
Petr Hliněný, FI MU Brno, 2013 1 / 17 FI:MA010: Distance in Graphs

3 Distance in Graphs

While the previous lecture studied just the connectivity properties of a graph, now we are
going to investigate how “long” (short, actually) a connection in a graph is.

This naturally leads to the concept of graph distance, which has two variants: the simple
one considering only the number of edges, while the weighted one having a “length” for each
edge.

a b c

d x

✷

Brief outline of this lecture

• Distance in a graph, basic properties, triangle inequality.

• Graph metrics: all-pairs shortest distances.

• Dijkstra’s algorithm for the shortest weighted distance in a graph.

• Route planning: a sketch of some advanced ideas.

Petr Hliněný, FI MU Brno, 2013 2 / 17 FI:MA010: Distance in Graphs

3.1 Graph distance (unweighted)

Recall that a walk of length n in a graph G is an alternating sequence of vertices and
edges v0, e1, v1, e2, v2, . . . , en, vn such that each ei has the ends vi−1, vi.

Definition 3.1. Distance dG(u, v) between two vertices u, v of a graph G

is defined as the length of the shortest walk between u and v in G.
If there is now walk between u, v, then we declare dG(u, v) = ∞. ✷

Informally and naturally, the distance between u, v equals the least possible number of edges

traversed from u to v. Specially dG(u, u) = 0.

Recall, moreover, that the shortest walk is always a path – Theorem 2.2.

Fact: The distance in an undirected graph is symmetric, i.e. dG(u, v) = dG(v, u). ✷

Lemma 3.2. The graph distance satisfies the triangle inequality:

∀u, v, w ∈ V (G) : dG(u, v) + dG(v, w) ≥ dG(u,w) .✷

Proof. Easily; starting with a walk of length dG(u, v) from u to v, and appending a
walk of length dG(v, w) from v to w, results in a walk of length dG(u, v) + dG(v, w)
from u to w. This is an upper bound on the real distance from u to w. ✷

Petr Hliněný, FI MU Brno, 2013 3 / 17 FI:MA010: Distance in Graphs

How to find the distance

Theorem 3.3. Let u, v, w be vertices of a connected graph G such that
dG(u, v) < dG(u,w). Then the breadth-first search algorithm on G, starting from u,
finds the vertex v before w. ✷

Proof. We apply induction on the distance dG(u, v): If dG(u, v) = 0, i.e. u = v, then
it is trivial that v is found first. So let dG(u, v) = d > 0 and v′ be a neighbour of v
closer to u, which means dG(u, v

′) = d− 1. Analogously choose w′ a neighbour of w
closer to u. Then

dG(u,w
′) ≥ dG(u,w)− 1 > dG(u, v)− 1 = dG(u, v

′) ,

and so v′ has been found before w′ by the inductive assumption. Hence v′ has been
stored into U before w′, and (cf. FIFO) the neighbours of v′ (v among them, but
not w) are found before the neighbours of w′ (such as w). ✷ ✷

Corollary 3.4. The breadth-first search algorithm on G correctly determines graph
distances from the starting vertex.

Petr Hliněný, FI MU Brno, 2013 4 / 17 FI:MA010: Distance in Graphs

Other related terms

s s s s

s s s s

Definition 3.5. Let G be a graph. We define, with resp. to G, the following notions:

• The excentricity of a vertex exc(v) is the largest distance from v to another
vertex; exc(v) = maxx∈V (G) dG(v, x). ✷

• The diameter diam(G) of G is the largest excentricity over its vertices, and the
radius rad(G) of G is the smallest excentricity over its vertices. ✷

• The center of G is the subset U ⊆ V (G) of vertices such that their excentricity
equals rad(G).

Petr Hliněný, FI MU Brno, 2013 5 / 17 FI:MA010: Distance in Graphs

3.2 All-pairs shortest distances

Definition: The metrics of a graph is the collection of distances between all pairs of its
vertices. In other words, the metrics is a matrix d[,] such that d[i,j] is the distance
from i to j. ✷

Method 3.6. Dynamic programming for all-pairs distances
in a graph G on the vertex set V (G) = {v0, v1, . . . , vN−1}.

• Initially, let d[i,j] be 1 (alternatively, the edge length of {vi, vj}), or ∞ if vi, vj
are not adjacent. ✷

• After step t ≥ 0 let it hold that d[i,j] is the shortest length of a walk between
vi, vj such that its internal vert. are from {v0, v1, . . . , vt−1} (empty for t = 0).✷

• Moving from step t to t+ 1, we update all the distances as:

– Either d[i,j] from the previous step is still optimal (the vertex vt does not
help to obtain a shorter walk from vi to vj), or

– there is a shorter vi to vj walk using (also) the vertex vt which is, by the
assumption at step t, of length d[i,t]+d[t,j]→d[i,j]. ✷

Theorem 3.7. Method 3.6 correctly computes the distance d[i,j] between each pair
of vertices vi, vj in N = |V (G)| steps.

Petr Hliněný, FI MU Brno, 2013 6 / 17 FI:MA010: Distance in Graphs

Remark : In a practical implementation we may use, say, MAX INT/2 in place of ∞.

Algorithm 3.8. Floyd–Warshall algorithm (cf. 3.6)
input < the adjacency matrix G[,] of an N-vertex graph,

such that the vertices of G are indexed as 0...N-1,
and G[i,j]=1 if i, j adjacent and G[i,j]=0 otherwise;

for (i=0; i<N; i++) for (j=0; j<N; j++)

d[i,j] = (i==j?0: (G[i,j]? 1: MAX INT/2));

for (t=0; t<N; t++) {
for (i=0; i<N; i++) for (j=0; j<N; j++)

d[i,j] = min(d[i,j], d[i,t]+d[t,j]);

}
return ’The distance matrix d[,]’; ✷

Notice that this Algorithm 3.8 is extremely simple and relatively fast— it needs about
N3 steps to get the whole distance matrix.

Its only problem is that all-pairs distances must be computed at the same time, even
if we need to know just one distance. . .

Petr Hliněný, FI MU Brno, 2013 7 / 17 FI:MA010: Distance in Graphs

3.3 Weighted distance in graphs

Definition: A weighted graph is a pair of a graph G together with a weighting w of
the edges by real numbers w : E(G) → R (edge lengths in this case).
A positively weighted graph (G,w) is such that w(e) > 0 for all edges e. ✷

Definition 3.9. (Weighted distance) Consider a positively weighted graph (G,w).
The length of the weighted walk S = v0, e1, v1, e2, v2, . . . , en, vn in G is the sum

dwG(S) = w(e1) + w(e2) + · · ·+ w(en) .

The weighted distance in (G,w) between a pair of vertices u, v is

dwG(u, v) = min{dwG(S) : S is a walk from u to v} .✷

All these terms naturally extend from graphs to directed graphs. ✷

Analogously to Section 3.1 we get:

Fact: The shortest walk in a positively weighted (di)graph is always a path. ✷

Lemma 3.10. The weighted distance in a positively weighted (di)graph satisfies the
triangle inequality.

Petr Hliněný, FI MU Brno, 2013 8 / 17 FI:MA010: Distance in Graphs

See an example. . .

s s s

s s

s s

a b
c

❢ ❢

1

3 3

1

4

1 1

1

The distances between a–c and between b–c are 3. What about the a–b distance? ✷

Is it 6? ✷No, the distance from a to b in the graph is 5 (traverse the “upper path”).

Furthermore, notice that this example also shows that simple BFS cannot correctly
compute the shortest weighted distance.

Petr Hliněný, FI MU Brno, 2013 9 / 17 FI:MA010: Distance in Graphs

Negative edge-lengths?

What is the reason we are avoiding negative edge lengths?

s s

ss

x y❢ ❢

−3

3

3 1
1 1

Hence, what is the x–y distance this graph? Say, 3 or 1? ✷

No, it is −∞, precisely by Definition 3.9, and this answer does not sound nice. . .✷

Hence we have got a good reason not to consider negative edges in general.

Petr Hliněný, FI MU Brno, 2013 10 / 17 FI:MA010: Distance in Graphs

3.4 Single-source shortest paths problem

This section deals with the more specific problem of finding the shortest distance
between one pair of terminals in a graph (or, from a single source to all other vertices).

Remark : The coming Dijkstra’s algorithm is, on one hand, slightly more involved than Algo-
rithm 3.8, but it is significantly faster in the computation of single-source shortest distances,
on the other hand. ✷

Dijkstra’s algorithm:

• Is a variant of graph searching (related to BFS), in which every discovered vertex
carries a variable keeping its temporary distance—the length of the shortest so
far discovered walk reaching this vertex from the starting vertex. ✷

• We always pick from the depository the vertex with the shortest temporary dis-
tance. This is because no shorter walk may reach this vertex (assuming nonneg-
ative edge lengths). ✷

• At the end of processing, the temporary distances become final shortest distances
from the starting vertex (cf. Theorem 3.13). ✷

• Notice that this algorithm works as-is in directed graphs.

Petr Hliněný, FI MU Brno, 2013 11 / 17 FI:MA010: Distance in Graphs

Algorithm 3.12. Computing the single-source shortest paths (Dijkstra),
i.e. finding the shortest walk from u to v, or from u to all other vertices.
input < N-vertex graph G given by adjacency-length matrix len[,]≥ 0,

where len[i,j]=∞ if j is not an out-neighbour of i;
input < u,v, where u is the starting vertex and v the destination;✷

// state[i] records the vertex processing state, dist[i] is the temporary distance
for (i=0; i<N; i++) { dist[i] = MAX; state[i] = init; }
dist[u] = 0; depository D = {u};✷
while (state[v]!=processed) {

if (D==∅) return ’No path’;
select m ∈ D with minimal dist[m];✷
// now updating all neighbours of m and their temporary distances
foreach (k out-neighbour of m) {

D = D ∪{k};
if (dist[m]+len[m,k]<dist[k]) {

income[k] = m;

dist[k] = dist[m]+len[m,k];

}
}
state[m] = processed; D = D \ {m};✷

}
output ’A u-v path of length dist[v], stored in income[] reversely’;

Petr Hliněný, FI MU Brno, 2013 12 / 17 FI:MA010: Distance in Graphs

Simple example

Example 3.15. An illustration run of Dijkstra’s Algorithm 3.12 from u to v in the
following graph.

s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5

2

2

1

2

0

∞

∞

∞

∞∞

∞

∞

Petr Hliněný, FI MU Brno, 2013 13 / 17 FI:MA010: Distance in Graphs

s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5 2

2

1

2

❢❢
0

1

∞

5

∞∞

∞

2

✷ s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5 2

2

1

2

❢ ❢❢
0

1

3

5

∞4

∞

2

✷ s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5 2

2

1

2

❢ ❢

❢❢

0

1

3

5

74

3

2

✷

s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5
2

2

1

2

❢ ❢

❢ ❢❢

0

1

3

4

74

3

2

✷ s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5
2

2

1

2

❢ ❢

❢ ❢

❢❢

0

1

3

4

74

3

2

✷ s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5
2

2

1

2

❢ ❢

❢ ❢

❢ ❢❢

0

1

3

4

64

3

2

✷

s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5
2

2

1

2

❢ ❢

❢ ❢

❢ ❢

❢❢

0

1

3

4

54

3

2

✷ s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5
2

2

1

2

❢ ❢

❢ ❢

❢ ❢

❢ ❢❢

0

1

3

4

54

3

2

✷

Petr Hliněný, FI MU Brno, 2013 14 / 17 FI:MA010: Distance in Graphs

Fact: The number of steps performed by Algorithm 3.12 to find the shortest path from
u to v is about N2 in rough impl., where N is the number of vertices (not so good. . .).✷

On the other hand, with a better implementation of the depository, one can achieve
on sparse graphs almost linear runtime; O

(

|E(G)|+N logN
)

. ✷

Theorem 3.13. Every iteration of Algorithm 3.12 (since just after finishing the first
while() loop) maintains an invariant that

• dist[i] is the length of a shortest path from u to i using only those internal
vertices x of state[x]==processed. ✷

Proof: Briefly using mathematical induction:

• In the first iteration, the first vertex m=u is picked and processed, and its neigh-
bours receive the correct straight distances (edge lengths). ✷

• In every next iteration, the picked vertex m is the nearest unprocessed one to
the starting vertex u. Assuming nonnegative costs len[,], this certifies that no
shorter walk from u to m may exist in the graph. ✷

On the other hand, any improved path from u to an unfinished vertex k passing
through m has mk as the last edge (since the distance of m is not smaller than of
the other finished vertices). Hence dist[k] is updated correctly in the algorithm.

✷

Petr Hliněný, FI MU Brno, 2013 15 / 17 FI:MA010: Distance in Graphs

3.5 Advanced route planning

• Although being quite fast and, actually, “almost optimal” for the shortest path
problem in weighted graphs, Dijkstra’s algorithm turns out to be too slow for
practical route planning applications in navigation devices containing map data
of tens or hundreds millions of edges. ✷

• So, what can be done better? ✷

• An answer lies in preprocessing of the graph:

It is quite natural to assume that the graph (of a road network) is relatively stable,
and hence it can be thoroughly preprocessed on powerful computers. ✷However,
where the preprocessing results can be stored? It is, say, completely unrealistic
to store all the optimal routes in advance. . . ✷

• Two perhaps simplest approaches will be briefly sketched next.

Petr Hliněný, FI MU Brno, 2013 16 / 17 FI:MA010: Distance in Graphs

First, a better alternative to Dijkstra’s alg.— the Algorithm A∗, which uses a suitable
potential function to direct the search “towards the goal”. Whenever we have a good
“sense of direction” (e.g. in a topo-map navigation), A∗ can perform much better!

Algorithm A∗

• It re-implements Dijkstra with suitably modified edge costs. ✷

• Let pv(x) be a potential function giving an arbitrary lower bound on the distance
from x to the destination v. E.g., in a map navigation, pv(x) may be the
Euclidean distance from x to v. ✷

• Each directed(!) edge xy of the weighted graph (G,w) gets a new cost

w′(xy) = w(xy) + pv(y) − pv(x) .

The potential pv is admissible when all w′(xy) ≥ 0, i.e. w(xy) ≥ pv(x)− pv(y).

The above Euclidean potential is always admissible. ✷

• The modified length of any u-v walk S then is dw
′

G (S) = dwG(S)+pv(v)−pv(u),
which is a constant difference from dwG(S)! Hence some S is optimal for the
weighting w iff S is optimal for w′.

Here the Euclidean potential “strongly prefers” edges in the destin. direction.
Other (preprocessed) potential functions are possible as well, though.

Petr Hliněný, FI MU Brno, 2013 17 / 17 FI:MA010: Distance in Graphs

Second, . . .

The idea of a “reach”

• It is based on a natural observation that for long-distance route planning, vaste
majority of edges of real-world road maps are basically irrelevant.✷

Definition: Let Su,v denote a shortest walk from u to v in weightedG. For e ∈ E(Su,v)
let prefix(Su,v, e), suffix(Su,v, e) denote the starting (ending) segment of Su,v up
to (after) e. ✷The reach of an edge e ∈ E(G) is given as

reachG(e) = max
{

min
(

dwG(prefix(Su,v, e)), d
w
G(suffix(Su,v, e))

)

:

∀u, v ∈ V (G) ∧ e ∈ E(Su,v)
}

.✷

The reach of e mathematically quantifies (ir)relevance of e for route planning; the smaller
reachG(e) is, the closer to the start or end of an optimal route e has to be. ✷

The immediate use of precomputed reach values is as follows:

• The line “foreach (k out-neighbour of m)” (Algorithm 3.12) simply takes only
those neighbours k such that reachG(mk) ≥ dist[m]. ✷

• It is then important to employ the so-called bidirectional variant of Dijkstra /A∗.

