DISTRIBUTED EVENT-DRIVEN MONITORING

INTRO

Daniel Tovarnak

LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS -..

MASARYK UNIVERSITY lasa I"iS

Monitoring (of distributed infrastructure)

- Continuous and systematic collection, analysis, and
evaluation of data related to the state and behavior of
respective constituents of said infrastructure.

- Enterprise networks

* Internet of Things

« Smart Grid (energy grid)
- Cloud infrastructure

Monitoring in General

Goal —intelligent behavior monitoring

- Detection of (known) behavior patterns in the
produced monitoring data in real-time
- Dictionary attack, DDoS detection, Job state

» Monitoring information: User Bob has logged in
» Pattern: User X failed to log in 1000 times within 1 minute

- Low overhead imposed on monitored machines and
network

- Several problems hinder achievement of such a goal

Monitoring of Cloud infrastructure

- Huge volumes of data produced by many distributed
producers (virtual machines)

- High variability of monitoring data
- Hardware, OS, Middle-ware, Web server, Application-level

- The entity of interest is usually spread across many
computing nodes
- Hadoop job, Custom distributed algorithm, Replicated DB

- Specific trust model

Problems

» Technical
- mainly with respect to the monitoring data production
- e.g. logging in natural language

» Conceptual
- related to 3V of Big Data
- e.g. scalability, and query expressiveness/complexity

Monitoring data collection

» Huge volumes of data (up to 1MB/s per VM)

» typically 100-1000 producers

- Centralized
« Limited scalability

- Selective (eq. Publish-subscribe)
- Still centralized (data-wise)

- Distributed (eg. Hadoop Distributed File System)

» Possible solution, in combination with pub-sub

Distributed processing

- Traditional DBMSs (distributed or not) are not very
suitable for continuous queries (from the
performance perspective)

 Solutions based on distributed collection and batch
processing (MapReduce) have high latency (~mins)

» Off-line vs. On-line algorithms

Distributed Event-driven Monitoring Model

- Stream (online) processing of monitoring data in the
form of events — everything is an event

- Techniques and algorithms for complex event
processing

- Fully distributed processing using special variant of
publish-subscribe (pattern-based)

Event-driven

- We consider everything to be an event
» Measurement/metric (it is a predefined change)

- State (its change)
- Event (duh...)

- Complex Event Processing
« simple events are composed into more complex ones
- final complex event = detected pattern

-
Distributed Event-driven Monitoring Model

SUBSCRIBE

i

Distributed Event-driven Monitoring Model

{'SimpleEvent':{
'occurrenceTime':'2012-04-11T708:25:13",

"hostname':'lykomedes.fi.muni.cz"',
é‘)‘ "entity’':'org.openssh.sshd.SERVER',
'type':'org.openssh.LOGIN',
‘ ‘http://openssh.com/v6.1/events.jsch'[:{
‘user':'bob’,
‘success': 'false’,

'sourceIP': 147.165.0.86,
"port':22

P}

-
Distributed Event-driven Monitoring Model

Subscribe for DISTR_DICT_ATTACK=

select count(*) as hostsNumber

from RepeatedLoginEvent.win:time(2 min)
where hostsNumber > 10

group by hostname

AND REPEATED_LOGIN= :: Q

select hostname, username,

success, count(*) as attempts
from LoginEvent.win:time(60 sec)
where attempts > 1000, success=false
group by hostname, username

Distributed Event-driven Monitoring Model

LOGIN \

@\- & REPEATED_LOGIN |

DISTR_DICT_ATTACK |

Distributed Event-driven Monitoring Model

LOGIN]

@\- ” REPEATED_LOGIN

Ve

DISTR_DICT_ATTACK |

Distributed Event-driven Monitoring Model

{'ComplexEvent':{
"id':19058906,
‘occurrenceTime':'2012-04-11T708:25:13.129Z7",
"hostname': 'processing-agent-14.fi.muni.cz’, l
‘entity’': ‘cloudl-group’,
"type':'cz.muni.fi.ngmon.DISTR_DICT_ATTACK',
"http://ngmon.fi.muni.cz/v1.0/cplxevents.jsch’':{ \

"hostnames':[aisa.fi, ... , lykomedes.fi],

"hostsNumber': 19, <:::>
'users':[xtovarn, tomp]

_

T

DISTR_DICT ATTACK

Different representation of the model

Permision

CPU Virtual Kernel Apy SSH D Web Req
Machine Server
Hardware Virtualization Operating Middle e Application User
system
Entity
-2
1 Log Event Measurement
1
1
1
1 \T‘
1
1
1
1 Sensor Raw Monitoring Node
. <<instantiate>> Data [R------1 Producer
1
1
1
1
1
1
1
1 Simple Event Partial Event Complex
. Event
1
1
1
1
1
1
1
' V
1 Event Event Type Event
1 I I e S 1
. Schema —> <<instantiate>>
1
1 ' /N

<<abstraction>>

<<Interface>>
Producer's
Contract

Enrichment Projection Condition Event Match
[]
Split Aggregation T lati Composition
Evaluation
| Rule
Selection Filtering Transformati Pattern
on Detection Action
<<online OR offline>>
_____________ Processing Function e eeeo—- o,
realizes |
1
Processing Consumer End
<t Agent > KH— consumer
T I
PUSH interaction : |
Notification | - - - - - - - - - - - ______ >| Subscription \ !
I I
I I
Mi |
7~ essage Yoy : !
1 1 I
<<instamtiate>> <<instantiate>> : !
1 1 I
1 1 : I
————— { Protocol f======- :
1 1
I
«instar:ltiale» ; <<instanltiale>> !
I
A4 ! V4 |
Response , Request :
|
< ___________ L |
PULL interaction
1
! AV
\/ <<Interface>>
__________________ Delivery F--------===-====3 Consumer's
<<use>> Channel <<use>> Contract

Event Processing Agents

» Processing agent performs one or more processing
functions -- operators

e Filter

* Time window
- sliding-tuple, sliding, tumble

- Aggregation (+ group by)
- sum, count, stdev, min, max

» Sequence detection
 Multi-way JOIN

Box-And-Arrows Queries

FILTER WIN N GB N AGG FILTER
succ = false 60 secs user, hostname count C > 1000
WIN | GB AGG FILTER @

2 mins hostname count c>10

Box-And-Arrows Queries

Processing Agent 1

N FILTER WIN GB AGG FILTER

BT e [-
succ = false 60 secs user, hostname count C > 1000

/

Processing Agent 2

WIN | GB AGG FILTER O
2 mins hostname count C>10

Box-And-Arrows Queries

Processing Agents 1..N

N FILTER WIN \ GB AGG FILTER

E 1| succ = false 6osecs ||| user, hostname count C > 1000

/

Processing Agents N+1, N+2

WIN | GB AGG FILTER O
2 mins hostname count C>10

e
Models

- Event Processing Algebra
- simple EP operator algebra
- time and space complexity of each operator

- Distributed monitoring (meta?)model (static, dyn.)

« best operators distribution
 (w.r.t. available nodes, bandwidth, ever)

* latency (minimize)
« throughput (maximize)

- What data (from where) are needed to detect the
pattern?
- which producers, what events?

Prototype Implementation — Current state

- Prototype of distributed variant (simple static
deployment with known patterns)

- as the number of monitored nodes grows, new monitoring
nodes can be added — almost linear scalability

- Typical CEP engine is able to process sok-100k events
per second

- Distributed engine/algorithm under development
- Lightweigth engine (limited set of operators for monitoring)
» Erlang is used — scalability, reliability, robustness

-
Summary - DEDMM

» Our goal is behavior monitoring of many distributed
producers in real-time

- The model introduces paradigm shift towards online
data processing utilizing complex event processing
and detection

- We aim at fully-distributed event processing

e
Extension to Smart Grid

- Considerable volumes of data produced by relatively
static set of producers

- Moderate variability of monitoring data

« primarily measurements

- Unreliable and slow communication channels
« GPRS (EDGE)

Simulation environment for Smart Grid

- Joint collaboration of Mycroft Mind, Pa¥\a\
CERIT-SC MU, CEZ, and Lasaris FI MU mycroft

sc)
- 3,500,000 smart meters simulated in C?rII'E
CERIT Cloud (unique project in Europe)

- Several concepts presented today were E
used for the simulation environment SKUPINA CEZ

monitoring -
| L] .
lasaris

