
Analysis and Design

Lecture 4

1 Chapter 7 Design and implementation

Outline

 Software analysis and design

 Structured vs. object-oriented methods

 Object-oriented analysis in UML

2 Chapter 7 Design and implementation

Software Analysis and Design

Lecture 4/Part 1

3 Chapter 7 Design and implementation

Analysis, design and implementation

 Software development (i.e. analysis, design and

implementation) is the stage in the software engineering

process at which an executable software system is

developed.

 Software analysis, design and implementation are

invariably inter-leaved with blurred border in between.

 Software analysis is a creative activity in which you identify

software processes, entities (objects) and their relationships.

 Software design refines analytical models with implementation

details.

 Implementation is the process of realizing the design as a

program.

4 Chapter 7 Design and implementation

Process stages

 There are a variety of different design processes that

depend on the organization using the process.

 Common activities in these processes include:

1. Define the context and modes of use of the system;

2. Draft the system architecture;

3. Identify the principal system processes and entities;

4. Develop design models;

5. Specify component/object interfaces;

6. Finalize system architecture.

5 Chapter 7 Design and implementation

1. System context and interactions

 Understanding the relationships between the

software and its external environment is essential for

deciding

 how to provide the required system functionality and

 how to structure the system to communicate with its

environment.

 Understanding of the context also lets you establish the

boundaries of the system.

 Setting the system boundaries helps you decide what features

are implemented in the system being designed and what

features are in other associated systems.

6 Chapter 7 Design and implementation

Context and interaction models

 A system context model is a structural model that

demonstrates the users and other systems in the

environment of the system being developed.

 An interaction model is a dynamic model that shows

how the system interacts with its environment as it is

used.

7 Chapter 7 Design and implementation

2. Architectural design

May start system analysis or finish system design, often

both.

 Represents the link between requirements specification

and analysis/design processes.

 Often carried out in parallel with specification activities.

 It involves identifying major system components and

their communications.

 E.g. The weather station is composed of independent

subsystems that communicate by broadcasting messages on a

common infrastructure.

8 Chapter 6 Architectural design

High-level architecture of the weather

station

9 Chapter 7 Design and implementation

Architectural abstraction

 Architecture in the small (analysis) is concerned with

the architecture of individual programs.

 At this level, we are concerned with the way that an individual

program is decomposed into components.

 Architecture in the large (design) is concerned with

the architecture of complex enterprise systems that

include other systems, programs, and program

components.

 These systems are distributed over different computers, which

may be owned and managed by different companies.

10 Chapter 6 Architectural design

Advantages of explicit architecture

 Stakeholder communication and project planning

 Architecture may be used to facilitate the discussion by system
stakeholders.

 System analysis

 Means that analysis of whether the system can meet its non-
functional requirements is possible.

 System documentation

 Via a complete system model that shows the different

components in a system, their interfaces and their connections.

 Large-scale reuse

 The architecture may be reusable across a range of systems

 Product-line architectures may be developed.

11 Chapter 6 Architectural design

3. System analysis

 Identification of system entities (object classes in

object-oriented analysis) playing the key roles in the

system’s problem domain, and their relationships.

 Distillation and documentation of key system

processes.

 System analysis is a difficult creative activity.

 There is no 'magic formula' for good analysis. It relies on the

skill, experience and domain knowledge of system analysts.

 Object/relationships/processes identification is an

iterative process. You are unlikely to get it right first

time.

12 Chapter 7 Design and implementation

Weather station object classes

13 Chapter 7 Design and implementation

5. Design models

 Design models refine analysis models with the

information required to communicate and document

the intended implementation of the system.

 E.g. Dependencies, interfaces, data-access classes, GUI

classes.

 Static models describe the static structure of the system

in terms of system entities and relationships.

 Can you list some static UML diagrams?

 Dynamic models describe the dynamic interactions

between entities.

 Can you list some dynamic UML diagrams?

14 Chapter 7 Design and implementation

Key points

 Software analysis and design are inter-leaved activities. The level

of detail in the design depends on the type of system and whether

you are using a plan-driven or agile approach.

 The process of analysis and design includes activities to design the

system architecture, identify entities in the system, describe the

design using different models and document the component

interfaces.

 Software analysis is a creative activity in which you identify

software processes, entities (objects) and their relationships.

 Software design refines analytical models with implementation

details.

15 Chapter 7 Design and implementation

Structured vs. Object-Oriented Methods

Lecture 4/Part 2

16
© Strukturovaná analýza systémů

by J. Ráček

Fundamental views of software systems

 Function oriented view

 System as a set of interacting functions. Functional

transformations based in processes, interconnected with data

and control flows.

 Data oriented view

 Searches for fundamental data structures in the system.

Functional aspect of the system (i.e. data transformation) is less

significant.

 Object oriented view

 System as a set of interacting objects, encapsulating both the

data and operations performed on the data.

17
© Strukturovaná analýza systémů

by J. Ráček

Structured vs. object-oriented analysis

 Structured analysis

 Driven by the function oriented view, in synergy with data

oriented view, through the concept of functional decomposition.

 Object-oriented analysis

 Driven by the object oriented view.

18
© Strukturovaná analýza systémů

by J. Ráček

Structured analysis and design

 Divides a project on small, well defined activities and

defines the order and interaction of the activities.

 Using hierarchical graphical techniques, resulting in a

detailed structured specification, which can be

understood by both system engineers and users.

 Effective in project structuring to smaller parts, which

simplifies time and effort estimates, deliverables control

and project management as such.

 Aimed at increasing system quality.

19
© Strukturovaná analýza systémů

by J. Ráček

Functional decomposition

20

System

context
Level 0

processes

Level 1

processes

Data

dictionary

Basic-process

specification

© Strukturovaná analýza systémů
by J. Ráček

Structured methods

 DeMarco: Structured Analysis and System Specification

(SASS)

 Gane-Sarson: Logical Modelling (LM)

 Yourdon: Modern Structured Analysis (YMSA)

 Concentrates on the data and control flow of system processes

and sub-processes.

 Structured Systems Analysis and Design Method

(SSADM)

 Physical design, logical process design and logical data design

21
© Strukturovaná analýza systémů

by J. Ráček

Core notations of structured methods

 Context diagram

 Models system boundary and environment.

 Data flow diagram (DFD)

 Models the system as a network of processes completing

designated functions and accessing system data.

 Entity relationship diagram (ERD)

 Models system’s data.

 State diagram (STD)

 Models system states and actions guarding transitions from one

state to another.

22
© Strukturovaná analýza systémů

by J. Ráček

Examplary method (Gane-Sarson)

1. Define system context and create initial system DFD.

2. Draft initial data model (ERD).

3. Analyze data entities and relationships into final ERD.

4. Refine DFD according to the ERD data model (create

logical process model).

5. Decompose logical process model into procedural

elements.

6. Specify the details of each individual procedural

element.

23
© Strukturovaná analýza systémů

by J. Ráček

Object-oriented analysis and design

 Software engineering approach that models a system as

a group of interacting objects.

 Each object represents some entity of interest in the

system being modeled, and is characterized by its class,

its state (data elements), and its behavior.

 Various models can be created to show the static

structure, dynamic behavior, and run-time deployment of

these collaborating objects.

 There are a number of different methods, defining the

ordering of modeling activities. The modeling notation

uses to be unified (UML).

24 Chapter 7 Design and implementation

Object-oriented methods

 Jim Rumbaugh: Object Modelling Technique (OMT)

 Coad-Yourdon: Method for Object-Oriented Analysis

(OOA)

 Jacobson: Object-Oriented Software Engineering (OOSE)

 Kruchten et al.: Rational Unified Process (RUP)

 Risk-driven iterations, component-based, with continuous quality

verification and change management.

 Booch-Jacobson-Rumbaugh: Unified Process (UP)

 Simplified non-commercial version of RUP maintained by Object

Management Group (OMG).

25 Chapter 7 Design and implementation

UML notation for object-oriented methods

 External perspective

 Use case diagram

 Structural perspective

 Class diagram, Object diagram, Component diagram, Package

diagram, Deployment diagram, Composite structure diagram

 Interaction perspective

 Sequence diagram, Communication diagram, Interaction

overview diagram, Timing diagram

 Behavioral perspective

 Activity diagram, State diagram

26 Chapter 7 Design and implementation

Examplary method (Unified Process,

analysis and design excerpt)

1. Requirements

 System boundary, actors and requirements modelling with Use

Case diagram.

2. Analysis

 Identification of analysis classes, relationships, inheritance and

polymorphism, and their documentation with a Class diagram.

 Use Case realization with Interaction and Activity diagrams.

3. Design

 Design classes, interfaces and components, resulting in refined

Class diagrams and Component diagrams.

 Detailed Use Case realization with Interaction and State

diagrams.

27 Chapter 7 Design and implementation

Key points

28
© Strukturovaná analýza systémů

by J. Ráček

Structured analysis Object-oriented analysis

System boundary Context diagram Use case diagram

Functionality Data flow diagram Activity diagram
Interaction diagrams

Data Entity-relationship diagram Class and Object diagram

Control State diagram State diagram

 Structured methods

 System as a set of nested processes accessing system data.

 Object-oriented methods

 System as a set of interacting objects (functions and data).

Object-Oriented Analysis in UML

Lecture 4/Part 3

29 © Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 30

Analysis objects and classes

What are objects?

 Objects consist of data and function packaged together

in a reusable unit. Objects encapsulate data.

 Every object is an instance of some class which defines

the common set of features (attributes and operations)

shared by all of its instances.

 Objects have:

 Attribute values – the data part

 Operations – the behaviour part
number = "1243"

owner = "Jim Erl"

balance = 300

deposit()

withdraw()

getOwner()

setOwner()

Bank Account

Object

attribute values

operations

© Clear View Training 2010 v2.6 31

All objects have

 Identity: Each object has its own unique identity and can

be accessed by a unique handle

 Distinguish two cars of the same type and one car referenced

from two places.

 State: This is the actual data values stored in an object

at any point in time

 On and off for a light bulb (one attribute).

 On + busy, on + idle, off for a printer (two attributes).

 Behaviour: The set of operations that an object can

perform

© Clear View Training 2010 v2.6 32

Messaging

 In OO systems, objects send messages to each other over links

 These messages cause an object to invoke an operation

Bank Object Account Object

withdraw(150.00)

the Bank object sends the

message “withdraw 150.00” to

an Account object.

the Account object responds by

invoking its withdraw operation. This

operation decrements the account

balance by 150.00.

message

© Clear View Training 2010 v2.6 33

UML Object Syntax

 All objects of a particular class have the same set of operations. They are not shown
on the object diagram, they are shown on the class diagram (see later)

 Attribute types are often omitted to simplify the diagram

 Naming: object and attribute names in lowerCamelCase, class names in UpperCamelCase

jimsAccount : Account

accountNumber : String = "1234567"

owner : String = "Jim Arlow"

balance : double = 300.00

attribute

name

attribute

compartment

name

compartment

attribute

type

attribute

value

object

name

class

name

jimsAccount : Account

jimsAccount

: Account

object and

class name

object name

only

class name

only

variants

(N.B. we've omitted the attribute compartment)

an anonymous object

object identifier

(must be underlined)

© Clear View Training 2010 v2.6 34

What are classes?

 Every object is an instance of one class - the class describes the
"type" of the object

 Classes allow us to model sets of objects that have the same set of
features - a class acts as a template for objects:

 The class determines the structure (set of features) of all objects of that
class

 All objects of a class must have the same set of operations, must have
the same attributes, but may have different attribute values

 Classification is one of the most important ways we have of
organising our view of the world

 Think of classes as being like:

 Rubber stamps

 Cookie cutters

class

object

© Clear View Training 2010 v2.6 35

Exercise - how many classes?

© Clear View Training 2010 v2.6 36

Classes and objects

 Objects are instances of classes.

 Instantiation is the creation of

new instances of model elements.

 Most classes provide special

operations called constructors

to create instances of

that class.

 These operations

have class-scope

i.e. they belong to

the class itself rather

than to objects of the classs.

withdraw()

deposit()

Account

accountNumber : String

owner : String

balance : double

objects

class

ilasAccount:Account

accountNumber : "803"

owner : "Ila"

balance : 310.00

fabsAccount:Account

accountNumber : "802"

owner : "Fab"

balance : 1000.00

JimsAccount:Account

accountNumber : "801"

owner : "Jim"

balance : 300.00

«instantiate» «instantiate» «instantiate»

© Clear View Training 2010 v2.6 37

UML class notation

 Classes are named in UpperCamelCase – avoid abbreviations!

 Use descriptive names that are nouns or noun phrases

Window

+size : Area = (100,100)

#visibility : Boolean = false

-colorRGB : Integer [3]

-defaultSize : Rectangle

-maximumSize : Rectangle

-xptr : XWindow*

+create()

+hide()

+display(location : Point)

-attachXWindow(xwin : XWindow*)

{author = Jim,

status = tested}

name

compartment

attribute

compartment

operation

compartment

class name tagged values

initial

values

class scope

(static) operation

visibility

adornment

Window

size : Area

visibility : Boolean

hide()

display()

Analytical class

Design class

© Clear View Training 2010 v2.6 38

Attribute compartment

Structure

visibility name : type multiplicity = initialValue

Visibility
+ public
- private
protected
~ package

Type
Integer, Real, Boolean, String, Class

Multiplicity
[3] specific number of elements
[0..1] optional
* array, list

Initial values

Window

+size : Area = (100,100)

#visibility : Boolean = false

-colorRGB : Integer [3]

-defaultSize : Rectangle

-maximumSize : Rectangle

-xptr : XWindow*

+create()

+hide()

+display(location : Point)

-attachXWindow(xwin : XWindow*)

{author = Jim,

status = tested}
mandatory

attribute

compartment

Operation signature

visibility name (direction parameterName : parameterType = default, ...) : returnType

Direction
in input value, default
out repository for system output
inout modifiable input value
return operation return value(s)

Scope
instance scope defaults
class scope underlined

Constructors
generic constructor name or
Java/C++ standard
 +BankAccount(aNumber : int)

© Clear View Training 2010 v2.6 39

Operation compartment

parameter list or a list r1, r2,… rn

BankAccount

-accountNumber : int

-count : int = 0

+create(aNumber : int)

+getNumber() : int

-incrementCount()

+getCount() : int

operation

compartment

© Clear View Training 2010 v2.6 40

Key points

We have looked at objects and classes and examined
the relationship between them

We have explored the UML syntax for modelling classes
including:

 Attributes

 Operations

We have seen that scope controls access

 Attributes and operations are normally instance scope

 We can use class scope operations for constructor and
destructors

 Class scope attributes are shared by all objects of the class and
are useful as counters

