
Reverse code engineering
Powerfull knowledge, lot of fun and legal for several purposes!

Native binary code (assembler)
We will work with OllyDbg (www.ollydbg.de) program that is easy-to-use
disassembler and debugger.

OllyDbg shortcuts & most important commands
F3 ... Open binary file
F2 ... Toggle breakpoint (on opcodes, or double click)
F9 ... Run debugged program
Ctrl+F2 ... Restart program, temporary changes are lost!
F8 ... Step over
F7 ... Step into
Spacebar or double click ... allows to set new opcode
Alt+BkSp ... Undo change
Rightclick->Search for->All referenced text strings ... Constant text strings
referenced in code.
Rightclick->Find references to->Address constant ... will find references to
particular memory elsewhere in the code – use when you like to know where the
memory is set or changed.
Ctrl+F1 ... Help on API (WIN32 API help file already prepared in OllyDbg directory
(WIN32.HLP))
; ... add or edit your comment for specific code line
Rightclick->Copy to executable->All modifications (or Selection) … make changes
permanent. New window with modified code is opened. Rightclick->Save file to
write patched binary to disk.

Registers (FPU):
Z – zero flag, C – carry flag, S – sign flag. Invert bit flag by double click.
EIP ... next address to execute (instruction pointer)
EBX ... usually loop counter

Startup resources
The Reverse Code Engineering Community: http://www.reverse-engineering.net/
Tutorials for You: http://www.tuts4you.com
RE on Wikipedia: http://en.wikipedia.org/wiki/Reverse_engineering

Some hints
• Conditional branching: usually realized by two consecutive operations

o Comparison operation setting Flags register
o Conditional jumping operation to address based on Flags (Branch 1)
o If not jumped then Branch 2 code is present on the next instruction, or

unconditional jump JMP to Branch 2.
• Comparison operation

o CMP EAX, -1 - will set flag(s) in Registers, Zero and Sign flags are
usually of interest. If two values are same (EAX == -1), Zero flag is set
to 1.

o TEST A, B (usually TEST EAX, EAX) – logical AND operation,
results not saved, Flags are set. TEST EAX, EAX will test if value in
EAX is equal to 0. If EAX == 0 then Zero flag == 1, 0 otherwise.

• Jump operation
o Unconditional JMP – jump every time
o Conditional - based on the current value of flag(s)

JA* Jump if (unsigned) above - CF=0 and ZF=0

JB* Jump if (unsigned) below - CF=1

JE** Jump if equal - ZF=1

JG* Jump if (signed) greater - ZF=0 and SF=OF (SF = Sign Flag)

JGE* Jump if (signed) greater or equal - SF=OF

JL* Jump if (signed) less - SF != OF (!= is not)

JLE* Jump if (signed) less or equal - ZF=1 and OF != OF

JMP** Jump - Jumps always

JNE** Jump if not equal - ZF=0

Java (Card) bytecode
Intermediate code interpreted by virtual machine (see JavaCard222_ops.pdf).

• Usually easier to understand then assembler code.
• Stack-based oriented execution, no registers are used.
• Operation takes its operands from stack and return result there.

JAVACARD SOURCE CODE

 // ENCRYPT INCOMING BUFFER

 void Encrypt(APDU apdu) {

 byte[] apdubuf = apdu.getBuffer();

 short dataLen = apdu.setIncomingAndReceive();

 short i;

 // CHECK EXPECTED LENGTH (MULTIPLY OF 64 bites)

 if ((dataLen % 8) != 0) ISOException.throwIt(SW_CIPHER_DATA_LENGTH_BAD);

 // ENCRYPT INCOMING BUFFER

 m_encryptCipher.doFinal(apdubuf, ISO7816.OFFSET_CDATA, dataLen, m_ramArray, (short) 0);

 // COPY ENCRYPTED DATA INTO OUTGOING BUFFER

 Util.arrayCopyNonAtomic(m_ramArray, (short) 0, apdubuf, ISO7816.OFFSET_CDATA, dataLen);

 // SEND OUTGOING BUFFER

 apdu.setOutgoingAndSend(ISO7816.OFFSET_CDATA, dataLen);

 }

JAVACARD BYTECODE

.method Encrypt(Ljavacard/framework/APDU;)V 129 {

 .stack 6;

 .locals 3;

 .descriptor Ljavacard/framework/APDU; 0.10;

 L0: aload_1;

 invokevirtual 30;

 astore_2;

 aload_1;

 invokevirtual 42;

 sstore_3;

 sload_3;

 bspush 8;

 srem;

 ifeq L2;

 L1: sspush 26384;

 invokestatic 41;

 goto L2;

 L2: getfield_a_this 1;

 aload_2;

 sconst_5;

 sload_3;

 getfield_a_this 10;

 sconst_0;

 invokevirtual 43;

 pop;

 getfield_a_this 10;

 sconst_0;

 aload_2;

 sconst_5;

 sload_3;

 invokestatic 44;

 pop;

 aload_1;

 sconst_5;

 sload_3;

 invokevirtual 45;

 return;

}

