User Interface Design

Lecture 9

Outline

< History and motivation

< Human limits

< Designing user interface
< Evaluating user interface

< Examples

< UML State diagram

© Z. Eichler, B. Biihnova

History and Motivation

Lecture 9/Part 1

© Z. Eichler, B. Biihnova 3

Importance of user interface

<> Computing systems are no longer the province of
specialist users.

<> Computer rage => aprox. 70% of computer users used
violence or offensive language against computers.

<> Apple iPhone story:

= Computer company redefines phone market through one product.

<> The Three Mile Island Nuclear Power Plant Disaster:

= Situation misinterpretation (coolant pressure)by the power-plant
operators.

= Qversight of emergency light indicator due to ambiguous control
indicators in the power-plant user interface.

© Z. Eichler, B. Biihnova 4

US ballot:
presidential elections 2000 in Florida

< Ballot misunderstanding suspected to decide the election.

< Major recount dispute followed, which delayed the
..outcome for more than a month.

V © Z. Eichler, B. Biihnova 5
% &

Trag s

Afghanistan ballot

01-41-0086
BTPE RUIEWPCNEN

20-34-0086
BT RS EQp X!

06-22-0075
Gl JS

10-62-0032
23) g ala

19-08-0022

&J;.hu.gu

03-78-0113
SO hdlas dsa

© Z. Eichler, B. Biihnova 6

Human-computer interaction (HCI)

< HCl is the study of how humans interact with computer
systems. It involves both art and science.

< Many disciplines contribute to HCI, including human
factors (ergonomics of human limits), computer science,
psychology, ergonomics, engineering, and graphic
design.

< User interface design aims at system design with the
focus on the user's experience and interaction.

© Z. Eichler, B. Biihnova 7

User-centered design and development

<> The main principles of user-centered design:

» The active involvement of users

= An appropriate allocation of function between user and system
» The iteration of design solutions

= Multidisciplinary design teams

<> The essential user-centered design activities:

» Understand and specify the context of use

= Specify the user and organizational requirements
» Produce design solutions (prototypes)

» Evaluate designs with users against requirements

© Z. Eichler, B. Biihnova

Why developers should’t design user
interface

< Developers usually focus more on internal product
quality than on system usability

<> Developers use different mental model than users:

« User’s mental model is based on metaphors and previous
experience with similar applications

« Developer’s mental model is based on the knowledge of
internal system architecture

< User interfaces don't have to conform with domain model

© Z. Eichler, B. Biihnova

EXAMPLE

< Consider a tablet without hardware brightness-control
buttons

<> Engineers placed software brightness control to POWER
MANAGEMENT section. From their point of view it is the
right place since brightness influences battery life.

<~ From user point of view, a more proper place for such
setting is DISPLAY.

© Z. Eichler, B. Biihnova 10

Terms

< WIMP paradigm (1973): Windows, Icons, Menus and
Pointing device.

<> Usability: efficient, easy to learn and satisfying to use
user interface.

< User Experience: feel about using a software.

<-Look & Feel: induces user experience and product
identification. Look can be imitated easily (colors and
shapes), but feel (dynamic behavior) cannot.

< Human Interface Guidelines: set of platform specific
recommendations provided to developers, thus users can

carry skill at a standardized interface from one application
to another.

© Z. Eichler, B. Biihnova 11

Human Limits

Lecture 9/Part 2

© Z. Eichler, B. Biihnova 12

Laws of human limits

Fitts’law (1954)

<> Model of human movement, predicts the time required to
hit a target:

= physically with a hand or finger,
= virtually with a pointing device.

< Given by the distance, width of the target and other
coefficients.

Hick's law (1953)
<> Predicts the time required to select one item from a list.
< Given by the reaction time and entropy of the choices.

© Z. Eichler, B. Biihnova 13

Memory

< Short-term memory: 7+2 elements

< Important for example for proper amount of items in the
menu.

< Long-term memory

© Z. Eichler, B. Biihnova 14

Designing Good User Interface

Lecture 9/Part 3

© Z. Eichler, B. Biihnova 15

Rules

< Consistence: similar objects should behave similarly,
important factor for predictability

<> Always provide proper feedback to user:

= \Weak feedback: user may perceive, e.g. tool tip
= Strong feedback: user must perceive, e.g. dialog box

<~ Prevention and toleration of users mistakes

© Z. Eichler, B. Biihnova 16

Um-'li;:ﬁ::ﬁ.‘ : "“.‘l:"‘ i;'.:
Fundamental Ul design principles (by Apple) 3‘

<> Metaphors

= Take advantage of people’s knowledge of the world by using
metaphors to convey concepts and features of your app.

= E.g.folders to organize documents

<> Mental model

= The user already has a mental model that describes the task
your software is enabling. Respect user expectations and strive
for familiarity, simplicity, availability and discoverability.

= E.g.the process of sending a letter

< Explicit and implied actions

= Explicit actions clearly state the result of manipulating an object.
... " Implied actions depend on cues and contexts (drag and drop).
= Keep these two paradigms immind as you design your Ul. 17

Uz

Fundamental Ul design principles (by Apple) m.i

<> Direct manipulation

= Allows users to feel that they are controlling the objects
represented by the computer.

= E.g.drag and drop
<> See and point

= Based on the noun-then-verb paradigm, where the noun (icon) is
selected first and then the possible verb list (action menu)
browsed.

< User control

= |t should always be the user who controls the situation.

< Feedback and communication

© Apple Inc. 18

Uz

Fundamental Ul design principles (by Apple) m.i

g
= r
LU A

< Consistency

» Visual and behavioral Ul consistency with the product itself, with
the platform, previous product versions, user expectations.

<> WYSIWYG
<> Forgiveness

<> Perceived stability

= The user always feels betterin a stable and familiar
environment, where e.g. icons do not disappear when inactive.

< Aesthetic integrity

= Your product should look pleasant on the screen, even when
viewed for a long time.

© Apple Inc. 19

Prominent positions on screen

<> Position is
preferred over
graphical
highlight.

<> Observed by
EyeTracker
device.

© Z. Eichler, B. Biihnova

Priority 2

20

Cross-platform GUI

<> Do not use (different platform metaphors and Look&Feel)

<> Works everywhere => ugly and less usable everywhere

= |tis like designing a house without knowledge where the house
will be located (city, village, mountains).

<> May adapt Look to particular platform, but Look itself is
not Look&Feel

© Z. Eichler, B. Biihnova 21

Point and click vs. touch

<> Different paradigms, should not be combined.

<> Touch supports different model of:

= Cursors — not only input but also output indicator, e.g. busy
cursor

= Mouse overindication

<> Touch interface should support more direct manipulation
and especially the undo operation, to be safe against
user inaccuracy.

<> Touch is not suitable for difficult conditions, like
turbulence in aircraft.

© Z. Eichler, B. Biihnova 22

Always follow Human-Interface Guidelines ‘-
(HIG) if available

< HIG describe especially proper use of components, e.g.
distances between buttons, labels.

< Look inside Windows and/or Mac OS X HIG is
recommended.

< Linux user interface guidelines are not competitive to
above mentioned ones, thus such applications don'’t
provide such a standardized user interface interface and
Look&Feel.

© Z. Eichler, B. Biihnova 23

WEB

<> No strict HIG.

< Designed for content consuming instead of creating.
<> Do not try to imitate desktop applications.

< Support browser integrated navigation controls: Next and
Previous page.

< Native HTML (HTML5S) with CSS is always preferred over

non standardized ones like Adobe Flash and Microsoft
Silverlight.

© Z. Eichler, B. Biihnova 24

Prototyping

< Always make a prototype = J
first.

O3t ESTimate
1-.

<> We distinguish between:

= Wireframes —initial sketches

M

e~ ,

e || rCOSTESTiMeme ——
» Mockups —models of a S [U

—_—

ey

i .: | Studen}: JoRia wattHER
8 s

design used for
demonstration or evaluation

= Prototypes— early (partly-
working) samples of the
software

© Z. Eichler, B. Biihnova 25

Evaluating User Interface

Lecture 9/Part 4

© Z. Eichler, B. Biihnova 26

Evaluation techniques

< Interviews (unstructured, semi-structured, structured)
and user observation — easy, very useful for beginners.

< Usability Testing (qualitative and quantitative measures):
< Quantitative — time to complete task, error rates
< Qualitative — questionnaires and surveys, subjective

<> Field Studies — Complex studies used whenever Ul is
very critical, time consuming, considers many factors.

© Z. Eichler, B. Biihnova 27

Direct user observation

<> Underrated technique
< Useful for beginners in HCI

<> Can be combined with
qualitative and quantitative
measures

<> User’s screen and face car |
be recorder

<> Useful for task simulations,
may be supplied with e.g.
simulated helpdesk

MOl
That's not how
you're supposed ; ’
Youseit] -

© Z. Eichler, B. Biihnova 28

Eye Tracker

< Measures the point
which the subject is
looking at

Output:
<> Heat map

<> Video of a focus point
on the interface

< Useful for marketing

V © Z. Eichler, B. Biihnova 29
Y, W&

s paast™

Examples

Lecture 9/Part 5

© Z. Eichler, B. Biihnova 30

Who controls the situation?

“ Automatic Updates

Updating your computer is almost complete. Your computer needs to be restarted
for the updates to take effect. Windows will restart your computer automatically in
3:11 minutes.

(RNNANNARNAARNARD

Do you want to restart your computer now?

| Restart Now |

<> "Restart Later" option has been disabled, but is still
visible, just to taunt you.

© Z. Eichler, B. Biihnova 31

Apple: Ejecting disk through trash can

<> What happens when you drag the
disk into the trash can?

<> Erase the whole disk or eject?

< Can user be sure without
experiment? => Learning through
exploration

i E’E"
% Apple later changed th t e T ash i
ppIe fater chahged the concept. R

,b““m r.\\;.o'?

e %
V © Z. Eichler, B. Biihnova 32
W\

a5 as

Error messages

Microzoft Yizual Baszic

X

—

<> Does it explain anything to the user?
<> Errors are never “OK”, use “Continue” or “Exit” instead.

<> Always provide feedback in order to help the user with
the situation.

?V © Z. Eichler, B. Buhnova 33
Y &

2
Trag s

Bloatware Vi,
(creeping featurism, feature war)

Ezi Document1 - Microsoft Word

=181x]

° File Edt Yiew [Insert Format Tooks Table Window Help Type a question for help » X

NEHRIESRATHIABAR S 9-0 - RIOEZ=HB I T 0+ - @ GEeed J§

i A4 warmal + TmesHewRoman » 12 = | B [U Iil%% E-|i= i= iEiE|v?vAv!

: &g Al Entries - |New...!5=b||"’-:'E ﬁ-ﬁa%‘ig‘!
et Shape | 0 ‘9 < [Lavout v | £ Changeto~ |l ¢ <Ciick Recount toview> ~ Recourt [§

= IEE IR OEE -1 | HECEY @Y ER

MF P FmacmBe s AR EDEE % @ wenewronen -2 - A8 2z y[E]EE SiE e) Been Bseoeio | 1]
P7 . e ahe W05 2h @lEl= =;iil§ b o ieoui:v‘..IZ]MI@!?{“-InsertShaps » Layout > | Select = | 3] 100% 'B

Am BB B msetwodrod- | 2B RAIK (] WR Y WS Fo Fo HoEHomyEHE=quym]

Db W Body text -awlawtstocdléﬁl HHJIJI.«I-;A'-#’J;EESI%JI‘E!

* Final Shoving Markup -mw-lt}ﬁﬂ-&-ﬂw-ljlgnézﬁdl z %-z-l-&-Iﬂ-t‘iﬁ;i‘i—dim\ﬁlﬁlél%lEl

@ @A A A Q Favorites | Go~ | [| Document1 ,!
 Greeting... Opening... Claging,.. Insert Previous Greeting |2 ¢ (0 | [[5] New Frame Left 5] New Frame Right =] New Frame Abave = New Frame Below | =1 f! !

T S R e R SR BRI SRR

- AR | Getting Started v x
el e8] a

Microsoft Office Online
* Conneck ko Microsaft Office
Orline

* Get the latest news about using
Word

Toto uZ je mod = Automaticaly update this lis
From the web

Mare...
Search For:
[

Example: “Print more than one copy™

Open
ELEELE _ n _ [E———]
FIESESLETRNCIETE ¥ AR 2 A=Y B
ioaws s [aostepess N\ NOOM A @l & L-A-===adf
[F1]Help [l iove Text (73] nsert AutoTex 74| Repeat 75l Go o [re]other Pane |77 Spefing and ... [[rolupdate Fied FidMenubode [FiiMextField F1Save As... !
Page 1 Sec 1 1f1 A Ln 1 Col 15 REC TRE EXT OVR Czech e
) start| [Boulevard - NetBears 1p... |[3] Document1 - Microsan. s [l [@ sszam

TS g

%
%,

!
&

© Z. Eichler, B. Biihnova

34

IS

Chci soucasné odhlasit studenta.
(Zobrazit vEechny studenty pfedmétu vé. zaregistrovanych (tj. zatim nezapsanych)

() Zobrazit véechny studenty z vybéru Zneaktivnit obé volby
| Wybrat | seminarni skupinu

<> Correct usage of control features is fundamental for good
design!

Main defects:

< Hyperlink “Zneaktivnit obé volby” should be replaced with
third radio-button meta-option named “NONE”".

< Label “seminarni skupinu”

© Z. Eichler, B. Biihnova 35

Colors

Delete All Records B
Are you sure you want to delete
all records from the databaze?

Tes | No |

<> Beware of proper color and symbol use

© Z. Eichler, B. Biihnova 36

USB

<> Have you ever tried to plug
the USB turn the wrong
way? Why?

<WhyA and B are better?

© Z. Eichler, B. Biihnova 37

UML State Diagram

Lecture 9/Part 6

© Clear View Training 2010 v2.6 38

State machines

Some model elements such as classes, use cases and subsystems, can have
interesting dynamic behavior - state machines can be used to model this behaviour

Every state machine exists in the context of a particular model element that:

= Responds to events dispatched from outside of the element

» Has a clear life history modelled as a progression of states, transitions and events. We'll
see what these mean in a minute!

= |ts current behaviour depends on its past

A state machine diagram always contains exactly one state machine for one model
element

There are two types of state machines (see next slide):

» Behavioural state machines - define the behavior of a model element e.g. the behavior of
class instances

» Protocol state machines - Model the protocol of a classifier

» The conditionsunderwhich operations ofthe classifier can be called

o * Theordering andresults ofopgra}tior\\/pallTs 010w -
5 Clear View Training V2.6 .
“,2 .« ¢ Canmodelthe protocol of classﬁlers thathaveno e%awor(e.g. interfacesand ports)

State machine diagrams

state = off

light bulb {protocol}

.%[Off

~

turnOn

-

J

turnOff

-

burnOut

= \We begin with the light
bulb in the state off

© Clear View Training 2010 v2.6

40

Light bulb turnOn e ; P
_ light bulb {protocol} |
State = off ~ turnOn -
.%[Off On
7 turnOff ~

burnOut

<> We throw the switch to On and
the event turnOn is sent to the
lightbulb

© Clear View Training 2010 v2.6 41

Light bulb On

State = on

light bulb {protocol}

.%[Off

~

turnOn

-

J

turnOff

-

burnOut

= The light bulb turns on

© Clear View Training 2010 v2.6

42

Light bulb turnOff m : i
light bulb {protocol} |
State = on ~ turnOn -
.%[Off On
“ " turnOff

burnOut

On 5 We turn the switch to Off.
The event turnOff is sent
to the light bulb

© Clear View Training 2010 v2.6 43

Light bulb Off

state = off

On

light bulb {protocol}

.%[Off

~

turnOn

-

J

turnOff

-

burnOut

= The light bulb turns off

© Clear View Training 2010 v2.6

44

Basic state machine syntax m‘i

&R
event
/
A } anEvent >{B
/ | / : | \
initial state transition state final state

< Every state machine should have a initial state which
iIndicates the first state of the sequence

< Unless the states cycle endlessly, state machines should
have a final state which terminates the sequence of
transitions

< We'll look at each element of the state machine in detail in
_-the next few slides!

© Clear View Training 2010 v2.6 45

States

< "A condition or situation during the life of
an object during which it satisfies some
condition, performs some activity or How many states?
waits for some event"

Color
e The §tate of an object at any point in red : int
time is determined by: green: int
= The values of its attributes blue : int

= The relationships it has to other objects

» The activities it is performing @

© Clear View Training 2010 v2.6 46

State syntax

<> Actions are instantaneous
and uninterruptible

= Entry actions occur
immediately on entry to the
state

= EXxit actions occur
immediately on leaving the
state

< Internal transitions occur
within the state. They do not
transition to a new state

< Activities take a finite amount

of time and are interruptible

state name <

entry and exit J
actions

internal
transitions

/ EnteringPassword\

internal {

activity

entry/display password dialog
exit/validate password

keypress/ echo

help/display help

do/get password

/

Action syntax: eventTrigger / action
Activity syntax: do / activity

© Clear View Training 2010 v2.6

47

I.l ML 2 sni IHE
Usermn Puncinn

Transitions e |

behavioral state machine ’

behavioral W event1, event2 [guard condition]/ act1, act2 (

state A B

machine J = ~ 7 ~ e L
events Boolean actions

guard condition

protocol state machine {protocol} ’

protocol W [precondition] event1, event2 / [postcondition] (

State C . AN NG J

machine J Y Y Y L
precondition events postcondition

:‘:7 © Clear View Training 2010 v2.6 48

Connecting - the junction pseudo state

< The junction pseudo state
can:

= connecttransitions
together (merge)

= pranch transitions
<> Each outgoing transition

must have a mutually
exclusive guard condition

simple merge exampI/eJ

S|mple merge junction

merge with branch)

o

N

[c1]

A > > C

J t2 x\[CZ]
t1

~ junction with
e

merge and branch

© Clear View Training 2010 v2.6 49

Branching — the choice pseudo state

<> The choice pseudo

state directs its single BankLoan

Incoming transition to ®
one of its outgoing \/
transitions @@
<~ Each outgoing acceptPayment¥c
transition must have a choice pseudo-state
mutually exclusive [payment > balance] X [payment < balance]

guard condition

[paymen{= balance]

~ . | makeRefund(, , ~)
OverPaid] d FullyPaid PartiallyPaid

acceptPayment

© Clear View Training 2010 v2.6 50

Events

< "The specification of a noteworthy
occurrence that has location in time and

space”
< Events trigger transitions in state machines
< Events can be shown externally, on [Off J
transitions, or internally within states
(internal transitions) | 1
< There are four types of event: turnOff turnOn
= Call event l ‘
_ event
= Signal event
= Change event [On]

= Time event

© Clear View Training 2010 v2.6 51

Call event

l..l ML 2w e
Usermn Puncinn
i [

A call for an operation
execution

The event should
have the same
signature as an
operation of the
context class

A sequence of
actions may be
specified for a call
event - they may use
attributes and
operations of the
context class

The return value
must match the
return type of the

Q@étion

SimpleBankAccount)

internal call event action

/ close()
NCredit / W

\ 7
. _ N
external callevent deposit(m)/ balance = balance + m

L condition

/

(AcceptingWithdrawal W

withdraw(m)
[palance <m]

withdraw(m)
[balance >= m]

(RejectingWithdrawal W

Lentry/ logRejectedWithdrawal()

Lentry/ balance = balance - m J
/

entry action

© Clear View Training 2010 v2.6 52

I.l ML 2 sni IHE
wrmn Maxcing

Signal events
[
2 A sig nal is a SimpleBankAccount)
package of
information that is
sent close()
asynchronously ('”Cred't W
between ObjeCtS Ldeposit(m)/ balance = balance + m J
= the attributes withdraw(m) withdraw(m)
carry the [palance <m] [palance >=m]
information
= no operations (RejectingWithdrawaI W (AcceptingWithdrawal W
Lentry/IogRejectedWithdrawaI() J Lentry/ balance = balance - m J
«signal»
OverdrawnAccount
— send a signal
date: Date OverdrawnAccount
accountNumber: long
amountOverdrawn :double
V © Clear View Training 2010 v2.6 53

Receiving a signal

<> You may show a signal

re(.:elpt on a transition OverdrawnAccount Calling borrower
usSing a concave

pentagon or as an $
. .y signal receipt
Internal transition state

using standard notation

[spme state)

l
LSignaIName: someAction

© Clear View Training 2010 v2.6 54

I..l.ﬂL!nn HE
Usermn Puncinn
i [

Change events == |

[
<> The action is SimpleBankAccount)
performed when the
Boolean expression
transitions from false g i'ose()
to true InCredit
= The eventis edge > deposit(m)/ balance = balance + m <
tfriggered on a false Boolean /@alance >=5000/ notifyManager() y
to true transition expression
= The valuesin the withdraw(m) withdraw(m)
Boolean [palance <m] [palance >=m]
expression must
be constants, (RejectingWithdrawaI W (AcceptingWithdrawal
globals or
attributes of the Lentry/IogRejectedWithdrawaI() J Lentry/ balance = balance - m J
context class
< Achange event
|mp||eS COﬂtInua”y OverdrawnACCO»
testing the condition

Whlist in the state

© Clear View Training 2010 v2.6 55

Time events

<~ Time events occur when a
time expression becomes l
true
(Overdrawn
< There are two keywords, —
balance < overdraftLimit/ notifyManager
after and when k J
< Elapsed time: after(3 months)
= after(3 months) Y
_ {Frozen }
<~ Absolute time:

= when(date =20/3/2000) _
Context: CreditAccount class

© Clear View Training 2010 v2.6 56

Composite states

<> Have one or more regions that
each contain a nested
submachine

= Simple composite state
« exactly one region
= QOrthogonal composite state

« two or more regions

< The final state terminates its
enclosing region — all other
regions continue to execute

< The terminate pseudo-state
terminates the whole state
machine

: <
region 1

region 2 \

submachines

I

terminate
pseudo-state

/A composite state \
>p Plg @
&> C O,

N J

/Anothercomposite state \
&>p g X
®> r O,

\ J

© Clear View Training 2010 v2.6

57

Simple composite states

< Contains a
single
region

< The nested
states
inherit the
cancel
transition
from
DialinglSP

ISPDialer /

/DialingISP

entry/ offHook

dial dialtone
/> (Waiting ForDiaIto} []

entry
pseudo
state

N

(ij72;?| S [Waiting ForCarri%r

after(20 sec%ds)/ noDialtone after(ZO seconds+ noCarrier [Carrier]

notConnecte

&

/

cancel

(NotConnected

~

connected

exitpseudo-state

-
Connected w

L entry/onHook)

$

exit/ onHook
Kdo/useConnectio

© Clear View Training 2010 v2.6

58

l_l ML 2 sni IHE
Usermn Puncinn

Orthogonal composite states =

<> Has two or more regions

< When we enter the superstate, both submachines start
executing concurrently - this is an implicit fork

Synchronized exit - exit the superstate when both Unsynchronized exit - exit the superstate when either

regions have terminated region terminates. The other region continues
Initializing composite state details) Monitoring composite state details)
/Initializing \ /I\/Ionitoring \
(e) (L h fire
‘ InitializingFireSensors @ ‘ | MonitoringFireSensors \®
__do/ initializeFireSensor . do/ monitorFireSensor)
4) 4) .
‘ InitializingSecuritySensors @ ‘ MonitoringSecuritySensors intruder
\ | do/ initializeSecuritySensor) / \ . do/ monitorSecuritySensor))/59

© Clear View Training 2010 v2.6 59

Key points

<> Behavioral state machines

<> Protocol state machines
<~ States

= Actions, exit and entry actions, activities

<~ Transitions
= (Guard conditions, actions

< Events

= Call, signal, change and time

< Composite states
= Simple and orthogonal composite states

© Clear View Training 2010 v2.6

60

