UML syntax for guard conditions!

 In the example above, we use the variable found. This is true if both the student
and the course are found, otherwise it is false

:RegistrationManager
1: register ("Jim", "UML")

:Registrar

course:Course

1.3 [found] : register(student)

1.1: student = findStudent("Jim")

1.4 [!found] : error()

1.2: course = findCourse("UML")

sd register student for course

It’s hard

to show

branching

clearly!!

found = (student != null) & (course != null)

guard condition

return value from message

© Clear View Training 2010 v2.6 57

{t <= 15} {t = 10} {t > 30}

{t <= 15} {t = 30}

Timing diagrams

 Emphasize the real-time

aspects of an interaction

 Used to model timing

constraints

 Lifelines, their states or

conditions are drawn

vertically, time horizontally

 It's important to state the

time units you use in the

timing diagram

sd IntruderThenFire

soundingFireAlarm

soundingIntruderAlarm

off

:S
ir

e
n

0 10 20 30 40 50

state or

condition

lifeline

intruder

intruder

fire

time in minutes

event

timing ruler

duration constraint

60

resting

70 80 90 100

sd IntruderThenFire

sounding

Intruder
Alarm

:S
ir
e
n

off resting

sounding

Intruder
Alarm

sounding

fire Alarm

state or condition
all times in minutes

compact

form

© Clear View Training 2010 v2.6 58

{t <= 0.016}

{t <= 0.016}

soundIntruderAlarm()

soundIntruderAlarm()

soundIntruderAlarm()

soundIntruderAlarm()

soundFireAlarm()

Messages on timing diagrams

 You can show
messages between
lifelines on timing
diagrams

 Each lifeline has its
own partition

sd SirenBehavior

soundingIntruderAlarm

off

:S
ir
e
n

{t <= 15}

triggered

notTriggered

:I
n
tr

u
d
e
rS

e
n
so

rM
o
n
ito

r

{t <= 15} {t = 30}

all times in minutes

resting

triggered

notTriggered

:F
ir
e
S

e
n
so

rM
o
n
it

o
r

soundingFireAlarm

messages

© Clear View Training 2010 v2.6 59

Key points

 In this section we have looked at use case realization

using interaction diagrams

 There are four types of interaction diagram:

 Sequence diagrams – emphasize time-ordered sequence of

message sends

 Communication diagrams – emphasize the structural

relationships between lifelines

 Interaction overview diagrams – show how complex behavior is

realized by a set of simpler interactions; presented together with

Activity diagrams

 Timing diagrams – emphasize the real-time aspects of an

interaction

