
High-Level Design

Lecture 7

1 Chapter 7 Design and implementation

© Clear View Training 2010 v2.6 2

Purpose of high-level design

 Refine how the system's functions are to be

implemented and how non-functional requirements are

to be ensured

 Decide on strategic design issues such as concurrency,

redundancy, persistence, distribution etc. to end with a

design satisfying both functional and non-functional

requirements

 Create policies to deal with tactical design issues

Design best practices

 A system design consists of a collection of decisions that

help to control different attributes of software quality.

 The design aims to ensure achievement of system functionality,

but whenever there are different ways to achieve the

functionality, the impact of each design decision on software

quality becomes the issue.

Quality-driven design decisions are often known as

tactics, which isolate and describe design best practices

with respect to a specific quality attribute.

 Design patterns are a specific and very popular tactic used

during low-level design.

3 Chapter 7 Design and implementation

Outline

 Design for dependability

 Design for security

 Design for performance, modifiability and usability

 UML State diagram

4 Chapter 7 Design and implementation

Design for Dependability

Lecture 7/Part 1

5 Chapter 13 Dependability Engineering

Software dependability

 In general, software customers expect all software to be

dependable. However, for non-critical applications, they

may be willing to accept some system failures.

 Some applications (critical systems) have very high

dependability requirements and special software

engineering techniques may be used to achieve this.

 Medical systems

 Telecommunications and power systems

 Aerospace systems

6 Chapter 13 Dependability Engineering

Dependability achievement

 Fault avoidance

 The development process is organised so that faults in the
system are detected and repaired before delivery to the
customer.

 Verification and validation techniques are used to discover and
remove faults in a system before it is deployed.

 Fault detection

 Run-time techniques to detect faults and failures, such as
acceptance tests, ping/echo, heartbeat.

 Fault tolerance

 The system is designed so that faults in the delivered software
do not result in system failure.

7 Chapter 13 Dependability Engineering

Dependable processes for fault avoidance

 To ensure a minimal number of software faults, it is

important to have a well-defined, repeatable software

process.

 The process should not depend entirely on individual

skills; rather can be enacted by different people.

 Regulators use information about the process to check if

good software engineering practice has been used.

 For fault detection, it is clear that the process activities

should include significant effort devoted to verification

and validation.

8 Chapter 13 Dependability Engineering

Static fault detection and its costs

9 Chapter 13 Dependability Engineering

Dynamic fault detection tactics

 Ping/echo. One component issues a ping and expects

to receive back an echo, within a predefined time, from

the component under scrutiny.

 Heartbeat (dead man timer). In this case one

component emits a heartbeat message periodically and

another component listens for it. If the heartbeat fails, the

originating component is assumed to have failed and a

fault correction component is notified.

 Acceptance tests and Exceptions. One method for

recognizing faults is to identify and raise an exception.

10
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Fault tolerance

 In critical situations, software systems must be
fault tolerant.

 Fault tolerance is required where there are high availability
requirements or where system failure costs are very high.

 Fault tolerance means that the system can continue in
operation in spite of software failure.

 Even if the system has been proved to conform to its
specification, it must also be fault tolerant as there may be
specification errors or the validation may be incorrect.

 Dependable systems architectures are used in
situations where fault tolerance is essential.

 These architectures are generally all based on redundancy and
diversity.

11 Chapter 13 Dependability Engineering

Diversity and redundancy

 Redundancy

 Keep more than 1 version of a critical component available so
that if one fails then a backup is available.

 E.g. switch to backup servers automatically if failure occurs.

 Diversity

 Provide the same functionality in different ways so that they will
not fail in the same way.

 E.g. different servers may be implemented using different
operating systems (e.g. Windows and Linux).

 However, adding diversity and redundancy adds
complexity and this can increase the chances of error.

 Some engineers advocate simplicity and extensive V & V is a
more effective route to software dependability.

12 Chapter 13 Dependability Engineering

Fault tolerance and recovery tactics (1)

 Voting. Processes running on redundant processors

each take equivalent input and compute a simple output

value that is sent to a voter to choose non-deviant result.

 Active redundancy (hot restart). All redundant

components respond to events in parallel. Consequently,

they are all in the same state. The response from only

one component is used (usually the first to respond), and

the rest are discarded.

 Passive redundancy (warm restart/dual redundancy/

triple redundancy). One component (the primary)

responds to events and informs the other components

(the standbys) of state updates they must make.
13

© Software Architecture in Practice
by L. Bass, P. Clements and R. Kazman

Fault tolerance and recovery tactics (2)

 Spare. A standby spare computing platform is configured

to replace many different failed components. It must be

rebooted to the appropriate software configuration and

have its state initialized when a failure occurs.

 Shadow operation. A previously failed component may

be run in "shadow mode" for a short time to make sure

that it mimics the behavior of the working components

before restoring it to service.

 Checkpoint/rollback. A checkpoint is a recording of a

consistent state created either periodically or in response

to specific events, to which the system can be restored.

14
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

N-version programming pattern

Multiple versions of a software system carry out

computations at the same time.

 The versions should be designed and implemented by different

teams, to avoid repeating the same mistake.

 The results are compared using a voting system and the

majority result is taken

to be the correct result.

 Which of the tactics

are involved here?

Chapter 13 Dependability Engineering 15

Self-monitoring architectures

Multi-channel architectures with diverse SW and HW in

each channel.

 The same computation is carried out on each channel and the

results compared.

 The system monitors its own operations and takes action if

inconsistencies are detected.

Chapter 13 Dependability Engineering 16

Protection systems

 A specialized system that is associated with some other

control system, which can take emergency action if a

failure occurs.

 System to stop a train if it passes a red light

 System to shut down a reactor if temperature/pressure are too

high

 Protection systems are redundant because they include

monitoring and control capabilities that replicate those in

the control software.

 Protection systems should be diverse and use different

technology from the control software.

Chapter 13 Dependability Engineering 17

Key points

 Dependability in a program can be achieved by avoiding the

introduction of faults, by detecting and removing faults before

system deployment, and by including fault tolerance facilities.

 The use of redundancy and diversity in hardware, software

processes and software systems is essential for the development of

dependable systems.

 The use of a well-defined, repeatable process is essential if faults in

a system are to be minimized.

 Dependable system architectures are system architectures that are

designed for fault tolerance. Architectural styles that support fault

tolerance include protection systems, self-monitoring architectures

and N-version programming.

Chapter 13 Dependability Engineering 18

Design for Security

Lecture 7/Part 2

Chapter 14 Security Engineering 19

Design for security

 Two fundamental issues have to be considered when

designing an architecture for security.

 Protection

• How should the system be organised so that critical assets can be

protected against external attack?

 Distribution

• How should system assets be distributed so that the effects of a

successful attack are minimized?

 These are potentially conflicting

 If assets are distributed, then they are more expensive to protect.

If assets are protected, then usability and performance

requirements may be compromised.

Chapter 14 Security Engineering 20

Protection

 Platform-level protection

 Top-level controls on the platform on which a system runs.

 Application-level protection

 Specific protection mechanisms built into the application itself

e.g. additional password protection.

 Record-level protection

 Protection that is invoked when access to specific information is

requested

 These lead to a layered protection architecture

Chapter 14 Security Engineering 21

A layered protection architecture

Chapter 14 Security Engineering 22

Distribution

 Distributing assets means that attacks on one system do

not necessarily lead to complete loss of system service

 Each platform has separate

protection features and may

be different from other platforms

so that they do not share a

common vulnerability

 Distribution is particularly

important if the risk of denial

of service attacks is high

Chapter 14 Security Engineering 23

Security tactics

 Security tactics encapsulate good practice in secure

systems design

 Security tactics serve two purposes:

 They raise awareness of security issues in a software

engineering team. Security is considered when design decisions

are made.

 They can be used as the basis of a review checklist that is

applied during the system validation process.

 Tactics described here are applicable during software

specification and design

Chapter 14 Security Engineering 24

Tactics for secure systems engineering

Security tactics

Base security decisions on an explicit security policy

Avoid a single point of failure

Fail securely

Balance security and usability

Log user actions

Use redundancy and diversity to reduce risk

Compartmentalize your assets

Design for recoverability

Design for deployment

Validate all inputs

Chapter 14 Security Engineering 25

Design guidelines 1-3

 Base decisions on an explicit security policy

 Define a security policy for the organization that sets out the

fundamental security requirements that should apply to all

organizational systems.

 Avoid a single point of failure

 Ensure that a security failure can only result when there is more

than one failure in security procedures. For example, have

password and question-based authentication.

 Fail securely

 When systems fail, for whatever reason, ensure that sensitive

information cannot be accessed by unauthorized users even

although normal security procedures are unavailable.

Chapter 14 Security Engineering 26

Design guidelines 4-6

 Balance security and usability

 Try to avoid security procedures that make the system difficult to

use. Sometimes you have to accept weaker security to make the

system more usable.

 Log user actions

 Maintain a log of user actions that can be analyzed to discover

who did what. If users know about such a log, they are less likely

to behave in an irresponsible way.

 Use redundancy and diversity to reduce risk

 Keep multiple copies of data and use diverse infrastructure so

that an infrastructure vulnerability cannot be the single point of

failure.

Chapter 14 Security Engineering 27

Design guidelines 7-10

 Compartmentalize your assets

 Organize the system so that assets are in separate areas and

users only have access to the information that they need rather

than all system information.

 Design for recoverability

 Design the system to simplify recoverability after a successful

attack.

 Design for deployment

 Design the system to avoid deployment problems

 Validate all inputs

 Check that all inputs are within range so that unexpected inputs

cannot cause problems.

Chapter 14 Security Engineering 28

System survivability

 Survivability is an emergent system property that reflects

the systems ability to deliver essential services whilst it is

under attack or after part of the system was damaged

 Survivability analysis

and should be part of

the security

engineering

process

Chapter 14 Security Engineering 29

Survivability strategies

 Resistance

 Avoiding problems by building capabilities into the system to
resist attacks

 Recognition

 Detecting problems by building capabilities into the system to
detect attacks and failures and assess the resultant damage

 Recovery

 Tolerating problems by building capabilities into the system to
deliver services whilst under attack

Chapter 14 Security Engineering 30

Key points

 Design for security involves architectural design,
following good design practice and minimising the
introduction of system vulnerabilities

 General security guidelines sensitize designers to
security issues and serve as review checklists

 System survivability reflects the ability of a system to
deliver services whilst under attack or after part of the
system has been damaged.

Chapter 14 Security Engineering 31

Design for Performance, Modifiability and Usability

Lecture 7/Part 3

32
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Performance tactics – Resource

management

 Introduce concurrency. If requests can be processed in

parallel, the blocked time can be reduced.

Maintain multiple copies of either data or

computations. The purpose of replicas is to reduce the

contention that would occur if all computations took

place on a central server.

 Increase available resources. Faster processors,

additional processors, additional memory, and faster

networks all have the potential for reducing latency.

33
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Performance tactics – Resource arbitration

 The selection of optimal scheduling strategy for each

resource influences optimal resource usage, minimizes

the number of resources used, minimizes latency,

maximizes throughput, prevents starvation, and so forth.

 A scheduling policy conceptually has two parts: a

priority assignment and dispatching.

 All scheduling policies assign priorities.

 In some cases the assignment is as simple as first-in/first-out.

 In other cases, it can be tied to the deadline of the request or its

semantic importance.

34
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Modifiability tactics – Localize modifications

Maintain semantic coherence. The goal is to ensure

that all the responsibilities in a module work together

without excessive reliance on other modules.

Generalize the module. Making a module more general

allows it to compute a broader range of functions on

input.

 Limit possible options. Modifications, especially within

a product line, may be far ranging and hence affect

many modules. Restricting the possible options will

reduce the effect of these modifications.

35
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Modifiability tactics – Prevent ripple effects

 A ripple effect from a modification is the necessity of

making changes to modules not directly affected by it.

 For instance, if module A is changed to accomplish a particular

modification, then module B is changed only because of the

change to module A. B has to be modified because it depends,

in some sense, on A.

 Hide information. Information hiding is the

decomposition of the responsibilities for an entity (a

system or some decomposition of a system) into smaller

pieces and choosing which information to make private

and which to make public.

36
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Modifiability tactics – Prevent ripple effects

Maintain existing interfaces. If B depends on the name

and signature of an interface of A, maintaining this

interface and its syntax allows B to remain unchanged.

 Restrict communication paths. Restrict the modules

with which a given module shares data via data

production and consumption.

 Use an intermediary. If B has any type of dependency

on A other than semantic, it is possible to insert an

intermediary between B and A that manages activities

associated with the dependency.

37
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Modifiability tactics – Defer binding time

 Runtime registration supports plug-and-play operation

at the cost of additional overhead to manage the

registration. Publish/subscribe registration, for example,

can be implemented at either runtime or load time.

 Configuration files are intended to set parameters at

startup.

 Polymorphism allows late binding of method calls.

 Component replacement allows load time binding.

 Adherence to defined protocols allows runtime binding

of independent processes.

38
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Usability tactics – Design-time tactics

 Separate the user interface from the rest of the

application. Localizing expected changes is the

rationale for semantic coherence.

 Since the user interface is expected to change frequently

both during the development and after deployment,

maintaining the user interface code separately will

localize changes to it.

39
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Usability tactics – Runtime tactics

 Maintain a model of the task. The task model is used to determine

context so the system can have some idea of what the user is

attempting and provide various kinds of assistance.

 For example, knowing that sentences usually start with capital letters

would allow an application to correct a lower-case letter in that position.

 Maintain a model of the user. The model determines the user's

knowledge of the system, the user's behavior in terms of expected

response time, and other aspects specific to a user or a class of

users.

 For example, maintaining a user model allows the system to pace

scrolling so that pages do not fly past faster than they can be read.

 Maintain a model of the system. The model determines the

expected system behavior so that appropriate feedback can be

given to the user.

40
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Quality conflicts

Within complex systems, quality attributes can never be

achieved in isolation.

 The achievement of any one will have an effect, sometimes

positive and sometimes negative, on the achievement of others.

 For example, almost every quality attribute negatively

affects performance.

 Portability. The main technique for achieving portable software is

to isolate system dependencies, which introduces overhead into

the system's execution, typically as process or procedure

boundaries, and this hurts performance.

 Reliability. Redundancy together with a voting schema delays

system response.

© Software Architecture in Practice
by L. Bass, P. Clements and R. Kazman

41

Quality conflicts

 It is not possible for any system to be optimized for all of

these attributes.

 The quality plan should therefore define the most

important quality attributes for the software that is being

developed.

 The plan should also include a definition of the quality

assessment process, an agreed way of assessing

whether some quality, such as maintainability or

robustness, is present in the product.

42
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

© Clear View Training 2010 v2.6 43

UML State Diagram

Lecture 7/Part 4

© Clear View Training 2010 v2.6 44

State machines

 Models life stages of a single model element – e.g. object, use case, module

 Every state machine exists in the context of a particular model element that:

 Has a clear life history modelled as a progression of states, transitions and events

 Responds to events dispatched from outside of the element

 There are two types of state machines:

 Behavioural state machines - define the behaviour of a model element

 Protocol state machines - model the protocol of a classifier

• E.g. call conditions and call ordering of an interface that itself has no behaviour

Off On Off On

turnOff

burnOut

light bulb

turnOn

© Clear View Training 2010 v2.6 45

Basic state machine syntax

 State = a situation or condition during the life of an object

 Determined at any point in time by the values of its

attributes, the relationships to other objects, or the

activities it is performing.

 Every state machine should have one initial state
which indicates the first state of the sequence

 Unless the states cycle endlessly, state machines
should have a final state which terminates its lifecycle

A B
anEvent

initial state transition

event

state final state

Color

red : int

green : int

blue : int

How many states?

© Clear View Training 2010 v2.6 46

State syntax

 Actions are instantaneous

and uninterruptible

 Entry actions occur

immediately on state entry

 Exit actions occur

immediately on state leaving

 Internal transitions occur

within the state. They do not

fire transition to a new state

 Activities take a finite amount

of time and are interruptible

EnteringPassword

entry/display passwd dialog

exit/validate password

keypress/ echo "*"

help/display help

do/get password

entry and

exit actions

internal

transitions

internal

activity

Action syntax: eventTrigger / action

Activity syntax: do / activity

state name

© Clear View Training 2010 v2.6 47

Transitions

A B
event1, event2 [guard condition] / act1, act2

behavioral state machine

C D
[precondition] event1, event2 / [postcondition]

protocol state machine {protocol}
Protocol

state machine

Specifies legal

sequences of

events.

Behavioral

state machine

Specifies

object’s

reactions to

events.

events guard condition actions

precondition events postcondition

© Clear View Training 2010 v2.6 48

 Choice pseudo state
directs its single incoming
transition to one of its
outgoing transitions

 Each outgoing transition
must have a mutually
exclusive guard condition

 Equivalent to two outgoing
transitions from one state

 Junction pseudo state
connects multiple incoming
transitions into one (or more)
transitions.

 When there are more
outgoing transitions, they
must have guard conditions

Unpaid

FullyPaid PartiallyPaid OverPaid

[payment == balance]

[payment > balance] [payment < balance]

acceptPayment acceptPayment

makeRefund

BankLoan

choice pseudo-state

Choice and junction pseudo states

junction

pseudo state

© Clear View Training 2010 v2.6 49

Events

 "The specification of a noteworthy
occurrence that has location in time and
space"

 Events trigger transitions in state machines

 Events can be shown externally, on
transitions, or internally within states
(internal transitions)

 There are four types of event:

 Call event

 Signal event

 Change event

 Time event

Off

On

turnOff turnOn

event

© Clear View Training 2010 v2.6 50

close()

Call event

 A call for an operation
execution

 The event should have
the same signature as an
operation of the context
class

 A sequence of actions
may be specified for a
call event - they may use
attributes and operations
of the context class

 The return value must
match the return type of
the operation

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

internal call event action

condition external call event

entry action

SimpleBankAccount

© Clear View Training 2010 v2.6 51

close()

Signal events

 A signal is a

package of

information that is

sent

asynchronously

between objects

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

SimpleBankAccount

OverdrawnAccount

send a signal

«signal»
OverdrawnAccount

date : Date

accountNumber : long
amountOverdrawn : long

Calling borrower OverdrawnAccount

signal receipt

© Clear View Training 2010 v2.6 52

close()

Change events

 The action is
performed when the
Boolean expression
transitions from false
to true

 The event is edge
triggered on a false
to true transition

 The values in the
Boolean
expression must
be constants,
globals or
attributes of the
context class

 A change event
implies continually
testing the condition
whilst in the state

InCredit

deposit(m)/ balance = balance + m

balance >= 5000 / notifyManager()

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

SimpleBankAccount

OverdrawnAccount

Boolean

expression

© Clear View Training 2010 v2.6 53

Time events

 Time events occur when a

time expression becomes

true

 There are two keywords,

after and when

 Elapsed time:

 after(3 months)

 Absolute time:

 when(date =20/3/2000)

Overdrawn

balance < overdraftLimit / notifyManager

Frozen

after(3 months)

Context: CreditAccount class

© Clear View Training 2010 v2.6 54

Composite states

 Have one or more regions that

each contain a nested

submachine

 Simple composite state

• exactly one region

 Orthogonal composite state

• two or more regions

 The final state terminates its

enclosing region – all other

regions continue to execute

 The terminate pseudo-state

terminates the whole state

machine

A composite state

A B

C

region 1

region 2

submachines

Another composite state

D E

F

terminate

pseudo-state

© Clear View Training 2010 v2.6 55

[dialtone]

after(20 seconds)/ noDialtone after(20 seconds)/ noCarrier [carrier]

cancel

Simple composite states

do/ dialISP

DialingISP

entry/ offHook

WaitingForDialtone
Dialing

WaitingForCarrier

entry

pseudo
state

notConnected

dial

connected exit pseudo-state

NotConnected

Connected

entry/ onHook exit/ onHook

do/ useConnection

ISPDialer

the nested states inherit the cancel transition

© Clear View Training 2010 v2.6 56

Orthogonal composite states

 Has two or more regions

When we enter the superstate, both submachines start

executing concurrently - this is an implicit fork

do/ initializeSecuritySensor

Initializing

InitializingFireSensors

do/ initializeFireSensor

InitializingSecuritySensors

Initializing composite state details

do/ monitorSecuritySensor

Monitoring

MonitoringFireSensors

do/ monitorFireSensor

MonitoringSecuritySensors

fire

intruder

Monitoring composite state details

Synchronized exit - exit the superstate when both

regions have terminated

Unsynchronized exit - exit the superstate when either

region terminates. The other region continues

© Clear View Training 2010 v2.6 57

Key points

 Behavioral and protocol state machines

 States

 Initial and final

 Exit and entry actions, activities

 Transitions

 Guard conditions, actions

 Events

 Call, signal, change and time

 Composite states

 Simple and orthogonal composite states

