
Object Oriented Analysis

Lecture 5

1 © Clear View Training 2010 v2.6

Outline

Objects and classes [Lecture 4]

 Finding analysis classes

 Relationships between objects and classes

 Links

 Associations

 Dependencies

 Inheritance and polymorphism

 Interaction diagrams

2 © Clear View Training 2010 v2.6

Finding Analysis Classes

Lecture 5/Part 1

3 © Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 4

What are Analysis classes?

 Analysis classes represent a crisp
abstraction in the problem domain

 They may ultimately be refined
into one or more design classes

 Analysis classes have:

 A very “high level” set of
attributes. They indicate the
attributes that the design classes
might have.

 Operations that specify at a high
level the key services that the
class must offer. In Design, they
will become actual,
implementable, operations.

BankAccount

name : String

address

balance : double

deposit()

withdraw()

calculateInterest()

class name

attributes

operations

Specify attribute
types if you
know what they

are.

© Clear View Training 2010 v2.6 5

What makes a good analysis class?

 Its name reflects its intent

 It is a crisp abstraction that models one specific element

of the problem domain

 It maps onto a clearly identifiable feature of the problem domain

 It has high cohesion

 Cohesion is the degree to which a class models a single

abstraction

 Cohesion is the degree to which the responsibilities of the class

are semantically related

 It has low coupling

 Coupling is the degree to which one class depends on others

© Clear View Training 2010 v2.6 6

Rules of thumb

 3 to 5 responsibilities per class

 Each class collaborates with others

 Beware many very small classes

 Beware few but very large classes

 Beware of “functoids”

 Beware of “omnipotent” classes

 Avoid deep inheritance trees

A responsibility is a

contract or obligation

of a class - it resolves

into operations and
attributes

© Clear View Training 2010 v2.6 7

 Perform noun/verb analysis on documents:

 Nouns are candidate classes

 Verbs are candidate responsibilities

What documents can be studied?

 Perform CRC card analysis

 Class, Responsibilities and Collaborators

 A two phase brainstorming technique using sticky notes – first

brainstorm and then analyse the dat

Finding classes

Responsibilities:

Class Name: BankAccount

Collaborators:

Maintain balance Bank things the

class does

things the

class works
with

© Clear View Training 2010 v2.6 8

Other sources of classes

 Physical objects

 Paperwork, forms

 Be careful when relying on processes that need to change

 Known interfaces to the outside world

 Conceptual entities that form a cohesive abstraction

With all techniques, beware of spurious classes

 Look for synonyms - different words that mean the same

 Look for homonyms - the same word meaning different things

© Clear View Training 2010 v2.6 9

Key points

We’ve looked at what constitutes a well-formed analysis

class

We have looked at two analysis techniques for finding

analysis classes:

 Noun verb analysis of use cases, requirements, glossary and

other relevant documentation

 CRC analysis

Relationships Between Objects and Classes

Lecture 5/Part 2

10 © Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 11

What is a link?

 Links are connections between objects

 Think of a link as a telephone line connecting you and a friend.
You can send messages back and forth using this link

 Links are the way that objects communicate

 Objects send messages to each other via links

 Messages invoke operations

 OO programming languages implement links as object
references or pointers. These are unique handles that
refer to specific objects

 When an object has a reference to another object, we say that
there is a link between the objects

© Clear View Training 2010 v2.6 12

Object diagrams

 Paths in UML

diagrams (lines to

you and me!) can

be drawn as

orthogonal,

oblique or curved

lines

 We can combine

paths into a tree if

each path has the

same properties

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

role name

link

BookClub

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

BookClub

oblique

path
style

orthogonal

path
style

preferred

object

© Clear View Training 2010 v2.6 13

What is an association?

 Associations are relationships between classes

 Associations between classes indicate that there may be links

between objects of those classes, while links indicates that there

must be associations

 Can there be a communication between objects of two classes that

have no association between them?

bookClub:Club jim:Person
chairman

Club Person

«instantiate» «instantiate» «instantiate»

link

association

links

instantiate

associations

© Clear View Training 2010 v2.6 14

Association syntax

 An association can have role names or an
association name

 Multiplicity is a constraint that specifies the

number of objects that can participate in a

relationship at any point in time

 If multiplicity is not explicitly stated in the model
then it is undecided – there is no default multiplicity

Company Person
1 0..*

employs

navigability

association

name

multiplicity

Company Person
employer employee

1 0..*

role names

multiplicity: min..max

0..1 zero or 1

1 exactly 1

0..* zero or more

1..* 1 or more

1..6 1 to 6

reading

direction

© Clear View Training 2010 v2.6 15

Multiplicity exercise

 How many

 Employees can a Company have?

 Employers can a Person have?

 Owners can a BankAccount have?

 Operators can a BankAccount have?

 BankAccounts can a Person have?

 BankAccounts can a Person operate?

Company

Person

employee

1

7

employer

BankAccount

0..*

1 owner

0..*

1..* operator

© Clear View Training 2010 v2.6 16

Reflexive associations: file system example

Directory File
0..* 1 0..*

0..1

C

Windows My Documents Corel

Command

autoexec

config

To John

directories files

parent

subdirectory

reflexive association

© Clear View Training 2010 v2.6 17

Hierarchies and networks

A
0..*

0..1

a1:A

b1:A c1:A d1:A

e1:A f1:A g1:A

B
0..*

0..*

a1:B

b1:B

c1:B

d1:B e1:B

f1:B

g1:B

hierarchy network

In an association hierarchy, each object

has zero or one object directly above it.

In an association network, each object

has zero or many objects directly

above it.

© Clear View Training 2010 v2.6 18

Navigability

 Navigability indicates that it
is possible to traverse from
an object of the source class
to objects of the target class

 Can there be a
communication in a direction
not supported by the
navigability?

 Are some of the cases on
the right equivalent?

Order Product * *

Not navigable
A Product object does not store a list of Orders

An Order object stores a list of Products

Navigable

source target

navigability

A B

A B

A B

A B

A to B is navigable

B to A is navigable

A to B is navigable

B to A is not navigable

A to B is navigable

B to A is undefined

A to B is undefined

B to A is undefined

© Clear View Training 2010 v2.6 19

Associations and attributes

 An association is (through its role name) a substitutional representation of an

attribute

 Use associations when:

• The target class is an important part of the model

• The target class is a class that you have designed yourself and must be shown on the
model

 Use attributes when:

• The target class is not an important part of the model e.g. a primitive type such as

number, string

• The target class is just an implementation detail such as a bought-in component or a

library component e.g. Java.util.Vector (from the Java standard libraries)

address:Address

House

House Address
1 1

address House

address:Address

pseudo-attribute attribute

=

© Clear View Training 2010 v2.6 20

Association classes

Company Person
* * employment

 Where do we record the Person’s salary?

 We model the association itself as an association class. Exactly one

instance of this class exists for each link between a Person and a Company.

 We can place the salary and any other attributes or operations which are

really features of the association into this class

Company Person * *

Job

salary:double

the association class

consists of the class,

the association and the

dashed line
association class

© Clear View Training 2010 v2.6 21

Using association classes

Company Person
* *

Job

salary:double

If we use an association class,

then a particular Person can

have only one Job with a

particular Company

If, however a particular

Person can have multiple

jobs with the same

Company, then we must

use a reified association
Company Person

Job

salary:double

* * 1 1

© Clear View Training 2010 v2.6 22

Dependencies

 "A dependency is a relationship between two elements where a
change to one element (the supplier) may affect or supply
information needed by the other element (the client)". In other
words, the client depends in some way on the supplier

 Dependency is really a catch-all that is used to model several different
types of relationship. We’ve already seen one type of dependency, the
«instantiate» relationship

 Three types of dependency:

 Usage - the client uses some of the services made available by the
supplier to implement its own behavior – this is the most commonly
used type of dependency

 Abstraction - a shift in the level of abstraction. The supplier is more
abstract than the client

 Permission - the supplier grants some sort of permission for the client to
access its contents – this is a way for the supplier to control and limit
access to its contents

© Clear View Training 2010 v2.6 23

Usage dependencies

 Stereotypes

 «use» - the client makes use of the supplier to implement its behaviour

 «call» - the client operation invokes the supplier operation

 «parameter» - the supplier is a parameter of the client operation

 «send» - the client (an operation) sends the supplier (a signal) to some

unspecified target

 «instantiate» - the client is an instance of the supplier

A

foo(b : B)

bar() : B

doSomething()

B

A :: doSomething() {

 B myB = new B();

}

«use»

A «use» dependency is generated between A and B when B is

used in A as a parameter, return value or inside method body

the stereotype is often omitted

© Clear View Training 2010 v2.6 24

Abstraction and permission dependencies

 Abstraction dependencies

 «trace» - the client and the supplier represent the same concept but at different

points in development

 «substitute» - the client may be substituted for the supplier at runtime. The client

and supplier must realize a common contract. Use in environments that don't

support specialization/generalization

 «refine» - the client represents a fuller specification of the supplier

 «derive» - the client may be derived from the supplier. The client is logically

redundant, but may appear for implementation reasons

 Permission dependencies

 «access» the public contents of the supplier package are added as private

elements to the namespace of the client package

 «import» the public contents of the supplier package are added as public

elements to the namespace of the client package

 «permit» the client element has access to the supplier element despite the

declared visibility of the supplier

© Clear View Training 2010 v2.6 25

Key points

 Links – relationships between objects

 Associations – relationships between classes

 role names

 multiplicity

 navigability

 association classes

 Dependencies – relationships between model elements

 usage

 abstraction

 permission

© Clear View Training 2010 v2.6 26

Inheritance and polymorphism

Lecture 5/Part 3

© Clear View Training 2010 v2.6 27

Generalisation

Shape

Square Circle Triangle

more general element

more specific elements

parent

superclass

base class

ancestor

child

subclass

descendent

g
e
n
e
ra

lis
a
tio

n

s
p
e
c
ia

lis
a
ti
o
n

A generalisation hierarchy

“is kind of”

A relationship between a more general element and a more
specific element (with more information)

© Clear View Training 2010 v2.6 28

Class inheritance

 Subclasses inherit all features of their
superclasses:

 attributes

 operations

 relationships

 stereotypes, tags, constraints

 Subclasses can add new features

 Subclasses can override superclass
operations

 We can use a subclass instance
anywhere a superclass instance is
expected

Substitutability

Principle

Shape

origin : Point = (0,0)

width : int {>0}
height : int {>0}

draw(g : Graphics)

getArea() : int
getBoundingArea() : int

Square Circle

radius : int = width/2

What’s wrong with

these subclasses?

© Clear View Training 2010 v2.6 29

Overriding

 Subclasses often need to override superclass behaviour

 To override a superclass operation, a subclass must provide an
operation with the same signature

 The operation signature is the operation name, return type and types
of all the parameters

Shape

draw(g : Graphics)

getArea() : int
getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : int width x height p x radius2

What’s wrong with

the superclass?

© Clear View Training 2010 v2.6 30

Abstract operations & classes

 We can’t provide an implementation for
Shape :: draw(g : Graphics) or for
Shape :: getArea() : int
because we don’t know how to draw or calculate the area for a "shape"!

 Operations that lack an implementation are abstract operations

 A class with any abstract operations can’t be instantiated and is therefore
an abstract class

concrete

operations

Shape

draw(g : Graphics)

getArea() : int
getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : int

abstract class

concrete

classes

abstract

operations
abstract class and

operation names

must be in italics

© Clear View Training 2010 v2.6 31

Exercise

Vehicle

JaguarXJS Truck

what’s wrong

with this model?

© Clear View Training 2010 v2.6 32

Polymorphism

 Polymorphism = "many forms"

 A polymorphic operation has
many implementations

 Square and Circle provide
implementations for the
polymorphic operations
Shape::draw() and
Shape::getArea()

 The operation in Shape
superclass defines a contract
for the subclasses.

Shape

draw(g : Graphics)

getArea() : int

getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : int

polymorphic

operations

concrete subclasses

abstract

superclass

Canvas

*

1

A Canvas object has a collection of Shape objects

where each Shape may be a Square or a Circle

shapes

© Clear View Training 2010 v2.6 33

What happens?

 Each class of object
has its own
implementation of the
draw() operation

 On receipt of the
draw() message,
each object invokes
the draw() operation
specified by its class

 We can say that each
object "decides" how
to interpret the draw()
message based on
its class

:Canvas

s1:Circle

s2:Square

s3:Circle

s4:Circle

1.draw()

2.draw()

3.draw()

4.draw()

© Clear View Training 2010 v2.6 34

BankAccount example

 We have overridden the deposit() operation even though it is not abstract.

BankAccount

withdraw()

calculateInterest()

deposit()

CheckingAccount DepositAccount

withdraw()

calculateInterest()

withdraw()

calculateInterest()

Bank
* 1

ShareAccount

withdraw()

calculateInterest()

deposit()

© Clear View Training 2010 v2.6 35

Key points

Generalisation, specialisation, inheritance

 Subclasses

 inherit all features from their parents including constraints and

relationships

 may add new features, constraints and relationships

 may override superclass operations

 A class that can’t be instantiated is an abstract class

© Clear View Training 2010 v2.6 36

Lecture 5/Part 4

Interaction Diagrams

© Clear View Training 2010 v2.6 37

Use Case realization

 Use case realizations consist of the following elements:

 Analysis class diagrams

• These show relationships between the analysis classes that interact

to realise the UC

 Interaction diagrams

• These show collaborations between specific objects that realise the

UC. They are “snapshots” of the running system

 Special requirements

• UC realization may well uncover new requirements specific to the

use case. These must be captured

 Use case refinement

• We may discover new information during realization that means that
we have to update the original UC

© Clear View Training 2010 v2.6 38

Interaction diagrams

 Sequence diagrams

 Emphasize time-ordered sequence of message sends

 Show interactions arranged in a time sequence

 Are the richest and most expressive interaction diagram

 Do not show object relationships explicitly - these can be inferred from
message sends

 Communication diagrams

 Emphasize the structural relationships between lifelines

 Use communication diagrams to make object relationships explicit

 Timing diagrams

 Emphasize the real-time aspects of an interaction

 Interaction overview diagrams

 Show how complex behavior is realized by a set of simpler interactions
(discussed earlier together with Activity diagrams)

© Clear View Training 2010 v2.6 39

Sequence diagram syntax

 Interactions are captured via lifelines (participants in the interaction) and
messages (communications between lifelines)

 Activations indicate when a lifeline has focus of control - they are often omitted from
sequence diagrams

:Registrar
:RegistrationManager

uml:Course

addCourse("UML")

«create»

notes can form

a "script"
describing the
flow

lifeline
sd AddCourse

object creation message

synchronous

message

object is

created at
this point

message

return

activation

The Registrar selects

"add course".

The system creates

the new Course.

© Clear View Training 2010 v2.6 40

Lifelines

 A lifeline represents a single participant in an interaction

 Shows how a classifier instance may participate in the interaction

 Lifelines have:

 name - the name used to refer to the lifeline in the interaction

 selector - a boolean condition that selects a specific instance

 type - the classifier that the lifeline represents an instance of

 They must be uniquely identifiable within an interaction by name, type or both

 The lifeline has the same icon as the classifier that it represents

jimsAccount [id = "1234"] : Account

name selector type

© Clear View Training 2010 v2.6 41

Messages

 A message represents a communication between two lifelines

synchronous

message

asynchronous

send

message

return

arrow type

creation
:A

type of

message

destruction

found

message

lost

message

calling an operation synchronously

the sender waits for the receiver to complete

calling an operation asynchronously, sending a signal

the sender does not wait for the receiver to complete

semantics

returning from a synchronous operation call

the receiver returns focus of control to the sender

the sender creates the target

the sender destroys the receiver

the message is sent from outside the scope of the interaction

the message fails to reach its destination

© Clear View Training 2010 v2.6 42

Deletion and self-delegation

 Self delegation is when a lifeline sends a message to itself

 Generates a nested activation

:Registrar
:RegistrationManager uml:Course

deleteCourse("UML")

sd DeleteCourse

object is

deleted at
this point

«destroy»

self delegation

findCourse("UML")

nested activation

© Clear View Training 2010 v2.6 43

State invariants and constraints

:Customer

:Order

:DeliveryManager :OrderManager

«create»

unpaid

paid

delivered

raiseOrder()

acceptPayment()

acceptPayment()

deliver()

deliver()

state invariant

A

B

{B – A <= 28 days}

label

sd ProcessAnOrder

constraint

© Clear View Training 2010 v2.6 44

Combined fragments – opt and alt

 opt semantics:

 single operand that

executes if the

condition is true

 alt semantics:

 two or more operands

each protected by its
own condition

 an operand executes if

its condition is true

 use else to indicate the

operand that executes
if none of the

conditions are true

:A :B :C :D

opt [condition]

do this if condition is true

alt

do this if condition1 is true

[condition1]

[condition2]

do this if condition2 is true

[else]

do this if neither condition is true

sd example of opt and alt

IF .. THEN

SELECT .. CASE

© Clear View Training 2010 v2.6 45

Combined fragments – loop and break

 loop semantics:

 Loop min times, then loop (max – min)
times while condition is true

 loop syntax

 A loop without min, max or condition is
an infinite loop

 condition can be

• Boolean expression

• Plain text expression provided it is clear!

 Break specifies what happens when the
loop is broken out of:

 The break fragment executes

 The rest of the loop after the break does
not execute

 The break fragment is outside the loop
and so should overlap it as shown

:A :B

loop min, max [condition]

do something

sd examples of loop

loop [condition]

do something

loop while guard

condition is true

break on breaking out do this

do something else

must be global

relative to loop

© Clear View Training 2010 v2.6 46

Loop idioms

type of loop semantics loop expression

infinite loop keep looping forever loop *

for i = 1 to n

 {body}

repeat (n) times loop n

while(booleanExpression)

 {body}

repeat while booleanExpression
is true

loop [booleanExpression]

repeat

 {body}

while(booleanExpression)

execute once then repeat while
booleanExpression is true

loop 1, * [booleanExpression]

forEach object in collection

 {body}

Execute the loop once for each
object in a collection

loop [for each object in collection]

forEach object in ObjectType
 {body}

Execute the loop once for each
object of a particular type

loop [for each object in :ObjectType]

© Clear View Training 2010 v2.6 47

The rest of the operators

operator long name semantics

par parallel Both operands execute in parallel

seq weak
sequencing

The operands execute in parallel subject to the constraint that event
occurrences on the same lifeline from different operands must
happen in the same sequence as the operands

ref reference The combined fragment refers to another interaction

strict strict
sequencing

The operands execute in strict sequence

neg negative The combined fragment represents interactions that are invalid

critical critical region The interaction must execute atomically without interruption

ignore ignore Specifies that some messages are intentionally ignored in the
interaction

consider consider Lists the messages that are considered in the interaction (all others
are ignored)

assert assertion The operands of the combined fragments are the only valid
continuations of the interaction

© Clear View Training 2010 v2.6 48

addCourse("UML")

uml = Course("UML")

addCourse("UML")

Sequence diagrams in design

:Registrar
:RegistrationUI

uml:Course

sd AddCourse - design

:RegistrationManager :DBManager

save(uml)

© Clear View Training 2010 v2.6 49

 Communication diagrams emphasize the structural aspects of an
interaction - how lifelines connect together

 Compared to sequence diagrams they are semantically weaker

 Object diagrams are a special case of communication diagrams

2: addCourse("MDA")

:Registrar

:RegistrationManager

mda:Course

uml:Course

1: addCourse("UML") 1.1: «create»

2.1: «create»

sd AddCourses

link

message sequence number

lifeline

object creation

message

Communication diagram syntax

© Clear View Training 2010 v2.6 50

Iteration

 Iteration is shown by
using the iteration
specifier (*), and an
optional iteration clause

 There is no prescribed
UML syntax for iteration
clauses

 Use code or pseudo
code

 To show that messages
are sent in parallel use
the parallel iteration
specifier, *//

iteration clause

1: printCourses()

:Registrar

:RegistrationManager

[i]:Course

1.1.1: print()

1.1 * [for i = 1 to n] : printCourse(i)

sd PrintCourses

iteration specifier

© Clear View Training 2010 v2.6 51

Branching

 Branching is modelled by prefixing the sequence number with a guard
condition

 There is no prescribed UML syntax for guard conditions

 In the example above, we use the variable found. This is true if both the
student and the course are found, otherwise it is false

:RegistrationManager
1: register ("Jim", "UML")

:Registrar

course:Course

1.3 [found] : register(student)

1.1: student = findStudent("Jim")

1.4 [!found] : error()

1.2: course = findCourse("UML")

sd register student for course

It’s hard

to show

branching

clearly!

found = (student != null) & (course != null)

guard condition

return value from message

© Clear View Training 2010 v2.6 52

{t <= 15} {t = 10} {t > 30}

{t <= 15} {t = 30}

Timing diagrams

 Emphasize the real-time

aspects of an interaction

 Used to model timing

constraints

 Lifelines, their states or

conditions are drawn

vertically, time horizontally

 It's important to state the

time units you use in the

timing diagram

sd IntruderThenFire

soundingFireAlarm

soundingIntruderAlarm

off

:S
ir

e
n

0 10 20 30 40 50

state or

condition

lifeline

intruder

intruder

fire

time in minutes

event

timing ruler

duration constraint

60

resting

70 80 90 100

sd IntruderThenFire

sounding

Intruder
Alarm

:S
ir
e
n

off resting

sounding

Intruder
Alarm

sounding

fire Alarm

state or condition
all times in minutes

compact

form

© Clear View Training 2010 v2.6 53

{t <= 0.016}

{t <= 0.016}

soundIntruderAlarm() soundIntruderAlarm()

soundFireAlarm()

Messages on timing diagrams

 You can show
messages between
lifelines on timing
diagrams

 Each lifeline has its
own partition

sd SirenBehavior

soundingIntruderAlarm

off

:S
ir
e
n

{t <= 15}

triggered

notTriggered

:I
n
tr

u
d
e
rS

e
n
so

rM
o
n
ito

r

{t <= 15} {t = 30}

all times in minutes

resting

triggered

notTriggered

:F
ir
e
S

e
n
so

rM
o
n
it

o
r

soundingFireAlarm

messages

© Clear View Training 2010 v2.6 54

Key points

 In this section we have looked at use case realization

using interaction diagrams

 There are four types of interaction diagram:

 Sequence diagrams – emphasize time-ordered sequence of

message sends

 Communication diagrams – emphasize the structural

relationships between lifelines

 Timing diagrams – emphasize the real-time aspects of an

interaction

 Interaction overview diagrams – show how complex behavior is

realized by a set of simpler interactions; presented together with

Activity diagrams

