Syntactic Formalisms for Parsing
Natural Languages

AleS Hordak, Milos Jakubicek, Vojtéch Kovar
(based on slides by Juyeon Kang)

ialel@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 1/32

Dependency Syntax and Parsing

“ Syntactic Formalisms for Parsing Natural Languages 2/32

Outline

Motivation
Dependency Syntax

Dependency Parsing

Syntactic Formalisms for Parsing Natural Languages 3/32

Motivation

m what you have seen as far: applying analysis of formal
languages to a natural language - creating a phrase-structure
derivation tree according to some grammar

m PS accounts for one important syntactic property:
constituency

m is that all?

m but what about: discontinuous phrases, structure sharing

“ Syntactic Formalisms for Parsing Natural Languages 4/32

Motivation

another crucial syntactic phenomenon is dependency
what is a dependency? "some relation between two words*
what is the difference to phrase-structure?

what does constituency express?

what does dependency express?

Syntactic Formalisms for Parsing Natural Languages 5/32

Lecture 4

Dependency Syntax (Melchuk 1988)

A more formal account - what is a dependency? A relation!

Dependency Relation

Let W be a set of all words within a sentence, then dependency relation
— is D C W x W such that:

m D is anti-reflexive: a - b=a#b

m D is anti-symmetric: a - bAb—sa=a=b,=
(anti-reflexivity) a - b = b » a

m D is anti-transitive: a = bAb—-c=a -~

m optionally: D is labeled: there is a mapping /: D — L,L being
the set of labels

1A161 Syntactic Formalisms for Parsing Natural Languages 6 /32

Dependency Representation

B a — b: a depends on b, a is a dependent b, b is the head
of a

m a dependency graph

m a dependency tree

IA161 Syntactic Formalisms for Parsing Natural Languages 7/32

Dependency Tree vs. PS Tree

sleep S
ideas furiously NP VP
Green A N \Y ADV

Green ideas sleep furiously

1A161 Syntactic Formalisms for Parsing Natural Languages 8/32

Non-projectivity

m a property of a dependency tree: a sentence is non-projective
whenever drawing (projecting) a line from a node to the surface
of the tree crosses an arc

m a lot of attention has been paid to this problem

m practical implications are rather limited (in most cases
non-projectivity can be easily handled or avoided)

m hard cases:
koupil

/

Malou

™

chaloupku

“ Syntactic Formalisms for Parsing Natural Languages 9/32

Czech Tradition of Dependency Syntax

m a long tradition of dependency syntax in the Prague linguistic
school (Sgall, Haji¢ova, Panevova)

m Institute of Formal and Applied Linguistics at Charles University

m formalized as Functional Generative Description (FGD) of
language

m Prague Dependency Treebank (PDT)

“ Syntactic Formalisms for Parsing Natural Languages 10/ 32

Dependencies vs. PS

m is one of the formalisms clearly better than the other one?
No.

B dependencies: & account for relational phenomena, ¢ simple
B phrase-structure: @ account for constituency, @ easy chunking

m can we perform transformation from one of the formalism to the
other one a vice versa? Technically yes, but. . .

B It is not a problem to convert the structure between a dependency
tree and a PS tree ...
H ... butitis a problem to transform the information included

m = both of the formalisms are convertible but not mutually
equivalent

IA161 Syntactic Formalisms for Parsing Natural Languages 11/32

Dependency Parsing

rule-based vs. statistical

transition-based (— deterministic parsing)
graph-based (— spanning trees algorithms)
various other approaches (ILP, PS conversion, . . .)

very recent advances (vs. long studied PS parsing algorithms)

“ Syntactic Formalisms for Parsing Natural Languages 12 /32

Introduction to Dependency parsing

m Motivation

a. dependency-based syntactic representation seem to be useful in
many applications of language technology: machine translation,
information extraction

— transparent encoding of predicate-argument structure

b. dependency grammar is better suited than phrase structure
grammar for language with free or flexible word order

— analysis of diverse languages within a common framework

c. leading to the development of accurate syntactic parsers for a
number of languages

— combination with machine learning from syntactically
annotated corpora (e.g. treebank)

1A161 Syntactic Formalisms for Parsing Natural Languages 13 /32

Introduction to Dependency parsing

m Dependency parsing

“Task of automatically analyzing the dependency structure of a
given input sentence”

m Dependency parser

“Task of producing a labeled dependency structure of the kind
depicted in the follow figure, where the words of the sentence
are connected by typed dependency relations”

PRED

ATT s

(N

ROOT Economic news had little effect on financial markets

IA161 Syntactic Formalisms for Parsing Natural Languages 14 /32

Definitions of dependency graphs and dependency
parsing

Dependency graphs: syntactic structures over sentences

Def. 1.: A sentence is a sequence of tokens denoted by

S=wew;...wp

Def. 2.: Let R ={r,...,rm} be a finite set of possible
dependency relation types that can hold between any two
words in a sentence. A relation type r € R is additionally called
an arc label.

1A161 Syntactic Formalisms for Parsing Natural Languages 15/32

Definitions of dependency graphs and dependency
parsing

Dependency graphs: syntactic structures over sentences

Def. 3.: A dependency graph G = (V,A) is a labeled directed
graph, consists of nodes, V, and arcs, A, such that for
sentence S = wyw; ... w, and label set R the following holds:

V C{wow; ... wp}
ACVxRxV
if (w;,r,w;) € Athen (w;,r',w;) ¢ Aforallr #r

1A161 Syntactic Formalisms for Parsing Natural Languages 16 /32

Approach to dependency parsing

a. data-driven
it makes essential use of machine learning from linguistic data
in order to parse new sentences

b. grammar-based
it relies on a formal grammar, defining a formal language, so
that it makes sense to ask whether a given input is in the
language defined by the grammar or not.

— Data-driven have attracted the most attention in
recent years.

“ Syntactic Formalisms for Parsing Natural Languages 17 /32

Data-driven approach

according to the type of parsing model adopted,
the algorithms used to learn the model from data
the algorithms used to parse new sentences with the model

a. transition-based
start by defining a transition system, or state machine, for
mapping a sentence to its dependency graph.

b. graph-based
start by defining a space of candidate dependency graphs for a
sentence.

“ Syntactic Formalisms for Parsing Natural Languages 18 /32

Data-driven approach

a. transition-based

H learning problem: induce a model for predicting the next state
transition, given the transition history

B parsing problem: construct the optimal transition sequence for
the input sentence, given induced model

b. graph-based

B learning problem: induce a model for assigning scores to the
candidate dependency graphs for a sentence

B parsing problem: find the highest-scoring dependency graph for
the input sentence, given induced model

“ Syntactic Formalisms for Parsing Natural Languages 19/32

Transition-based Parsing

m Transition system consists of a set C of parser configurations
and of a set D of transitions between configurations.

m Main idea: a sequence of valid transitions, starting in the
initial configuration for a given sentence and ending in one of
several terminal configurations, defines a valid dependency
tree for the input sentence.

Dl’m = dl(Cl), . ,dm(Cm)

“ Syntactic Formalisms for Parsing Natural Languages 20/32

Transition-based Parsing

m Definition
Score of Dy factors by configuration-transition pairs (¢;, d;):

Dl’) Z/ 1 (Ch)

m Learning
Scoring function s(c;, d;) for di(c;) € Dy/m

m Inference
Search for highest scoring sequence D3, ,,, given s(c;, d;)

“ Syntactic Formalisms for Parsing Natural Languages 21/32

Transition-based Parsing

Inference for transition-based parsing

m Common inference strategies:
m Deterministic [Yamada and Matsumoto 2003, Nivre et al. 2004]
B Beam search [Johansson and Nugues 2006, Titov and Henderson

20071
m Complexity given by upper bound on transition sequence length

m Transition system

H Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
B Limited non-projective O(n) [Attardi 2006, Nivre 2007]
B Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

“ Syntactic Formalisms for Parsing Natural Languages 22/32

Transition-based Parsing - Nivre algorithm

Prechody (transitions) z jedného stavu (konfiguracie) do druhého.
Konfigurécia:

- Vstupni buffer (slova vo vete zfava doprava)

- Zasobnik

- Vystupni strom (slova, zavislosti a znatky zavislosti)

Prechody:
- Reduce: uvolnenie vrchného slovo na zasobniku
- Shift: presunutie slovo z bufferu na zasobnik
- Left-arc (LARC): fava zavislost medzi dvoma hornymi slovami v zésobniku
- Right-arc (RARC): prava zavislost medzi dvoma hornymi slovami v zasobniku

Stack # Stack #dal Petie

Buffer Oto dal Petfe dvé hrusky. Buffer v hrusky. By ooty

Tree Tree dal(Oto) Tree dal(Oto, Petfe) hrusky(dvé)
SHIFT RARC RARC

Stack #0to Stack #dal

Buffer dal Petr dva hrusky. Buffer ava hruky. Soree o

Tree Tree dal(Oto, Petfe) Tree dal(Oto, Petre,hrusky(dvé))

Stack #0to

Buffer dal Petre dvé hrusky. Burer v hrubky, bl

Tree Tree dal(Oto, Petie) Tree dal(Oto, Petfe,hrusky(dvé))
SHIFT SHIFT

Stack #0to dal

Buffer Petfe dvé hrusky. ol g = ©

Tree Tree dal(Oto, Petie) Tree #(dal(Oto,Petfe,hrusky(dvé)

Stack #0to dal Stack #

Stack #dal dvé

Buffer Petfe dvé hrusky. s g Buffer .

"“LARC Tree dal(Oto, Petre) Tree #(dal(Oto,Petie hrusky(dvé)
SHIFT Ry

Sutter tre i hrushy. Sack el dvh dky Sorer ©

Tree dal(Oto) Dt N0, Potte) Tree #dal(Oto,Petie,hrusky(dvé)))

Stack #dal Stack #.

Buffer Poetfe dv hrusky. Stack #dal dvé hrusky Buffer
Tree #(dal(Oto,Petre, hrusky(dvé))

Tree dal(Oto) 5 9 -
Tree dal(Oto, Petie)
SHIFT ARG SHIFT
Stack # dal Petie Stack #

Buffer dvé hrusky.

Stack #dal hrusky
Tree dal(Oto) &

Buffer
s ;m(cnn. Tree #dal(Oto,Petie,hrusky(dvé)), .)
T~ _—— etz
Syntactic Formalisms for Parsing Natural Languages 23 /32

Transition-based Parsing

Learning for transition-based parsing

m Typical scoring function:
m s(c;,d;)) =w-f(c;,d;) where f(c;, d;) is a feature vector over
configuration ¢; and transition d; and w is a weight vector
[w; = weight of featurefi(c;, d;)]
m Transition system

B Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
B Limited non-projective O(n) [Attardi 2006, Nivre 2007]
B Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

m Problem

B Learning is local but features are based on the global history

“ Syntactic Formalisms for Parsing Natural Languages 24 /32

Transition-based Parsing

Projectivization to pseudo-projectivity:

Pred AuxP

Adv Sb

D\ . .
On na to nema penize.

Pred AuxP

Aqu'T Sb .
7 Adv b

On na to nema penize.

Pred

AuxP ! Sb

Adv Sb

B\ . .
On na to nema penize.

IA161 Syntactic Formalisms for Parsing Natural Languages

25 /32

Graph-based Parsing

m For a input sentence S we define a graph Gs = (Vs,As) where
Vs = {wqy,wy,...,wp} and
As = {(w;,w;,)|w;,w; € Vand | € L}

m Score of a dependency tree T factors by subgraphs Gq,...,Gs:
s(T) = 7, s(G))
m Learning: Scoring function s(G;) for a subgraph G; € T

m Inference: Search for maximum spanning tree scoring sequence
T of Gs given s(Gj)

“ Syntactic Formalisms for Parsing Natural Languages 26 /32

Graph-based Parsing

Learning graph-based models

m Typical scoring function:

E s(G)) = w-f(G)) where f(G;) is a high-dimensional feature vector
over subgraphs and w is a weight vector
[w; = weight of feature f(G;)]

m Structured learning [McDonald et al. 2005a, Smith and
Johnson 20071:

B Learn weights that maximize the score of the correct dependency
tree for every sentence in the training set

m Problem
B Learning is global (trees) but features are local (subgraphs)

IA161 Syntactic Formalisms for Parsing Natural Languages 27 / 32

Lecture 4

Graph-based Parsing - Eisner algorithm

‘ hL bah

root Ema ma mamu root Ema ma mamu

2 N o

root Ema ma mamu root Ema ma mamu root Ema ma mamu

1A161 Syntactic Formalisms for Parsing Natural Languages 28/32

Graph-based Parsing - Chu-Liu-Edmonds algorithm

root root root
ma /’"!\
(s e
/ / !
@ ° / @
|’ / /
mamu Ema ' Ema .* mamu

1A161 Syntactic Formalisms for Parsing Natural Languages 29 /32

Grammar-based approach

a. context-free dependency parsing
exploits a mapping from dependency structures to CFG
structure representations and reuses parsing algorithms
originally developed for CFG — chart parsing algorithms

b. constraint-based dependency parsing

B parsing viewed as a constraint satisfaction problem

B grammar defined as a set of constraints on well-formed
dependency graphs

B finding a dependency graph for a sentence that satisfies all the
constraints of the grammar (having the best score)

“ Syntactic Formalisms for Parsing Natural Languages 30/32

Grammar-based approach

a. context-free dependency parsing

Advantage: Well-studied parsing algorithms such as CKY,
Earley’s algorithm can be used for dependency parsing as well.

— need to convert dependency grammars into efficiently
parsable context-free grammars; (e.g. bilexical CFG, Eisner and
Smith, 2005)

b. constraint-based dependency parsing

defines the problem as constraint satisfaction

B Weighted constraint dependency grammar (WCDG, Foth and
Menzel, 2005)
B Transformation-based CDG

“ Syntactic Formalisms for Parsing Natural Languages 31/32

Conclusions

Dependency syntax vs. constituency (phrase-structure) syntax
Non-projectivity
Graph-based and Transition-based methods

“ Syntactic Formalisms for Parsing Natural Languages 32/32

	Lecture 4

