
www.buslab.orgPB173 1/11

PB173 - Tématický vývoj aplikací v
C/C++ (podzim 2012)

Skupina: Aplikovaná kryptografie a bezpečné
programování

https://minotaur.fi.muni.cz:8443/pb173_crypto

Petr Švenda, svenda@fi.muni.cz
Konzultace: G201, Pondělí 16-16:50

www.buslab.orgPB173 2/11

Refactoring

� Refactoring is process of restructuralization of
source code to make it easier to understand and
modify in future without changing its observable
behaviour.

� No new functionality is added
� Existing code is rewritten, split, erased and

otherwise modified to improve code quality

www.buslab.orgPB173 3/11

Refactoring (2)

� Coding can be divided into two parts
● adding code for new functionality
● refactoring existing code

� Refactoring is necessary to keep code maintainable
● spaghetti code will sooner or later consume more time to maintain

that to rewrite it

� Be aware – code rewrite might introduce new bugs
� Proper (automated) testing is required

● that’s why you have unit tests for!
● run these tests during refactoring

www.buslab.orgPB173 4/11

Refactoring – refactoring techniques

� (De-)Composing methods properly
� Moving code between modules/classes
� Change data organization
� Making conditional expressions simpler
� Making API clearer
� …

� See http://sourcemaking.com/refactoring
● detailed explanation of many techniques with examples
● principles and practical tips how to solve problems

www.buslab.orgPB173 5/11

Code extraction into separate function

� http://sourcemaking.com/refactoring/extract-method

� Locate function doing multiple functionalities
� Identify logical blocks of functionality
� Create new function
● with name describing What not How
● move code there, replace by function call
● think about others also using new function

� Take care of local variables
● pass them as function arguments

www.buslab.orgPB173 6/11

Additional explanation variable

� http://sourcemaking.com/refactoring/introduce-
explaining-variable

� Add additional well-named variable to hold
intermediate value
● even when such variable is not necessary in principle

� Improve readability of code
� Increase possibility for debugging
● you can watch and conditionally break on variable

www.buslab.orgPB173 7/11

Separate work done by single module/class

� http://sourcemaking.com/refactoring/extract-class
� Over the time, your module/class will grow
● one module/class is doing multiple functionalities

� Violation of several design principles
� Identify distinct functionalities
● usually set of methods and attributes responsible for

single functionality

� Create new class(es) and move functions there
● separate interfaces for separate functionalities
● use multiple inheritance or aggregation to glue together

www.buslab.orgPB173 8/11

Refactoring - tools

� Most of the work with refactoring is “manual”
● find out how to refactor and write simpler code

� Tools can still help
● identify problematic areas (Code metrics,

SourceMonitor)
● provide call graph and data flow (Doxygen, VS Profiler)
● apply transformation consistently in all project files

www.buslab.orgPB173 9/11

Refactoring – tools (2)

� No real build-in refact. tool for C/C++ in VS 2010
● requires complete understanding of C/C++ code by refactoring tool

� Refactoring support for C/C++ in VS 2012
● http://www.kunal-chowdhury.com/2012/06/refactor-your-code-

easily-using-visual.html

� 3rd party add-ons like Visual Assist X / VSCommands
● not only refactoring support, but also code completition…
● http://www.agile-code.com/blog/list-of-visual-studio-code-

refactoring-tools/

� NetBeans (and others) have refactoring support
● http://wiki.netbeans.org/Refactoring
● variable renaming, code extraction…

www.buslab.orgPB173 10/11

Source monitor

� Create new project
● File → New project
● language, directory with sources *.c / *.cpp
● initial ‘Baseline’

� After code update
● Checkpoint → New checkpoint

� Details on particular checkpoint and file
● RClick → Display Function Metrics Details...

www.buslab.orgPB173 11/11

Source monitor – example outputs

� Complexity: 1-10 (OK), 11-20 (sometimes), > 20
(BAD)

www.buslab.orgPB173 12/11

Antipatterns

� Common defective process and implementation
within organization

� Opposite to design patterns
● see http://sourcemaking.com/design_patterns

� Read http://sourcemaking.com/antipatterns
● good description, examples and how to solve

� Not limited to object oriented programming!
� Software development antipatterns
● http://sourcemaking.com/antipatterns/software-

development-antipatterns

www.buslab.orgPB173 13/11

Practical assignment - refactoring

� Use code metric tool to analyze your sources
● http://www.campwoodsw.com/sourcemonitor.html

� Find and refactor all functions
● with complexity more then 15
● with Maximum Depth more then 4

� Read and use refactoring techniques
● http://sourcemaking.com/refactoring

