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Plant metabolites are characterized by an enormous chemical

diversity, every plant having its own complex set of

metabolites. This variety poses analytical challenges, both

for profiling multiple metabolites in parallel and for the

quantitative analysis of selected metabolites. We are only

just starting to understand the roles of these metabolites,

many of them being involved in adaptations to specific

ecological niches and some finding beneficial use (e.g.

as pharmaceuticals). Spectacular advances in plant

metabolomics offer new possibilities, together with the aid of

systems biology, to explore the extraordinary complexity of

the plant biochemical capacity. State-of-the art genomics

tools can be combined with metabolic profiling to identify

key genes that could be engineered for the production of

improved crop plants.
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Introduction
Plants are the most excellent designers and producers of a

variety of small compounds that are beneficial to mankind

as foods, medicines and industrial raw materials [1��].
Plants produce materials independently of fossil energies

and resources and are thus regarded as ‘ultimate fac-

tories’. However, to rely solely on naturally growing

plants as a production system (e.g. for pharmaceuticals)

can be extremely dangerous, as shown recently by severe

shortage problems of artemisinin [2]. Therefore, an alter-

native biotechnological production system based on

genetically engineered plant cells is an attractive

approach. Engineering plant metabolic pathways is, how-

ever, a difficult endeavor, because our fundamental
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knowledge of metabolic control in plants is not yet

sufficient for rational engineering of complicated meta-

bolic networks. Of course the relatively simple approa-

ches, such as the introduction of single genes for

rate-limiting enzymes or new branch pathway enzymes

(often from heterologous organisms), have led to specta-

cular successes [3,4]. However, there are also ‘failures’

that have not been published, and thus it is difficult to

estimate the success rate of all trials of metabolic engi-

neering. In most cases, difficulties arise from the funda-

mental lack of precise understanding of the entire

network between genes, transcripts, proteins and meta-

bolites in biological systems [5].

In contrast to traditional analysis that deals with a limited

number of genes, proteins and metabolites, a genome-

wide large-scale approach is now possible for the holistic

systems analysis of some model plants such as Arabidopsis
thaliana. Non-targeted analysis of cell components, inte-

grated with genomics, analytical chemistry and bioinfor-

matics, allows a better understanding of plant systems and

will increase the practical potential of metabolic engi-

neering. In particular, recent technological advances in

metabolomics could open new avenues for precise meta-

bolic engineering in plants. This article describes the

cutting edge of the integrated analysis of genomics and

metabolomics for metabolic engineering in plants. We

also discuss some limitations of the technology and future

challenges that need to be faced.

The development of plant metabolomics
Metabolomics, which deals with all cellular metabolites,

has been recently recognized as an important sector of

post-genome science. The general idea of ‘metabolomics’

or the ‘metabolome’ was first defined several years ago in

the field of microbiology [6], and its importance in plant

science was pointed out soon after [7]. Today, metabo-

lomics is also a powerful tool in drug discovery and

development; for instance, in the identification of drug

metabolites or biomarkers for organ-specific toxicities [8].

Even in the absence of any visible change in a cell or

individual plant, metabolomics, which allows phenotyp-

ing by exhaustive metabolic profiling, can show how cells

respond as a system. Plant metabolomics is of particular

importance because of the huge chemical diversity of

plants compared with microorganisms and animals. The

number of metabolites from the plant kingdom has been

estimated at �200 000 [9] or even more [10]. Even a

single plant species such as A. thaliana might produce

�5000 metabolites [11�,12�,13]. These numbers are sig-

nificantly greater than those of microorganisms (�1500)
www.sciencedirect.com
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The ‘phytochemical array’ — a concept for using various functional genomics-based arrays in plants. Multiple arrays to analyse the genome,

transcriptome, proteome, metabolome and bioactivity of metabolites of a given plant species are the modern tools for understanding plants at

various biological levels. These tools can lead to applications for crop improvement (e.g. molecular breeding of biotic and abiotic stress-resistant

plants), to the discovery and development of plant-based pharmaceuticals, to the development of functional foods, and to the production of

plant-derived industrial materials and energy. All of these advances will be valuable in the future and can be developed through genome-based

plant biotechnology. The phytochemical array exhibits all of the links from the genome to the activity of metabolites for desired traits, and will

lead to accelerated development.
and animals (�2500). Although the term ‘metabolite (or

metabolic) profiling’ has been understood in the past to

mean comprehensive profiling of metabolic change,

metabolomics has an intrinsically distinct connotation

because it implies integration with the other ‘omic’

sciences (Figure 1).

The comprehensive chemical analysis of metabolites and

the computation of huge datasets are the key components

of metabolomics [11�,14�,15,16]. Metabolomics is princi-

pally required to determine all metabolites in a plant

extract; however, no single technology for metabolomics,

such as a DNA sequencer for genomics or DNA arrays for

transcriptomics, is available, and such a method may

never be possible. This is because the analysis of meta-

bolites of divergent physicochemical properties needs a

wide range of chemistries: a single chemistry cannot deal

with metabolomics as it can with nucleic acids and

proteins. Metaphorically speaking, metabolomics is like

attempting whole-genome sequencing without either the

Sanger method or the Maxam–Gilbert method. At pre-

sent, combinations of different analytical methods of high

sensitivity are generally used for comprehensive non-

targeted chemical analysis [17,18].

One of the key challenges of metabolite profiling and

analysis is to find an optimal balance between accuracy

and coverage of metabolite measurements. This has

become particularly apparent when analysing plant sec-

ondary metabolites, which have very different chemical

natures compared with primary metabolites. If one gen-

eral extraction and analytical system is used it is likely

that many metabolites will remain in the plant matrix and

will not be profiled. One possibility is to split the meta-

bolomics platform into subgroups of compounds sharing
www.sciencedirect.com
similar chemical extraction conditions, chromatographic

separation and subsequent instrumental analysis [5].

Advances in instrument development have been tremen-

dous. Traditionally, mass spectrometry (MS) combined

with a number of chromatographic methods is used for

metabolome analysis. These methods include gas chro-

matograpy mass spectrometry (GC-MS) [19�,20�], high-

performance liquid chromatography mass spectrometry

(HPLC-MS) [12�,21,22] and, more recently, capillary

electrophoresis mass spectrometry (CE-MS) [23]. Analyti-

cal methods without pre-separation by chromatography, for

example, Fourier-transform ion cyclotron resonance (FT-

ICR) mass spectrometry and time-of-flight (TOF) mass

spectrometry, are also used, although largely for finger-

printing purposes [24,25]. Nuclear magnetic resonance

(NMR) spectroscopy analysis of the whole-cell extract

and on-line NMR analysis coupled with a liquid chromato-

graphy stop flow method are also available [26–29].

Data analysis forms the second major component of

metabolomics. Chemometrics and multivariate analysis,

such as a principal component analysis, hierarchical clus-

ter analysis, and self-organization mapping, are often used

for data mining [14�,30–32,33��,34]. Integration of meta-

bolome data with other omics data, such as transcriptomic

data, can be performed in silico using a software tool to

depict gene-protein-metabolite networks [35]. Cell simu-

lation can also be carried out to predict the metabolic

phenotype of a particular gene knockout [36].

Metabolomics-based functional genomics
in model plants
An advantage of working with A. thaliana, a model plant

for modern plant science, is that genome-related
Current Opinion in Biotechnology 2005, 16:174–179
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resources including the whole-genome sequence with

functional annotations, DNA microarrays, DNA-tagged

insertion mutants and metabolic maps (AraCyc; http://

www.arabidopsis.org/tools/aracyc) are readily accessible

[37].

GC-MS was used to compare the metabolic profiles of

four Arabidopsis genotypes (two ecotypes, Col-2 and C24,

and a mutant of each ecotype) and indicated that the

metabolic phenotypes of the two ecotypes diverged more

from each other than did those of each mutant from its

parent ecoptype, suggesting that the cell metabolome is

influenced more predominantly by the difference in

ecotype than by a single gene mutation [19�].

Pair-wise metabolite-to-metabolite [38��] and transcript-

to-metabolite [39��] correlation analysis of transgenic

potato plants expressing particular genes revealed novel

correlations that had not been suggested by classical

targeted approaches. Most of these transgenic plants

exhibited no visible phenotypes. Arabidopsis pal1 and

pal2 mutants lacking the function of two phenylalanine

ammonia lyase genes also showed no clear phenotypic

alterations. Phenotyping of the single mutants and the

double-mutant by a combination of transcript profiling

and detailed targeted metabolite profiling for sugars,

amino acids and phenylpropanoids suggested the specific

function of PAL1 and PAL2 [40�].

Integrated analyses of the transcriptome and a detailed

chemical analysis employing LC-MS and FT-ICR MS

were carried out for Arabidopsis lines overexpressing the

PAP1 gene, which codes for a Myb-like transcription

factor [41��]. The changes in the metabolic profiles

caused by PAP1 gene expression were specific to the

increased accumulation of anthocyanins. The expression

of genes known to be involved in anthocyanin production

was upregulated, and thus other upregulated genes could

be tentatively assigned a role in the formation of antho-

cyanins, such as members of the glycosyltransferase,

acyltransferase and glutathione S-transferase families.

The function of some of these predicted genes was

confirmed experimentally through classical analysis of

T-DNA-inserted knockout mutant lines and in vitro
enzymatic studies with recombinant proteins [42]. These

approaches indicate the feasibility of integrating meta-

bolomic and transcriptomic analyses in functional geno-

mics studies of Arabidopsis [41��].

Nutritional and abiotic stresses modulate re-program-

ming of the transcriptome and metabolome. Thus, an

integrated analysis leads to the identification of gene

functions that are modulated by these stresses. A good

example of this was obtained from a study of sulfur

starvation in Arabidopsis [33��]. Glucosinolate-related

metabolites and genes involved in their metabolism were

coordinately regulated by nutritional sulfur stress.
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Further detailed investigation resulted in the prediction

and identification of particular gene functions involved in

glucosinolate metabolism (MY Hirai and K Saito, unpub-

lished). Through the investigation of stress responses to

nitrogen [43] and low temperature [44], wide investiga-

tion of gene expression and metabolite levels, respec-

tively, have revealed novel pathways responding to each

stress.

Attempts to functionally identify genes involved in sapo-

nin biosynthesis by Medicago truncatula, a model Legu-

minosae plant, have also been made using a combination

of genomics and metabolic profiling [45,46]. These stu-

dies demonstrated the differential transcriptional re-pro-

gramming of multiple genes in the phenylpropanoid and

triterpene pathways in response to methyl jasmonate and

yeast extracts (see Update).

Gene and metabolite expression profiles
in non-model plants
For decades, most beneficial compounds identified and

isolated from plants were discovered through classical,

complicated extraction systems combined with targeted

chemical analysis. Secondary metabolites have been

identified as a particularly rich source of useful com-

pounds and have a crucial role in this regard. However,

only a fragment of all higher plants has been investigated

[47]. There is no doubt that the chemical diversity of

plants is much greater than any chemical library made by

man, and thus the plant kingdom represents an enormous

reservoir of novel molecules waiting to be discovered.

Efficient metabolome analysis is likely to be a key ele-

ment for future success in this field.

Elicitation is a process used to mimic the natural reactions

of plants towards various environmental stresses and has

been successfully applied to plants and plant cell cultures

to induce secondary metabolite production [48]. It has

been shown that upon elicitation huge numbers of genes

are activated, many of them involved in metabolite bio-

synthesis. Goossens and coworkers [49��] treated tobacco

BY-2 cells with methyljasmonate and discovered by using

cDNA-AFLP (amplified fragment length polymorphism)

transcript profiling that close to 600 genes were differen-

tially regulated by this elicitor. By linking this data to

metabolite analysis in a time-course experiment, it was

possible to build an ample inventory of genes that were

already known or novel genes. Potentially, these genes

could be involved — in either a structural or regulatory

capacity — with tobacco secondary metabolism, and

possibly with plant secondary metabolism in general.

The great advantage of this technology is that it allows

gene identification without prior sequence knowledge.

This is crucial when working with non-model plants or

rare (e.g. medicinal) plant species for which the genome is

unknown. Furthermore, this approach provides quantita-

tive information on gene expression. Applying transcript
www.sciencedirect.com
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profiling in Catharanthus roseus, for example, the number

of jasmonate-modulated genes was found to be of similar

magnitude to that in tobacco cells. However, according to

our preliminary metabolome experiments, more than

2000 metabolites were seen to respond to methyljasmo-

nate treatment in C. roseus (H Rischer, M Oresic and KM

Oksman-Caldentey, unpublished). Another huge chal-

lenge is to identify the function of the candidate genes

obtained from this kind of transcript profiling [49��] and to

find out their possible role in secondary metabolism.

Again, high-throughput metabolite analysis will play a

crucial role.

Some genes involved in the formation of volatile com-

pounds in strawberry [50], rose [51�] and spider mint [52�]
have been identified using DNA microarrays in combina-

tion with targeted analysis of volatile metabolites. The

chemical analysis of fragrance-related metabolites by GC-

MS is possible and leads to a sensitive chemical analysis

which, together with gene expression profiles, is sufficient

for gene identification. Activation-tagged lines, in which a

gene is over-expressed by random insertion of an enhan-

cer sequence in the genome, are good resources for gene

hunting. By screening activation-tagged lines in tomato, a

Myb transcription factor gene and co-regulated structural

genes involved in anthocyanin formation were success-

fully identified [53].

The classical biochemical approach has resulted in con-

siderable knowledge of the genes involved in the synth-

esis of flavonoids [54] and terpenoid indole alkaloids [55].

However, genetic maps of biosynthetic pathways, in

general, are still far from complete and the regulation

of these pathways is not fully understood. This point is

well illustrated by a recent investigation of morphine

biosynthesis in the opium poppy. Silencing codeinone

reductase using a chimeric hairpin RNA construct led,

through a feed-back mechanism, to the accumulation of

(S)-reticuline, an intermediate of morphine biosynthesis;

however, between (S)-reticuline and codeinone there are

eight enzymatic steps and, surprisingly, all were inhibited

by this RNA construct [56].

Conclusions
Tremendous advances in metabolomics and its integra-

tion into other omics (genomics, transcriptomics and

proteomics) have brought us closer to understanding

the links between different levels of biological systems,

leading to the realization of systems biology [57]. This has

been made possible by combining expertise from the

areas of biology, chemistry, instrumentation and bioinfor-

matics. In particular, in silico metabolic experiments could

facilitate the network analysis of complicated metabolic

pathways [58�,59]. Considering the huge chemical diver-

sity of plants compared with those of animals and micro-

organisms, a major future challenge will be to explore the

molecular genetic origins of chemical diversity in non-
www.sciencedirect.com
model exotic plants. A further prospect beyond conven-

tional omics would be the comprehensive analysis of the

function and activity of an array of plant metabolites,

leading to the ‘phytochemical array’ concept (Figure 1).

The phytochemical array consists of genomics, transcrip-

tomics, proteomics, metabolomics and activity arrays of a

given plant species. Such an array would allow visualiza-

tion of all the connections between genes, transcripts,

proteins, metabolites and their activities. Drawing links

from the genome to the activity of metabolites will be

necessary for the high-throughput discovery of plant-

based pharmaceuticals and for the development of func-

tional foods and stress-resistant plants. Although there are

still several limitations in metabolomics, such as the

urgent need for precise spacio-resolution (e.g. single cell

and subcellular analysis) and temporal-resolution and the

issue of metabolic channeling by protein complexes, we

believe that many exciting developments are to be

expected in the coming years.

Update
Recent work has demonstrated the differential transcrip-

tional re-programming of multiple genes in the phenyl-

propanoid and triterpene pathways in response to methyl

jasmonate and yeast extracts in M. truncatula [60].
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