
PB173PB173                   1/17 

PB173 - Tématický vývoj aplikací v 
C/C++ (podzim 2012)

Skupina: Aplikovaná kryptografie a bezpečné 
programování

https://minotaur.fi.muni.cz:8443/pb173_crypto

Petr Švenda, svenda@fi.muni.cz
Konzultace: G201, Pondělí 16-16:50



PB173PB173                   2/17 

Security code review

� Architecture overview
● Design choices and possible design flaws

� Code review
● How well is architecture actually implemented

� Whitebox, greybox & blackbox testing
● different level of access to code and documentation

� Available tools
● mainly for code review



PB173PB173                   3/17 

Security code review (2)

� You will always have a limited time
● try to rapidly build overall picture
● use tools to find low hanging fruit

� Focus on most sensitive and problematic areas
● use tools to focus your analysis scope

� More eyes can spot more problems
● experts on different areas



PB173PB173                   4/17 

Architecture overview



PB173PB173                   5/17 

Architecture overview

� Get all information you can quickly
� Assets
● What has the value in the system?
● What damage is caused when successfully attacked?
● What mechanisms are used to protect assets?

� Roles
● Who has access to what?
● What credentials needs to be presented?

� Thread model
● What is expected to do harm?
● What are you defending against?



PB173PB173                   6/17 

Architecture overview (2)

� Usage of well established techniques and 
standards

� Comparison with existing schemes
● What is the advantage of new scheme?
● Why changes were made?

� Security tradeoffs documented
● Possible threat, but unmitigated? 
● Is documented or overlooked?



PB173PB173                   7/17 

Sensitive data flow mapping

� Identify sensitive data
● password, key, protected data...

� Find all processing functions
● and focus on them

� Create data flow between functions
● e.g. Doxygen call graph

� Inspect when functions can be called
● Is key schedule validity checked? 
● Can be function called without previous function calls?

� Where are sensitive data stored between calls?



PB173PB173                   8/17 

Protocol design (and implementation)

� Packet confidentiality, integrity and authenticity
� Packet removal/insertion detection
� Replay attack
� Reflection attack
� Man in the middle 



PB173PB173                   9/17 

Code overview



PB173PB173                   10/17 

Cryptography usage

� CIA (Confidentiality, Integrity, Availability)
● Plaintext data over insecure channel? Encrypted only?
● Can be packet send twice (replay)?
● What is the application response on data modification?

� What algorithms are used
● Broken/insecure algorithms? MD5? simple DES?

� What key lengths are used?
● < 90 bits symmetric crypto?
● < 1024 bits asymmetric crypto?

� Random number generation
● Where the key comes from?
● Is source entropic enough?
● srand() & rand()?



PB173PB173                   11/17 

Cryptography usage (2)

� Key creation
● Where the keys originate? Enough entropy?
● Who has access?

� Key storage
● Hard-coded keys
● Keys in files in plaintext
● Keys over insecure channels
● Keys protected by less secure keys

� Key destruction
● How are keys erased from memory?
● Can exception prevent key erase?



PB173PB173                   12/17 

Cryptography implementation

� Implementation from well known libraries?
� Own algorithms?
● security by obscurity?
● usually not secure enough 

� Own modifications?
● Why?
● sometimes used to prevent compatible programs
● decreased number of rounds?
● Performance optimization with security impact?



PB173PB173                   13/17 

Code inspection

� Overall code logic
� Memory management - allocation, input validation
� String operations – copy, concatenate, string 

termination
� Data flow – conditional jumps, test of return 

values
� Race conditions (TOCTOU)



PB173PB173                   14/17 

Input validation

� Hard (and expensive) to do right
� Always use white-listing (what is allowed), not 

black listing (what is banned)
� Check for buffer overruns
● functions called with attacker’s input
● dangerous functions (strcpy…)
● arrays with fixed lengths

� Large inputs in general
● try to insert 1KB of text instead of user name

� Fuzzing
● large amount of automated inputs with different length



PB173PB173                   15/17 

Recommended reading

� Process of security code review
● http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01668009

� Why cryptosystems fail, R. Anderson
● http://www.cl.cam.ac.uk/~rja14/Papers/wcf.pdf

� Software Security Code Review
● http://www.softwaremag.com/l.cfm?doc=2005-07/2005-07code

� Static code analysis tools
● http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

� Security in web applications (OWASP)
● http://www.owasp.org/index.php/Code_Review_Introduction



PB173

Static analysis tools

� Many tools, free&commercial
● gcc -Wall -Wextra
● MSVS:Project→C/C++ →General →Warning level (/W4 /Wall)
● MSVS2010: Analyze →Run code analysis (Code analysis settings)
● Splint (C, Linux) http://www.splint.org/
● Flawfinder (C/C++, Linux) http://www.dwheeler.com/flawfinder/
● Cppcheck (C/C++, Windows) http://cppcheck.sourceforge.net/

� Call graphs Doxygen, http://cecko.eu/public/doxygen

� Problem of false positives
● Problems that are not problems

� Problem of false negatives
● Missed problems 

PB173                   16/17 



PB173

MSVS2010 Code analysis

� http://msdn.microsoft.com/en-us/library/ms182025.aspx

PB173                   17/17 



PB173PB173                   18/17 

Flawfinder

� Download at http://www.dwheeler.com/flawfinder/
� Build by setup.py build
� Install by setup.py install
� /build/scripts***/flawfinder.py

� flawfinder.py --context --html 
source_dir



PB173PB173                   19/17 

Flawfinder - example



PB173

Cppcheck

PB173                   20/17 



PB173PB173                   21/17 

Practical assignment

� Every team will make its own documentation & 
code available online
● send link to me - now

� Other teams will make security analysis of the 
architecture and code (2 projects)

� Points will be awarded according to:
● number and severity of the problems found in reviewed 

projects 
● quality of own architecture and code 



PB173PB173                   22/17 

Practical assignment

� Some tips what to analyze:
● which functions are manipulating with sensitive information
● where is random numbers coming from
● code bugs?

� Use some analysis tools
● gcc -Wall -Wextra
● MSVS:Project→C/C++ →General →Warning level (/W4 /Wall)
● call graphs (e.g., Doxygen, http://cecko.eu/public/doxygen)
● Splint (C, Linux) http://www.splint.org/
● Flawfinder (C/C++, Linux) http://www.dwheeler.com/flawfinder/
● Cppcheck (C/C++, Windows) http://cppcheck.sourceforge.net/



PB173PB173                   23/17 

Practical assignment (2)

� Summarize your findings 
● problem identification + severity + applicability + short 

description
● 2 pages enough

Identifikace problému : A_x (celková bezpečnostní architektura) / C_x (kód 
implementace)
Závažnost : nízká  /  střední  /  vysoká  /  není možné rozhodnout
Proveditelnost útoku: snadná (lze přímo externím útočníkem)  /  v závislosti na 
dalších součástech systému  /  není možné rozhodnout (obvykle značí 
potenciální zranitelnost, kde ale detailní postup pro možné zneužití přímo 
neznáme)
Popis problému : místo výskytu v kódu ve tvary soubor.c:číslo_řádku:funkce –
popis 
Navrhované řešení : jednoduchý popis (v případě, že jsme návrh schopni 
poskytnout)


