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Purpose of high-level design 

 Refine how the system's functions are to be 

implemented and how non-functional requirements are 

to be ensured 

 Decide on strategic design issues such as concurrency, 

redundancy, persistence, distribution etc. to end with a 

design satisfying both functional and non-functional 

requirements 

 Create policies to deal with tactical design issues 



Design best practices 

 A system design consists of a collection of decisions that 

help to control different attributes of software quality.  

 The design aims to ensure achievement of system functionality, 

but whenever there are different ways to achieve the 

functionality, the impact of each design decision on software 

quality becomes the issue.  

Quality-driven design decisions are often known as 

tactics, which isolate and describe design best practices 

with respect to a specific quality attribute. 

 Design patterns are a specific and very popular tactic used 

during low-level design. 

3 Chapter 7 Design and implementation 



Outline 

 Design for dependability 

 Design for security 

 Design for performance, modifiability and usability 

 

 UML State diagram 
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Design for Dependability 

Lecture 7/Part 1 
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Software dependability 

 In general, software customers expect all software to be 

dependable. However, for non-critical applications, they 

may be willing to accept some system failures. 

 Some applications (critical systems) have very high 

dependability requirements and special software 

engineering techniques may be used to achieve this. 

 Medical systems 

 Telecommunications and power systems 

 Aerospace systems 
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Dependability achievement 

 Fault avoidance 

 The development process is organised so that faults in the 
system are detected and repaired before delivery to the 
customer. 

 Verification and validation techniques are used to discover and 
remove faults in a system before it is deployed. 

 Fault detection 

 Run-time techniques to detect faults and failures, such as 
acceptance tests, ping/echo, heartbeat. 

 Fault tolerance 

 The system is designed so that faults in the delivered software 
do not result in system failure. 
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Dependable processes for fault avoidance 

 To ensure a minimal number of software faults, it is 

important to have a well-defined, repeatable software 

process. 

 The process should not depend entirely on individual 

skills; rather can be enacted by different people. 

 Regulators use information about the process to check if 

good software engineering practice has been used. 

 For fault detection, it is clear that the process activities 

should include significant effort devoted to verification 

and validation. 
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Static fault detection and its costs 
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Dynamic fault detection tactics 

 Ping/echo. One component issues a ping and expects 

to receive back an echo, within a predefined time, from 

the component under scrutiny.  

 Heartbeat (dead man timer). In this case one 

component emits a heartbeat message periodically and 

another component listens for it. If the heartbeat fails, the 

originating component is assumed to have failed and a 

fault correction component is notified.  

 Acceptance tests and Exceptions. One method for 

recognizing faults is to identify and raise an exception. 
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Fault tolerance 

 In critical situations, software systems must be  
fault tolerant.  

 Fault tolerance is required where there are high availability 
requirements or where system failure costs are very high. 

 Fault tolerance means that the system can continue in 
operation in spite of software failure. 

 Even if the system has been proved to conform to its 
specification, it must also be fault tolerant as  there may be 
specification errors or the validation may be incorrect. 

 Dependable systems architectures are used in 
situations where fault tolerance is essential.  

 These architectures are generally all based on redundancy and 
diversity. 

 
11 Chapter 13 Dependability Engineering 



Diversity and redundancy 

 Redundancy 

 Keep more than 1 version of a critical component available so 
that if one fails then a backup is available. 

 E.g. switch to backup servers automatically if failure occurs. 

 Diversity 

 Provide the same functionality in different ways so that they will 
not fail in the same way. 

 E.g. different servers may be implemented using different 
operating systems (e.g. Windows and Linux). 

 However, adding diversity and redundancy adds 
complexity and this can increase the chances of error. 

 Some engineers advocate simplicity and extensive V & V is a 
more effective route to software dependability. 
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Fault tolerance and recovery tactics (1) 

 Voting. Processes running on redundant processors 

each take equivalent input and compute a simple output 

value that is sent to a voter to choose non-deviant result.  

 Active redundancy (hot restart). All redundant 

components respond to events in parallel. Consequently, 

they are all in the same state. The response from only 

one component is used (usually the first to respond), and 

the rest are discarded.  

 Passive redundancy (warm restart/dual redundancy/ 

triple redundancy). One component (the primary) 

responds to events and informs the other components 

(the standbys) of state updates they must make.  
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Fault tolerance and recovery tactics (2) 

 Spare. A standby spare computing platform is configured 

to replace many different failed components. It must be 

rebooted to the appropriate software configuration and 

have its state initialized when a failure occurs.  

 Shadow operation. A previously failed component may 

be run in "shadow mode" for a short time to make sure 

that it mimics the behavior of the working components 

before restoring it to service. 

 Checkpoint/rollback. A checkpoint is a recording of a 

consistent state created either periodically or in response 

to specific events, to which the system can be restored. 
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N-version programming pattern 

Multiple versions of a software system carry out 

computations at the same time.  

 The versions should be designed and implemented by different 

teams, to avoid repeating the same mistake. 

 The results are compared using a voting system and the 

majority result is taken  

to be the correct result. 

 

     Which of the tactics  

are involved here? 
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Self-monitoring architectures 

Multi-channel architectures with diverse SW and HW in 

each channel. 

 The same computation is carried out on each channel and the 

results compared. 

 The system monitors its own operations and takes action if 

inconsistencies are detected. 
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Protection systems 

 A specialized system that is associated with some other 

control system, which can take emergency action if a 

failure occurs. 

 System to stop a train if it passes a red light 

 System to shut down a reactor if temperature/pressure are too 

high 

 Protection systems are redundant because they include 

monitoring and control capabilities that replicate those in 

the control software. 

 Protection systems should be diverse and use different 

technology from the control software. 
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Key points 

 Dependability in a program can be achieved by avoiding the 

introduction of faults, by detecting and removing faults before 

system deployment, and by including fault tolerance facilities. 

 The use of redundancy and diversity in hardware, software 

processes and software systems is essential for the development of 

dependable systems. 

 The use of a well-defined, repeatable process is essential if faults in 

a system are to be minimized.  

 Dependable system architectures are system architectures that are 

designed for fault tolerance. Architectural styles that support fault 

tolerance include protection systems, self-monitoring architectures 

and N-version programming. 

 

Chapter 13 Dependability Engineering 18 



Design for Security 
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Design for security 

 Two fundamental issues have to be considered when 

designing an architecture for security. 

 Protection 

• How should the system be organised so that critical assets can be 

protected against external attack? 

 Distribution 

• How should system assets be distributed so that the effects of a 

successful attack are minimized? 

 These are potentially conflicting 

 If assets are distributed, then they are more expensive to protect. 

If assets are protected, then usability and performance 

requirements may be compromised. 
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Protection 

 Platform-level protection 

 Top-level controls on the platform on which a system runs. 

 Application-level protection 

 Specific protection mechanisms built into the application itself 

e.g. additional password protection. 

 Record-level protection 

 Protection that is invoked when access to specific information is 

requested 

 These lead to a layered protection architecture 
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A layered protection architecture  
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Distribution 

 Distributing assets means that attacks on one system do 

not necessarily lead to complete loss of system service 

 Each platform has separate  

protection features and may  

be different from other platforms  

so that they do not share a  

common vulnerability 

 Distribution is particularly  

important if the risk of denial  

of service attacks is high 
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Security tactics 

 Security tactics encapsulate good practice in secure 

systems design 

 Security tactics serve two purposes: 

 They raise awareness of security issues in a software 

engineering team. Security is considered when design decisions 

are made. 

 They can be used as the basis of a review checklist that is 

applied during the system validation process.  

 Tactics described here are applicable during software 

specification and design 
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Tactics for secure systems engineering  

Security tactics 

Base security decisions on an explicit security policy 

Avoid a single point of failure 

Fail securely 

Balance security and usability 

Log user actions 

Use redundancy and diversity to reduce risk 

Compartmentalize your assets 

Design for recoverability 

Design for deployment 

Validate all inputs 
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Design guidelines 1-3 

 Base decisions on an explicit security policy 

 Define a security policy for the organization that sets out the 

fundamental security requirements that should apply to all 

organizational systems. 

 Avoid a single point of failure 

 Ensure that a security failure can only result when there is more 

than one failure in security procedures. For example, have 

password and question-based authentication. 

 Fail securely 

 When systems fail, for whatever reason, ensure that sensitive 

information cannot be accessed by unauthorized users even 

although normal security procedures are unavailable. 
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Design guidelines 4-6 

 Balance security and usability 

 Try to avoid security procedures that make the system difficult to 

use. Sometimes you have to accept weaker security to make the 

system more usable. 

 Log user actions 

 Maintain a log of user actions that can be analyzed to discover 

who did what. If users know about such a log, they are less likely 

to behave in an irresponsible way. 

 Use redundancy and diversity to reduce risk 

 Keep multiple copies of data and use diverse infrastructure so 

that an infrastructure vulnerability cannot be the single point of 

failure. 
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Design guidelines 7-10 

 Compartmentalize your assets 

 Organize the system so that assets are in separate areas and 

users only have access to the information that they need rather 

than all system information. 

 Design for recoverability 

 Design the system to simplify recoverability after a successful 

attack. 

 Design for deployment 

 Design the system to avoid deployment problems 

 Validate all inputs 

 Check that all inputs are within range so that unexpected inputs 

cannot cause problems. 
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System survivability 

 Survivability is an emergent system property that reflects 

the systems ability to deliver essential services whilst it is 

under attack or after part of the system was damaged 

 Survivability analysis  

and should be part of  

the security  

engineering  

process 
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Survivability strategies 

 Resistance  

 Avoiding problems by building capabilities into the system to 
resist attacks 

 Recognition 

 Detecting problems by building capabilities into the system to 
detect attacks and failures and assess the resultant damage 

 Recovery 

 Tolerating problems by building capabilities into the system to 
deliver services whilst under attack 
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Key points 

 Design for security involves architectural design, 
following good design practice and minimising the 
introduction of system vulnerabilities 

 General security guidelines sensitize designers to 
security issues and serve as review checklists 

 System survivability reflects the ability of a system to 
deliver services whilst under attack or after part of the 
system has been damaged. 
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Design for Performance, Modifiability and Usability  

 

Lecture 7/Part 3 
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Performance tactics – Resource 

management 

 Introduce concurrency. If requests can be processed in 

parallel, the blocked time can be reduced.  

Maintain multiple copies of either data or 

computations. The purpose of replicas is to reduce the 

contention that would occur if all computations took 

place on a central server. 

 Increase available resources. Faster processors, 

additional processors, additional memory, and faster 

networks all have the potential for reducing latency.  
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Performance tactics – Resource arbitration 

 The selection of optimal scheduling strategy for each 

resource influences optimal resource usage, minimizes 

the number of resources used, minimizes latency, 

maximizes throughput, prevents starvation, and so forth.  

 A scheduling policy conceptually has two parts: a 

priority assignment and dispatching.  

 All scheduling policies assign priorities.  

 In some cases the assignment is as simple as first-in/first-out.  

 In other cases, it can be tied to the deadline of the request or its 

semantic importance.  
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Modifiability tactics – Localize modifications  

Maintain semantic coherence. The goal is to ensure 

that all the responsibilities in a module work together 

without excessive reliance on other modules.  

Generalize the module. Making a module more general 

allows it to compute a broader range of functions on 

input.  

 Limit possible options. Modifications, especially within 

a product line, may be far ranging and hence affect 

many modules. Restricting the possible options will 

reduce the effect of these modifications.  
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Modifiability tactics – Prevent ripple effects 

 A ripple effect from a modification is the necessity of 

making changes to modules not directly affected by it.  

 For instance, if module A is changed to accomplish a particular 

modification, then module B is changed only because of the 

change to module A. B has to be modified because it depends, 

in some sense, on A. 

 Hide information. Information hiding is the 

decomposition of the responsibilities for an entity (a 

system or some decomposition of a system) into smaller 

pieces and choosing which information to make private 

and which to make public. 
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Modifiability tactics – Prevent ripple effects 

Maintain existing interfaces. If B depends on the name 

and signature of an interface of A, maintaining this 

interface and its syntax allows B to remain unchanged. 

 Restrict communication paths. Restrict the modules 

with which a given module shares data via data 

production and consumption. 

 Use an intermediary. If B has any type of dependency 

on A other than semantic, it is possible to insert an 

intermediary between B and A that manages activities 

associated with the dependency. 
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Modifiability tactics – Defer binding time 

 Runtime registration supports plug-and-play operation 

at the cost of additional overhead to manage the 

registration. Publish/subscribe registration, for example, 

can be implemented at either runtime or load time. 

 Configuration files are intended to set parameters at 

startup. 

 Polymorphism allows late binding of method calls. 

 Component replacement allows load time binding. 

 Adherence to defined protocols allows runtime binding 

of independent processes. 
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Usability tactics – Design-time tactics 

 Separate the user interface from the rest of the 

application. Localizing expected changes is the 

rationale for semantic coherence.  

 Since the user interface is expected to change frequently 

both during the development and after deployment, 

maintaining the user interface code separately will 

localize changes to it.  
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Usability tactics – Runtime tactics 

 Maintain a model of the task. The task model is used to determine 

context so the system can have some idea of what the user is 

attempting and provide various kinds of assistance.  

 For example, knowing that sentences usually start with capital letters 

would allow an application to correct a lower-case letter in that position. 

 Maintain a model of the user. The model determines the user's 

knowledge of the system, the user's behavior in terms of expected 

response time, and other aspects specific to a user or a class of 

users.  

 For example, maintaining a user model allows the system to pace 

scrolling so that pages do not fly past faster than they can be read. 

 Maintain a model of the system. The model determines the 

expected system behavior so that appropriate feedback can be 

given to the user.  
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Quality conflicts 

Within complex systems, quality attributes can never be 

achieved in isolation.  

 The achievement of any one will have an effect, sometimes 

positive and sometimes negative, on the achievement of others.  

 For example, almost every quality attribute negatively 

affects performance.  

 Portability. The main technique for achieving portable software is 

to isolate system dependencies, which introduces overhead into 

the system's execution, typically as process or procedure 

boundaries, and this hurts performance. 

 Reliability. Redundancy together with a voting schema delays 

system response. 
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Quality conflicts 

 It is not possible for any system to be optimized for all of 

these attributes.  

 The quality plan should therefore define the most 

important quality attributes for the software that is being 

developed.  

 The plan should also include a definition of the quality 

assessment process, an agreed way of assessing 

whether some quality, such as maintainability or 

robustness, is present in the product.  
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UML State Diagram 

Lecture 7/Part 4 
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State machines 

 Models life stages of a single model element – e.g. object, use case, module  

 Every state machine exists in the context of a particular model element that: 

 Has a clear life history modelled as a progression of states, transitions and events 

 Responds to events dispatched from outside of the element 

 There are two types of state machines: 

 Behavioural state machines - define the behaviour of a model element 

 Protocol state machines - model the protocol of a classifier 

• E.g. call conditions and call ordering of an interface that itself has no behaviour 

Off On Off On 

turnOff 

burnOut 

light bulb 

turnOn 
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Basic state machine syntax 

 State = a situation or condition during the life of an object 

 Determined at any point in time by the values of its 

attributes, the relationships to other objects, or the  

activities it is performing. 

 Every state machine should have one initial state  
which indicates the first state of the sequence 

 Unless the states cycle endlessly, state machines  
should have a final state which terminates its lifecycle 

A B 
anEvent 

initial state transition 

event 

state final state 

Color 

red : int 

green : int 

blue : int 

How many states? 
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State syntax 

 Actions are instantaneous 

and uninterruptible 

 Entry actions occur 

immediately on state entry 

 Exit actions occur 

immediately on state leaving 

 Internal transitions occur 

within the state. They do not 

fire transition to a new state 

 Activities take a finite amount 

of time and are interruptible 

EnteringPassword 

entry/display passwd dialog 

exit/validate password  

keypress/ echo "*" 

help/display help 

do/get password 

entry and  

exit actions 

internal 

transitions 

internal 

activity 

Action syntax: eventTrigger / action 

Activity syntax: do / activity 

state name 
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Transitions 

A B 
event1, event2 [guard condition] / act1, act2 

behavioral state machine 

C D 
[precondition] event1, event2 / [postcondition] 

protocol state machine {protocol} 
Protocol  

state machine 

 

Specifies legal 

sequences of 

events. 

Behavioral 

state machine 

 

Specifies 

object’s 

reactions to 

events. 

events guard condition actions 

precondition events postcondition 
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 Choice pseudo state 
directs its single incoming 
transition to one of its 
outgoing transitions 

 Each outgoing transition 
must have a mutually 
exclusive guard condition 

 Equivalent to two outgoing 
transitions from one state 

 Junction pseudo state 
connects multiple incoming 
transitions into one (or more) 
transitions. 

 When there are more 
outgoing transitions, they 
must have guard conditions 

Unpaid 

FullyPaid PartiallyPaid OverPaid 

[payment == balance] 

[payment > balance] [payment < balance] 

acceptPayment acceptPayment 

makeRefund 

BankLoan 

choice pseudo-state  

Choice and junction pseudo states 

junction  

pseudo state  
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Events 

 "The specification of a noteworthy 
occurrence that has location in time and 
space" 

 Events trigger transitions in state machines 

 Events can be shown externally, on 
transitions, or internally within states 
(internal transitions) 

 There are four types of event: 

 Call event 

 Signal event 

 Change event 

 Time event 

Off 

On 

turnOff turnOn 

event 
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close() 

Call event 

 A call for an operation 
execution 

 The event should have 
the same signature as an 
operation of the context 
class 

 A sequence of actions 
may be specified for a 
call event - they may use 
attributes and operations 
of the context class 

 The return value must 
match the return type of 
the operation 

 

InCredit 

deposit(m)/ balance = balance + m 

AcceptingWithdrawal 

entry/ balance = balance - m 

RejectingWithdrawal 

entry/ logRejectedWithdrawal() 

withdraw(m)  

[balance < m] 

withdraw(m)  

[balance >= m] 

internal call event action 

condition external call event 

entry action 

SimpleBankAccount 
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close() 

Signal events 

 A signal is a 

package of 

information that is 

sent 

asynchronously 

between objects 

InCredit 

deposit(m)/ balance = balance + m 

AcceptingWithdrawal 

entry/ balance = balance - m 

RejectingWithdrawal 

entry/ logRejectedWithdrawal() 

withdraw(m)  

[balance < m] 

withdraw(m)  

[balance >= m] 

SimpleBankAccount 

OverdrawnAccount 

send a signal 

«signal» 
OverdrawnAccount 

date : Date 

accountNumber : long 
amountOverdrawn : long 

Calling borrower OverdrawnAccount 

signal receipt 
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close() 

Change events 

 The action is 
performed when the 
Boolean expression 
transitions from false 
to true 

 The event is edge 
triggered on a false 
to true transition 

 The values in the 
Boolean 
expression must 
be constants, 
globals or 
attributes of the 
context class  

 A change event 
implies continually 
testing the condition 
whilst in the state 

 

InCredit 

deposit(m)/ balance = balance + m 

balance >= 5000 / notifyManager() 

AcceptingWithdrawal 

entry/ balance = balance - m 

RejectingWithdrawal 

entry/ logRejectedWithdrawal() 

withdraw(m)  

[balance < m] 

withdraw(m)  

[balance >= m] 

SimpleBankAccount 

OverdrawnAccount 

Boolean 

expression 
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Time events 

 Time events occur when a 

time expression becomes 

true 

 There are two keywords, 

after and when 

 Elapsed time: 

 after( 3 months ) 

 Absolute time: 

 when( date =20/3/2000) 

Overdrawn 

balance < overdraftLimit / notifyManager 

Frozen 

after( 3 months ) 

Context: CreditAccount class 
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Composite states 

 Have one or more regions that 

each contain a nested 

submachine 

 Simple composite state 

• exactly one region 

 Orthogonal composite state 

• two or more regions 

 The final state terminates its 

enclosing region – all other 

regions continue to execute 

 The terminate pseudo-state 

terminates the whole state 

machine 

A composite state 

A B 

C 

region 1 

region 2 

submachines 

Another composite state 

D E 

F 

terminate 

pseudo-state 
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[dialtone] 

after(20 seconds)/ noDialtone after(20 seconds)/ noCarrier [carrier] 

cancel 

Simple composite states 

do/ dialISP 

DialingISP 

entry/ offHook 

WaitingForDialtone 
Dialing 

WaitingForCarrier 

entry  

pseudo 
state 

notConnected 

dial 

connected exit pseudo-state 

NotConnected 

 

Connected 

 
entry/ onHook exit/ onHook 

do/ useConnection 

ISPDialer 

the nested states inherit the cancel transition 
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Orthogonal composite states 

 Has two or more regions 

When we enter the superstate, both submachines start 

executing concurrently - this is an implicit fork 

do/ initializeSecuritySensor 

Initializing 

InitializingFireSensors 

do/ initializeFireSensor 

InitializingSecuritySensors 

Initializing composite state details 

do/ monitorSecuritySensor 

Monitoring 

MonitoringFireSensors 

do/ monitorFireSensor 

MonitoringSecuritySensors 

fire 

intruder 

Monitoring composite state details 

Synchronized exit - exit the superstate when both 

regions have terminated  

Unsynchronized exit - exit the superstate when either 

region terminates. The other region continues  
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Key points 

 Behavioral and protocol state machines 

 States 

 Initial and final 

 Exit and entry actions, activities 

 Transitions 

 Guard conditions, actions 

 Events 

 Call, signal, change and time 

 Composite states 

 Simple and orthogonal composite states 


