
+

Intro to Service Oriented
Computing (SOC) and
Service Oriented
Architecture (SOA)
Bruno Rossi & Juha Rikkilä

PA165 Enterprise Java
2013-2014

+
Read Queen’s race

"Well, in our country you'd
generally get to
somewhere else — if you
run very fast for a long
time, as we've been
doing.” said Alice

"A slow sort of country!"
said the Queen. "Now,
here, you see, it takes all
the running you can do, to
keep in the same place. If
you want to get
somewhere else, you must
run at least twice as fast
as that!"

Web technologies evolve and diversify
rapidly, though standardization create

some uniformity.
This introduction presents one selection of

topics and technologies.

+
Objectives and content of this
lecture

Get “the big picture” of SOA and
project it to the current web
experience

 Clients and servers

 SOA, Why and Why not

 Application development view

 Technology stack view

 Basic set of concepts

Objectives Content

Distributed Computing Evolution

Client-Server(C/
S) silos

Web-based
computing

Web
Services/Peer-to-Peer

Servers

Clients

Clients

Servers

Internet PDA Cell
Phone

Server

LaptopKiosk

Workstation

+
Evolution of software
development /programming

Procedural
computing

Service
oriented

computing
(SOC)

Object
oriented

computing
(OOC)

“Instructive”
computing

Hardware
logic

Execution
logic

Entity/object
logic

Value/servic
e logic

+
SOC

 SOC is an emerging cross-disciplinary paradigm
for distributed computing that is changing the
way software applications are designed,
architected, delivered and consumed

 SOC is a new computing paradigm that utilizes
services as the basic constructs to support the
development of rapid, low-cost and easy
composition of distributed applications even in
heterogeneous environments

6

+
Service-Oriented Computing

Service-
Oriented

Architecture

Services

SO Solution
Logic

SO Design
paradigm

Service
Composition

s

Service
Inventory

Service-oriented architecture represents a
distinct form of technology architecture
designed in support of service-oriented
solution logic which is comprised of services
and service compositions shaped by and
designed in accordance with
service-orientation.

Service-orientation is a design
paradigm comprised of
service-orientation design principles.
When applied to units of solution
logic, these principles create
services with distinct design
characteristics that support the
overall goals and vision of
service-oriented computing.

Service-oriented computing represents a new generation computing platform that
encompasses the service-orientation paradigm and service-oriented architecture with
the ultimate goal of creating and assembling one or more service inventories

+
SOC elements, an implementation
perspective
 Service-oriented solution logic is implemented as services and service

compositions designed in accordance with service-orientation design principles

 A service composition is comprised of services that have been assembled to
provide the functionality required to automate a specific business task or
process

 Because service-orientation shapes many services as agnostic enterprise
resources, one service may be invoked by multiple consumer programs,
each of which can involve that same service in different service composition

 A collection of standardized services can form the basis of a service inventory
that can be independently administered with its own physical development
environment

 Multiple business processes can be automated by the creation of service
compositions that draw from a pool of existing agnostic services that reside
within a service inventory

 Service-oriented architecture is a form of technology architecture optimized in
support of services, service compositions and service inventories

+

Code / script
execution

XML

Browsing

HTML

TCP/I
P

File access

Technology

Applications

Text Hypertext Applications
File transfer, E-mail Web pages

Web services

Internet evolution

+
Browsing

Web Server

Data
storage

GET /path/file.html HTTP/1.1
Host: www.example.com

http://www.example.com/path/file.html

Client

Browse
r

/home/www/path/file.html

file.html

+
Code / script / application
execution

 Server

Data
storage

Client

Browser

Application
client

container

Applicatio
n client

Web container

Servlet JSP

EJB container

EJB EJB

JSP = JavaServer Pages
EJB = Enterprise Java Beans

+
Service execution (1/2)

Data
storage

Client

Brows
er

Applicatio
n client

container

Applicati
on client

Server

Service orchestration
and choreography

Web container

Servlet JSP

EJB container

EJB EJB

+
Service execution (2/2)

Data
storage

Client

Brows
er

Applicatio
n client

container

Applicati
on client

Server
Service

orchestration and
choreography

Web container

Servlet JSP

EJB container

EJB EJB

+
Some SOA definitions (1/2)

A Service-Oriented Architecture (SOA) facilitates the creation of flexible, re-usable assets for
enabling end-to-end business solutions. (Open Group Standard: SOA Reference Architecture, 2011)

Contemporary SOA represents an open, agile extensible, federated, composable architecture
comprised of autonomous, QoS-capable, vendor diverse, interoperable, discoverable, and
potentially reusable services, implemented as Web services. (Erl, T., Service-oriented Architecture:
Concepts, Technology and Design, 2005)

Service-Oriented Architecture is an IT strategy that organizes the discrete functions contained
in enterprise applications into interoperable, standards-based services that can be combined and
reused quickly to meet business needs. (BEA white paper, 2005 -> 2008 Oracle)

SOA is a conceptual business architecture where business functionality, or application logic, is
made available to SOA users, or consumers, as shared, reusable services on an IT network.
“Services” in an SOA are modules of business or application functionality with exposed
interfaces, and are invoked by messages. (Marks, E.A., Bell, M., Service Oriented Architecture (SOA): A
Planning and Implementation Guide for Business and Technology, 2006)

+
Some SOA definitions

Service-oriented architecture (SOA) is a set of principles and methodologies for designing and
developing software in the form of interoperable services. These services are well-defined
business functionalities that are built as software components (discrete pieces of code and/or
data structures) that can be reused for different purposes. SOA design principles are used
during the phases of systems development and integration. (Wikipedia, accessed 2012)

SOA is an architectural style whose goal is to achieve loose coupling among interacting software
agents. A service is a unit of work done by a service provider to achieve desired end results for a
service consumer. Both provider and consumer are roles played by software agents on behalf of
their owners. (O’Reilly XML.COM, accessed 2012)

+
What is SOA

SOA is an architectural style,

realized as a collection of collaborating
agents,

 each called a service,

whose goal is to manage complexity and
achieve architectural resilience and

robustness through ideas such as loose
coupling, location transparency, and

protocol independence.

+
SOA, no single definition –
“SOA is different things to different people”

 A set of services that a business wants to expose to their
customers and partners, or other portions of the
organization.

 An architectural style which requires a service provider, a
service requestor (consumer) and a service contract (a.k.a.
client/server).

 A set of architectural patterns such as enterprise service
bus, service composition, and service registry, promoting
principles such as modularity, layering, and loose coupling
to achieve design goals such as separation of concerns,
reuse, and flexibility.

 A programming and deployment model realized by
standards, tools and technologies such as Web services and
Service Component Architecture (SCA).

Zimmermann, OOPSLA 2007

+
Service

 A service is an entity that has a description, and that is
made available for use through a published interface that
allows it to be invoked by a service consumer.

 A service in SOA is an exposed piece of functionality with
three properties:
 The interface contract to the service is platform-independent.
 The service can be dynamically located and invoked.
 The service is self-contained. That is, the service maintains its

own state.

+
Principles of SOA

 Services
 Share a formal contract
 Are loosely coupled
 Abstract underlying logic
 Are composable
 Are reusable
 Are autonomous
 Are stateless
 Are discoverable

+
A SOA Characterization

+
A SOA Application development view:
SOA Reference Architecture

G
o
v
e
rn

a
n

ce

In
fo

rm
a
tio

n

Q
u

a
lity

 o
f S

e
rv

ice

In
te

g
ra

tio
n

Operational
Systems

Consumer
Interfaces

Business
Processes

Services

Service
Components

The Open Group 2009

+
A SOA Technology view:
WS* Protocol Stack

Transport
HTTP

Discovery
UDDI

Description
WSDL

Message Format
SOAP

Encoding
XML

Orchestration and
Choreography

WSCL, WSCI, BPEL,
WS-Coordination,

BPML, BPSS

S
e
cu

rity

Q
u
a
lity

 o
f S

e
rv

ice

T
ra

n
sa

ctio
n
s

M
a
n
a
g
e
m

e
n

t

WSCL Web Services Conversation
Language

WSCI Web Service Choreography
Interface

BPEL Business Process Execution
Language

WS Web Services

BPML Business Process Modeling
Language

BPSS Business Process Specification
Schema

UDDI Universal Description, Discovery
and Integration

WSDL Web Services Description
Language

SOAP Simple Object Access Protocol
XML eXtensible Markup Language
HTTP Hypertext Transfer Protocol

+
Why

 “The quest is to find a solution that simplifies development
and implementation, supports effective reuse of software
assets, and leverages the enormous and low-cost computing
power now at our fingertips. While some might claim that
service-oriented architecture (SOA) is just the latest fad in
this illusive quest, tangible results have been achieved by
those able to successfully implement its principles”

 “companies that have embraced SOA have eliminated huge
amounts of redundant software, reaped major cost savings
from simplifying and automating manual processes, and
realized big increases in productivity”

(Open Source SOA, Jeff Davis)

+
Summary

 The purpose of this introduction is to give an overall
impression of SOC and SOA, somewhat compromising the
technical accuracy in favor of getting a global view

 SOC is rapidly expanding to new areas and applications of
computing

 SOA standardization pins down commonly accepted
principles, but different solutions and proposals expand the
area continuously

 Service orientation is establishing itself as “next generation
of application development approach”

+

REpresentational State
Transfer (REST)
Bruno Rossi & Juha Rikkilä

PA165 Enterprise Java
2013-2014

+
Objectives and content

Obtain overall understanding of
the REST architectural style and
its implementation in web.

 Distributed systems

 REST, RESTFUL

 URI

 HTTP, HTTP methods

 Cache, Proxy, Gateway

 Security

 Summary, the six constraints,
the principles of the uniform
interface

Objectives Content

26

+
Distributed Systems

Distributed systems

….

CORBA

Broker Architecture Web Services

Peer-to-Peer
Systems

Service-Oriented
Systems

….

RESTful Web
Services

WS*Web Services

REST=Representational State Transfer

27

+
REST

REpresentational
State Transfer
 Name by Roy Fielding in

his Ph.D thesis*

Architectural Style
for the Web

*
http://ics.uci.edu/~fielding/pub
s/dissertation/top.htm

 Representational State Transfer
is intended to evoke an image
of how a well-designed Web
application behaves: presented
with a network of Web pages (a
virtual state-machine), the user
progresses through an
application by selecting links
(state transitions), resulting in
the next page (representing the
next state of the application)
being transferred to the user
and rendered for his use.
Fielding's PhD thesis, section
6.1

 REST was initially described in
the context of HTTP, but it is not
limited to that protocol.

28

+
WS* vs. RESTful Web services

WS*Web Services
Middleware

Interoperability
Standards

RESTful Web
Services

Architectural style
for the Web

29

+
Browsing

Web Server

Data
storage

GET /path/file.html HTTP/1.1
Host: www.example.com

http://www.example.com/path/file.html

Client

Browse
r

/home/www/path/file.html

file.html

30

+
An example

HTTP Client
(Web Browser)

Web Server
(Application

server)
Database

GET /book?ISBN=222

POST /order

PUT/order?612

301 Location: /order/612

SELECT FROM books
WHERE isbn=222

INSERT INTO orders

UPDATE orders
WHERE id=612

31

+
Characteristics of REST

 In REST system, resources are manipulated
through the exchange of representations of the
resources
 For example, a purchase order resource is represented by

an XML document.
 Within a RESTful purchasing system, a purchase order

might be updated by posting an XML document containing
the changed purchase order to its URI

 REST-based architectures communicate primarily
through the transfer of representations of
resources
 State is maintained within a resource representation

32

+
Characteristics of REST

 RESTful services are stateless
 Each request from client to server must contain all the

information necessary to understand the request

 RESTful services have a uniform interface
 GET, POST, PUT, and DELETE.

 REST-based architectures are built from resources
(pieces of information) that are uniquely identified
by URIs
 In a RESTful purchasing system, each purchase order has

a unique URI

33

+
URI, two examples

http://www.sun.com/servers/blades/t6300

Resource Collection name

Primary key

http://localhost:8080/MyWebservice/rest/hello

1.

2.

34

+
URI, another example

http://maps.google.com/lugano

http://maps.google.com/maps?f=q&hl=en&q=lugano,
+switzerland&layer=&ie=UTF8&z=12&om=1&iwloc=addr

35

+
URI templates

Template:
http://www.myservice.com/order/{oid}/item/{iid}

http://www.myservice.com/order/XYZ/item/1234
5

Template:
http://www.google.com/search?{-join|&|q,num}

http://www.google.com/search?
q=REST&num=10

From http://bitworking.org/projects/URI-Templates/

36

file:///media/data/Data/Course/PA165-EJ/Lecture.REST/
file:///media/data/Data/Course/PA165-EJ/Lecture.REST/

+
Multiple Represenations

 Data in a variety of formats
 XML
 JSON (JavaScript Object Notation)
 (X)HTML

 Content negotiation
 Accept header
GET /foo
Accept: application/json

 URI-based
GET /foo.json

37

+
HTTP Request/Response As REST

Request
GET /music/artists/beatles/recordings HTTP/1.1
Host: media.example.com
Accept: application/xml

Response
HTTP/1.1 200 OK
Date: Tue, 08 May 2007 16:41:58 GMT
Server: Apache/1.3.6
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0"?>
<recordings xmlns="…">
 <recording>…</recording>
 …
</recordings>

Method

Representation

State
transfer

Resource

38

+
HTTP Methods,
for both collection and single item

GET
to retrieve information
Retrieves a given URI
Idempotent, should not initiate
a state change
Cacheable

POST
to add new information
Add the entity as a
subordinate/append to the
POSTed resource

PUT
to update information
Full entity create/replace used
when you know the “id”

DELETE
to remove (logical) an entity

39

+
Caching

Client Server

Basic setup

Caching:
Server

Caching:
client Server

Client

Caching:
client

Caching:
Server

Caching options

40

+
Proxy / Gateway

Client Server

Gateway

Proxy

Client Server

 Proxy / gateway forward (and may
cache/manipulate/control) requests and responses

 May be used for composing services

A proxy is chosen by the Client (for caching, or access control)

The use of a gateway is imposed by the server

41

+
REST security

 HTTPS (HTTP + SSL/TLS)

 HTTP Basic Authentication

 when using XML content
 XML Encryption
 XML Signature

 Secure, point to point communication
 (Authentication, Integrity and Encryption)

42

+
Summary

Application

Resources (URI)

HTTP
GET

HTTP
DEL

HTTP
PUT

HTTP
POST

JSON ….TomcatJersey

 “The Web is the universe of globally accessible information”
 (Tim Berners Lee)

 Applications publish their data on the Web through URI

43

+
The six constraints (1/3)

Summarizing, the REST architectural style describes the six
constraints applied to the architecture:

1. Client–server
A uniform interface separates clients from servers. This separation of
concerns means that, for example, clients are not concerned with
data storage, or servers are not concerned with the user interface or
user state

2. Stateless
 No client context is stored on the server between requests. Each

request from any client contains all of the information necessary
to service the request, and any session state is held in the client.

Wikipedia, Oct. 2012

44

+
The six constraints (2/3)

3. Cacheable
 Clients can cache responses. Responses must therefore,

implicitly or explicitly, define themselves as cacheable, or not, to
prevent clients reusing stale or inappropriate data in response to
further requests.

4. Layered system
 A client cannot ordinarily tell whether it is connected directly to

the end server, or to an intermediary along the way.
Intermediary servers may improve system scalability by enabling
load-balancing and by providing shared caches. They may also
enforce security policies.

Wikipedia, Oct. 2012

45

+
The six constraints (3/3)

5. Code on demand (optional)
 Servers are able temporarily to extend or customize the

functionality of a client by the transfer of executable code.
Examples of this may include compiled components such as Java
applets and client-side scripts such as JavaScript.

6. Uniform interface
 The uniform interface between clients and servers simplifies and

decouples the architecture, which enables each part to evolve
independently.

 The four guiding principles of this interface on the next slides.

Wikipedia, Oct. 2012

46

+
The uniform interface (1/3)

 The uniform interface that any REST interface must provide

1. Identification of resources
 Individual resources are identified in requests, for example using

URIs in web-based REST systems. The resources themselves are
conceptually separate from the representations that are returned
to the client. For example, the server does not send its database,
but some HTML, XML or JSON that represents some database
records expressed in some indicated language and encoding,
depending on the details of the request and the server
implementation.

Wikipedia, Oct. 2012

47

+
The uniform interface (2/3)

2. Manipulation of resources through these representations
 When a client holds a representation of a resource, including any

metadata attached, it has enough information to modify or
delete the resource on the server, provided it has permission to
do so.

3. Self-descriptive messages
 Each message includes enough information to describe how to

process the message. For example, the parser may be specified
by an Internet media type, the cacheability of responses.

Wikipedia, Oct. 2012

48

+
The uniform interface (3/3)

4. Hypermedia as the engine of application state (aka
HATEOAS)

 Clients make state transitions only through actions that are
dynamically identified within hypermedia by the server (e.g., by
hyperlinks within hypertext). In general a client does not assume
that any particular action is available for any particular resources
beyond those described in representations previously received
from the server.

Wikipedia, Oct. 2012

49

+Let's dig into the details:
Oracle Tutorials on RESTful Services with
JAX-RS

Web Services:

http://docs.oracle.com/javaee/7/tutorial/doc/partwebsvcs.htm

Building RESTful Web Services with JAX-RS:

http://docs.oracle.com/javaee/7/tutorial/doc/jaxrs.htm#GIEPU

Accessing REST Resources with the JAX-RS Client API:

http://docs.oracle.com/javaee/7/tutorial/doc/jaxrs-client.htm
#BABEIGIH

file:///media/data/Data/Course/PA165-EJ/Lecture.REST/
file:///media/data/Data/Course/PA165-EJ/Lecture.REST/
file:///media/data/Data/Course/PA165-EJ/Lecture.REST/
file:///media/data/Data/Course/PA165-EJ/Lecture.REST/

