
Software Development Management

Lecture 12

1 Chapter 22 Project management

Topics covered

 Processes and methodologies

 Project management

 Project planning

 Risk management

 People management

2 Chapter 22 Project management

Processes and Methodologies

Lecture 12/Part 1

3 Chapter 2 Software Processes

Software process models

 The waterfall model

 Plan-driven model. Separate and distinct phases of specification

and development.

 Incremental development

 Specification, development and validation are interleaved. May

be plan-driven or agile (respecting agile development principles).

 Reuse-oriented software engineering

 The system is assembled from existing components. May be

plan-driven or agile.

 In practice, most large systems are developed using a

process that incorporates elements from all of these

models.
Chapter 2 Software Processes 4

Software prototyping

 A prototype is an initial version of a system used to

demonstrate concepts and try out design options.

 A prototype can be used in:

 The requirements engineering process to help with requirements

elicitation and validation;

 In design processes to explore options and develop a UI design;

 In the testing process to run back-to-back tests.

5 Chapter 2 Software Processes

Benefits of prototyping

 Improved system usability.

 A closer match to users’ real needs.

 Improved design quality.

 Improved maintainability.

 Reduced development effort.

6 Chapter 2 Software Processes

Prototype development

May be based on rapid prototyping languages or tools

May involve leaving out functionality, low quality

 Prototype focus on areas of the product that are not well-

understood;

 Error checking and recovery may not be included in the

prototype;

 Focus on functional rather than non-functional requirements

such as reliability and security – hard to tune for these;

 Normally undocumented.

 Prototypes should be discarded after development as

they are not a good basis for a production system

Chapter 2 Software Processes 7

Incremental delivery

 Rather than deliver the system as a single delivery, the

development and delivery is broken down into

increments with each increment delivering part of the

required functionality.

 User requirements are prioritised and the highest priority

requirements are included in early increments.

 Once the development of an increment is started, the

requirements are frozen though requirements for later

increments can continue to evolve.

8 Chapter 2 Software Processes

Incremental delivery

9 Chapter 2 Software Processes

Incremental delivery advantages

 Customer value can be delivered with each increment so

system functionality is available earlier.

 Early increments act as a prototype to help elicit

requirements for later increments.

 Lower risk of overall project failure.

 The highest priority system services tend to receive the

most testing.

10 Chapter 2 Software Processes

Incremental delivery problems

Most systems require a set of basic facilities that are

used by different parts of the system.

 As requirements are not defined in detail until an increment is to

be implemented, it can be hard to identify common facilities that

are needed by all increments.

 The essence of iterative processes is that the

specification is developed in conjunction with the

software.

 However, this conflicts with the procurement model of many

organizations, where the complete system specification is part of

the system development contract.

11 Chapter 2 Software Processes

Boehm’s spiral model

 Process is represented as a spiral rather than as a

sequence of activities with backtracking.

 Each loop in the spiral represents a phase in the

process.

 No fixed phases such as specification or design - loops

in the spiral are chosen depending on what is required.

 Risks are explicitly assessed and resolved throughout

the process.

12 Chapter 2 Software Processes

Boehm’s spiral model of the software

process

13 Chapter 2 Software Processes

Spiral model sectors

Objective setting

 Specific objectives for the phase are identified.

 Risk assessment and reduction

 Risks are assessed and activities put in place to reduce the key

risks.

 Development and validation

 A development model for the system is chosen which can be

any of the generic models.

 Planning

 The project is reviewed and the next phase of the spiral is

planned.

14 Chapter 2 Software Processes

Spiral model usage

 Spiral model has been very influential in helping people

think about iteration in software processes and

introducing the risk-driven approach to development.

 In practice, however, the model is rarely used as

published for practical software development.

Chapter 2 Software Processes 15

The Rational Unified Process

 A modern generic process derived from the work on the

UML and associated process.

 Brings together aspects of the 3 generic process models

discussed previously.

 Normally described from 3 perspectives

 A dynamic perspective that shows phases over time;

 A static perspective that shows process activities;

 A practive perspective that suggests good practice.

16 Chapter 2 Software Processes

Phases in the Rational Unified Process

17 Chapter 2 Software Processes

RUP phases

 Inception

 Establish the business case for the system.

 Elaboration

 Develop an understanding of the problem domain and the

system architecture.

 Construction

 System design, programming and testing.

 Transition

 Deploy the system in its operating environment.

18 Chapter 2 Software Processes

Static workflows in the Rational Unified

Process

Workflow Description

Business modelling The business processes are modelled using business

use cases.

Requirements Actors who interact with the system are identified and

use cases are developed to model the system

requirements.

Analysis and design A design model is created and documented using

architectural models, component models, object

models and sequence models.

Implementation The components in the system are implemented and

structured into implementation sub-systems.

Automatic code generation from design models helps

accelerate this process.

19 Chapter 2 Software Processes

Static workflows in the Rational Unified

Process

Workflow Description

Testing Testing is an iterative process that is carried out in conjunction

with implementation. System testing follows the completion of

the implementation.

Deployment A product release is created, distributed to users and installed in

their workplace.

Configuration and

change management

This supporting workflow managed changes to the system (see

Chapter 25).

Project management This supporting workflow manages the system development (see

Chapters 22 and 23).

Environment This workflow is concerned with making appropriate software

tools available to the software development team.

20 Chapter 2 Software Processes

Agile methods

 Dissatisfaction with the overheads involved in software

design methods of the 1980s and 1990s led to the

creation of agile methods. These methods:

 Focus on the code rather than the design

 Are based on an iterative approach to software development

 Are intended to deliver working software quickly and evolve this

quickly to meet changing requirements.

 The aim of agile methods is to reduce overheads in the

software process (e.g. by limiting documentation) and to

be able to respond quickly to changing requirements

without excessive rework.

21 Chapter 3 Agile software development

The principles of agile methods

Principle Description

Customer involvement Customers should be closely involved throughout the

development process. Their role is provide and prioritize new

system requirements and to evaluate the iterations of the

system.

Incremental delivery The software is developed in increments with the customer

specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and

exploited. Team members should be left to develop their own

ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the

system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and

in the development process. Wherever possible, actively work

to eliminate complexity from the system.

22 Chapter 3 Agile software development

Agile method applicability

 Product development where a software company is

developing a small or medium-sized product for sale.

 Custom system development within an organization,

where there is a clear commitment from the customer to

become involved in the development process and where

there are not a lot of external rules and regulations that

affect the software.

 Because of their focus on small, tightly-integrated teams,

there are problems in scaling agile methods to large

systems.

Chapter 3 Agile software development 23

Problems with agile methods

 It can be difficult to keep the interest of customers who

are involved in the process.

 Team members may be unsuited to the intense

involvement that characterises agile methods.

 Prioritising changes can be difficult where there are

multiple stakeholders.

Maintaining simplicity requires extra work.

 Contracts may be a problem as with other approaches to

iterative development.

24 Chapter 3 Agile software development

Plan-driven and agile development

 Plan-driven development

 A plan-driven approach to software engineering is based around

separate development stages with the outputs to be produced at

each of these stages planned in advance.

 Not necessarily waterfall model – plan-driven, incremental

development is possible

 Iteration occurs within activities.

 Agile development

 Specification, design, implementation and testing are inter-

leaved and the outputs from the development process are

decided through a process of negotiation during the software

development process.

25 Chapter 3 Agile software development

Plan-driven and agile specification

26 Chapter 3 Agile software development

Extreme programming

 Perhaps the best-known and most widely used agile
method.

 Extreme Programming (XP) takes an ‘extreme’ approach
to iterative development.

 New versions may be built several times per day;

 Increments are delivered to customers every 2 weeks;

 All tests must be run for every build and the build is only
accepted if tests run successfully.

27 Chapter 3 Agile software development

XP and agile principles

 Incremental development is supported through small,

frequent system releases.

 Customer involvement means full-time customer

engagement with the team.

 People not process through pair programming, collective

ownership and a process that avoids long working hours.

 Change supported through regular system releases.

Maintaining simplicity through constant refactoring of

code.

28 Chapter 3 Agile software development

Key points

 Processes should include activities to cope with change. This may

involve a prototyping phase that helps avoid poor decisions on

requirements and design.

 Processes may be structured for iterative development and delivery

so that changes may be made without disrupting the system as a

whole.

 The Rational Unified Process is a modern generic process model

that is organized into phases (inception, elaboration, construction

and transition) but separates activities (requirements, analysis and

design, etc.) from these phases.

 Agile methods are incremental development methods that focus on

rapid development, frequent releases of the software, reducing

process overheads and producing high-quality code. They involve

the customer directly in the development process.

29 Chapter 2 Software Processes

Project Management

Lecture 12/Part 2

30 Chapter 22 Project management

 Concerned with activities involved in ensuring

that software is delivered on time and on

schedule and in accordance with the

requirements of the organisations developing

and procuring the software.

 Project management is needed because software

development is always subject to budget and schedule

constraints that are set by the organisation developing

the software.

Software project management

31 Chapter 22 Project management

Success criteria

 Deliver the software to the customer at the agreed time.

 Keep overall costs within budget.

 Deliver software that meets the customer’s

expectations.

Maintain a happy and well-functioning development

team.

32 Chapter 22 Project management

 The product is intangible.

 Software cannot be seen or touched. Software project managers

cannot see progress by simply looking at the artefact that is

being constructed.

Many software projects are 'one-off' projects.

 Large software projects are usually different in some ways from

previous projects. Even managers who have lots of previous

experience may find it difficult to anticipate problems.

 Software processes are variable and organization

specific.

 We still cannot reliably predict when a particular software

process is likely to lead to development problems.

Software management distinctions

33 Chapter 22 Project management

 Project planning

 Project managers are responsible for planning, estimating and

scheduling project development and assigning people to

tasks.

 Risk management

 Project managers assess the risks that may affect a project,

monitor these risks and take action when problems arise.

 People management

 Project managers have to choose people for their team and

establish ways of working that leads to effective team

performance.

Management activities

34 Chapter 22 Project management

Management activities

 Reporting

 Project managers are usually responsible for reporting on the

progress of a project to customers and to the managers of the

company developing the software.

 Contract negotiation

 The first stage in a software project may involve writing a

proposal to win a contract to carry out an item of work. The

proposal describes the objectives of the project and how it will be

carried out.

 Then the contract is negotiated and later extended with

requirements changes and changing schedule constraints.

35 Chapter 22 Project management

Key points

Good project management is essential if software

engineering projects are to be developed on schedule

and within budget.

 Software management is distinct from other engineering

management. Software is intangible. Projects may be

novel or innovative with no body of experience to guide

their management. Software processes are not as

mature as traditional engineering processes.

Chapter 22 Project management 36

Project Planning

Lecture 12/Part 3

37 Chapter 23 Project planning

Project planning

 Project planning involves breaking down the work into

parts and assign these to project team members,

anticipate problems that might arise and prepare

tentative solutions to those problems.

 The project plan, which is created at the start of a

project, is used to communicate how the work will be

done to the project team and customers, and to help

assess progress on the project.

Chapter 23 Project planning

Planning stages

 At the proposal stage, when you are bidding for a

contract to develop or provide a software system.

 During the project startup phase, when you have to

plan who will work on the project, how the project will be

broken down into increments, how resources will be

allocated across your company, etc.

 Periodically throughout the project, when you modify

your plan in the light of experience gained and

information from monitoring the progress of the work.

Chapter 23 Project planning

Plan-driven development

 Plan-driven or plan-based development is an approach

to software engineering where the development

process is planned in detail.

 Plan-driven development is based on engineering project

management techniques and is the ‘traditional’ way of managing

large software development projects.

 A project plan is created that records the work to be

done, who will do it, the development schedule and the

work products.

Managers use the plan to support project decision

making and as a way of measuring progress.

Chapter 23 Project planning

The project planning process

Chapter 23 Project planning

Project scheduling

 Project scheduling is the process of deciding how the

work in a project will be organized as separate tasks,

and when and how these tasks will be executed.

 You estimate the calendar time needed to complete each

task, the effort required and who will work on the tasks

that have been identified.

 You also have to estimate the resources needed to

complete each task, such as the disk space required on

a server, the time required on specialized hardware,

such as a simulator, and what the travel budget will be.

Chapter 23 Project planning

The project scheduling process

 Split project into tasks and estimate time and resources required to

complete each task.

 Organize tasks concurrently to make optimal

use of workforce.

 Minimize task dependencies to avoid delays

caused by one task waiting for another to complete.

Chapter 23 Project planning

Schedule representation

 Graphical notations are normally used to illustrate the

project schedule.

 These show the project breakdown into tasks. Tasks

should not be too small. They should take about a week

or two.

 Bar charts are the most commonly used representation

for project schedules. They show the schedule as

activities or resources against time.

Chapter 23 Project planning

Activity bar chart

Chapter 23 Project planning

Staff allocation chart

Chapter 23 Project planning

Scheduling problems

 Estimating the difficulty of problems and hence the cost

of developing a solution is hard.

 Productivity is not proportional to the number of people

working on a task.

 Adding people to a late project makes it later because of

communication overheads.

 The unexpected always happens. Always allow

contingency in planning.

Chapter 23 Project planning

Agile planning

 Agile methods of software development are iterative

approaches where the software is developed and

delivered to customers in increments.

 Unlike plan-driven approaches, the functionality of these

increments is not planned in advance but is decided

during the development.

 The decision on what to include in an increment depends on

progress and on the customer’s priorities.

 The customer’s priorities and requirements change so it

makes sense to have a flexible plan that can

accommodate these changes.

Chapter 23 Project planning

Software pricing

 Estimates are made to discover the cost, to the

developer, of producing a software system.

 You take into account, hardware, software, travel, training and

effort costs.

 There is not a simple relationship between the

development cost and the price charged to the customer.

 Broader organisational, economic, political and business

considerations influence the price charged.

Chapter 23 Project planning

Factors affecting software pricing

Factor Description

Market opportunity A development organization may quote a low price because

it wishes to move into a new segment of the software

market. Accepting a low profit on one project may give the

organization the opportunity to make a greater profit later.

The experience gained may also help it develop new

products.

Cost estimate

uncertainty

If an organization is unsure of its cost estimate, it may

increase its price by a contingency over and above its

normal profit.

Contractual terms A customer may be willing to allow the developer to retain

ownership of the source code and reuse it in other projects.

The price charged may then be less than if the software

source code is handed over to the customer.

Chapter 23 Project planning

Factors affecting software pricing

Factor Description

Requirements volatility If the requirements are likely to change, an organization

may lower its price to win a contract. After the contract is

awarded, high prices can be charged for changes to the

requirements.

Financial health Developers in financial difficulty may lower their price to

gain a contract. It is better to make a smaller than normal

profit or break even than to go out of business. Cash flow

is more important than profit in difficult economic times.

Chapter 23 Project planning

Estimation techniques

Organizations need to make software effort and cost

estimates. There are two types of technique that can be

used to do this:

 Experience-based techniques The estimate of future effort

requirements is based on the manager’s experience of past

projects and the application domain. Essentially, the manager

makes an informed judgment of what the effort requirements are

likely to be.

 Algorithmic cost modeling In this approach, a formulaic approach

is used to compute the project effort based on estimates of

product attributes, such as size, and process characteristics,

such as experience of staff involved.

Chapter 23 Project planning

Experience-based approaches

 Experience-based techniques rely on judgments based

on experience of past projects and the effort expended in

these projects on software development activities.

 Typically, you identify the deliverables to be produced in

a project and the different software components or

systems that are to be developed.

 You document these in a spreadsheet, estimate them

individually and compute the total effort required.

 It usually helps to get a group of people involved in the

effort estimation and to ask each member of the group to

explain their estimate.

Chapter 23 Project planning

Algorithmic cost modelling

 Cost is estimated as a mathematical function of
product, project and process attributes whose
values are estimated by project managers:

 Effort = A ´ SizeB ´ M

 A is an organisation-dependent constant, B reflects the
disproportionate effort for large projects and M is a multiplier
reflecting product, process and people attributes.

 The most commonly used product attribute for cost
estimation is code size.

Most models are similar but they use different values for
A, B and M.

Chapter 23 Project planning

Estimation accuracy

 The size of a software system can only be known
accurately when it is finished.

 Several factors influence the final size

 Use of COTS and components;

 Programming language;

 Distribution of system.

 As the development process progresses then the size
estimate becomes more accurate.

 The estimates of the factors contributing to B and M are
subjective and vary according to the judgment of the
estimator.

Chapter 23 Project planning

Estimate uncertainty

Chapter 23 Project planning

The COCOMO 2 model

 An empirical model based on project experience.

Well-documented, ‘independent’ model which is not tied

to a specific software vendor.

 Long history from initial version published in 1981

(COCOMO-81) through various instantiations to

COCOMO 2.

 COCOMO 2 takes into account different approaches to

software development, reuse, etc.

Chapter 23 Project planning

COCOMO 2 models

 COCOMO 2 incorporates a range of sub-models that
produce increasingly detailed software estimates.

 The sub-models in COCOMO 2 are:

 Application composition model. Used when software is
composed from existing parts.

 Early design model. Used when requirements are available but
design has not yet started.

 Reuse model. Used to compute the effort of integrating reusable
components.

 Post-architecture model. Used once the system architecture
has been designed and more information about the system is
available.

Chapter 23 Project planning

COCOMO estimation models

Chapter 23 Project planning

Key points

 Plan-driven development is organized around a complete project

plan that defines the project activities, the planned effort, the activity

schedule and who is responsible for each activity.

 Project scheduling involves the creation of graphical representations

the project plan. Bar charts show the activity duration and staffing

timelines, are the most commonly used schedule representations.

 The price charged for a system does not just depend on its

estimated development costs; it may be adjusted depending on the

market and organizational priorities.

 The COCOMO II costing model is an algorithmic cost model that

uses project, product, hardware and personnel attributes as well as

product size and complexity attributes to derive a cost estimate.

 Chapter 23 Project planning

Risk Management

Lecture 12/Part 4

61 Chapter 22 Project management

Risk management

 Risk management is concerned with identifying risks
and drawing up plans to minimise their effect on a
project.

 A risk is a probability that some adverse circumstance
will occur

 Project risks affect schedule or resources;

 Product risks affect the quality of the software being developed;

 Business risks affect the organisation developing or procuring
the software.

62 Chapter 22 Project management

Examples of common project, product, and

business risks

Risk Affects Description

Staff turnover Project Experienced staff will leave the project before it is

finished.

Management change Project There will be a change of organizational

management with different priorities.

Hardware unavailability Project Hardware that is essential for the project will not

be delivered on schedule.

Requirements change Project and product There will be a larger number of changes to the

requirements than anticipated.

Specification delays Project and product Specifications of essential interfaces are not

available on schedule.

Size underestimate Project and product The size of the system has been underestimated.

CASE tool

underperformance

Product CASE tools, which support the project, do not

perform as anticipated.

Technology change Business The underlying technology on which the system

is built is superseded by new technology.

Product competition Business A competitive product is marketed before the

system is completed.
63 Chapter 22 Project management

Fine-grained risk types and their examples

Risk type Possible risks

Technology The database used in the system cannot process as many transactions per

second as expected. (1)
Reusable software components contain defects that mean they cannot be reused
as planned. (2)

People It is impossible to recruit staff with the skills required. (3)

Key staff are ill and unavailable at critical times. (4)
Required training for staff is not available. (5)

Organizational The organization is restructured so that different management are responsible for

the project. (6)
Organizational financial problems force reductions in the project budget. (7)

Tools The code generated by software code generation tools is inefficient. (8)

Software tools cannot work together in an integrated way. (9)

Requirements Changes to requirements that require major design rework are proposed. (10)

Customers fail to understand the impact of requirements changes. (11)

Estimation The time required to develop the software is underestimated. (12)

The rate of defect repair is underestimated. (13)
The size of the software is underestimated. (14)

64 Chapter 22 Project management

The risk management process

 Risk identification

 Identify project, product and business risks;

 Risk analysis

 Assess the likelihood and consequences of these risks;

 Risk planning

 Draw up plans to avoid or minimise the effects of the risk;

 Risk monitoring

 Monitor the risks throughout the project;

65 Chapter 22 Project management

The risk management process

66 Chapter 22 Project management

Key points

 Risk management is now recognized as one of the most

important project management tasks.

 Risk management involves identifying and assessing

project risks to establish the probability that they will

occur and the consequences for the project if that risk

does arise. You should make plans to avoid, manage or

deal with likely risks if or when they arise.

Chapter 22 Project management 67

People Management

Lecture 12/Part 5

68 Chapter 22 Project management

Managing people

 People are an organisation’s most important assets.

 The tasks of a manager are essentially people-oriented.

Unless there is some understanding of people,

management will be unsuccessful.

 Poor people management is an important contributor to

project failure.

Chapter 22 Project management

People management factors

 Consistency

 Team members should all be treated in a comparable way
without favourites or discrimination.

 Respect

 Different team members have different skills and these
differences should be respected.

 Inclusion

 Involve all team members and make sure that people’s views are
considered.

 Honesty

 You should always be honest about what is going well and what
is going badly in a project.

Chapter 22 Project management

Motivating people

 An important role of a manager is to motivate the people
working on a project.

Motivation means organizing the work and the working
environment to encourage people to work effectively.

 If people are not motivated, they will not be interested in the work
they are doing. They will work slowly, be more likely to make
mistakes and will not contribute to the broader goals of the team
or the organization.

Motivation is a complex issue but it appears that their are
different types of motivation based on:

 Basic needs (e.g. food, sleep, etc.);

 Personal needs (e.g. respect, self-esteem);

 Social needs (e.g. to be accepted as part of a group).

 71 Chapter 22 Project management

Human needs hierarchy

72 Chapter 22 Project management

Need satisfaction

 In software development groups, basic physiological and
safety needs are not an issue.

 Social

 Provide communal facilities;

 Allow informal communications e.g. via social networking

 Esteem

 Recognition of achievements;

 Appropriate rewards.

 Self-realization

 Training - people want to learn more;

 Responsibility.

73 Chapter 22 Project management

Personality types

 Task-oriented.

 The motivation for doing the work is the work itself;

 Self-oriented.

 The work is a means to an end which is the achievement of

individual goals - e.g. to get rich, to play tennis, to travel etc.;

 Interaction-oriented

 The principal motivation is the presence and actions of

co-workers. People go to work because they like to go to

work.

 Individual motivations are made up of elements

of each class, where teamwork plays an essential role.

74 Chapter 22 Project management

Teamwork

Most software engineering is a group activity

 The development schedule for most non-trivial software projects
cannot be completed by one person working alone.

 A good group is cohesive and has a team spirit.

 In a cohesive group, members consider the group to be more
important than any individual in it.

 The advantages of a cohesive group are:

 Team members learn from each other and get to know each
other’s work; Inhibitions caused by ignorance are reduced.

 Knowledge is shared. Continuity can be maintained if a group
member leaves.

 Refactoring and continual improvement is encouraged. Group
members work collectively to deliver high quality results and fix
problems.

75 Chapter 22 Project management

The effectiveness of a team

 The people in the group

 You need a mix of people in a project group as software

development involves diverse activities such as negotiating with

clients, programming, testing and documentation.

 The group organization

 A group should be organized so that individuals can contribute to

the best of their abilities and tasks can be completed as

expected.

 Technical and managerial communications

 Good communications between group members, and between

the software engineering team and other project stakeholders, is

essential.

Chapter 22 Project management 76

 Group size

 The larger the group, the harder it is for people to communicate
with other group members.

Group structure

 Communication is better in informally structured groups than in
hierarchically structured groups.

 Group composition

 Communication is better when there are different personality
types in a group and when groups are mixed rather than single
sex.

 The physical work environment

 Good workplace organisation can help encourage
communications.

Group communications

77 Chapter 22 Project management

Key points

 People are motivated by interaction with other people, the

recognition of management and their peers, and by being given

opportunities for personal development.

 Software development groups should be fairly small and cohesive.

The key factors that influence the effectiveness of a group are the

people in that group, the way that it is organized and the

communication between group members.

 Communications within a group are influenced by factors such as

the status of group members, the size of the group, the gender

composition of the group, personalities and available communication

channels.

Chapter 22 Project management 78

