
Architecture Design and Implementation

Lecture 8

1

Topics covered

 Architectural design

 Implementation

 UML Packages (Analysis)

 UML Component Diagram (Design)

 UML Deployment Diagram (Implementation)

2

Architectural Design

Lecture 8/Part 1

3 Chapter 6 Architectural design

Topics covered

 Architectural design decisions

 Architectural views

 Architectural patterns

 Application architectures

4 Chapter 6 Architectural design

Architectural abstraction

 Architecture in the small (analysis) is concerned with

the architecture of individual programs. At this level, we

are concerned with the way that an individual program is

decomposed into components.

 Architecture in the large (design) is concerned with

the architecture of complex enterprise systems that

include other systems, programs, and program

components. These enterprise systems are distributed

over different computers, which may be owned and

managed by different companies.

5 Chapter 6 Architectural design

Architectural design decisions

 Architectural design is a creative process so the process

differs depending on the type of system being

developed.

 However, a number of common decisions span all

design processes and these decisions affect the non-

functional characteristics of the system.

6 Chapter 6 Architectural design

Architectural design decisions

 Is there a generic application architecture that can be

used?

 How will the system be distributed?

What architectural styles are appropriate?

What approach will be used to structure the system?

 How will the system be decomposed into modules?

What control strategy should be used?

 How will the architectural design be evaluated?

 How should the architecture be documented?

7 Chapter 6 Architectural design

Architectural patterns

 Patterns are a means of representing, sharing and

reusing knowledge.

 An architectural pattern is a stylized description of good

design practice, which has been tried and tested in

different environments.

 Patterns should include information about when they are

and when the are not useful.

 Patterns may be represented using tabular and graphical

descriptions.

8 Chapter 6 Architectural design

The Model-View-Controller (MVC) pattern

9 Chapter 6 Architectural design

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is

structured into three logical components that interact with each other. The
Model component manages the system data and associated operations on
that data. The View component defines and manages how the data is

presented to the user. The Controller component manages user interaction
(e.g., key presses, mouse clicks, etc.) and passes these interactions to the

View and the Model.

Example Figure on the next slide shows the architecture of a web-based application

system organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also used

when the future requirements for interaction and presentation of data are
unknown.

Advantages Allows the data to change independently of its representation and vice versa.

Supports presentation of the same data in different ways with changes made
in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and

interactions are simple.

10 Chapter 6 Architectural design

Web application architecture using MVC

11 Chapter 6 Architectural design

The Layered architecture pattern

 Used to model the interfacing of sub-systems.

 Organises the system into a set of layers (or abstract

machines) each of which provide a set of services.

 Supports the incremental development of sub-systems in

different layers. When a layer interface changes, only the

adjacent layer is affected.

 However, often artificial to structure systems in this way.

12 Chapter 6 Architectural design

A generic layered architecture

13 Chapter 6 Architectural design

The Layered architecture pattern

Name Layered architecture

Description Organizes the system into layers with related functionality

associated with each layer. A layer provides services to the layer
above it so the lowest-level layers represent core services that
are likely to be used throughout the system.

Example A layered model of a system for sharing copyright documents

held in different libraries.
When used Used when building new facilities on top of existing systems;

when the development is spread across several teams with each
team responsibility for a layer of functionality; when there is a
requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is

maintained. Redundant facilities (e.g., authentication) can be
provided in each layer to increase the dependability of the
system.

Disadvantages In practice, providing a clean separation between layers is often

difficult and a high-level layer may have to interact directly with
lower-level layers rather than through the layer immediately
below it. Performance can be a problem because of multiple

levels of interpretation of a service request as it is processed at
each layer.

14 Chapter 6 Architectural design

The architecture of the LIBSYS system

15 Chapter 6 Architectural design

The Repository architecture pattern

 Sub-systems must exchange data. This may be done in
two ways:

 Shared data is held in a central database or repository and may
be accessed by all sub-systems;

 Each sub-system maintains its own database and passes data
explicitly to other sub-systems.

When large amounts of data are to be shared, the
repository model of sharing is most commonly used a
this is an efficient data sharing mechanism.

16 Chapter 6 Architectural design

A repository architecture for an IDE

17 Chapter 6 Architectural design

The Repository architecture pattern

Name Repository

Description All data in a system is managed in a central repository that is

accessible to all system components. Components do not
interact directly, only through the repository.

Example Figure above is an example of an IDE where the components

use a repository of system design information. Each software
tool generates information which is then available for use by
other tools.

When used You should use this pattern when you have a system in which

large volumes of information are generated that has to be
stored for a long time. You may also use it in data-driven
systems where the inclusion of data in the repository triggers

an action or tool.
Advantages Components can be independent—they do not need to know

of the existence of other components. Changes made by one
component can be propagated to all components. All data can
be managed consistently (e.g., backups done at the same

time) as it is all in one place.
Disadvantages The repository is a single point of failure so problems in the

repository affect the whole system. May be inefficiencies in
organizing all communication through the repository.
Distributing the repository across several computers may be

difficult. 18 Chapter 6 Architectural design

The Client-server architecture pattern

 Distributed system model which shows how data and
processing is distributed across a range of components.

 Can be implemented on a single computer.

 Set of stand-alone servers which provide specific
services such as printing, data management, etc.

 Set of clients which call on these services.

 Network which allows clients to access servers.

19 Chapter 6 Architectural design

A client–server architecture for a film library

20 Chapter 6 Architectural design

The Client–server pattern

Name Client-server

Description In a client–server architecture, the functionality of the system is

organized into services, with each service delivered from a
separate server. Clients are users of these services and access
servers to make use of them.

Example Figure 6.11 is an example of a film and video/DVD library organized

as a client–server system.
When used Used when data in a shared database has to be accessed from a

range of locations. Because servers can be replicated, may also be
used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be

distributed across a network. General functionality (e.g., a printing
service) can be available to all clients and does not need to be
implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of

service attacks or server failure. Performance may be unpredictable
because it depends on the network as well as the system. May be
management problems if servers are owned by different

organizations.

21 Chapter 6 Architectural design

The Pipe and filter architecture pattern

 Functional transformations process their inputs to
produce outputs.

May be referred to as a pipe and filter model (as in UNIX
shell).

 Variants of this approach are very common. When
transformations are sequential, this is a batch sequential
model which is extensively used in data processing
systems.

 Not really suitable for interactive systems.

22 Chapter 6 Architectural design

An example of the pipe and filter architecture

23 Chapter 6 Architectural design

The Pipe and filter pattern

Name Pipe and filter

Description The processing of the data in a system is organized so that each

processing component (filter) is discrete and carries out one type of
data transformation. The data flows (as in a pipe) from one component
to another for processing.

Example Figure above is an example of a pipe and filter system used for

processing invoices.
When used Commonly used in data processing applications (both batch- and

transaction-based) where inputs are processed in separate stages to
generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style

matches the structure of many business processes. Evolution by
adding transformations is straightforward. Can be implemented as
either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between

communicating transformations. Each transformation must parse its
input and unparse its output to the agreed form. This increases system
overhead and may mean that it is impossible to reuse functional

transformations that use incompatible data structures.

24 Chapter 6 Architectural design

Application architectures

 Application systems are designed to meet an

organisational need.

 As businesses have much in common, their application

systems also tend to have a common architecture that

reflects the application requirements.

 A generic application architecture is an architecture for a

type of software system that may be configured and

adapted to create a system that meets specific

requirements.

25 Chapter 6 Architectural design

Examples of application types

 Data processing applications

 Data driven applications that process data in batches without

explicit user intervention during the processing.

 Transaction processing applications

 Data-centred applications that process user requests and update

information in a system database.

 Event processing systems

 Applications where system actions depend on interpreting

events from the system’s environment.

 Language processing systems

 Applications where the users’ intentions are specified in a formal

language that is processed and interpreted by the system.
Chapter 6 Architectural design 26

Key points

 A software architecture is a description of how a software

system is organized.

 Architectural design decisions include decisions on the

type of application, the distribution of the system, the

architectural styles to be used.

 Architectural patterns are a means of reusing knowledge

about generic system architectures. They describe the

architecture, explain when it may be used and describe

its advantages and disadvantages.

 Application systems architectures embody a common

architecture that the businesses have in common.

Chapter 6 Architectural design 27

Implementation

Lecture 8/Part 2

28 Chapter 6 Architectural design

Implementation

 Purpose:

 To convert the design model into an executable system

 I.e. to implement the design classes and components

 Artifacts:

 Code

 UML Component diagrams

 UML Deployment diagrams

Chapter 6 Architectural design 29

Implementation issues

 Focus here is not on programming, although this is

obviously important, but on other implementation issues

that are often not covered in programming texts:

 Reuse Most modern software is constructed by reusing existing

components or systems. When you are developing software, you

should make as much use as possible of existing code.

 Configuration management During the development process,

you have to keep track of the many different versions of each

software component in a configuration management system.

 Host-target development Production software does not usually

execute on the same computer as the software development

environment. Rather, you develop it on one computer (the host

system) and execute it on a separate computer (the target

system).
30 Chapter 7 Design and implementation

Reuse

 From the 1960s to the 1990s, most new software was

developed from scratch, by writing all code in a high-

level programming language.

 The only significant reuse or software was the reuse of functions

and objects in programming language libraries.

 Costs and schedule pressure mean that this approach

became increasingly unviable, especially for commercial

and Internet-based systems.

 An approach to development based around the reuse of

existing software emerged and is now generally used for

business and scientific software.

31 Chapter 7 Design and implementation

Reuse levels

 The abstraction level

 At this level, you don’t reuse software directly but use knowledge

of successful abstractions in the design of your software.

 The object level

 At this level, you directly reuse objects from a library rather than

writing the code yourself.

 The component level

 Components are collections of objects and object classes that

you reuse in application systems.

 The system level

 At this level, you reuse entire application systems.

32 Chapter 7 Design and implementation

Reuse costs

 The costs of the time spent in looking for software to

reuse and assessing whether or not it meets your needs.

Where applicable, the costs of buying the reusable

software. For large off-the-shelf systems, these costs

can be very high.

 The costs of adapting and configuring the reusable

software components or systems to reflect the

requirements of the system that you are developing.

 The costs of integrating reusable software elements with

each other (if you are using software from different

sources) and with the new code that you have

developed.
33 Chapter 7 Design and implementation

Configuration management

 Configuration management is the name given to the

general process of managing a changing software

system.

 The aim of configuration management is to support the

system integration process so that all developers can

access the project code and documents in a controlled

way, find out what changes have been made, and

compile and link components to create a system.

34 Chapter 7 Design and implementation

Configuration management activities

 Version management, where support is provided to keep track

of the different versions of software components. Version

management systems include facilities to coordinate

development by several programmers.

 System integration, where support is provided to help

developers define what versions of components are used to

create each version of a system. This description is then used

to build a system automatically by compiling and linking the

required components.

 Problem tracking, where support is provided to allow users to

report bugs and other problems, and to allow all developers to

see who is working on these problems and when they are

fixed.

35 Chapter 7 Design and implementation

Host-target development

Most software is developed on one computer (the host),

but runs on a separate machine (the target).

More generally, we can talk about a development

platform and an execution platform.

 A platform is more than just hardware.

 It includes the installed operating system plus other supporting

software such as a database management system or, for

development platforms, an interactive development environment.

 Development platform usually has different installed

software than execution platform; these platforms may

have different architectures.

36 Chapter 7 Design and implementation

Development platform tools

 An integrated compiler and syntax-directed editing

system that allows you to create, edit and compile code.

 A language debugging system.

 Graphical editing tools, such as tools to edit UML

models.

 Testing tools, such as Junit that can automatically run a

set of tests on a new version of a program.

 Project support tools that help you organize the code for

different development projects.

37 Chapter 7 Design and implementation

Integrated development environments (IDEs)

 Software development tools are often grouped to create

an integrated development environment (IDE).

 An IDE is a set of software tools that supports different

aspects of software development, within some common

framework and user interface.

 IDEs are created to support development in a specific

programming language such as Java. The language IDE

may be developed specially, or may be an instantiation

of a general-purpose IDE, with specific language-support

tools.

38 Chapter 7 Design and implementation

Open source development

Open source development is an approach to software

development in which the source code of a software

system is published and volunteers are invited to

participate in the development process

 Its roots are in the Free Software Foundation

(www.fsf.org), which advocates that source code should

not be proprietary but rather should always be available

for users to examine and modify as they wish.

 The best-known open source product is, of course, the

Linux operating system which is widely used as a server

system and, increasingly, as a desktop environment.

39 Chapter 7 Design and implementation

Open source business

More and more product companies are using an open

source approach to development.

 Their business model is not reliant on selling a software

product but on selling support for that product.

 They believe that involving the open source community

will allow software to be developed more cheaply, more

quickly and will create a community of users for the

software.

40 Chapter 7 Design and implementation

Open source licensing models

 The GNU General Public License (GPL). This is a so-called

‘reciprocal’ license that means that if you use open source

software that is licensed under the GPL license, then you

must make that software open source.

 The GNU Lesser General Public License (LGPL) is a variant

of the GPL license where you can write components that link

to open source code without having to publish the source of

these components.

 The Berkley Standard Distribution (BSD) License. This is a

non-reciprocal license, which means you are not obliged to re-

publish any changes or modifications made to open source

code. You can include the code in proprietary systems that

are sold.

41 Chapter 7 Design and implementation

Implementation good practices

Dependable programming guidelines

1. Limit the visibility of information in a program
2. Check all inputs for validity
3. Provide a handler for all exceptions
4. Minimize the use of error-prone constructs
5. Provide restart capabilities
6. Check array bounds
7. Include timeouts when calling external components
8. Name all constants that represent real-world values

42 Chapter 13 Dependability Engineering

Control the visibility of information in a

program

 Program components should only be allowed access to

data that they need for their implementation.

 This means that accidental corruption of parts of the

program state by these components is impossible.

 You can control visibility by using abstract data types

where the data representation is private and you only

allow access to the data through predefined operations

such as get () and put ().

Chapter 13 Dependability Engineering 43

Check all inputs for validity

 All program take inputs from their environment and make

assumptions about these inputs.

 However, program specifications rarely define what to do

if an input is not consistent with these assumptions.

 Consequently, many programs behave unpredictably

when presented with unusual inputs and, sometimes,

these are threats to the security of the system.

 Consequently, you should always check inputs before

processing against the assumptions made about these

inputs.

Chapter 13 Dependability Engineering 44

Validity checks

 Range checks

 Check that the input falls within a known range.

 Size checks

 Check that the input does not exceed some maximum size e.g.

40 characters for a name.

 Representation checks

 Check that the input does not include characters that should not

be part of its representation e.g. names do not include numerals.

 Reasonableness checks

 Use information about the input to check if it is reasonable rather

than an extreme value.

Chapter 13 Dependability Engineering 45

Provide a handler for all exceptions

 A program exception is an error or some

unexpected event such as a power failure.

 Exception handling constructs allow for such

events to be handled without the need for

continual status checking to detect exceptions.

 Using normal control constructs to detect

exceptions needs many additional statements to be

added to the program. This adds a significant

overhead and is potentially error-prone.

46 Chapter 13 Dependability Engineering

Exception handling

47 Chapter 13 Dependability Engineering

Exception handling

 Three possible exception handling strategies

 Signal to a calling component that an exception has occurred

and provide information about the type of exception.

 Carry out some alternative processing to the processing where

the exception occurred. This is only possible where the

exception handler has enough information to recover from the

problem that has arisen.

 Pass control to a run-time support system to handle the

exception.

 Exception handling is a mechanism to provide some fault

tolerance

Chapter 13 Dependability Engineering 48

Minimize the use of error-prone constructs

 Program faults are usually a consequence of human

error because programmers lose track of the

relationships between the different parts of the system

 This is exacerbated by error-prone constructs in

programming languages that are inherently complex or

that don’t check for mistakes when they could do so.

 Therefore, when programming, you should try to avoid or

at least minimize the use of these error-prone constructs.

Chapter 13 Dependability Engineering 49

Error-prone constructs

 Unconditional branch (goto) statements

 Floating-point numbers

 Inherently imprecise. The imprecision may lead to invalid
comparisons.

 Pointers

 Pointers referring to the wrong memory areas can corrupt
data. Aliasing can make programs difficult to understand
and change.

 Dynamic memory allocation

 Run-time allocation can cause memory overflow.

50 Chapter 13 Dependability Engineering

Error-prone constructs

 Parallelism

 Can result in subtle timing errors because of unforeseen
interaction between parallel processes.

 Recursion

 Errors in recursion can cause memory overflow as the
program stack fills up.

 Interrupts

 Interrupts can cause a critical operation to be terminated
and make a program difficult to understand.

 Inheritance

 Code is not localised. This can result in unexpected
behaviour when changes are made and problems of
understanding the code.

51 Chapter 13 Dependability Engineering

Error-prone constructs

 Aliasing

 Using more than 1 name to refer to the same state variable.

 Unbounded arrays

 Buffer overflow failures can occur if no bound checking on
arrays.

 Default input processing

 An input action that occurs irrespective of the input.

 This can cause problems if the default action is to transfer
control elsewhere in the program. In incorrect or deliberately
malicious input can then trigger a program failure.

Chapter 13 Dependability Engineering 52

Provide restart capabilities

 For systems that involve long transactions or user

interactions, you should always provide a restart

capability that allows the system to restart after failure

without users having to redo everything that they have

done.

 Restart depends on the type of system

 Keep copies of forms so that users don’t have to fill them in

again if there is a problem

 Save state periodically and restart from the saved state

Chapter 13 Dependability Engineering 53

Check array bounds

 In some programming languages, such as C, it is

possible to address a memory location outside of the

range allowed for in an array declaration.

 This leads to the well-known ‘bounded buffer’

vulnerability where attackers write executable code into

memory by deliberately writing beyond the top element

in an array.

 If your language does not include bound checking, you

should therefore always check that an array access is

within the bounds of the array.

Chapter 13 Dependability Engineering 54

Include timeouts when calling external

components

 In a distributed system, failure of a remote computer can

be ‘silent’ so that programs expecting a service from that

computer may never receive that service or any

indication that there has been a failure.

 To avoid this, you should always include timeouts on all

calls to external components.

 After a defined time period has elapsed without a

response, your system should then assume failure and

take whatever actions are required to recover from this.

Chapter 13 Dependability Engineering 55

Name all constants that represent real-world

values

 Always give constants that reflect real-world values

(such as tax rates) names rather than using their

numeric values and always refer to them by name

 You are less likely to make mistakes and type the wrong

value when you are using a name rather than a value.

 This means that when these ‘constants’ change (for

sure, they are not really constant), then you only have to

make the change in one place in your program.

Chapter 13 Dependability Engineering 56

Clean code by Robert C. Martin

 A handbook of agile software craftsmanship

 Guidelines for:

 Meaningful names

 Functions

 Comments

 Formatting

 Objects and data structures

 Error handling

 Concurrency

 … and others

 Smells and heuristics

Chapter 6 Architectural design 57

Key points

 When developing software, you should always consider the

possibility of reusing existing software, either as components,

services or complete systems.

 Configuration management is the process of managing changes to

an evolving software system. It is essential when a team of people

are cooperating to develop software.

 Most software development is host-target development. You use an

IDE on a host machine to develop the software, which is transferred

to a target machine for execution.

 Open source development involves making the source code of a

system publicly available. This means that many people can

propose changes and improvements to the software.

58 Chapter 7 Design and implementation

© Clear View Training 2010 v2.6 59

UML Packages (Analysis)

Lecture 8/Part 3

© Clear View Training 2010 v2.6 60

Packages

 A package is a general purpose mechanism for
organising model elements into groups

 Group semantically related elements

 Define a “semantic boundary” in the model

 Provide units for parallel working and configuration management

 Each package defines an encapsulated namespace i.e. all
names must be unique within the package

 In UML 2 a package is a purely logical grouping
mechanism

 Use components for physical grouping

 Analysis packages contain:

 Use cases, analysis classes, use case realizations, analysis
packages

© Clear View Training 2010 v2.6 61

Package syntax

«framework»

«modelLibrary»

standard UML 2 package stereotypes

A package that contains model elements that specify a reusable architecture

A package that contains elements that are intended to be reused by other packages
Analogous to a class library in Java, C# etc.

Membership

+ClubMembership
+Benefits
+MembershipRules
+MemberDetails:Member
-JoiningRules

Membership

Membership:MemberDetails

Membership

ClubMembership

MembershipRules

Benefits JoiningRules

MemberDetails

Member

«access»

public
(exported)
elements

private
element

qualified
package
name

see later!

© Clear View Training 2010 v2.6 62

Nested packages

 If an element is visible within
a package then it is visible
within all nested packages

 e.g. Benefits is visible
within MemberDetails

 Show containment using
nesting or the containment
relationship

 Use «access» or «import» to
merge the namespace of
nested packages with the
parent namespace

Membership

ClubMembership

MembershipRules

Benefits

JoiningRules

MemberDetails

Member

«import»

containment relationship

anchor icon

Membership

ClubMembership

MembershipRules

Benefits JoiningRules

MemberDetails

Member

«import»

© Clear View Training 2010 v2.6 63

Package dependencies

Supplier «use» Client

Supplier «import» Client

Supplier «access» Client
Public elements of the supplier namespace are added as private
elements to the client namespace. Not transitive.

Public elements of the supplier namespace are added as public
elements to the client namespace. Transitive.

An element in the client uses an element in the supplier in
some way. The client depends on the supplier. Transitive.

«trace» usually represents an historical development of one
element into another more refined version. It is an extra-model
relationship. Transitive.

Analysis
Model

«trace» Design
Model

Supplier «merge» Client
The client package merges the public contents of its supplier
packages. This is a complex relationship only used for
metamodeling - you can ignore it.

dependency semantics

C B A
transitivity - if dependencies x and y are transitive,
there is an implicit dependency between A and C

y x

not transitive

© Clear View Training 2010 v2.6 64

Package generalisation

 The more specialised child

packages inherit the public and

protected elements in their parent

package

 Child packages may override

elements in the parent package.

Both Hotels and CarHire

packages override Product::Item

 Child packages may add new

elements. Hotels adds Hotel and

RoomType, CarHire adds Car

+Price
+Market
+Item
-MicroMarket

Product

+Product::Price
+Product::Market
+Item
+Hotel
+RoomType

Hotels

+Product::Price
+Product::Market
+Item
+Car

CarHire

children

parent

© Clear View Training 2010 v2.6 65

Architectural analysis

 This involves organising the analysis classes into a set of cohesive packages

 The architecture should be layered and partitioned to separate concerns

 It’s useful to layer analysis models into application specific and application general layers

 Coupling between packages should be minimised

 Each package should have the minimum number of public or protected elements

Products

Inventory
Management

Sales

Account
Management

application
specific layer

application
general layer

partitions

© Clear View Training 2010 v2.6 66

Finding analysis packages

 These are often discovered as the model matures

We can use the natural groupings in the use case model

to help identify analysis packages:

 One or more use cases that support a particular business

process or actor

 Related use cases

 Analysis classes that realise these groupings will often

be part of the same analysis package

 Be careful, as it is common for use cases to cut across

analysis packages!

 One class may realise several use cases that are allocated to

different packages

© Clear View Training 2010 v2.6 67

Analysis packages: guidelines

 A cohesive group of closely related classes or a class hierarchy

 Minimise dependencies between packages

 Localise business processes in packages where possible

 Minimise nesting of packages

 Don’t worry about dependency stereotypes

 Don’t worry about package generalisation

 Refine package structure as analysis progresses

 4 to 10 classes per package

 Avoid cyclic dependencies!

A merge split A B A B

C

© Clear View Training 2010 v2.6 68

Key points

 Packages are the UML way of grouping modeling

elements

 There are dependency and generalisation relationships

between packages

 The package structure of the analysis model defines the

logical system architecture

© Clear View Training 2010 v2.6 69

UML Component Diagram (Design)

Lecture 8/Part 4

© Clear View Training 2010 v2.6 70

What is an interface?

 An interface specifies a named set of public features

 It separates the specification of functionality from its implementation

 An interface defines a contract that all realizing classifiers must conform to:

Interface specifies Realizing classifier

operation Must have an operation with the same signature and semantics

attribute Must have public operations to set and get the value of the attribute. The realizing
classifier is not required to actually have the attribute specified by the interface, but it
must behave as though it has

association Must have an association to the target classifier. If an interface specifies an
association to another interface, then the implementing classifiers of these interfaces
must have an association between them

constraint Must support the constraint

stereotype Has the stereotype

tagged value Has the tagged value

protocol Realizes the protocol

design by
contract

© Clear View Training 2010 v2.6 71

Provided interface syntax

 A provided interface indicates that a classifier
implements the services defined in an interface

CD Book

Borrow

«interface»
Borrow

borrow()
return()
isOverdue()

CD Book

“Lollipop” style notation
(note: you can’t show the interface
operations or attributes with this
shorthand style of notation)

“Class” style notation

interface

realization
relationship

© Clear View Training 2010 v2.6 72

Required interface syntax

 A required interface indicates that a classifier uses the

services defined by the interface

Borrow

Library

required interface

Borrow

Library

«interface»
Borrow

Library

class style notation lollipop style notation

© Clear View Training 2010 v2.6 73

Assembly connectors

 You can connect provided and required interfaces using

an assembly connector

Borrow

Book CD

Library
1 1

0..* 0..*

assembly
connector

© Clear View Training 2010 v2.6 74

Ports: organizing interfaces

 A port specifies an interaction point between a classifier and its environment

 A port is typed by its provided and required interfaces:

 It is a semantically cohesive set of provided and required interfaces

 It may have a name

 If a port has a single required interface, this defines the type of the port

 You can name the port portName:RequiredInterfaceName

DisplayMedium

Print, Display

Book

presentation

port Viewer

Book

presentation

© Clear View Training 2010 v2.6 75

Interfaces and component-based

development (CBD)

 Interfaces are the key to component based development

 This is constructing software from replaceable plug-in parts:

 Plug – the provided interface

 Socket – the required interface

 Consider:

 Electrical outlets

 Computer ports – USB, serial, parallel

 Interfaces define a contract so classifiers that realise the

interface agree to abide by the contract and can be used

interchangeably

© Clear View Training 2010 v2.6 76

What is a component?

 The UML 2.0 specification states that, "A component

represents a modular part of a system that encapsulates

its contents and whose manifestation is replaceable

within its environment"

 A black-box whose external behaviour is completely defined by

its provided and required interfaces

 May be substituted for by other components provided they all

support the same protocol

 Components can be:

 Physical - can be directly instantiated at run-time e.g. an

Enterprise JavaBean (EJB)

 Logical - a purely logical construct e.g. a subsystem

• only instantiated indirectly by virtue of its parts being instantiated

© Clear View Training 2010 v2.6 77

«delegate»

Component syntax

 Components may have provided and required interfaces,
ports, internal structure

 Provided and required interfaces usually delegate to internal parts

 You can show the parts nested inside the component icon or
externally, connected to it by dependency relationships

«component»

A I1 I2

provided
interface

required
interface

component

«component»

A

B C

I1

I1

I2

I2

part

«delegate»

black box notation white box notation

© Clear View Training 2010 v2.6 78

Stereotype Semantics

«buildComponent» A component that defines a set of things for organizational or

system level development purposes.

«entity» A persistent information component representing a business

concept.

«implementation» A component definition that is not intended to have a

specification itself. Rather, it is an implementation for a separate
«specification» to which it has a dependency.

«specification» A classifier that specifies a domain of objects without defining

the physical implementation of those objects. For example, a
Component stereotyped by «specification» only has provided

and required interfaces - no realizing classifiers.

«process» A transaction based component.

«service» A stateless, functional component (computes a value).

«subsystem» A unit of hierarchical decomposition for large systems.

Standard component stereotypes

© Clear View Training 2010 v2.6 79

Subsystems

 A subsystem is a component that

acts as a unit of decomposition for a

larger system

 It is a logical construct used to

decompose a larger system into

manageable chunks

 Subsystems can't be instantiated at

run-time, but their contents can

 Interfaces connect subsystems

together to create a system

architecture
BusinessLogic

GUI

Customer
Manager

Account
Manager

Order
Manager

«subsystem»

«subsystem»

© Clear View Training 2010 v2.6 80

Finding interfaces and ports

 Challenge each association:

 Does the association have to be to another class, or can it be to an
interface?

 Challenge each message send:

 Does the message send have to be to another class, or can it be to an
interface?

 Look for repeating groups of operations

 Look for groups of operations that might be useful elsewhere

 Look for possibilities for future expansion

 Look for cohesive sets of provided and required interfaces and
organize these into named ports

 Look at the dependencies between subsystems - mediate these by
an assembly connector where possible

© Clear View Training 2010 v2.6 81

Designing with interfaces

 Design interfaces based on common sets of operations

 Design interfaces based on common roles

 These roles may be between two classes or even within one
class which interacts with itself

 These roles may also be between two subsystems

 Design interfaces for new plug-in features

 Design interfaces for plug-in algorithms

 Façade Pattern – interfaces to create "seams" in a system

 Identify cohesive parts of the system

 Package these into a «subsystem»

 Define an interface to that subsystem

 Interfaces for information hiding and separation of concerns

© Clear View Training 2010 v2.6 82

Physical architecture

 Subsystems and interfaces comprise the physical
architecture of our model

We must now organise this collection of interfaces and
subsystems to create a coherent architectural picture:

We can apply the "layering" architectural pattern

 Subsystems are arranged into layers

 Each layer contains design subsystems which are semantically
cohesive e.g. Presentation layer, Business logic layer, Utility layer

 Dependencies between layers are very carefully managed

 Dependencies go one way

 Dependencies are mediated by interfaces

© Clear View Training 2010 v2.6 83

Example layered architecture

«subsystem»
GUI

«subsystem»
Customer

«subsystem»
Order

«subsystem»
Product

«subsystem»
Accounts

«subsystem»
java.sql

«subsystem»
{global}
java.util

«subsystem»
javax.swing

Customer
Manager

Product
Manager

OrderManager

Account
Manager

services

domain

utility

business
logic

presentation

© Clear View Training 2010 v2.6 84

Using interfaces

 Advantages:

 When we design with classes, we are designing to specific

implementations

 When we design with interfaces, we are instead designing to

contracts which may be realised by many different implementations

(classes)

 Designing to contracts frees our model from implementation

dependencies and thereby increases its flexibility and extensibility

 Disadvantages:

 Interfaces can add flexibility to systems BUT flexibility may lead to

complexity

 Too many interfaces can make a system too flexible!

 Too many interfaces can make a system hard to understand

Keep it simple!

© Clear View Training 2010 v2.6 85

Key points

 Interfaces specify a named set of public features:

 They define a contract that classes and subsystems may realise

 Programming to interfaces rather than to classes reduces

dependencies between the classes and subsystems in our

model

 Programming to interfaces increases flexibility and extensibility

 Design subsystems and interfaces allow us to:

 Componentize our system

 Define an architecture

© Clear View Training 2010 v2.6 86

UML Deployment Diagram (Implementation)

Lecture 8/Part 5

© Clear View Training 2010 v2.6 87

Deployment model

 The deployment model is an object model that describes how
functionality is distributed across physical nodes

 It models the mapping between the software architecture and the physical
system architecture

 It models the system’s physical architecture as artifacts deployed on
nodes

 Each node is a type of computational resource

 Nodes have relationships that represent methods of communication
between them e.g. http, iiop, netbios

 Artifacts represent physical software e.g. a JAR file or .exe file

 Design - we may create a first-cut deployment diagram:

 Focus on the big picture - nodes or node instances and their connections

 Leave detailed artifact deployment to the implementation workflow

 Implementation - finish the deployment diagram:

 Focus on artifact deployment on nodes

© Clear View Training 2010 v2.6 88

Nodes – descriptor form

 A node represents a type of computational resource

 e.g. a WindowsPC

 Standard stereotypes are «device» and «execution environment»

«device»
WindowsPC

«execution environment»
IE6

«device»
LinuxPC

«execution environment»
Apache

0..* 0..* «http»

node

association

© Clear View Training 2010 v2.6 89

Nodes – instance form

 A node instance represents an actual physical
resource

 e.g. JimsPC:WindowsPC - node instances have
underlined names

«device»
JimsPC:WindowsPC

«execution environment»
:IE6

«device»
WebServer1:LinuxPC

«execution environment»
:Apache

node instance

«device»
IlasPC:WindowsPC

«execution environment»
:IE6

«http»

© Clear View Training 2010 v2.6 90

Stereotyping nodes

 It’s very useful to use lots of stereotyping on the
deployment diagram to make it as clear and readable as
possible

© Clear View Training 2010 v2.6 91

Artifacts

 An artifact represents a type of concrete, real-world thing

such as a file

 Can be deployed on nodes

 Artifact instances represent particular copies of artifacts

 Can be deployed on node instances

 An artifact can manifest one or more components

 The artifact is the represents the thing that is the physical

manifestation of the component (e.g. a JAR file)

© Clear View Training 2010 v2.6 92

1 1

Artifacts and components

 Artifacts provide the physical
manifestation for one or more
components

 Artifacts may have the artifact
icon in their upper right hand
corner

 Artifacts can contain other
artifacts

 Artifacts can depend on other
artifacts

«component»
Library

«component»
Book

«artifact»
librarySystem.jar

«manifest» «manifest»

«component»
Ticket

«manifest»

BookImpl

ISBN

1

LibraryImpl

TicketImpl

TicketID

1

Book Library Ticket

«artifact»
jdom.jar

© Clear View Training 2010 v2.6 93

Artifact relationships

 An artifact may depend on other artifacts when a
component in the client artifact depends on a component
in the supplier artifact in some way

«artifact»
librarySystem.jar

«artifact»
BookImpl.class

«artifact»
LibraryImpl.class

«artifact»
TicketImpl.class

«artifact»
jdom.jar

«artifact»
Book.class

«artifact»
Library.class

«artifact»
Ticket.class

«artifact»
MANIFEST.MF

«artifact»
TicketID.class

«artifact»
ISBN.class

«artifact»
META_INF

© Clear View Training 2010 v2.6 94

Artifact standard stereotypes

 UML 2 provides a small number of standard stereotypes

for artifacts

artifact stereotype semantics

«file» A physical file

«deployment spec» A specification of deployment details (e.g. web.xml in J2EE)

«document» A generic file that holds some information

«executable» An executable program file

«library» A static or dynamic library such as a dynamic link library
(DLL) or Java Archive (JAR) file

«script» A script that can be executed by an interpreter

«source» A source file that can be compiled into an executable file

© Clear View Training 2010 v2.6 95

 Applying a UML profile can clarify component diagrams

 e.g. applying the example Java profile from the UML 2 specification…

 «JAR»
librarySystem.jar

«JavaClassFile»
BookImpl.class

«JavaClassFile»
LibraryImpl.class

«JavaClassFile»
TicketImpl.class

«JAR»
jdom.jar

«JavaClassFile»
Book.class

«JavaClassFile»
Library.class

«JavaClassFile»
Ticket.class

«file»
MANIFEST.MF

«JavaClassFile»
TicketID.class

«JavaClassFile»
ISBN.class

«directory»
META_INF

Stereotyping artifacts

© Clear View Training 2010 v2.6 96

Deployment

 Artifacts are deployed on nodes, artifact instances are deployed on

node instances

deployment descriptor
artifact instance

«device»
client:WindowsPC

«device»
server:WindowsPC

«execution environment»
:J2EE Server

«RMI»

«JAR»
:ConverterApp.ear

«JAR»
:ConverterClient.jar

«deployment spec»
converterDeploymentSpecification

EnterpriseBeanClass: ConverterBean
EnterpriseBeanName: ConverterBean
EnterpriseBeanType: StatelessSession

© Clear View Training 2010 v2.6 97

Key points

 The descriptor form deployment diagram

 Allows you to show how functionality represented by artefacts is

distributed across nodes

 Nodes represent types of physical hardware or execution

environments

 The instance form deployment diagram

 Allows you to show how functionality represented by artefact

instances is distributed across node instances

 Node instances represent actual physical hardware or execution

environments

