
User Interface Design

Lecture 9

1

2

Outline

History and motivation

Human limits

Designing user interface

Evaluating user interface

Examples

UML State diagram

© Z. Eichler, B. Bühnová 2

History and Motivation

Lecture 9/Part 1

3 © Z. Eichler, B. Bühnová

4

Importance of user interface

Computing systems are no longer the province of
specialist users.

Computer rage => aprox. 70% of computer users used
violence or offensive language against computers.

Apple iPhone story:

 Computer company redefines phone market through one product.

The Three Mile Island Nuclear Power Plant Disaster:

 Situation misinterpretation (coolant pressure) by the power-plant
operators.

 Oversight of emergency light indicator due to ambiguous control
indicators in the power-plant user interface.

© Z. Eichler, B. Bühnová 4

5

US ballot:

presidential elections 2000 in Florida

Ballot misunderstanding suspected to decide the election.

Major recount dispute followed, which delayed the

outcome for more than a month.

© Z. Eichler, B. Bühnová 5

6

Afghanistan ballot

So simple that even illiterate person can vote

© Z. Eichler, B. Bühnová 6

7

Human-computer interaction (HCI)

HCI is the study of how humans interact with computer
systems. It involves both art and science.

Many disciplines contribute to HCI, including human
factors (ergonomics of human limits), computer science,
psychology, ergonomics, engineering, and graphic
design.

User interface design aims at system design with the
focus on the user's experience and interaction.

© Z. Eichler, B. Bühnová 7

8

User-centered design and development

 The main principles of user-centered design:

 The active involvement of users

 An appropriate allocation of function between user and system

 The iteration of design solutions

 Multidisciplinary design teams

 The essential user-centered design activities:

 Understand and specify the context of use

 Specify the user and organizational requirements

 Produce design solutions (prototypes)

 Evaluate designs with users against requirements

© Z. Eichler, B. Bühnová 8

9

Why developers should’t design user

interface

Developers usually focus more on internal product
quality than on system usability

Developers use different mental model than users:

• User’s mental model is based on metaphors and previous
experience with similar applications

• Developer’s mental model is based on the knowledge of
internal system architecture

User interfaces don't have to conform with domain model

© Z. Eichler, B. Bühnová 9

10

EXAMPLE

Consider a tablet without hardware brightness-control
buttons

Engineers placed software brightness control to POWER
MANAGEMENT section. From their point of view it is the
right place since brightness influences battery life.

From user point of view, a more proper place for such
setting is DISPLAY.

© Z. Eichler, B. Bühnová 10

11

Terms

WIMP paradigm (1973): Windows, Icons, Menus and
Pointing device.

Usability: efficient, easy to learn and satisfying to use
user interface.

User Experience: feel about using a software.

Look & Feel: induces user experience and product
identification. Look can be imitated easily (colors and
shapes), but feel (dynamic behavior) cannot.

Human Interface Guidelines: set of platform specific
recommendations provided to developers, thus users can
carry skill at a standardized interface from one application
to another.

© Z. Eichler, B. Bühnová 11

Human Limits

Lecture 9/Part 2

12 © Z. Eichler, B. Bühnová

13

Laws of human limits

Fitts’ law (1954)

Model of human movement, predicts the time required to
hit a target:

 physically with a hand or finger,

 virtually with a pointing device.

Given by the distance, width of the target and other
coefficients.

Hick's law (1953)

Predicts the time required to select one item from a list.

Given by the reaction time and entropy of the choices.

© Z. Eichler, B. Bühnová 13

14

Memory

Short-term memory: 7+2 elements

 Important for example for proper amount of items in the

menu.

Long-term memory

© Z. Eichler, B. Bühnová 14

Designing Good User Interface

Lecture 9/Part 3

15 © Z. Eichler, B. Bühnová

Rules

Consistence: similar objects should behave similarly,

important factor for predictability

Always provide proper feedback to user:

 Weak feedback: user may perceive, e.g. tool tip

 Strong feedback: user must perceive, e.g. dialog box

Prevention and toleration of users mistakes

16 © Z. Eichler, B. Bühnová

Fundamental UI design principles (by Apple)

Metaphors

 Take advantage of people’s knowledge of the world by using

metaphors to convey concepts and features of your app.

 E.g. folders to organize documents

Mental model

 The user already has a mental model that describes the task

your software is enabling. Respect user expectations and strive

for familiarity, simplicity, availability and discoverability.

 E.g. the process of sending a letter

 Explicit and implied actions

 Explicit actions clearly state the result of manipulating an object.

 Implied actions depend on cues and contexts (drag and drop).

 Keep these two paradigms in mind as you design your UI. © Apple Inc. 17

Fundamental UI design principles (by Apple)

 Direct manipulation

 Allows users to feel that they are controlling the objects

represented by the computer.

 E.g. drag and drop

 See and point

 Based on the noun-then-verb paradigm, where the noun (icon) is

selected first and then the possible verb list (action menu)

browsed.

 User control

 It should always be the user who controls the situation.

 Feedback and communication

© Apple Inc. 18

Fundamental UI design principles (by Apple)

 Consistency

 Visual and behavioral UI consistency with the product itself, with

the platform, previous product versions, user expectations.

WYSIWYG

 Forgiveness

 Perceived stability

 The user always feels better in a stable and familiar

environment, where e.g. icons do not disappear when inactive.

 Aesthetic integrity

 Your product should look pleasant on the screen, even when

viewed for a long time.

 © Apple Inc. 19

20

Prominent positions on screen

Position is

preferred over

graphical

highlight.

Observed by

EyeTracker

device.

© Z. Eichler, B. Bühnová 20

21

Cross-platform GUI

Do not use (different platform metaphors and Look&Feel)

Works everywhere => ugly and less usable everywhere

 It is like designing a house without knowledge where the house

will be located (city, village, mountains).

May adapt Look to particular platform, but Look itself is

not Look&Feel

© Z. Eichler, B. Bühnová 21

22

Point and click vs. touch

Different paradigms, should not be combined.

Touch supports different model of:

 Cursors – not only input but also output indicator, e.g. busy

cursor

 Mouse over indication

Touch interface should support more direct manipulation

and especially the undo operation, to be safe against

user inaccuracy.

Touch is not suitable for difficult conditions, like

turbulence in aircraft.

© Z. Eichler, B. Bühnová 22

23

Always follow Human-Interface Guidelines

(HIG) if available

HIG describe especially proper use of components, e.g.

distances between buttons, labels.

Look inside Windows and/or Mac OS X HIG is

recommended.

Linux user interface guidelines are not competitive to

above mentioned ones, thus such applications don’t

provide such a standardized user interface interface and

Look&Feel.

© Z. Eichler, B. Bühnová 23

24

WEB

No strict HIG.

Designed for content consuming instead of creating.

Do not try to imitate desktop applications.

Support browser integrated navigation controls: Next and

Previous page.

Native HTML (HTML5) with CSS is always preferred over

non standardized ones like Adobe Flash and Microsoft

Silverlight.

© Z. Eichler, B. Bühnová 24

25

Prototyping

Always make a prototype

first.

We distinguish between:

 Wireframes – initial sketches

 Mockups – models of a

design used for

demonstration or evaluation

 Prototypes – early (partly-

working) samples of the

software

© Z. Eichler, B. Bühnová 25

Evaluating User Interface

Lecture 9/Part 4

26 © Z. Eichler, B. Bühnová

27

Evaluation techniques

 Interviews (unstructured, semi-structured, structured)

and user observation – easy, very useful for beginners.

Usability Testing (qualitative and quantitative measures):

Quantitative – time to complete task, error rates

Qualitative – questionnaires and surveys, subjective

Field Studies – Complex studies used whenever UI is

very critical, time consuming, considers many factors.

© Z. Eichler, B. Bühnová 27

28

Direct user observation

Underrated technique

Useful for beginners in HCI

Can be combined with

qualitative and quantitative

measures

User’s screen and face can

be recorder

Useful for task simulations,

may be supplied with e.g.

simulated helpdesk

© Z. Eichler, B. Bühnová 28

29

Eye Tracker

Measures the point

which the subject is

looking at

Output:

Heat map

Video of a focus point

on the interface

Useful for marketing

© Z. Eichler, B. Bühnová 29

Examples

Lecture 9/Part 5

30 © Z. Eichler, B. Bühnová

31

Who controls the situation?

 "Restart Later" option has been disabled, but is still

visible, just to taunt you.

© Z. Eichler, B. Bühnová 31

32

Apple: Ejecting disk through trash can

What happens when you drag the

disk into the trash can?

Erase the whole disk or eject?

Can user be sure without

experiment? => Learning through

exploration

Apple later changed the concept.

© Z. Eichler, B. Bühnová 32

33

Error messages

Does it explain anything to the user?

Errors are never “OK”, use “Continue” or “Exit” instead.

Always provide feedback in order to help the user with

the situation.

© Z. Eichler, B. Bühnová 33

34

Bloatware

(creeping featurism, feature war)

© Z. Eichler, B. Bühnová 34

35

IS

Correct usage of control features is fundamental for good

design!

Main defects:

Hyperlink “Zneaktivnit obě volby” should be replaced with

third radio-button meta-option named “NONE”.

Label “seminární skupinu”

© Z. Eichler, B. Bühnová 35

36

Colors

Beware of proper color and symbol use

© Z. Eichler, B. Bühnová 36

37

USB

Have you ever tried to plug

the USB turn the wrong

way? Why?

Why A and B are better?

© Z. Eichler, B. Bühnová 37

© Clear View Training 2010 v2.6 38

UML State Diagram

Lecture 9/Part 6

© Clear View Training 2010 v2.6 39

State machines

 Some model elements such as classes, use cases and subsystems, can have

interesting dynamic behavior - state machines can be used to model this behaviour

 Every state machine exists in the context of a particular model element that:

 Responds to events dispatched from outside of the element

 Has a clear life history modelled as a progression of states, transitions and events. We’ll

see what these mean in a minute!

 Its current behaviour depends on its past

 A state machine diagram always contains exactly one state machine for one model

element

 There are two types of state machines (see next slide):

 Behavioural state machines - define the behavior of a model element e.g. the behavior of

class instances

 Protocol state machines - Model the protocol of a classifier

• The conditions under which operations of the classifier can be called

• The ordering and results of operation calls

• Can model the protocol of classifiers that have no behavior (e.g. interfaces and ports)

© Clear View Training 2010 v2.6 40

State machine diagrams

state = off

Off On

Off On

turnOff

 We begin with the light
bulb in the state off

burnOut

light bulb {protocol}

turnOn

© Clear View Training 2010 v2.6 41

Light bulb turnOn

State = off

Off On

Off On

turnOn

turnOff

We throw the switch to On and
the event turnOn is sent to the
lightbulb

burnOut

Event =

turnOn

light bulb {protocol}

© Clear View Training 2010 v2.6 42

Light bulb On

State = on

Off On

Off On

turnOn

turnOff

 The light bulb turns on

burnOut

light bulb {protocol}

© Clear View Training 2010 v2.6 43

 We turn the switch to Off.
The event turnOff is sent
to the light bulb

Light bulb turnOff

State = on

Off On

Off On

turnOn

turnOff

burnOut

Event =

turnOff

light bulb {protocol}

© Clear View Training 2010 v2.6 44

Light bulb Off

state = off

Off On

Off On

turnOff

burnOut

turnOn

 The light bulb turns off

light bulb {protocol}

© Clear View Training 2010 v2.6 45

Basic state machine syntax

 Every state machine should have a initial state which
indicates the first state of the sequence

 Unless the states cycle endlessly, state machines should
have a final state which terminates the sequence of
transitions

We’ll look at each element of the state machine in detail in
the next few slides!

A B
anEvent

initial state transition

event

state final state

© Clear View Training 2010 v2.6 46

States

 "A condition or situation during the life of

an object during which it satisfies some

condition, performs some activity or

waits for some event"

 The state of an object at any point in

time is determined by:

 The values of its attributes

 The relationships it has to other objects

 The activities it is performing

Color

red : int

green : int

blue : int

How many states?

© Clear View Training 2010 v2.6 47

State syntax

 Actions are instantaneous

and uninterruptible

 Entry actions occur

immediately on entry to the

state

 Exit actions occur

immediately on leaving the
state

 Internal transitions occur

within the state. They do not

transition to a new state

 Activities take a finite amount

of time and are interruptible

 EnteringPassword

entry/display password dialog

exit/validate password

keypress/ echo "*"

help/display help

do/get password

entry and exit

actions

internal

transitions

internal

activity

Action syntax: eventTrigger / action

Activity syntax: do / activity

state name

© Clear View Training 2010 v2.6 48

Transitions

A B
event1, event2 [guard condition] / act1, act2

behavioral state machine

C D
[precondition] event1, event2 / [postcondition]

protocol state machine {protocol}

protocol

state

machine

behavioral

state

machine
events Boolean

guard condition

actions

precondition events postcondition

© Clear View Training 2010 v2.6 49

 The junction pseudo state

can:

 connect transitions

together (merge)

 branch transitions

 Each outgoing transition

must have a mutually

exclusive guard condition

A

B

C

t1

t2

simple merge junction

simple merge example

A

B

C

t1
t2

D

[c1]

[c2]

merge with branch

junction with

merge and branch

Connecting - the junction pseudo state

© Clear View Training 2010 v2.6 50

 The choice pseudo
state directs its single
incoming transition to
one of its outgoing
transitions

 Each outgoing
transition must have a
mutually exclusive
guard condition

Unpaid

FullyPaid PartiallyPaid OverPaid

[payment = balance]

[payment > balance] [payment < balance]

acceptPayment

acceptPayment

makeRefund

BankLoan

choice pseudo-state

Branching – the choice pseudo state

© Clear View Training 2010 v2.6 51

Events

 "The specification of a noteworthy
occurrence that has location in time and
space"

 Events trigger transitions in state machines

 Events can be shown externally, on
transitions, or internally within states
(internal transitions)

 There are four types of event:

 Call event

 Signal event

 Change event

 Time event

Off

On

turnOff turnOn

event

© Clear View Training 2010 v2.6 52

close()

Call event

 A call for an operation
execution

 The event should
have the same
signature as an
operation of the
context class

 A sequence of
actions may be
specified for a call
event - they may use
attributes and
operations of the
context class

 The return value
must match the
return type of the
operation

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

internal call event action

condition
external call event

entry action

SimpleBankAccount

© Clear View Training 2010 v2.6 53

close()

Signal events

 A signal is a

package of

information that is

sent

asynchronously

between objects

 the attributes

carry the

information

 no operations

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

SimpleBankAccount

OverdrawnAccount

send a signal

«signal»
OverdrawnAccount

date : Date

accountNumber : long
amountOverdrawn : double

© Clear View Training 2010 v2.6 54

Receiving a signal

 You may show a signal

receipt on a transition

using a concave

pentagon or as an

internal transition state

using standard notation

Calling borrower OverdrawnAccount

signal receipt

SignalName : someAction

Some state

© Clear View Training 2010 v2.6 55

close()

Change events

 The action is
performed when the
Boolean expression
transitions from false
to true

 The event is edge
triggered on a false
to true transition

 The values in the
Boolean
expression must
be constants,
globals or
attributes of the
context class

 A change event
implies continually
testing the condition
whilst in the state

InCredit

deposit(m)/ balance = balance + m

balance >= 5000 / notifyManager()

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

SimpleBankAccount

OverdrawnAccount

Boolean

expression

© Clear View Training 2010 v2.6 56

Time events

 Time events occur when a

time expression becomes

true

 There are two keywords,

after and when

 Elapsed time:

 after(3 months)

 Absolute time:

 when(date =20/3/2000)

Overdrawn

balance < overdraftLimit / notifyManager

Frozen

after(3 months)

Context: CreditAccount class

© Clear View Training 2010 v2.6 57

Composite states

 Have one or more regions that

each contain a nested

submachine

 Simple composite state

• exactly one region

 Orthogonal composite state

• two or more regions

 The final state terminates its

enclosing region – all other

regions continue to execute

 The terminate pseudo-state

terminates the whole state

machine

A composite state

A B

C

region 1

region 2

submachines

Another composite state

D E

F

terminate

pseudo-state

© Clear View Training 2010 v2.6 58

[dialtone]

after(20 seconds)/ noDialtone after(20 seconds)/ noCarrier [carrier]

cancel

Simple composite states

 Contains a

single

region

 The nested

states

inherit the

cancel

transition

from

DialingISP

do/ dialISP

DialingISP

entry/ offHook

WaitingForDialtone
Dialing

WaitingForCarrier

entry

pseudo
state

notConnected

dial

connected exit pseudo-state

NotConnected

Connected

entry/ onHook exit/ onHook

do/ useConnection

ISPDialer

© Clear View Training 2010 v2.6 59

Orthogonal composite states

 Has two or more regions

When we enter the superstate, both submachines start

executing concurrently - this is an implicit fork

do/ initializeSecuritySensor

Initializing

InitializingFireSensors

do/ initializeFireSensor

InitializingSecuritySensors

Initializing composite state details

do/ monitorSecuritySensor

Monitoring

MonitoringFireSensors

do/ monitorFireSensor

MonitoringSecuritySensors

fire

intruder

Monitoring composite state details

Synchronized exit - exit the superstate when both

regions have terminated

Unsynchronized exit - exit the superstate when either

region terminates. The other region continues

© Clear View Training 2010 v2.6 60

Key points

 Behavioral state machines

 Protocol state machines

 States

 Actions, exit and entry actions, activities

 Transitions

 Guard conditions, actions

 Events

 Call, signal, change and time

 Composite states

 Simple and orthogonal composite states

