
User Interface Design

Lecture 9

1

2

Outline

History and motivation

Human limits

Designing user interface

Evaluating user interface

Examples

UML State diagram

© Z. Eichler, B. Bühnová 2

History and Motivation

Lecture 9/Part 1

3 © Z. Eichler, B. Bühnová

4

Importance of user interface

Computing systems are no longer the province of
specialist users.

Computer rage => aprox. 70% of computer users used
violence or offensive language against computers.

Apple iPhone story:

 Computer company redefines phone market through one product.

The Three Mile Island Nuclear Power Plant Disaster:

 Situation misinterpretation (coolant pressure) by the power-plant
operators.

 Oversight of emergency light indicator due to ambiguous control
indicators in the power-plant user interface.

© Z. Eichler, B. Bühnová 4

5

US ballot:

presidential elections 2000 in Florida

Ballot misunderstanding suspected to decide the election.

Major recount dispute followed, which delayed the

outcome for more than a month.

© Z. Eichler, B. Bühnová 5

6

Afghanistan ballot

So simple that even illiterate person can vote

© Z. Eichler, B. Bühnová 6

7

Human-computer interaction (HCI)

HCI is the study of how humans interact with computer
systems. It involves both art and science.

Many disciplines contribute to HCI, including human
factors (ergonomics of human limits), computer science,
psychology, ergonomics, engineering, and graphic
design.

User interface design aims at system design with the
focus on the user's experience and interaction.

© Z. Eichler, B. Bühnová 7

8

User-centered design and development

 The main principles of user-centered design:

 The active involvement of users

 An appropriate allocation of function between user and system

 The iteration of design solutions

 Multidisciplinary design teams

 The essential user-centered design activities:

 Understand and specify the context of use

 Specify the user and organizational requirements

 Produce design solutions (prototypes)

 Evaluate designs with users against requirements

© Z. Eichler, B. Bühnová 8

9

Why developers should’t design user

interface

Developers usually focus more on internal product
quality than on system usability

Developers use different mental model than users:

• User’s mental model is based on metaphors and previous
experience with similar applications

• Developer’s mental model is based on the knowledge of
internal system architecture

User interfaces don't have to conform with domain model

© Z. Eichler, B. Bühnová 9

10

EXAMPLE

Consider a tablet without hardware brightness-control
buttons

Engineers placed software brightness control to POWER
MANAGEMENT section. From their point of view it is the
right place since brightness influences battery life.

From user point of view, a more proper place for such
setting is DISPLAY.

© Z. Eichler, B. Bühnová 10

11

Terms

WIMP paradigm (1973): Windows, Icons, Menus and
Pointing device.

Usability: efficient, easy to learn and satisfying to use
user interface.

User Experience: feel about using a software.

Look & Feel: induces user experience and product
identification. Look can be imitated easily (colors and
shapes), but feel (dynamic behavior) cannot.

Human Interface Guidelines: set of platform specific
recommendations provided to developers, thus users can
carry skill at a standardized interface from one application
to another.

© Z. Eichler, B. Bühnová 11

Human Limits

Lecture 9/Part 2

12 © Z. Eichler, B. Bühnová

13

Laws of human limits

Fitts’ law (1954)

Model of human movement, predicts the time required to
hit a target:

 physically with a hand or finger,

 virtually with a pointing device.

Given by the distance, width of the target and other
coefficients.

Hick's law (1953)

Predicts the time required to select one item from a list.

Given by the reaction time and entropy of the choices.

© Z. Eichler, B. Bühnová 13

14

Memory

Short-term memory: 7+2 elements

 Important for example for proper amount of items in the

menu.

Long-term memory

© Z. Eichler, B. Bühnová 14

Designing Good User Interface

Lecture 9/Part 3

15 © Z. Eichler, B. Bühnová

Rules

Consistence: similar objects should behave similarly,

important factor for predictability

Always provide proper feedback to user:

 Weak feedback: user may perceive, e.g. tool tip

 Strong feedback: user must perceive, e.g. dialog box

Prevention and toleration of users mistakes

16 © Z. Eichler, B. Bühnová

Fundamental UI design principles (by Apple)

Metaphors

 Take advantage of people’s knowledge of the world by using

metaphors to convey concepts and features of your app.

 E.g. folders to organize documents

Mental model

 The user already has a mental model that describes the task

your software is enabling. Respect user expectations and strive

for familiarity, simplicity, availability and discoverability.

 E.g. the process of sending a letter

 Explicit and implied actions

 Explicit actions clearly state the result of manipulating an object.

 Implied actions depend on cues and contexts (drag and drop).

 Keep these two paradigms in mind as you design your UI. © Apple Inc. 17

Fundamental UI design principles (by Apple)

 Direct manipulation

 Allows users to feel that they are controlling the objects

represented by the computer.

 E.g. drag and drop

 See and point

 Based on the noun-then-verb paradigm, where the noun (icon) is

selected first and then the possible verb list (action menu)

browsed.

 User control

 It should always be the user who controls the situation.

 Feedback and communication

© Apple Inc. 18

Fundamental UI design principles (by Apple)

 Consistency

 Visual and behavioral UI consistency with the product itself, with

the platform, previous product versions, user expectations.

WYSIWYG

 Forgiveness

 Perceived stability

 The user always feels better in a stable and familiar

environment, where e.g. icons do not disappear when inactive.

 Aesthetic integrity

 Your product should look pleasant on the screen, even when

viewed for a long time.

 © Apple Inc. 19

20

Prominent positions on screen

Position is

preferred over

graphical

highlight.

Observed by

EyeTracker

device.

© Z. Eichler, B. Bühnová 20

21

Cross-platform GUI

Do not use (different platform metaphors and Look&Feel)

Works everywhere => ugly and less usable everywhere

 It is like designing a house without knowledge where the house

will be located (city, village, mountains).

May adapt Look to particular platform, but Look itself is

not Look&Feel

© Z. Eichler, B. Bühnová 21

22

Point and click vs. touch

Different paradigms, should not be combined.

Touch supports different model of:

 Cursors – not only input but also output indicator, e.g. busy

cursor

 Mouse over indication

Touch interface should support more direct manipulation

and especially the undo operation, to be safe against

user inaccuracy.

Touch is not suitable for difficult conditions, like

turbulence in aircraft.

© Z. Eichler, B. Bühnová 22

23

Always follow Human-Interface Guidelines

(HIG) if available

HIG describe especially proper use of components, e.g.

distances between buttons, labels.

Look inside Windows and/or Mac OS X HIG is

recommended.

Linux user interface guidelines are not competitive to

above mentioned ones, thus such applications don’t

provide such a standardized user interface interface and

Look&Feel.

© Z. Eichler, B. Bühnová 23

24

WEB

No strict HIG.

Designed for content consuming instead of creating.

Do not try to imitate desktop applications.

Support browser integrated navigation controls: Next and

Previous page.

Native HTML (HTML5) with CSS is always preferred over

non standardized ones like Adobe Flash and Microsoft

Silverlight.

© Z. Eichler, B. Bühnová 24

25

Prototyping

Always make a prototype

first.

We distinguish between:

 Wireframes – initial sketches

 Mockups – models of a

design used for

demonstration or evaluation

 Prototypes – early (partly-

working) samples of the

software

© Z. Eichler, B. Bühnová 25

Evaluating User Interface

Lecture 9/Part 4

26 © Z. Eichler, B. Bühnová

27

Evaluation techniques

 Interviews (unstructured, semi-structured, structured)

and user observation – easy, very useful for beginners.

Usability Testing (qualitative and quantitative measures):

Quantitative – time to complete task, error rates

Qualitative – questionnaires and surveys, subjective

Field Studies – Complex studies used whenever UI is

very critical, time consuming, considers many factors.

© Z. Eichler, B. Bühnová 27

28

Direct user observation

Underrated technique

Useful for beginners in HCI

Can be combined with

qualitative and quantitative

measures

User’s screen and face can

be recorder

Useful for task simulations,

may be supplied with e.g.

simulated helpdesk

© Z. Eichler, B. Bühnová 28

29

Eye Tracker

Measures the point

which the subject is

looking at

Output:

Heat map

Video of a focus point

on the interface

Useful for marketing

© Z. Eichler, B. Bühnová 29

Examples

Lecture 9/Part 5

30 © Z. Eichler, B. Bühnová

31

Who controls the situation?

 "Restart Later" option has been disabled, but is still

visible, just to taunt you.

© Z. Eichler, B. Bühnová 31

32

Apple: Ejecting disk through trash can

What happens when you drag the

disk into the trash can?

Erase the whole disk or eject?

Can user be sure without

experiment? => Learning through

exploration

Apple later changed the concept.

© Z. Eichler, B. Bühnová 32

33

Error messages

Does it explain anything to the user?

Errors are never “OK”, use “Continue” or “Exit” instead.

Always provide feedback in order to help the user with

the situation.

© Z. Eichler, B. Bühnová 33

34

Bloatware

(creeping featurism, feature war)

© Z. Eichler, B. Bühnová 34

35

IS

Correct usage of control features is fundamental for good

design!

Main defects:

Hyperlink “Zneaktivnit obě volby” should be replaced with

third radio-button meta-option named “NONE”.

Label “seminární skupinu”

© Z. Eichler, B. Bühnová 35

36

Colors

Beware of proper color and symbol use

© Z. Eichler, B. Bühnová 36

37

USB

Have you ever tried to plug

the USB turn the wrong

way? Why?

Why A and B are better?

© Z. Eichler, B. Bühnová 37

© Clear View Training 2010 v2.6 38

UML State Diagram

Lecture 9/Part 6

© Clear View Training 2010 v2.6 39

State machines

 Some model elements such as classes, use cases and subsystems, can have

interesting dynamic behavior - state machines can be used to model this behaviour

 Every state machine exists in the context of a particular model element that:

 Responds to events dispatched from outside of the element

 Has a clear life history modelled as a progression of states, transitions and events. We’ll

see what these mean in a minute!

 Its current behaviour depends on its past

 A state machine diagram always contains exactly one state machine for one model

element

 There are two types of state machines (see next slide):

 Behavioural state machines - define the behavior of a model element e.g. the behavior of

class instances

 Protocol state machines - Model the protocol of a classifier

• The conditions under which operations of the classifier can be called

• The ordering and results of operation calls

• Can model the protocol of classifiers that have no behavior (e.g. interfaces and ports)

© Clear View Training 2010 v2.6 40

State machine diagrams

state = off

Off On

Off On

turnOff

 We begin with the light
bulb in the state off

burnOut

light bulb {protocol}

turnOn

© Clear View Training 2010 v2.6 41

Light bulb turnOn

State = off

Off On

Off On

turnOn

turnOff

We throw the switch to On and
the event turnOn is sent to the
lightbulb

burnOut

Event =

turnOn

light bulb {protocol}

© Clear View Training 2010 v2.6 42

Light bulb On

State = on

Off On

Off On

turnOn

turnOff

 The light bulb turns on

burnOut

light bulb {protocol}

© Clear View Training 2010 v2.6 43

 We turn the switch to Off.
The event turnOff is sent
to the light bulb

Light bulb turnOff

State = on

Off On

Off On

turnOn

turnOff

burnOut

Event =

turnOff

light bulb {protocol}

© Clear View Training 2010 v2.6 44

Light bulb Off

state = off

Off On

Off On

turnOff

burnOut

turnOn

 The light bulb turns off

light bulb {protocol}

© Clear View Training 2010 v2.6 45

Basic state machine syntax

 Every state machine should have a initial state which
indicates the first state of the sequence

 Unless the states cycle endlessly, state machines should
have a final state which terminates the sequence of
transitions

We’ll look at each element of the state machine in detail in
the next few slides!

A B
anEvent

initial state transition

event

state final state

© Clear View Training 2010 v2.6 46

States

 "A condition or situation during the life of

an object during which it satisfies some

condition, performs some activity or

waits for some event"

 The state of an object at any point in

time is determined by:

 The values of its attributes

 The relationships it has to other objects

 The activities it is performing

Color

red : int

green : int

blue : int

How many states?

© Clear View Training 2010 v2.6 47

State syntax

 Actions are instantaneous

and uninterruptible

 Entry actions occur

immediately on entry to the

state

 Exit actions occur

immediately on leaving the
state

 Internal transitions occur

within the state. They do not

transition to a new state

 Activities take a finite amount

of time and are interruptible

 EnteringPassword

entry/display password dialog

exit/validate password

keypress/ echo "*"

help/display help

do/get password

entry and exit

actions

internal

transitions

internal

activity

Action syntax: eventTrigger / action

Activity syntax: do / activity

state name

© Clear View Training 2010 v2.6 48

Transitions

A B
event1, event2 [guard condition] / act1, act2

behavioral state machine

C D
[precondition] event1, event2 / [postcondition]

protocol state machine {protocol}

protocol

state

machine

behavioral

state

machine
events Boolean

guard condition

actions

precondition events postcondition

© Clear View Training 2010 v2.6 49

 The junction pseudo state

can:

 connect transitions

together (merge)

 branch transitions

 Each outgoing transition

must have a mutually

exclusive guard condition

A

B

C

t1

t2

simple merge junction

simple merge example

A

B

C

t1
t2

D

[c1]

[c2]

merge with branch

junction with

merge and branch

Connecting - the junction pseudo state

© Clear View Training 2010 v2.6 50

 The choice pseudo
state directs its single
incoming transition to
one of its outgoing
transitions

 Each outgoing
transition must have a
mutually exclusive
guard condition

Unpaid

FullyPaid PartiallyPaid OverPaid

[payment = balance]

[payment > balance] [payment < balance]

acceptPayment

acceptPayment

makeRefund

BankLoan

choice pseudo-state

Branching – the choice pseudo state

© Clear View Training 2010 v2.6 51

Events

 "The specification of a noteworthy
occurrence that has location in time and
space"

 Events trigger transitions in state machines

 Events can be shown externally, on
transitions, or internally within states
(internal transitions)

 There are four types of event:

 Call event

 Signal event

 Change event

 Time event

Off

On

turnOff turnOn

event

© Clear View Training 2010 v2.6 52

close()

Call event

 A call for an operation
execution

 The event should
have the same
signature as an
operation of the
context class

 A sequence of
actions may be
specified for a call
event - they may use
attributes and
operations of the
context class

 The return value
must match the
return type of the
operation

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

internal call event action

condition
external call event

entry action

SimpleBankAccount

© Clear View Training 2010 v2.6 53

close()

Signal events

 A signal is a

package of

information that is

sent

asynchronously

between objects

 the attributes

carry the

information

 no operations

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

SimpleBankAccount

OverdrawnAccount

send a signal

«signal»
OverdrawnAccount

date : Date

accountNumber : long
amountOverdrawn : double

© Clear View Training 2010 v2.6 54

Receiving a signal

 You may show a signal

receipt on a transition

using a concave

pentagon or as an

internal transition state

using standard notation

Calling borrower OverdrawnAccount

signal receipt

SignalName : someAction

Some state

© Clear View Training 2010 v2.6 55

close()

Change events

 The action is
performed when the
Boolean expression
transitions from false
to true

 The event is edge
triggered on a false
to true transition

 The values in the
Boolean
expression must
be constants,
globals or
attributes of the
context class

 A change event
implies continually
testing the condition
whilst in the state

InCredit

deposit(m)/ balance = balance + m

balance >= 5000 / notifyManager()

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

SimpleBankAccount

OverdrawnAccount

Boolean

expression

© Clear View Training 2010 v2.6 56

Time events

 Time events occur when a

time expression becomes

true

 There are two keywords,

after and when

 Elapsed time:

 after(3 months)

 Absolute time:

 when(date =20/3/2000)

Overdrawn

balance < overdraftLimit / notifyManager

Frozen

after(3 months)

Context: CreditAccount class

© Clear View Training 2010 v2.6 57

Composite states

 Have one or more regions that

each contain a nested

submachine

 Simple composite state

• exactly one region

 Orthogonal composite state

• two or more regions

 The final state terminates its

enclosing region – all other

regions continue to execute

 The terminate pseudo-state

terminates the whole state

machine

A composite state

A B

C

region 1

region 2

submachines

Another composite state

D E

F

terminate

pseudo-state

© Clear View Training 2010 v2.6 58

[dialtone]

after(20 seconds)/ noDialtone after(20 seconds)/ noCarrier [carrier]

cancel

Simple composite states

 Contains a

single

region

 The nested

states

inherit the

cancel

transition

from

DialingISP

do/ dialISP

DialingISP

entry/ offHook

WaitingForDialtone
Dialing

WaitingForCarrier

entry

pseudo
state

notConnected

dial

connected exit pseudo-state

NotConnected

Connected

entry/ onHook exit/ onHook

do/ useConnection

ISPDialer

© Clear View Training 2010 v2.6 59

Orthogonal composite states

 Has two or more regions

When we enter the superstate, both submachines start

executing concurrently - this is an implicit fork

do/ initializeSecuritySensor

Initializing

InitializingFireSensors

do/ initializeFireSensor

InitializingSecuritySensors

Initializing composite state details

do/ monitorSecuritySensor

Monitoring

MonitoringFireSensors

do/ monitorFireSensor

MonitoringSecuritySensors

fire

intruder

Monitoring composite state details

Synchronized exit - exit the superstate when both

regions have terminated

Unsynchronized exit - exit the superstate when either

region terminates. The other region continues

© Clear View Training 2010 v2.6 60

Key points

 Behavioral state machines

 Protocol state machines

 States

 Actions, exit and entry actions, activities

 Transitions

 Guard conditions, actions

 Events

 Call, signal, change and time

 Composite states

 Simple and orthogonal composite states

