
PV247 – Development I

Introduction to ASP.NET and related technologies

Overview

o ASP.NET Basics

o What is ASP.NET?

o What is a request?

o How does ASP.NET deal with stateless http?

o ASP.NET request/page/control life cycle

o REST Services

o Kentico CMS Platform Basics

o CMS.IO namespace

What is ASP.NET?

• Active Server Pages .NET

• Platform for creating dynamic web applications

• You can use any .NET language as a code-behind

• Development of ASP.NET WebForms applications
can be similar to the development of WinForms
applicatons. Similar, not same!

Example of ASP.NET page

ASP.NET page – code behind

What is a request?

What is a request?

• Main thing you need to remember about
HTTP protocol:

HTTP is stateless protocol!

• But we need state in dynamic web
applications!

How does ASP.NET deal with stateless http?

• The answer is ... ViewState!

• It is a technique used by an ASP.NET Web page to
persist changes to the state of a Web Form across
postbacks (HTTP POST to the same page that the
form is on).

• Use ViewState carefuly and only when it‘s really
needed! It‘s helpful technique, but it might
become too greedy and can cause the application
to be less effective.

ViewState – How is it send within requests?

ASP.NET page/control life cycle

• To be able to work with ASP.NET pages and
controls properly you need to understand the life
cycle of these elements.

• Most importat phases of page/control life cycle
are:
• PreInit
• Init
• Load
• PreRender
• Render

ASP.NET page/control life cycle

Source: http://i.msdn.microsoft.com/dynimg/IC152667.gif

Where to get more information?

• Where to start:
http://msdn.microsoft.com/en-us/library/ywdtth2f%28v=vs.71%29.aspx

• More about page life cycle:
http://msdn.microsoft.com/en-us/library/ms178472.aspx

• More details about how the ViewState works:
http://msdn.microsoft.com/en-us/library/ms972976.aspx

http://msdn.microsoft.com/en-us/library/ywdtth2f(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/ywdtth2f(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/ywdtth2f(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/ms178472.aspx
http://msdn.microsoft.com/en-us/library/ms178472.aspx
http://msdn.microsoft.com/en-us/library/ms178472.aspx
http://msdn.microsoft.com/en-us/library/ms972976.aspx
http://msdn.microsoft.com/en-us/library/ms972976.aspx
http://msdn.microsoft.com/en-us/library/ms972976.aspx

Let‘s have a REST!

• Representational state transfer (REST) is a
style of a service architecture

• Instead of complex technologies (RPC, SOAP,
etc.) you use simple HTTP requests which are
supported by all the clients!

• Commonly used formates of REST responses
are XML, JSON, AtomPub

Let‘s have a REST!

• Conforming to the REST constraints is referred
to as being "RESTful„ service

– Access the objects within the system defining
clear structure of URLs

– The structure of URLs should be self-explaining
and self-navigating

• Kentico CMS supports RESTful service

How to request a REST Service

• Create request

• Wait for response

• That‘s all!

• DEMO

CMS.IO

Layer between Kentico CMS and System.IO

CMS.IO

Kentico CMS
business

layer

System.IO

Azure
blob API

...

CMS.IO

• Allows the system to use various IO providers
(local file system, Azure Blob, Amazon S3, …)

• To implement a provider you inherit from the
base class and override the IO methods

– Directory

– File

– FileStream

– etc.

