
Structured Analysis

Lecture 6

1 © Jiří Sochor, Jaroslav Ráček

Outline

 Yourdon Modern Structured Analysis (YMSA)

 Context diagram (CD)

 Data flow diagram (DFD)

 Data modelling

 Entity relationship diagram (ERD)

 Normalization and database design

2 © Jiří Sochor, Jaroslav Ráček

Yourdon Modern Structured Analysis (YMSA)

Lecture 6/Part 1

3 © Jiří Sochor, Jaroslav Ráček

E. Yourdon: Modern structured analysis

© Jiří Sochor, Jaroslav Ráček 4

environment model behavioral model

top-down

and bottom-up

balancing

Environment model

 Context diagram is a special case of a data flow

diagram, containing a single process representing the

whole system. It emphasizes:

 Terminators – people and systems communicating with the

system

 Data received from the environment that shall be processed

 Data produced by the system and sent to the environment

 Data stores shared by the system and its terminators

 System boundary

 Event list is a textual list of stimuli coming from the

environment that must be responded by the system.

© Jiří Sochor, Jaroslav Ráček 5

Context diagram example

© Jiří Sochor, Jaroslav Ráček 6

Behavioral model

 Behavioral model specifies the flow of data through the

modeled information system, modeling its process

aspects.

 It shows what kinds of information will be input to and output

from the system, where the data will come from and go to, and

where the data will be stored.

 It does not show information about the timing of processes, or

information about whether processes will operate in sequence or

in parallel.

 Data flow diagram (DFD) is a graphical representation

of the system as a network of processes that fulfill

system functions and communicate through system data.

© Jiří Sochor, Jaroslav Ráček 7

Data flow diagram (DFD)

 DFD consists of four types of elements:

 Processes

 Data flows

 Data stores

 Terminators

© Jiří Sochor, Jaroslav Ráček 8

Processes and Data flows

 A Process models a part of the system that transforms

specific inputs to outputs.

 Name of a process is a single word, phrase or simple

sentence, e.g. “User authentication”.

 The process name sometimes contains the name of a person,

group of people, department or device – specifying also the actor

or tool of the process.

 A Data flow models a way for data transfer from one

part of the system to another.

 Flows can also model the transfer of physical materials.

© Jiří Sochor, Jaroslav Ráček 9

Data stores

 Data store models a static collection of data that are

shared by two or more processes operating in different

time.

 Name is a plural of the data name going to and coming from the

data store.

© Jiří Sochor, Jaroslav Ráček 10

Terminators

 A Terminator represents an external entity

communicating with the system.

 Terminators are external to the modeled system.

 The flows connecting terminators with the processes or

data stores inside the system represent the interfaces

between the system and its environment.

© Jiří Sochor, Jaroslav Ráček 11

Top-down and bottom-up DFD balancing

© Jiří Sochor, Jaroslav Ráček 12

primary DFD

98 processes

first balancing

14 processes

system DFD

2 processes

Data modelling

Lecture 6/Part 2

13 © Clear View Training 2010 v2.6

Data modeling

 Defines static data structure, relationships and attributes

 Complementary to the behavior model in structured

analysis; models information not covered by DFDs

More stable and essential information comparing to DFD

 Entity-Relationship modeling

 Identify system entities – both abstract (lecture) and concrete

(student)

 For each entity examine – the purpose of the entity, its

constituents (attributes) and relationships among entities

 Check model consistency and include data details

© Jiří Sochor, Jaroslav Ráček 14

Entity Relationship Diagram (ERD)

 Entities and their types

 Relationships and their types

 Attributes and their domains

© Jiří Sochor, Jaroslav Ráček 15

Entities and Entity types

 An Entity is anything about which we want to store data

 Identifiable – entities can be distinguished by their identity

 Needed – has significant role in the designed system

 Described by attributes shared by all entities of the same type

 An Entity set is a set of entities of the same Entity type.

© Jiří Sochor, Jaroslav Ráček 16

Entity Entity type

You Student

Your neighbor Student

Me Teacher

This PB007 lecture Lecture

Student

Lecture

Teacher

Relationships and Relationship types

 Entities take part in Relationships (among possibly

more than two entities), that can often be identified from

verbs or verb phrases.

 You are attending this PB007 lecture.

 I am giving this PB007 lecture.

 A Relationship set is a set of relationships of the same

Relationship type.

 A student attends a lecture.

 A teacher gives a lecture.

© Jiří Sochor, Jaroslav Ráček 17

Student

Lecture

attends

gives

Teacher

Attributes and Attribute domains

 An Attribute is a fact, aspect, property, or detail about

either an entity type or a relationship type.

 E.g. a lecture might have attributes: time, date, length, place.

 An Attribute type is a type domain of the attribute. If the

domain is complex (domain of an attribute address), the

attribute may be an entity type instead.

© Jiří Sochor, Jaroslav Ráček 18

Lecture

time date

length

place

Attributes or entities?

 To decide whether a concept be modeled as an attribute

or an entity type:

 Do we wish to store any information about this concept (other

than an identifying name)?

 Is it single-valued?

 E.g. objectives of a course – are they more than one? If just

one, how complex information do we want to store about it?

General guidelines:

 Entities can have attributes but attributes have no smaller parts.

 Entities can have relationships between them, but an attribute

belongs to a single entity.

© Jiří Sochor, Jaroslav Ráček 19

Relationship-type degree

© Jiří Sochor, Jaroslav Ráček 20

Entita

Entita

Entita

Entita

Exactly one occurence

None or one occurence

One or more occurence

None or more occurences

Relationship-type degree

© Jiří Sochor, Jaroslav Ráček 21

Every manager manages exactly one department.

Every department is managed by exactly one manager.

Every edition plan contains one or more titles.

Every book title is part of exactly one edition plan.

Every producer produces one or more products.

Every product is produced by one or more producers.

Relationship-type degree

© Jiří Sochor, Jaroslav Ráček 22

Mandatory relationship

Optional relationship

Recursive relationship

Cardinality ratio

 Cardinality ratio of a relationship type describes the

number of entities that can participate in the relationship.

One to one 1:1

 Each lecturer has a unique office.

One to many 1:N

 A lecturer may tutor many students, but each student has just

one tutor.

Many to many M:N

 Each student takes several modules, and each module is taken

by several students.

© Jiří Sochor, Jaroslav Ráček 23

More relationships between two entities

 Relationship “nabízí” has attributes:

 platební podmínky, termíny.

 Relationship “dodal” has attributes:

 údaje z dodacího listu.

© Jiří Sochor, Jaroslav Ráček 24

Relationships among more than two entities

© Jiří Sochor, Jaroslav Ráček 25

Association entity

 The Purchase contract exists just as a result of the

relationship between the Customer and Goods entity.

© Jiří Sochor, Jaroslav Ráček 26

association

entity

Super-type and sub-type entities

 Extended ERDs model also inheritance, i.e. the

relationship of specialization–generalization

© Jiří Sochor, Jaroslav Ráček 27

super-type

entity

sub-type

entity

Super-types and sub-types in ERD

© Jiří Sochor, Jaroslav Ráček 28

ERD modeling in structured analysis

 Iterative development in structured analysis

 Entities identification -> initial ERD

 Attributes identification -> detailed ERD

 Identification of missing and redundant entities

 ERD-DFD consistency checking

Modeled in parallel with DFD

© Jiří Sochor, Jaroslav Ráček 29

ERD modeling guidelines

1. Initial ERD

 Domain analysis and user interview

 Entities identification

 Analogical to UML class identification

2. Detailed ERD

 Entities refinement

 Attributes identification based on

 Behavioral DFD models

 Data dictionary provided by the customer

© Jiří Sochor, Jaroslav Ráček 30

ERD modeling guidelines

3. Identification of missing and redundant entities

 Entities constituting of only the identifier

 Entity sets consisting of a single entity

 Association entities

 Derived entities and relationships

4. Consistency and completeness checking

 Based on DFDs and DE (Data elements)

© Jiří Sochor, Jaroslav Ráček 31

Removal of unneeded (redundant) entities

© Jiří Sochor, Jaroslav Ráček 32

The Spouse entity is better suited

as Employee’s attribute.

Removal of unneeded (redundant) entities

© Jiří Sochor, Jaroslav Ráček 33

Removal of unneeded relationships

© Jiří Sochor, Jaroslav Ráček 34

The duty to renew the license

can be derived from the entities

Data dictionary

 Used for documentation of complex ERD models

 Symbols:

 = consists of

 + and

 () optional part (0 or 1)

 [|] alternative choice

 { } iteration (1 or more) a=1{b}15

 * * comment

 @ identifier (key)

© Jiří Sochor, Jaroslav Ráček 35

Example – Order

 Order no. 2012-007-24

 Uni BookStore, 70 Austin St, 718-793-1395 New York

 Issue date: 23.4.2012

Delivery date: 30.4.2012

 Customer: no. 007

 Dr. John Smith

 Goods:

Number Name Pieces Price/piece

P3876 Software engineering 6 65

H4681 UML2 and the UP 4 48

© Jiří Sochor, Jaroslav Ráček 36

ERD example – Transport

© Jiří Sochor, Jaroslav Ráček 37

ERD example – Library

© Jiří Sochor, Jaroslav Ráček 38

Relational database design based on ERDs

 Entity-relationship modeling is a first step towards

database design.

Database design process:

1. Determine the purpose of the database.

2. Find and organize the information required - Create

ERD model of the system. Each entity type becomes a

table, attribute becomes a column, entity becomes a

row in the table. Handle relationships with attributes,

association entities and M:N relationships.

39 © Jiří Sochor, Jaroslav Ráček

Database design process (continued)

3. Specify primary keys - Choose each table’s primary

key. The primary key is a column that is used to

uniquely identify each row. An example might be

Product ID or Order ID.

4. Apply the normalization rules - Apply the data

normalization rules to see if tables are structured

correctly. Make adjustments to the tables.

5. Refine the design - Analyze the design for errors.

Create tables and add a few records of sample data.

Check if results come from the tables as expected.

Make adjustments to the design, as needed.

40 © Jiří Sochor, Jaroslav Ráček

Association entities

© Jiří Sochor, Jaroslav Ráček 41

… or association

entity.

Order can be an entity

on its own…

Relationships to entities

© Jiří Sochor, Jaroslav Ráček 42

M:N relationships

© Jiří Sochor, Jaroslav Ráček 43

Entities and keys

Unambiguous identification

 Every entity is uniquely identified by its key.

 Non-redundance

 All items of the key are necessary to identify an entity, no item

can be removed from the key.

 Candidate keys

 There are more combinations of entity attributes that can be used

as an entity key.

 Primary key

 The selected candidate key, marked with # symbol.

© Jiří Sochor, Jaroslav Ráček 44

Data normalization by E.F. Codd

 Free the database of modification anomalies

 Update anomaly – the same information expressed on multiple

rows -> updates resulting in logical inconsistencies.

 Insertion anomaly – certain facts cannot be recorded, because of

their binding with another information into one record.

 Deletion anomaly – deletion of data representing certain facts

necessitating deletion of unrelated data.

Minimize redesign when extending the database

structure

Make the data model more informative to users

 Avoid bias towards any particular pattern of querying

© Jiří Sochor, Jaroslav Ráček 45

© Jiří Sochor, Jaroslav Ráček 46

1. Normal form (1.NF)

zam# jmeno sex odb# praxe

osoba
odbornost

zam# jmeno sex

1. Normal form

zam# +odb# praxe

Def.1.NF: The records contain no repeating groups.

© Jiří Sochor, Jaroslav Ráček 47

1. Normal form (1.NF)

© Jiří Sochor, Jaroslav Ráček 48

1. Normal form (1.NF)

Full functional dependency

 Functional dependency

 In a given table, an attribute Y is said to have a functional

dependency on a set of attributes X if and only if each X value is

associated with precisely one Y value.

 Trivial functional dependency

 A trivial functional dependency is a functional dependency of an

attribute on a superset of itself.

 Full functional dependency

 An attribute is fully functionally dependent on a set of attributes X

if it is: functionally dependent on X, and not functionally

dependent on any proper subset of X.

© Jiří Sochor, Jaroslav Ráček 49

© Jiří Sochor, Jaroslav Ráček 50

2. Normal form

zam# jméno plat projekt# datum dokončení

programátor# balík# jméno progr. jméno balíku hodiny

Př.: Entita ZAMESTNANEC

Př.: Entita AKTIVITA_PROGRAMATORA

Is in 2.NF.

Not in 2.NF.

2.NF requires full functional dependency of all non-key attributes

on the whole key.

© Jiří Sochor, Jaroslav Ráček 51

2. Normal form – normalization example

součást# dodavatel# název dodav. údaje dodav. cena

dodavatel# název dodav. údaje dodav.

součást# dodavatel# cena

© Jiří Sochor, Jaroslav Ráček 52

Problems of „not being“ in 2.NF – examples

Dokud nám dodavatel nedodá součást, nemůžeme

zapsat jeho adresu a další údaje.

Pokud přestane dodavatel dočasně zásobovat, pak

zrušení záznamu o součásti zruší i jeho údaje.

Jakákoliv změna v údajích o dodavatelích je

komplikovaná (vyhledání a oprava více záznamů).

© Jiří Sochor, Jaroslav Ráček 53

2. Normal form

zam# jméno plat projekt# datum dokončení

Př.: Entita ZAMESTNANEC

functional dependence of the

primary key

functional dependence of an

alternative key
Def.: 2.NF:

Record R is in 2.NF if it is in 1.NF and every non-key

attribute of R is fully functionally dependent on every

candidate key of R.

© Jiří Sochor, Jaroslav Ráček 54

3. Normal form – transitive dependence

 A B C

 A B B C

C is transitively dependent on A

Def. 3NF (alternative 1):

Record R is in 3.NF if it is in 2.NF and every attribute of R is

functionally dependent on a key and nothing but a key.

Def. 3.NF (alternative 2):

Record R is in 3.NF if it is in 2.NF and every non-key attribute of R

is non-transitively dependent on every candidate key of R.

© Jiří Sochor, Jaroslav Ráček 55

Problems of „not being“ in 3.NF

Př.: ZAMESTNANEC

zam# jméno plat projekt# datum dokončení

není 3.NF

Problems of „not being“ in 3.NF

- Dokud nepřidělíme pracovníky na projekt, nemůžeme

zapsat datum ukončení.

- Jestliže všichni opustí projekt, zrušíme veškerou

informaci o datu ukončení.

- Změnu data ukončení je nutné provést na mnoha

místech.

© Jiří Sochor, Jaroslav Ráček 56

4. Normal form – conditional dependence

zákazník# jméno adresa stát daň

zákazník# jméno adresa stát zákazník# daň

ZÁKAZNÍCI ZÁKAZNÍCI DOMÁCÍ

conditional dependence

4.NF removes conditional functional dependencies

Daň strháváme těm, kteří sídlí ve stejném státě jako naše firma.

© Jiří Sochor, Jaroslav Ráček 57

Example – 4.NF normalization

repeating

groups

primary key

© Jiří Sochor, Jaroslav Ráček 58

Example – 4.NF normalization

transitively dependent

attributes

© Jiří Sochor, Jaroslav Ráček 59

Example – 4.NF normalization

done

© Jiří Sochor, Jaroslav Ráček 60

Example – 4.NF normalization

attribute dependent

on a part of the key
part of the key

© Jiří Sochor, Jaroslav Ráček 61

Example – 4.NF normalization

Summary: All the entity sets were normalized into 4.NF

and their names changed accordingly.

© Jiří Sochor, Jaroslav Ráček 62

Example – 4.NF normalization and ERD

generation

ERD vs. UML Class Diagram

63 © Jiří Sochor, Jaroslav Ráček

 Class diagrams

 model both structural and behavior features of a system

(attribute and operations),

 contain many different types of relationships (association,

aggregation, composition, dependency, generalization), and

 are more likely to map into real-world objects.

 Entity relationship models

 model only structural data view with a low variety of relationships

(simple relations and rarely generalization), and

 are more likely to map into database tables (repetitive records).

 They allow us to design primary and foreign entity keys, and

used to be normalized to simplify data manipulation.

ERD vs. UML Class Diagram

64 © Jiří Sochor, Jaroslav Ráček

 Although there can be one to one mapping between

ERD and Class diagram, it is very common that

 one class is mapped to more than one entity, or

 more classes are mapped to a single entity.

 Furthermore, not all classes need to be persistent and

hence reflected in the ERD model, which uses to be

driven by the database design.

 Summary:

 ERD is data-oriented and persistence-specific

 Class diagram targets also operations and is persistence

independent

