
Course Summary and

 Advanced Software Engineering Techniques

Lecture 13

1

Topics covered

 Covered techniques of software engineering

 Outline of advanced techniques

 Covered UML diagrams

 Advanced UML modeling

 Course follow-up

2 © Bühnová

Covered Techniques of Software Engineering

Lecture 13/Part 1

3 © Bühnová

Software process models

 Software engineering

 Software process activities

 Software specification.

 Software analysis and design.

 Software implementation.

 Software validation.

 Software evolution.

 Software process models

 The waterfall model.

 Incremental development.

 Reuse-oriented software engineering

 © Bühnová 4

Requirements engineering

 Requirements and their types

 User vs. system requirements

 Functional vs. non-functional requirements

 Requirements engineering process

 Requirements elicitation and analysis

 Requirements specification

 Requirements validation

 Requirements management

Focused on functional requirements mainly

5 © Bühnová

Non-functional Requirements Engineering

 Non-functional requirements classification

 Product requirements

 Availability, Reliability, Safety, Security

 Performance, Modifiability, Testability, Usability

 Organisational requirements

 Development requirements

 Operational requirements

 Environmental requirements

 External requirements

 Legislative requirements

6 © Bühnová

Analysis and Design

 Software analysis and design

 System context

 Architectural design

 Analysis and design models

 Structured vs. object-oriented methods

 Principles

 Notations

 Methods

7 © Bühnová

Object-Oriented Analysis

 Role of the UML in OO analysis

 Objects and classes

 Finding analysis classes

 Relationships between objects and classes

 Inheritance and polymorphism

8 © Bühnová

Structured Analysis

 Yourdon Modern Structured Analysis (YMSA)

 Context diagram (CD)

 Data flow diagram (DFD)

 Data modelling

 Entity relationship diagram (ERD)

 Relational database design

 Normalization

9 © Bühnová

High-Level Design

 Design for dependability

 Dependable processes

 Redundancy and diversity

 Dependable systems architectures

 Design for security

 Design guidelines for security

 System survivability

 Design for performance, modifiability and usability

10 © Bühnová

Low-Level Design and Implementation

 Low-level design

 Design patterns

 SOLID principles

 Clean code by Robert C. Martin

 Dependable programming guidelines

 Low-level performance and testability tactics

 Implementation issues

 Reuse

 Configuration management

 Host-target development

11 © Bühnová

Architectural design

 Architectural views

 Architectural design decisions

 Architectural patterns

 Model-view-controller

 Layered architecture

 Repository architecture

 Client-server architecture

 Pipe-and-filter architecture

 Application architectures

12 © Bühnová

Testing, Verification and Validation

 Validation and verification

 Static analysis

 Verification and formal methods

 Model checking

 Automated static analysis

 Testing and its stages

 Development testing

 Release testing

 User testing

 Testing of non-functional properties

13 © Bühnová

Operation, Maintenance and System

Evolution

 Evolution processes

 Change processes for software systems

 Lehman’s laws

 Understanding software evolution dynamics

 Software maintenance

 Making changes to operational software systems

 Legacy system management

 Making decisions about software change

14 © Bühnová

Software Development Management

 Project management

 Project planning

 Scheduling

 Software pricing

 Risk management

 Project, product and business risks

 People management

 Motivation

 Teamwork

 Tool support

15 © Bühnová

Outline of Advanced Techniques

Lecture 13/Part 2

16 © Bühnová

Software reuse

 In most engineering disciplines, systems are designed

by composing existing components that have been used

in other systems.

 Software engineering has been more focused on original

development but it is now recognised that to achieve

better software, more quickly and at lower cost, we need

a design process that is based on systematic software

reuse.

 There has been a major switch to reuse-based

development over the past 10 years.

© Bühnová

Component-based software engineering

 Component-based software engineering (CBSE) is an
approach to software development that relies on the
reuse of entities called ‘software components’.

 It emerged from the failure of object-oriented
development to support effective reuse. Single object
classes are too detailed and specific.

 CBSE essentials:

 Independent components specified by their interfaces.

 Component standards to facilitate component integration.

 Middleware that provides support for component inter-

operability.

 A development process that is geared to reuse.

18 © Bühnová

Distributed systems

 Virtually all large computer-based systems are now

distributed systems.

“… a collection of independent computers that appears to the user

as a single coherent system.”

 Distributed systems issues

 Distributed systems are more complex than systems that run on

a single processor.

 Complexity arises because different parts of the system are

independently managed as is the network.

 There is no single authority in charge of the system so top-

down control is impossible.

© Bühnová

Service-oriented architectures

 A means of developing distributed systems where the

components are stand-alone services

 Services may execute on different computers from

different service providers

 Standard protocols have been developed to support

service communication and information exchange

 Benefits of SOA:

 Services can be provided locally or outsourced to ext. providers

 Services are language-independent

 Investment in legacy systems can be preserved

 Inter-organisational computing is facilitated through simplified

information exchange

20 © Bühnová

Embedded systems

 Computers are used to control a wide range of systems

from simple domestic machines, through games

controllers, to entire manufacturing plants.

 Their software must react to events generated by the

hardware and, often, issue control signals in response to

these events.

 The software in these systems is embedded in system

hardware, often in read-only memory, and usually

responds, in real time, to events from the system’s

environment.

 Issues of safety and reliability may dominate the

system design.

© Bühnová

Aspect-oriented software development

 An approach to software development based around a

relatively new type of abstraction - an aspect.

 Used in conjunction with other approaches - normally

object-oriented software engineering.

 Aspects encapsulate functionality that cross-cuts and

co-exists with other functionality.

 Aspects include a definition of where they should be

included in a program as well as code implementing

the cross-cutting concern.

22 © Bühnová

Covered UML Diagrams

Lecture 13/Part 3

23 © Clear View Training 2010 v2.6

UML in Software Development

 External perspective models

 Use case diagram

 Structural perspective models

 Class diagram, Object diagram, Component diagram, Package

diagram, Deployment diagram, Composite structure diagram

 Interaction perspective models

 Sequence diagram, Communication diagram, Interaction

overview diagram, Timing diagram

 Behavioral perspective models

 Activity diagram, State diagram

© Clear View Training 2010 v2.6 24

UML Use Case Diagram

 Use Case modelling

 System boundary – subject

 Actors

 Use cases

 Textual Use Case specification

 Branching with IF

 Repetition with FOR and WHILE

 Alternative flows

 Advanced Use Case modelling

 Actor generalisation

 Use case generalisation

 Relations «include» and «extend»

© Clear View Training 2010 v2.6 25

© Clear View Training 2010 v2.6 26

UML Activity Diagram

 Activity diagrams can model flows of activities using:

 Activities and connectors

 Activity partitions

 Action nodes

• Call actions, signal actions, time actions

 Control nodes

• Decision and merge

• Fork and join

 Object nodes

• Input and output parameters

 Interaction overview diagrams as their advanced
feature

UML Class Diagram

 Analytical vs. Design class model

 Objects and classes

 Relationships between objects and classes

 Links

 Associations

 Aggregation and composition

 Dependencies

 Inheritance and polymorphism

© Clear View Training 2010 v2.6 27

UML Interaction Diagrams

 Four types of interaction diagram:

 Sequence diagrams – emphasize time-ordered sequence of

message sends

 Communication diagrams – emphasize the structural

relationships between lifelines

 Timing diagrams – emphasize the real-time aspects of an

interaction

 Interaction overview diagrams – show how complex behavior

is realized by a set of simpler interactions

© Clear View Training 2010 v2.6 28

© Clear View Training 2010 v2.6 29

UML State Diagram

 Behavioral and protocol state machines

 States

 Actions, exit and entry actions, activities

 Transitions

 Guard conditions, actions

 Events

 Call, signal, change and time

 Composite states

 Simple and orthogonal composite states

UML Packages

 Packages as the UML way of grouping modeling

elements

 There are dependency and generalisation relationships

between packages

 The package structure of the analysis model defines the

logical system architecture

© Clear View Training 2010 v2.6 30

UML Component Diagram

 Interfaces specify a named set of public features:

 They define a contract that classes and subsystems may realise

 Programming to interfaces rather than to classes reduces

dependencies between the classes and subsystems in our

model

 Programming to interfaces increases flexibility and extensibility

 Design subsystems and interfaces allow us to:

 Componentize our system

 Define an architecture

© Clear View Training 2010 v2.6 31

UML Deployment Diagram

 The descriptor form deployment diagram

 Allows you to show how functionality represented by artefacts is

distributed across nodes

 Nodes represent types of physical hardware or execution

environments

 The instance form deployment diagram

 Allows you to show how functionality represented by artefact

instances is distributed across node instances

 Node instances represent actual physical hardware or execution

environments

© Clear View Training 2010 v2.6 32

Advanced UML Modeling

Lecture 13/Part 4

33 © Clear View Training 2010 v2.6

Advanced Activity diagrams

 Connectors

 Interruptible activity regions

 Exception handling

 Expansion nodes

 Signals and events

 Streaming

 Advanced object flow features

Multicast and multireceive

 Parameters and pins

© Clear View Training 2010 v2.6 34

Advanced Interaction diagrams

 Timing diagram

 Interaction overview diagram

© Clear View Training 2010 v2.6 35

Advanced State diagrams

 Composite states

 Submachine states

 Submachine communication

 History

© Clear View Training 2010 v2.6 36

Object constraint language (OCL)

 The Object Constraint Language (OCL) is a declarative

language for describing rules that apply to UML models.

 The OCL is a precise text language that provides constraint and

object query expressions.

 OCL statements are constructed in four parts:

 a context that defines the limited situation in which the

statement is valid

 a property that represents some characteristics of the context

(e.g., if the context is a class, a property might be an attribute)

 an operation (e.g., arithmetic, set-oriented) that manipulates or

qualifies a property, and

 keywords (e.g., if, then, else, and, or, not, implies) that are used

to specify conditional expressions.
© Clear View Training 2010 v2.6 37

UML Profiles

 A UML profile provides a generic extension mechanism

for customizing UML models for particular domains and

platforms.

 Extension mechanisms allow refining standard semantics in strictly

additive manner, so that they can't contradict standard semantics.

 Profiles are defined using stereotypes, tag definitions,

and constraints that are applied to specific model

elements, such as Classes, Attributes, and Activities.

 A Profile is a collection of such extensions that

collectively customize UML for a particular domain (e.g.,

aerospace, healthcare, financial) or platform (J2EE,

.NET).

38 © Bühnová

Course Follow-up

Lecture 13/Part 5

39 © Bühnová

Course finalization

 Seminar projects

 Assessment, “Úspěšné absolvování cvičení “ IS notebook

 Exam

 Number of exam dates

 Reservation/cancelation policies

 Legth of the exam

 Form of the exam – test part and UML modelling part

 Results and their viewing

Opinion poll

 Do not forget to give us your feedback!

40 © Bühnová

Follow-up and related courses

 PA017 Softwarové inženýrství II

 PA103 Objektové metody návrhu informačních systémů

 PV167 Projekt z objektového návrhu inf. systémů

 PA104 Vedení týmového projektu

 PV207 Business Process Management

 PV165 Procesní řízení

 PV045 Management informačního systému

 PA189 Agile Management in IT

 PV028 Aplikační informační systémy

41 © Bühnová

Follow-up and related courses

 PV043 Informační systémy podniků

 PV230 Podnikové portály

 PV019 Geografické informační systémy I, II

 PV058 Informační systémy ve veřejné a státní správě

 PV213 Enterprise Information Systems in Practice

 PV098 Řízení implementace IS

 PB168 Základy databázových a informačních systémů

 PB114 Datové modelování I

 SSME Courses

42 © Bühnová

Thanks

Thank you for your attention

and good luck with the exam!

43 © Bühnová

