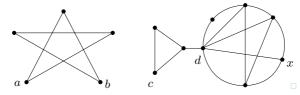
3 Distance in Graphs

While the previous lecture studied just the connectivity properties of a graph, now we are going to investigate how "long" (short, actually) a connection in a graph is.

This naturally leads to the concept of graph distance, which has two variants: the simple one considering only the number of edges, while the weighted one having a "length" for each edge.



Brief outline of this lecture

- Distance in a graph, basic properties, triangle inequality.
- Graph metrics: all-pairs shortest distances.
- Dijkstra's algorithm for the shortest weighted distance in a graph.
- Route planning: a sketch of some advanced ideas.

3.1 Graph distance (unweighted)

Recall that a walk of length n in a graph G is an alternating sequence of vertices and edges $v_0, e_1, v_1, e_2, v_2, \ldots, e_n, v_n$ such that each e_i has the ends v_{i-1}, v_i .

Definition 3.1. Distance $d_G(u,v)$ between two vertices u,v of a graph G is defined as the length of the shortest walk between u and v in G. If there is now walk between u,v, then we declare $d_G(u,v)=\infty$. \square

Informally and naturally, the distance between u,v equals the least possible number of edges traversed from u to v. Specially $d_G(u,u)=0$.

Recall, moreover, that the shortest walk is always a path - Theorem 2.2.

Fact: The distance in an undirected graph is symmetric, i.e. $d_G(u,v)=d_G(v,u)$. \Box

Lemma 3.2. The graph distance satisfies the triangle inequality:

$$\forall u, v, w \in V(G) : d_G(u, v) + d_G(v, w) \ge d_G(u, w) . \square$$

Proof. Easily; starting with a walk of length $d_G(u,v)$ from u to v, and appending a walk of length $d_G(v,w)$ from v to w, results in a walk of length $d_G(u,v)+d_G(v,w)$ from u to w. This is an upper bound on the real distance from u to w.

How to find the distance

Theorem 3.3. Let u,v,w be vertices of a connected graph G such that $d_G(u,v) < d_G(u,w)$. Then the breadth-first search algorithm on G, starting from u, finds the vertex v before w. \square

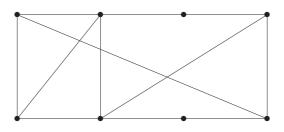
Proof. We apply induction on the distance $d_G(u,v)$: If $d_G(u,v)=0$, i.e. u=v, then it is trivial that v is found first. So let $d_G(u,v)=d>0$ and v' be a neighbour of v closer to u, which means $d_G(u,v')=d-1$. Analogously choose w' a neighbour of w closer to u. Then

$$d_G(u, w') \ge d_G(u, w) - 1 > d_G(u, v) - 1 = d_G(u, v'),$$

and so v' has been found before w' by the inductive assumption. Hence v' has been stored into U before w', and (cf. FIFO) the neighbours of v' (v among them, but not w) are found before the neighbours of w' (such as w). \Box

Corollary 3.4. The breadth-first search algorithm on G correctly determines graph distances from the starting vertex.

Other related terms



Definition 3.5. Let G be a graph. We define, with resp. to G, the following notions:

- The excentricity of a vertex $\exp(v)$ is the largest distance from v to another vertex; $\exp(v) = \max_{x \in V(G)} d_G(v,x)$. \Box
- ullet The $diameter\ diam(G)$ of G is the largest excentricity over its vertices, and the $radius\ rad(G)$ of G is the smallest excentricity over its vertices. \Box
- The *center* of G is the subset $U \subseteq V(G)$ of vertices such that their excentricity equals $\operatorname{rad}(G)$.

3.2 All-pairs shortest distances

Definition: The *metrics* of a graph is the collection of distances between all pairs of its vertices. In other words, the metrics is a matrix d[,] such that d[i,j] is the distance from i to j. \Box

Method 3.6. Dynamic programming for all-pairs distances in a graph G on the vertex set $V(G) = \{v_0, v_1, \dots, v_{N-1}\}.$

- Initially, let d[i,j] be 1 (alternatively, the edge length of $\{v_i, v_j\}$), or ∞ if v_i, v_j are not adjacent. \square
- After step $t \geq 0$ let it hold that d[i,j] is the shortest length of a walk between v_i, v_j such that its internal vert. are from $\{v_0, v_1, \dots, v_{t-1}\}$ (empty for t = 0).
- Moving from step t to t+1, we update all the distances as:
 - Either d[i,j] from the previous step is still optimal (the vertex v_t does not help to obtain a shorter walk from v_i to v_j), or
 - there is a shorter v_i to v_j walk using (also) the vertex v_t which is, by the assumption at step t, of length $d[i,t]+d[t,j] \rightarrow d[i,j]$. \Box

Theorem 3.7. Method 3.6 correctly computes the distance d[i,j] between each pair of vertices v_i, v_j in N = |V(G)| steps.

Remark: In a practical implementation we may use, say, MAX_INT/2 in place of ∞ .

Algorithm 3.8. Floyd–Warshall algorithm (cf. 3.6)

```
input < the adjacency matrix G[,] of an N-vertex graph,
    such that the vertices of G are indexed as O...N-1,
    and G[i,j]=1 if i, j adjacent and G[i,j]=0 otherwise;

for (i=0; i<N; i++) for (j=0; j<N; j++)
    d[i,j] = (i==j?0: (G[i,j]? 1: MAX_INT/2));

for (t=0; t<N; t++) {
    for (i=0; i<N; i++) for (j=0; j<N; j++)
        d[i,j] = min(d[i,j], d[i,t]+d[t,j]);
}

return 'The distance matrix d[,]'; □</pre>
```

Notice that this Algorithm 3.8 is extremely simple and relatively fast—it needs about N^3 steps to get the whole distance matrix.

Its only problem is that all-pairs distances must be computed at the same time, even if we need to know just one distance. . .

3.3 Weighted distance in graphs

Definition: A weighted graph is a pair of a graph G together with a weighting w of the edges by real numbers $w: E(G) \to \mathbf{R}$ (edge lengths in this case). A positively weighted graph (G,w) is such that w(e)>0 for all edges e. \square

Definition 3.9. (Weighted distance) Consider a positively weighted graph (G, w). The length of the weighted walk $S = v_0, e_1, v_1, e_2, v_2, \dots, e_n, v_n$ in G is the sum

$$d_G^w(S) = w(e_1) + w(e_2) + \dots + w(e_n).$$

The weighted distance in (G, w) between a pair of vertices u, v is

$$d^w_G(u,v) = \min\{d^w_G(S): S \text{ is a walk from } u \text{ to } v\} \,. \square$$

All these terms naturally extend from graphs to directed graphs.

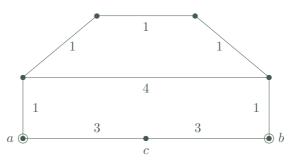
□

Analogously to Section 3.1 we get:

Fact: The shortest walk in a positively weighted (di)graph is always a path. \square

Lemma 3.10. The weighted distance in a positively weighted (di)graph satisfies the triangle inequality.

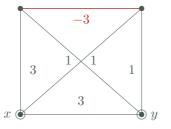
See an example...



The distances between a-c and between b-c are 3. What about the a-b distance? \square Is it 6? \square No, the distance from a to b in the graph is 5 (traverse the "upper path"). Furthermore, notice that this example also shows that simple BFS cannot correctly compute the shortest weighted distance.

Negative edge-lengths?

What is the reason we are avoiding negative edge lengths?



Hence, what is the x-y distance this graph? Say, 3 or 1? \Box

No, it is $-\infty$, precisely by Definition 3.9, and this answer does not sound nice...

Hence we have got a good reason not to consider negative edges in general.

3.4 Single-source shortest paths problem

This section deals with the more specific problem of finding the shortest distance between one pair of terminals in a graph (or, from a single source to all other vertices).

Remark: The coming Dijkstra's algorithm is, on one hand, slightly more involved than Algorithm 3.8, but it is significantly faster in the computation of *single-source shortest distances*, on the other hand.

Dijkstra's algorithm:

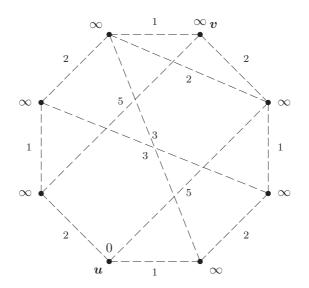
- Is a variant of graph searching (related to BFS), in which every discovered vertex carries a *variable keeping its temporary distance*—the length of the shortest so far discovered walk reaching this vertex from the starting vertex.
- We always pick from the depository the vertex with the shortest temporary distance. This is because no shorter walk may reach this vertex (assuming nonnegative edge lengths).
- At the end of processing, the temporary distances become final shortest distances from the starting vertex (cf. Theorem 3.13).

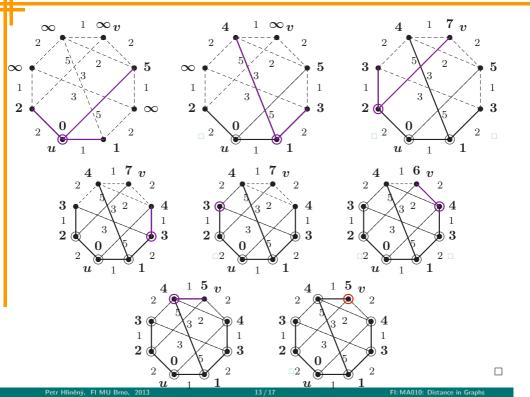
 □
- Notice that this algorithm works as-is in directed graphs.

```
Algorithm 3.12. Computing the single-source shortest paths (Dijkstra),
i.e. finding the shortest walk from u to v, or from u to all other vertices.
input < N-vertex graph G given by adjacency-length matrix len[,] > 0,
         where len[i,j] =\infty if j is not an out-neighbour of i;
input < u, v, where u is the starting vertex and v the destination;
// state[i] records the vertex processing state, dist[i] is the temporary distance
for (i=0; i<N; i++) { dist[i] = MAX; state[i] = init; }
dist[u] = 0; depository D = {u}; \Box
while (state[v]!=processed) {
    if (D==∅) return 'No path';
    select m ∈ D with minimal dist[m]; □
    // now updating all neighbours of m and their temporary distances
    foreach (k out-neighbour of m) {
         D = D \cup \{k\};
         if (dist[m]+len[m,k]<dist[k]) {</pre>
              income[k] = m;
              dist[k] = dist[m]+len[m,k];
    state[m] = processed; D = D \setminus \{m\}; \Box
output 'A u-v path of length dist[v], stored in income[] reversely';
```

Simple example

Example 3.15. An illustration run of Dijkstra's Algorithm 3.12 from u to v in the following graph.





Fact: The number of steps performed by Algorithm 3.12 to find the shortest path from u to v is about N^2 in rough impl., where N is the number of vertices (not so good...).

On the other hand, with a better implementation of the depository, one can achieve on sparse graphs almost linear runtime; $O(|E(G)| + N \log N)$.

Theorem 3.13. Every iteration of Algorithm 3.12 (since just after finishing the first while() loop) maintains an invariant that

• dist[i] is the length of a shortest path from u to i using only those internal vertices x of state[x] == processed. \Box

Proof: Briefly using mathematical induction:

- In the first iteration, the first vertex m=u is picked and processed, and its neighbours receive the correct straight distances (edge lengths).
- In every next iteration, the picked vertex m is the nearest unprocessed one to the starting vertex u. Assuming nonnegative costs len[,], this certifies that no shorter walk from u to m may exist in the graph.
 - On the other hand, any improved path from u to an unfinished vertex k passing through m has mk as the last edge (since the distance of m is not smaller than of the other finished vertices). Hence dist[k] is updated correctly in the algorithm.

3.5 Advanced route planning

- Although being quite fast and, actually, "almost optimal" for the shortest path problem in weighted graphs, *Dijkstra's algorithm* turns out to be too slow for practical route planning applications in navigation devices containing map data of tens or hundreds millions of edges.
- So, what can be done better? \square
- An answer lies in *preprocessing* of the graph:
 - It is quite natural to assume that the graph (of a road network) is relatively stable, and hence it can be thoroughly preprocessed on powerful computers. \Box However, where the preprocessing results can be stored? It is, say, completely unrealistic to store all the optimal routes in advance... \Box
- Two perhaps simplest approaches will be briefly sketched next.

First, a better alternative to Dijkstra's alg.—the *Algorithm* A^* , which uses a suitable *potential function* to direct the search "towards the goal". Whenever we have a good "sense of direction" (e.g. in a topo-map navigation), A^* can perform much better!

Algorithm A^*

- It re-implements Dijkstra with suitably modified edge costs. $\ \square$
- Let $p_v(x)$ be a potential function giving an arbitrary lower bound on the distance from x to the destination v. E.g., in a map navigation, $p_v(x)$ may be the Euclidean distance from x to v. \Box
- ullet Each directed(!) edge xy of the weighted graph (G,w) gets a new cost

$$w'(xy) = w(xy) + p_v(y) - p_v(x)$$
.

The potential p_v is admissible when all $w'(xy) \ge 0$, i.e. $w(xy) \ge p_v(x) - p_v(y)$. The above Euclidean potential is always admissible. \square

• The modified length of any u-v walk S then is $d_G^{w'}(S) = d_G^w(S) + p_v(v) - p_v(u)$, which is a constant difference from $d_G^w(S)$! Hence some S is optimal for the weighting w iff S is optimal for w'.

Here the Euclidean potential "strongly prefers" edges in the destin. direction. Other (preprocessed) potential functions are possible as well, though.

Second, ...

The idea of a "reach"

 It is based on a natural observation that for long-distance route planning, vaste majority of edges of real-world road maps are basically irrelevant.

Definition: Let $S_{u,v}$ denote a shortest walk from u to v in weighted G. For $e \in E(S_{u,v})$ let $prefix(S_{u,v},e)$, $suffix(S_{u,v},e)$ denote the starting (ending) segment of $S_{u,v}$ up to (after) e. \Box The reach of an edge $e \in E(G)$ is given as

$$reach_G(e) = \max \left\{ \min \left(d_G^w(prefix(S_{u,v},e)), d_G^w(suffix(S_{u,v},e)) \right) : \\ \forall u,v \in V(G) \land e \in E(S_{u,v}) \right\}. \square$$

The reach of e mathematically quantifies (ir)relevance of e for route planning; the smaller $reach_G(e)$ is, the closer to the start or end of an optimal route e has to be. \Box

The immediate use of precomputed reach values is as follows:

- The line "foreach (k *out-neighbour of* m)" (Algorithm 3.12) simply takes only those neighbours k such that $reach_G(mk) \ge dist[m]$.
- ullet It is then important to employ the so-called bidirectional variant of Dijkstra / A^* .