
+

SOAP and WS* 
Webservices
Bruno Rossi & Juha Rikkilä

PA165 Enterprise Java 
2013-2014



+
SOAP, in general terms

 Originally acronym for Simple Object Access Protocol, 
now a common name

 A communication protocol, designed to communicate via 
Internet 

 Extends HTTP for XML messaging

 Provides data transport for Web services (SOAP, WSDL, 
UDDI)

 Exchanges complete documents or call a remote procedure

 Is used for broadcasting a message

 Is platform and language independent

 Is the XML way of defining what information gets sent 
and how

2



+

https://kore.fi.muni.cz/wiki/index.php/PA165/WebServices_(English)

file:///media/data/Data/Course/PA165-EJ/Lecture.SOAP/


+
XML (Extensible Markup 
Language) 

 created to structure, store, and transport data by 
defining a set of rules for encoding documents

  a format that is both human-readable and 
machine-readable

  defined in the XML 1.0 Specification produced by 
the W3C

 there are two current versions of XML. 
 XML 1.0, currently in its fifth edition, and still 
recommended for general use

 XML 1.1, not very widely implemented and is recommended 
for use only by those who need its unique features

4



+
XML 

 emphasizes simplicity, generality, and usability over 
the Internet

 textual data format with Unicode support for the 
languages of the world

 focuses on documents, but is widely used for the 
representation of arbitrary data structures, for example 
in web services.

 many APIs for processing XML data
 several schema systems
 hundreds of XML-based languages (e.g. RSS, Atom, SOAP, 
and XHTML)

 the default for many office-productivity tools, 
including Microsoft Office (Office Open XML), 
OpenOffice.org and LibreOffice (OpenDocument), and 
Apple's iWork

5



+
XML, markup and content

 markup 
 either begin with the character < and end with a >, 
 or they begin with the character & and end with a ;

 strings of characters that are not markup are 
content

 tag, a markup construct that begins with < and 
ends with >
 start-tags; for example: <section>
 end-tags; for example: </section>
 empty-element tags; for example: <line-break />

 element, begins with a start-tag and ends with a 
matching end-tag or consists only of an 
empty-element tag. 

6



+
Schema and validation

 well-formed, and may be valid. 
 Document contains a reference 

to DTD, 
 DTD declares elements and 

attributes, and specifies the 
grammatical rules 

 XML processors 
 re validating or non-validating 
 If error discovered it is 

reported, but processing may 
continue normally

 schema languages constrain 
 the set of elements in a 

document,
 attributes that are applied to 

them, 
 the order in which they appear, 
 the allowable parent/child 

relationships

XML Schema
schema language, described by 
the W3C 

 (successor of DTD = 
Document Type Definition)

 XML schema is more powerful 
than DTDs

often referred to as XSD (XML 
Schema Definition)
 XSDs use an XML-based format, 
so XML tools can be used 
process them.

7



+
XML Messaging

 SOAP 1.1 defined:
 An XML envelope for XML messaging:

 Headers + body.
 An HTTP binding for SOAP messaging:

 SOAP is “transport independent”.
 A convention for doing RPC,
 An XML serialization format for structured data.

 SOAP Attachments adds:
 How to carry and reference data attachments using in a 
MIME envelope and a SOAP envelope.

8



+
SOAP Message

SOAP Message

Primary MIME 
part (text/xml)

Attachment

Attachment

Attachment

SOAP Envelope

SOAP Header

SOAP Body

Fault

9



+
SOAP Message Envelope

 Encoding information
 Header

 Optional
 Contains context knowledge

• Security
• Transaction 

 Body
 Methods and parameters
 Contains application data

10



+
SOAP in practice, an animated 
example (Java)

Web Server 
(e.g. Apache Tomcat)

Web Service Toolkit
(e.g. Apache Axis)

Client
(e.g. CalcClient.java)

SOAP Binding

SOAP Request

Web Service
(e.g. Calculator.java)

Java to SOAP

Java

Java
SOAP 

to Java

<soap:Envelope
 <soap:Body>
  <add>
   <i1>10</i1>
   <i2>5</i2>
  </add>
 </soap:Body>
</soap:Envelope>

calculator.add(10, 5)

add(10, 5)

11



+ A SOAP Request

POST /temp HTTP/1.1
Host: www.somewhere.com
Content-Type: text/xml; charset="utf-8"
Content-Length: xxx
SOAPAction: "http://www…../temp"

<?xml version=“1.0”?>

……………..

HTTP 
headers 
and the 
blank line

an XML document 

“The SOAPAction HTTP request header field can be used to indicate the intent of 
the SOAP HTTP request. The value is a URI identifying the intent. SOAP places no 
restrictions on the format or specificity of the URI or that it is resolvable. An 
HTTP client MUST use this header field when issuing a SOAP HTTP Request.”
Note: in SOAP 1.2, the SOAPAction header has been replaced with the “action” 
attribute on the application/soap+xml media type (Content-Type: 
application/soap+xml; charset=utf-8). But it works almost exactly the same way as 
SOAPAction.

12



+
SOAP

Application

Server (Container)

HTTP
GET

HTTP
DEL

HTTP
PUT

HTTP
POST

….

 Uses only POST over HTTP
 Container parsing and 

interpreting

13



+

<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope“

soap:encodingStyle="http://www.w3.org/2001/12/soap-encodi
ng">

<soap:Header>
...

</soap:Header>

<soap:Body>
...
<soap:Fault>

...
</soap:Fault>

</soap:Body>
</soap:Envelope> 

soap-encoding !?
!

XML message structure

Version number

14



+
SOAP encoding 

 When SOAP specification 
was written for the first 
time, XMLSchema was not 
available, so a common 
way to describe messages 
was defined. 

 Now SOAP encoding defines 
it's own namespace as 
http://schemas.xmlsoap.or
g/soap/encoding/ and a 
set of rules to follow.

 Rules of expressing 
application-defined data 
types in XML

 Based on W3C XML Schema

 Simple values
 Built-in types from XML 
Schema, Part 2 (simple 
types, enumerations, 
arrays of bytes)

 Compound values
 Structures, arrays, 
complex types

15

http://www.tutorialspoint.com/soap/soap_encoding.htm 

file:///media/data/Data/Course/PA165-EJ/Lecture.SOAP/


+

SOAP, “closer to 
the bit space”

 Summing up:

 SOAP, originally defined as 
Simple Object Access Protocol, is 
a protocol specification for 
exchanging structured information 
in the implementation of Web 
Services in computer networks. It 
relies on Extensible Markup 
Language (XML) for its message 
format, and usually relies on 
other Application Layer 
protocols, most notably Hypertext 
Transfer Protocol (HTTP) and 
Simple Mail Transfer Protocol 
(SMTP), for message negotiation 
and transmission.

 SOAP can form the foundation 
layer of a web services protocol 
stack, providing a basic 
messaging framework upon which 
web services can be built.



+
SOAP with Attachments, 
SOAP with Attachments API for Java (SAAJ) 

 SOAP with Attachments (SwA) 
or MIME for Web Services 
refers to the method of using 
Web Services to send and 
receive files using a 
combination of SOAP and MIME, 
primarily over HTTP.

 Note that SwA is not a new 
specification, but rather a 
mechanism for using the 
existing SOAP and MIME 
facilities to perfect the 
transmission of files using 
Web Services invocations.

 The SOAP with Attachments API 
for Java or SAAJ provides a 
standard way to send XML 
documents over the Internet 
from the Java platform.

 SAAJ enables developers to 
produce and consume messages 
conforming to the SOAP 1.1 
specification and SOAP with 
Attachments note.

 Developers can also use it to 
write SOAP messaging 
applications directly instead 
of using JAX-RPC (obsolete) 
or JAX-WS

 This will mean working with the 
lower details → so more control 
but more possibilities for 
mistakes

17



+
The SOAP with Attachments API 
Version 1.3
 The essential object for using SAAJ is a SOAPMessage object created 
by a call to the createMessage() method of MessageFactory. 

 SOAPMessage object contains a complete SOAP message, either a 
SOAP-formatted XML document or a MIME multipart message whose first 
section is an XML document. 

 XML is contained in a SOAPPart, all SOAPMessages contain a single 
SOAPPart, which in turn contains a SOAPEnvelope corresponding to the 
root element of the document.

 Inside the Envelope element, a SOAP message is required to have a 
Body element and may have one Header element. SAAJ provides the 
SOAPHeader and SOAPBody objects to enable the programmer to 
manipulate the content of these elements. SAAJ just provides the 
mechanism, actually creating the contents of the SOAPBody and 
SOAPHeader is up to the programmer.

 A SOAPMessage object may have zero, one or many additional 
AttachmentPart objects with any MIME content type such as an XML 
document, plain text or an image. Attachments are added using the 
AttachmentPart class, which requires a data source, typically an 
InputStream, and a MIME content type. 

18



SOAP with Attachments API for Java
The Java EE 5 Tutorial
http://docs.oracle.com/javaee/5/tutorial/doc/bnbhf.html

19



import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPConnection;
import javax.xml.soap.MessageFactory;
……….

public SimpleSAAJ {
    public static void main(String args[]) {
       try {    
           //Create a SOAPConnection   
           SOAPConnectionFactory factory =
                    SOAPConnectionFactory.newInstance();

           SOAPConnection connection =
                    factory.createConnection();
 
           .................
           // Close the SOAPConnection
           connection.close();

       } catch (Exception e) {
           System.out.println(e.getMessage());
       }
  }
}

Creating a 
SOAP Conection

20



……………

import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPPart;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPBody;
import java.net.URL;
……………
 

           //Create a SOAPMessage
           SOAPMessageFactory messageFactory = 
MessageFactory.newInstance();
           SOAPMessage message = messageFactory.createMessage();
           SOAPPart  soapPart = message.getSOAPPart();
           SOAPEnvelope envelope = soapPart.getEnvelope();
           SOAPHeader header = envelope.getHeader();
           SOAPBody body = envelope.getBody(); 
           header.detachNode();
 
          

Creating a 
SOAP Message

21



  //Create a SOAPBodyElement
   Name bodyName = envelope.createName("GetLastTradePrice"
                   "m", "http://wombat.ztrade.com");
  SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

  //Insert Content
    Name name = envelope.createName("symbol");
    SOAPElement symbol = bodyElement.addChildElement(name);
    symbol.addTextNode("SUNW");

Populate a 
SOAP Message

22

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
  <SOAP-ENV:Body>
    <m:GetLastTradePrice xmlns:m="http://wombat.ztrade.com">
      <symbol>SUNW</symbol>
    </m:GetLastTradePrice>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This will produce the SOAP envelope:

java.net.URL endpoint = new URL("http://wombat.ztrade.com/quotes");
SOAPMessage response = connection.call(message, endpoint);

That you can send with



+
Some Remarks

 SOAP is not “what it used to be”, the name 
remained, but the content has changed

 SOAP term is often used as synonym for WS* web 
service architecture, though it is one element of 
it

 SOAP is not just one element of WS*, it is used in 
other context as well, even parallel with ReST web 
services.  

 SOAP is often hidden from the developer, build 
into tools in such a way that developer does not 
have to deal with it at a detailed level. 

23



+

The Standardization Process



+
OASIS Organization for the 
Advancement of Structured Information 
Standards 
 a global consortium that drives the development, 
convergence, and adoption of e-business and web service 
standards

 the work categories: Web Services, e-Commerce, Security, 
Law & Government, Supply Chain, Computing Management, 
Application Focus, Document-Centric, XML Processing, 
Conformance/Interoperability, and Industry Domains

 Standards: BCM, CAM, CAP, CIQ, DSS, DocBook, DITA, DSML, 
ebXML, EDXL, EML, KMIP, OpenDocument, SAML, SDD, 
SOAP-over-UDP, SPML, UBL, UDDI,WSDM, XRI, XDI, WS-BPEL, 
WSRF, WSS, XACML

25



+
W3C World Wide Web Consortium 

 the main international standards organization for 
the World Wide Web

 the consortium is made up of member organizations 
working together in the development of standards for 
the World Wide Web. 

the World Wide Web Consortium (W3C) has 390 Members (2 
December 2013).

 Standards: CGI, CSS, DOM, GRDDL, HTML, MathML, OWL, 
P3P, RDF, SISR, SKOS, SMIL, SOAP, SPARQL, SRGS, 
SSML, SVG, VoiceXML, XHTML, XHTML+Voice, XML, XML 
Events, XML Information Set, XML Schema, Xpath, 
Xquery, XSL-FO, XSLT, WCAG, WSDL, XForms

26



+
WS-I 
(Web Services Interoperability 
Organization)
 the (WS-I) is an open industry organization 

 chartered to establish Best Practices for Web 
services interoperability, 

 for selected groups of Web services standards, 
across platforms, operating systems and programming 
languages.

 WS-I comprises of 
 Web services leaders from a wide range of companies
  standards development organizations

  WS-I committees and working groups create Profiles 
and supporting Testing Tools based on Best Practices 
for selected sets of Web services standards. The 
Profiles and Testing Tools are available for use by 
the Web Services community to aid in developing and 
deploying interoperable Web services. 

27



+
WSIT (Web Services 
Interoperability Technology)

 An open-source project to develop the 
next-generation of Web service technologies. 

 It consists of Java programming language APIs that 
enable advanced WS-* features to be used in a way 
that is compatible with Microsoft's .NET.

  The interoperability between different products 
is accomplished by implementing a number of Web 
Services specifications, like JAX-WS that provides 
interoperability between Java Web Services and 
Microsoft Windows Communication Foundation

 WSIT is a series of extensions to the basic SOAP 
protocol, and so uses JAX-WS and JAXB (Java API 
for XML Binding)

28



+
WSIT implements the WS-I 
specifications

 Metadata
 WS-MetadataExchange
 WS-Transfer
 WS-Policy

 Security
 WS-Security
 WS-SecureConversation
 WS-Trust
 WS-SecurityPolicy

 Messaging
 WS-ReliableMessaging
 WS-RMPolicy

 Transactions
 WS-Coordination
 WS-AtomicTransaction

29



+ Web Services Standards for SOA
The Web Services Platform Architecture

Messaging

Quality 
of Service

Transport

Description

Components

Transport

Interface + Bindings

Composite

XML Non-XML

Security

Policy

D
i
s
c
o
v
e
r
y
,
 
N
e
g
o
t
i
a
t
i
o
n
,
 
A
g
r
e
e
m
e
n
t

Atomic

OrchestrationOrchestration ProtocolsProtocols StateState

Reliable
Messaging Transactions

Component
Model
Component
Model

30



+ Web Services Standards for SOA
The Web Services Platform Architecture

Messaging

Quality 
of Service

Transport

Description

Components

Transport

Interface + Bindings

Composite

XML Non-XML

Security

Policy

D
i
s
c
o
v
e
r
y
,
 
N
e
g
o
t
i
a
t
i
o
n
,
 
A
g
r
e
e
m
e
n
t

Atomic

OrchestrationOrchestration ProtocolsProtocols StateState

Reliable
Messaging Transactions

Component
Model
Component
Model

WS-RM

WSDL* WS-Policy*

HTTP, TCP/IP, SMTP, FTP, …

U
D
D
I
,
 
W
S
-
A
d
d
r
,
 
M
e
t
a
d
a
t
a
 
E
x
c
h
.
,
…

WS-C
WS-N* WS-RFWS-BPEL

WS-Security*
WS-AT 
WS-BA

SOAP, WS-Addr* JMS, RMI/IIOP, ...

SCA

31



+ Web Services Standards for SOA
The Web Services Platform Architecture

Messaging

Quality 
of Service

Transport

Description

Components

Transport

Interface + Bindings

Composite

XML Non-XML

Security

Policy

D
i
s
c
o
v
e
r
y
,
 
N
e
g
o
t
i
a
t
i
o
n
,
 
A
g
r
e
e
m
e
n
t

Atomic

OrchestrationOrchestration ProtocolsProtocols StateState

Reliable
Messaging Transactions

Component
Model
Component
Model

WS-RM

WSDL* WS-Policy*

HTTP, TCP/IP, SMTP, FTP, …

U
D
D
I
,
 
W
S
-
A
d
d
r
,
 
M
e
t
a
d
a
t
a
 
E
x
c
h
.
,
…

WS-C
WS-N* WS-RFWS-BPEL

WS-Security*
WS-AT 
WS-BA

SOAP, WS-Addr* JMS, RMI/IIOP, ...

SCA

32



+
W3C Definition of Web 
Services

A Web service is a software system designed to 
support interoperable machine-to-machine 
interaction over a network. It has an interface 
described in a machine processable format 
(specifically WSDL). Other systems interact 
with the Web service in a manner prescribed by 
its description using SOAP messages, typically 
conveyed using HTTP with an XML serialization 
in conjunction with other Web-related 
standards.

33



+
WS* Web Services

A Web consisting of Services

Application-to-Application, Machine-to 
Machine communication

Standard protocols
 SOAP (Simple Object Access Protocol)
 WSDL (Web Services Description Language)
 UDDI (Universal Description, Discovery, and 
Integration)

34



+
Web Services

Acronyms:
UDDI
WSDL
SOAP
HTTP, SMTP, FTP
Programming 
Schema 
XML

Practical Examples:
Phone Book
Contract
Envelope
Mail person
Speech
Vocabulary
Alphabet

35



+
Use of web services

Service 
requestor 
Client

Directory
UDDI

Service 
provider Web 
services

Find
(WSDL)

Publish
(WSDL)

Bind / invoke
(SOAP)

SOAP, WSDL, UDDI, and XML in all of them 

36



+
UDDI (Universal Description, 
Discovery and Integration)

 is a platform-independent, Extensible Markup Language 
(XML)-based registry by which businesses worldwide can 
list themselves on the Internet, and a mechanism to 
register and locate web service applications. 

 is an open industry initiative, sponsored by the 
Organization for the Advancement of Structured 
Information Standards (OASIS), for enabling businesses 
to publish service listings and discover each other, and 
to define how the services or software applications 
interact over the Internet.

37



+ 38

UDDI

 UDDI servers act as a directory of available 
services and service providers. SOAP can be used 
to query UDDI to find the locations of WSDL 
definitions of services, or the search can be 
performed through a user interface at design or 
development time.

 Data structure specification describes what kind 
of data is stored in UDDI. 

 The programmer’s API specification contains how a 
UDDI registry can be accessed. 

 The replication specification contains 
descriptions of how registries replicate 
information among themselves. 



+ 39

UDDI

UDDI registries contains information about 
businesses and the Services these 
businesses offer. 
Public registries 
Private registries

Three basic functions
publish： how to register a web service
search:  how to find a specific web 
service

binding: how to connect to a web service



+
Public Registries 

 IBM Registration:  
https://uddi.ibm.com/ubr/registry.html
 inquiryURL= https://uddi.ibm.com/ubr/inquiryapi
 publishURL= https://uddi.ibm.com/ubr/publishapi 

 HP Registration:  http://uddi.hp.com 
 inquiryURL = http://uddi.hp.com/ubr/inquire
 publishURL = https://uddi.hp.com/ubr/publish

 Microsoft Registration: http://uddi.rte.microsoft.com 
 inquiryURL=http://uddi.rte.microsoft.com/inquire
 publishURL=https://uddi.rte.microsoft.com/publish 

 SAP Registration: http://udditest.sap.com 
 inquiryURL=http://uddi.sap.com/UDDI/api/inquiry/ 
 publishURL=https://uddi.sap.com/UDDI/api/publish/ 

40



+
Public Registries (well, it used to 

be...) 
 IBM Registration:  
https://uddi.ibm.com/ubr/registry.html
 inquiryURL= https://uddi.ibm.com/ubr/inquiryapi
 publishURL= https://uddi.ibm.com/ubr/publishapi 

 HP Registration:  http://uddi.hp.com 
 inquiryURL = http://uddi.hp.com/ubr/inquire
 publishURL = https://uddi.hp.com/ubr/publish

 Microsoft Registration: http://uddi.rte.microsoft.com 
 inquiryURL=http://uddi.rte.microsoft.com/inquire
 publishURL=https://uddi.rte.microsoft.com/publish 

 SAP Registration: http://udditest.sap.com 
 inquiryURL=http://uddi.sap.com/UDDI/api/inquiry/ 
 publishURL=https://uddi.sap.com/UDDI/api/publish/ 

41

UDDI has not been adopted as widely as its designers 
had hoped. IBM, Microsoft, and SAP announced they were 
closing their public UDDI nodes in January 2006. 

The OASIS UDDI Specification Technical Committee voted 
to complete its work in late 2007 and has been closed. 

In September 2010, Microsoft announced they were 
removing UDDI services from the Windows Server 
operating system. 

UDDI systems are most commonly found inside companies, 
where they are used to dynamically bind client systems 
to implementations. However, much of the search 
metadata permitted in UDDI is not used for this 
relatively simple role.



+
Enabling technologies

Service discovery and publication
UDDI

Service description
WSDL

XML-Based message
SOAP

Network
HTTP, …………

42



+
WS*

Web 
service

WSDL
Web 

service

WSDL

SOAP
messages

SOAP
messages

.NETJ2EE

Platform or 
middleware

 clear 
specifications of 
the service 
interface and the 
data types in use

 communication 
protocol 
independent 
(platform, 
programming 
language)

 interoperability.

43



+
SOAP engines

SOAP engine

Serialize 
into a SOAP 
message

De-serializ
e into 

native data 
types

Message

Message

SOAP engine

Serialize 
into a SOAP 
message

De-serializ
e into 

native data 
typesConsumer 

/ Client
Provider 
/ Server

A SOAP engine is a framework used in servers and clients that 
facilitates:
1.Serializing objects from a programming language into SOAP messages
2.De-serializing SOAP messages into objects in a programming language, 
i.e. creating appropriate data types and populating these with the 
message content.

44



+
Simple Web Service Invocation 

Manual Web 
Service 
Lookup

Invoke Web 
Service

Write 
Client 
Code Remote Web Service

Publish 
Web 

Service

Service directory

1.

2. HTTP GET

3. WSDL file

4. SOAP request

5. SOAP response

45



JAXB

SOAP

SchemaJAX-P

JAX-RUDDI

WSDL

MTOM

SAAJ

JAX-WS

Java SE 
6/7

XML

Includes

In build on

Binds to

Directory for

Provides 
client access 
for

Uses

Provides 
high-level 
API for

Pr
ov
id
es
 

lo
w-
le
ve
l 

AP
I 
fo
r

Im
pr
ov
es
 p
er
fo
rm
an
ce
 o
f 

bi
na
ry
 a
tt
ac
hm
en
ts
 o
f

Transforms Java objects 
to/from

Represented by

Processes Defines

46



+
An example (1/7)
Implementing a simple web service 
with Java
1. Create the “service 

endpoint interface”
 Interface for web 
service

1. Create the “service 
implementation”
 Class that 
implements the 
service

1. Create the “service 
publisher”

 Java supports web 
services in core Java
 JAX‐WS (Java API for 
XML‐Web Services)

 In full production 
mode, one would use a 
Java application server 
such as Tomcat, 
Glassfish, etc.

47



+
An example (2/7)
Service Endpoint Interface

package example.echo;   // echo server
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;

@WebService      // This is a Service Endpoint Interface (SEI)
@SOAPBinding(style = Style.RPC) // Needed for the WSDL
public interface EchoServer {

@WebMethod    // This method is a service operation
String EchoMessage(String strMsg); }

48



+
An example (3/7)
 Service Implementation 

package example.echo;
import javax.jws.WebService;
/**

* The @WebService property endpointInterface links this class 
* to example.echo.EchoServer.

*/
@WebService(endpointInterface = 
"example.echo.EchoServer")
public class EchoServerImpl implements EchoServer {

public String EchoMessage(String Msg) {
String capitalizedMsg;
System.out.println("Server: EchoMessage() invoked...");
System.out.println("Server: Message > " + Msg);
capitalizedMsg = Msg.toUpperCase();
return(capitalizedMsg);

}
}

49



+
An example (4/7) 
Service Publisher

package example.echo;
import javax.xml.ws.Endpoint;

public class EchoServerPublisher {
public static void main(String[ ] args) {
// 1st argument is the publicaNon URL
// 2nd argument is an SIB instance
Endpoint.publish("http://localhost:9876/es", new 
EchoServerImpl());
}

}

50



+
An example (5/7) 
Deploying and testing 

1. Compile the Java code

2. Run the publisher
 java example.echo.EchoServerPublisher

1. Testing the web service with a browser
 URL: http://localhost:9876/es?wsdl

51



<definitions targetNamespace=”http://echo.example/" name="EchoServerImplService">
<types/>
<message name="EchoMessage”> <part name="arg0" type="xsd:string"/> </message>
<message name="EchoMessageResponse”><part name="return" 
type="xsd:string"/></message>

<portType name="EchoServer">
<operation name="EchoMessage">

<input message="tns:EchoMessage"/>
<output message="tns:EchoMessageResponse"/>

</operation>
</portType>

<binding name="EchoServerImplPortBinding" type="tns:EchoServer">
<soap:binding transport=”http://schemas.xmlsoap.org/soap/http" style="rpc”/>
<operation name="EchoMessage">
<soap:operation soapAction=""/>
<input> <soap:body use="literal" namespace="http://echo.example/"/> </input>
<output> <soap:body use="literal" namespace="http://echo.example/"/> </output>
inding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
</operation>

</binding>

<service name="EchoServerImplService">
<port name="EchoServerImplPort" binding="tns:EchoServerImplPortBinding”>

<soap:address location=”http://localhost:9876/es"/>
</port>
</service>
</definitions>

An Example (6/7)
WSDL for echo 

service

52



package example.echo;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import java.net.URL;

class EchoClient {
public static void main(String argv[ ]) throws Exception {

if (argv.length < 1) {
System.out.println("Usage: java EchoClient \"MESSAGE\"");System.exit(1);}

String strMsg = argv[0];
URL url = new URL(”http://localhost:9876/es?wsdl");

// Qualified name of the service:
// 1st arg is the service URI
// 2nd is the service name published in the WSDL

QName qname = new 
QName(“http://echo.example/”,“EchoServerImplService");
Service service = Service.create(url, qname);

// Extract the endpoint interface, the service "port".
EchoServer eif = service.getPort(EchoServer.class);
System.out.println(eif.EchoMessage(strMsg));

}
}

An Example (7/7)
EchoClient

53



+

Web server

Server side

@WebServi
ce

Dispatche
r

SOAP 
binding

JAXB 
binding

Endpoint 
Listener

SOAP 
request

WSDL

Handler 
chain

54



+
Developing a Web Service

WSDL
Service 
contrac
t

war file
(or ear)

Server 
code

@WebService
POJO class
Servlet-based

Deploymen
t

JAXB & 
JAX-WS 
files

55



+
Client-side programming

WSDL

Service 
contract

wsimport 
tool

Client 
code

@WebService
Dynamic 
proxy

You develop Client 
which uses proxy to 

call Web Service

56



+
Client side

Web Service

WSDL

Endpoint 
URL

Dynamic proxy 

wsimport: 
WSDL to 
Java

parameters
JAXB

return 
value
JAXB

XService

Javax.xml.ws.Service

SOAP 
response

SOAP 
request

extends

Service 
Endpoint 
Interface
(SEI)

Invocation 
Handler

57



+
WSDL

 The Web Service Description Language is a 
technical description of a Web Service

 It mentions all interfaces available, with the 
relevant information for the invocation 
(parameters, return type...)

 It is possible to generate 
 the client code for accessing the Web Service 
 A WSDL file from Java source code
 A Java source code skeleton from WSDL file

58



+Web Service Example

<wsdl:message name="addIntResponse">
          <wsdl:part name="addIntReturn" type="xsd:int" /> 
 </wsdl:message>
<wsdl:message name="addIntRequest">
           <wsdl:part name="a" type="xsd:int" /> 
           <wsdl:part name="b" type="xsd:int" /> 
 </wsdl:message>
<wsdl:portType name="AddFunction">
      <wsdl:operation name="addInt" parameterOrder="a b">
            <wsdl:input message="impl:addIntRequest" name="addIntRequest" /> 
            <wsdl:output message="impl:addIntResponse" name="addIntResponse" /> 
      </wsdl:operation>
 </wsdl:portType> // possible implementation of WS using 

the wsimport tool:
// AddFunction.jws
public class AddFunction {
  int addInt(int a, int b){
    return(a+b);
  }
}

A Web service AddFunction with operation addInt is known through its WSDL:

59



+
Generating a WSDL file from a
Java class

public class WeightConverter {
public double kgtopounds (double kg){

return kg*2.20462262;
}
public double poundstokg (double pounds)
{

return pounds/2.20462262;
}

}

javac –cp . WeightConverter.java
java2wsdl –cp . –tn weightconverter –stn weightconverter –cn WeightConverter

-cp = classpath; -tn target namespace; -stn schema target 
namespace; -cn class name

60



+ Generating the service code skeleton
from the WSDL file

wsdl2java -ss -sd -uri WeightConverter.wsdl

-ss = server side;  -sd = service descriptor

 A src directory is created with the source code for 
our server side files

 A resources directory is created with the WSDL file 
for the service and a service descriptor 
(services.xml) file

 A build.xml file is created in the current 
directory, which will be used to create the ws 
deployment file

61



+
Using WSDL

 As extended IDL: WSDL allows tools to generate 
compatible client and server stubs:
 Tool support for top-down, bottom-up and “meet in the 
middle” development.

 Allows industries to define standardised service 
interfaces.

 Allows advertisement of service descriptions, 
enables dynamic discovery and binding of 
compatible services:
 Used in conjunction with UDDI registry

 Provides a normalised description of heterogeneous 
applications.

62



+

 <types>, the data types of 
input and output data, 
used by the web service 

 <message>, messages to be 
exchanged, used by the web 
service

 <portType>, the operations 
input and output exposed 
by the web service

 <binding>, the coupling 
and protocols used by the 
web service

 <port> service location 
and binding

WSDL elements
63



<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
xmlns:tns="http://tempuri.org/AreaService/" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="AreaService" 
targetNamespace="http://tempuri.org/AreaService/">
 
 <wsdl:types>

    <xsd:schema targetNamespace="http://tempuri.org/AreaService/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
      <xsd:element name="area" type="xsd:float"/>
      <xsd:element name="parameters" type="tns:dimensions"/>
      <xsd:complexType name="dimensions">

      <xsd:sequence>
      <xsd:element name="width" 
type="xsd:float"></xsd:element>
      <xsd:element name="height" 
type="xsd:float"></xsd:element>
      </xsd:sequence>

      </xsd:complexType>
    </xsd:schema>

  </wsdl:types>

  <wsdl:message name="CalculateRectAreaResponse">
    <wsdl:part element="tns:area" name="area"/>

  </wsdl:message>
  <wsdl:message name="CalculateRectAreaRequest">

    <wsdl:part element="tns:parameters" name="parameters"/>
  </wsdl:message>

64



   <wsdl:portType name="AreaService">
    <wsdl:operation name="CalculateRectArea">

      <wsdl:input message="tns:CalculateRectAreaRequest"/>
      <wsdl:output message="tns:CalculateRectAreaResponse"/>

    </wsdl:operation>
   </wsdl:portType>
 
   <wsdl:binding name="AreaServiceSOAP" type="tns:AreaService">

    <soap:binding style="document" 
transport="http://schemas.xmlsoap.org/soap/http"/>
    <wsdl:operation name="CalculateRectArea">

      <soap:operation 
soapAction="http://tempuri.org/AreaService/NewOperation"/>
      <wsdl:input>

        <soap:body use="literal"/>
      </wsdl:input>
      <wsdl:output>

        <soap:body use="literal"/>
      </wsdl:output>

    </wsdl:operation>
    </wsdl:binding>
  
    <wsdl:service name="AreaService">

    <wsdl:port binding="tns:AreaServiceSOAP" name="AreaServiceSOAP">
      <soap:address location="http://tempuri.org"/>

    </wsdl:port>
    </wsdl:service>
</wsdl:definitions>

65



+
Summary

 WS* standards are unevenly taken into use
 Service orientation is well accepted
 Several competing solutions, most notably WS* vs REST 
that are merging to complement each other

 Successful and accepted standardization in technical 
interfaces

 Business interfaces not proceeding

 Many technical complexities still remains 

 Emergence of new new solutions is frequent

66


