Syntactic Formalisms for Parsing
Natural Languages CZ.1.07/2.2.00/28.0041

Centrum interaktivnich a multimedidlnich studijnich opor pro inovaci vyuky a efektivni u¢eni

Ales Horak, Milos Jakubicek, Vojtéch Kovar gf::&zlﬂ?"y :Il L ’ lM’

~ . OP Vzdélavani %
fondvCR EVROPSKAUNIE wmiLADEZE Lo {OVY pro konkurenceschopnost ZANA'D

(based on Slldes byJuyeon Kang) INVESTICE DO ROZVéJEV?bELAVAN[

NSV
VEnsts:

[

ial6él@nlp.fi.muni.cz

Autumn 2013

1A161 Syntactic Formalisms for Parsing Natural Languages 1/476 IA161 Syntactic Formalisms for Parsing Natural Languages 2/476
Introducing Introducing

Course objective Course syllabus

PART | : Theoretical backgrounds

Introducing m Historical overview
m theoretical backgrounds on parsing m State of the art parsing methods and trends
m parsing methods focused on syntax m Advanced syntactic formalisms
m practical implementation methods PART Il : Practical applications
m possible applications and evaluations m Applications & Use Cases

m Practical Implementations

m Parsing Evaluation

“ Syntactic Formalisms for Parsing Natural Languages 3/476 1A161 Syntactic Formalisms for Parsing Natural Languages 4/476

I —

Course format

m Weekly lectures (2 hours) Introductive and Historical Overview
m Final written exam on Natural Languages Parsing

m Two homework assignments
IA161

Syntactic Formalisms for
Parsing Natural Languages

m Grading

® Final exam: 60 points

m Each homework: 20 points

m For each homework 10 % top scoring individuals
receive 5 bonus points

m Points required for colloquium: 60 points

1A161 Syntactic Formalisms for Parsing Natural Languages 5/476 1A161 Syntactic Formalisms for Parsing Natural Languages 6/476
Lecture 1 Lecture 1

Main points Why natural language processing ?

m Huge amounts of data from Internet and Intranet

m Applications for processing large amounts of texts need NLP
expertise
m Introduction to Natural Language Processing

Classify text into categories
Index and search large texts
Automatic translation
Speech recognition
Information extraction
Automatic summarization
Question answering
Knowledge acquisition

Text generation/dialogues

m Issues in Syntax
m What is a parsing?

m Overview of Parsing methods and trends

“ Syntactic Formalisms for Parsing Natural Languages 7/476 1A161 Syntactic Formalisms for Parsing Natural Languages 8 /476

History of Natural Language Processing

m 1948 - 1st NLP application?

m dictionary look-up system by Andrew Booth,
for machine translation purposes

m developed at Birkbeck College, London
University

“ Syntactic Formalisms for Parsing Natural Languages 9/476

* This first application shows how closely NLP stands to the origins of
computer science.

* Booth was formerly (during WWII) doing research on X-ray crystallography
of explosives. This involved lots of arithmetics, hence after WWII he tried to

develop electronic computers, the first was an Automatic Relay Calculator
(ARC) — 1946.

* In the same year he was funded by Rockefeller Foundation (RF) to visit US
researchers, reported that only von Neumann gave him any time. He got in
love with (and later married) von Neumann'’s research assistant Kathleen and

redesigned ARC according to von Neumann’s architecture.
* In 1947 he visited RF’s Natural Sciences Division Director Warren Weaver,

who refused to fund a computer for mathematical calculations, but suggested

funding a computer for machine translation of natural languages (!).

* Booth developed techniques for parsing text and also for building dictionaries.

November 11, 1955 Booth gave an early public demonstration of natural
language machine translation (in Figure).

* So far, it turns out, they have not considered at all the problem of multiple

meaning (!), and have been concerned only with the mechanics of looking up
words in a dictionary. First, you sense the first letter of a word, and then
have the machine see whether or not the memory contains precisely the word
in question. If so, the machine simply produces the translation (..) of this
word. If this exact word is not contained in the memory, then the machine
discards the last letter of the word, and tries over. If this fails, it discards
another letter, and tries again. After it has found the largest initial
combination of letters which is in the dictionary, it “looks up” the whole
discarded portion in a special “grammatical annex” of the dictionary. Thus
confronted by “running,” it might find “run” and then find out what the
ending (n)ing does to “run.” (Warren Weaver on Booth’s machine)

Later on Booth was very successful in building computers, his wife Kathleen
was programming them and wrote one of the first books on programming.
1958 Kathleen did research on simulating neural networks to investigate ways
in which animals recognise patterns, 1959 then a neural network for character
recognition.

History of Natural Language Processing

BIRKBECK COLLEGE RESEARCH LABORATORY
(UNIVERSITY OF LONDON)
21 TORRINGTON SQUARE
w.C.1
museum 0367/8

ELECTRONIC COMPUTER PROJECT

11th November, 1955.

C'est un exemple d'une traduction fait par la machine a
calonler installée au laboraioire de Oalcul de Birkbeok College,

Londres.

S AN EXAMPLE OF A TRANSLATION MADE BY THE MACHINE FOR
g{glllti‘l'lgﬂ INSTALLED AT-THE LABORATORY OF COMPUTATION OF BIRKBECK

COLLEGE LONDON .

1A161 Syntactic Formalisms for Parsing Natural Languages 10/476
Lecture 1

History of Natural Language Processing important science managers at the time. All the time he was meeting
scientists, putting them together, organizing funding, and investigating
m 1949 - Warren Weaver potential research areas; while being a top-scientist — in 1949 he co-authored

T

* Weaver was one of the Machine Translation pioneers and one of the most

i .) . the The Mathematical Theory of Communication with Claude Shannon.
B Natural Sciences Division Director in the Rockefeller

Foundation

Mathematician, Science Advocate
WWII code breaker

m He viewed Russian as English in code - the
"Translation” memorandum

'.T’
s

Also knowing nothing official about, but having guessed and inferred
considerable about powerful new mechanized methods in
cryptography - methods which | believe succeed even when one
does not know what language has been coded - one naturally
wonders if the problem of translation could conceivably be treated
as a problem in cryptography. When | look at an article in Russian, |
say “This is really written in English, but it has been coded in some
strange symbols. | will now proceed to decode.”

“ Syntactic Formalisms for Parsing Natural Languages 11/476

“ Syntactic Formalisms for Parsing Natural Languages

History of Natural Language Processing

m 1966 - Over-promised under-delivered

E Machine Translation worked only word by word
m NLP brought the first hostility of research funding agencies

B NLP gave Al a bad name before Al had a name.
m All funding of NLP came to a grinding halt due to the infamous

ALPAC report.
B Public spent 20 million with very limited outcomes.

m 1966-1976 - “A lost decade”
m Revival in 1980's

B Martin Kay: The Proper Place of Men and Machines in Language
Translation

12/476

ALPAC’s final recommendations were that research should be supported on:
1. practical methods for evaluation of translations;

2. means for speeding up the human translation process;

3. evaluation of quality and cost of various sources of translations;

4. investigation of the utilization of translations, to guard against production
of translations that are never read;

5. study of delays in the over-all translation process, and means for
eliminating them, both in journals and in individual items;

6. evaluation of the relative speed and cost of various sorts of machine-aided
translation;

7. adaptation of existing mechanized editing and production processes in
translation;

8. the over-all translation process; and

9. production of adequate reference works for the translator, including the
adaptation of glossaries that now exist primarily for automatic dictionary
look-up in machine translation

e ALPAC (Automatic Language Processing Advisory Committee) was a

committee of seven scientists led by John R. Pierce, established in 1964 by the
U. S. Government in order to evaluate the progress in computational
linguistics in general and machine translation in particular. Its report, issued
in 1966, gained notoriety for being very skeptical of research done in machine
translation so far, and emphasizing the need for basic research in
computational linguistics; this eventually caused the U. S. Government to
reduce its funding of the topic dramatically.

Kay’s counterargument: “The goal of MT should not be the fully automatic
high quality translation (FAHQT) that can replace human translators.
Instead, MT should adopt less ambitious goals, e.g. more cost-effective
human-machine interaction and aim at enhancement of human translation
productivity.”

NLP looked to Linguistics

Linguistics is language described, not prescribed.
Linguistics had few applicable theories for Machine Translation

m 1957 - Noam Chomsky’s Syntactic Structures revolutionized
Linguistics as it applies to Machine Translation.
m Rule based system of syntactic structures.

m Believed there are features common to all
languages that enable people to speak
creatively and freely.

m Hypothesized all children go through the
same stages of language development
regardless of the language they are learning
- a concept of an innate Universal Grammar
(never proven)

m One of the most prominent persons of NLP in
20 century, though very controversial.

1A161 Syntactic Formalisms for Parsing Natural Languages 13/476
Lecture 1

NLP looked to Linguistics

m 1958 - Bar-Hillel report

B Concluded Fully-Automatic High-Quality Translation (FAHQT) could
not be accomplished without human knowledge.

m 1968 - Case Grammar (Fillmore)

B “The case for case” paper
B Later evolved into Frame Semantics

m 1970 - Augmented Transition Networks (Woods)

B Procedural Semantics - Theory of the “meaning” of sentence.
B Augmented Transition Network (ATN) parser

“ Syntactic Formalisms for Parsing Natural Languages 14 /476

Avram Noam Chomsky (born December 7, 1928) is an American linguist,
philosopher, cognitive scientist, logician, and political commentator and
activist. Working for most of his life at the Massachusetts Institute of
Technology (MIT), where he is currently Professor Emeritus, he has authored
over 100 books on various subjects.

He is credited as the creator or co-creator of the Chomsky hierarchy, the
universal grammar theory, and the Chomsky—Schiitzenberger theorem.
Chomsky is also well known as a political activist, and a leading critic of U.S.
foreign policy, state capitalism, and the mainstream news media. Ideologically,
he aligns himself with anarcho-syndicalism and libertarian socialism.

Highly influential, between 1980 and 1992, Chomsky was cited within the field
of Arts and Humanities more often than any other living scholar, and eighth
overall within the Arts and Humanities Citation Index during the same
period. He has been described as a prominent cultural figure, and was voted
the "world’s top public intellectual” in a 2005 poll.

Yehoshua Bar-Hillel was charged by the US Office of Naval Research to make
a critical assessment of current MT activity in the United States and Great
Britain. Agencies of the US government were funding research on a large and
increasing scale.

Bar-Hillel had been the first person appointed full-time to work on MT at the
Massachusetts Institute of Technology in 1951.

His basic contention was that MT research — now a “multimillion dollar
affair”, as he pointed out — was, with few exceptions, set on a mistaken and
unattainable goal, namely, fully automatic translation of a quality equal to
that of a good human translator. This he held to be utterly unrealistic, and in
his view resources were being wasted which could be more fruitfully be
devoted to the development of less ambitious and more practical computer
aids for translators.

Woods: 2010 ACL Lifetime Achievement Award

all within the LUNAR project of NASA Apollo 11 Program

ATN parser was the first properly formalized hand-built parser that could
produce Chomsky-style deep structure analyses for a large, fluent subset of
natural English.

Successful NLP Systems

m 1970 - Shrdlu (Terry Winograd)

Human: Pick up a big red block.

Computer: OK.

Human: Grasp the pyramid.

Computer: I don’t understand which pyramid you mean.

Human (changing their mind): Find a block which is taller than the
one you are holding and put it into the box.

Computer: By "it”, I assume you mean the block which is taller than
the one I am holding.

Computer: OK.

Human: What does the box contain?

Computer: The blue pyramid and the blue block.

Human: What is the pyramid supported by?

Computer: The box.

Human: How many blocks are not in the box?

Computer: Four of them.

Human: Is at least one of them narrower than the one which I told
you to pick up?

Computer: Yes, the red cube.

1A161 Syntactic Formalisms for Parsing Natural Languages 15/476
Lecture 1

Successful NLP Systems li

m 1973 - Lunar question answering system (Woods)

WHAT IS THE AVERAGE CONCENTRATION OF ALUMINUM IN HIGH
ALKALI ROCKS?

WHAT SAMPLES CONTAIN P2007?

GIVE ME THE MODAL ANALYSES OF P200 IN THOSE SAMPLES
GIVE ME EU DETERMINATIONS IN SAMPLES WHICH CONTAIN ILM

“ Syntactic Formalisms for Parsing Natural Languages 16 /476

* SHRDLU was an early natural language understanding computer program,

developed by Terry Winograd at MIT in 1968-1970. In it, the user carries on
a conversation with the computer, moving objects, naming collections and
querying the state of a simplified "blocks world”, essentially a virtual box
filled with different blocks. SHRDLU was written in the Micro Planner and
Lisp programming language on the DEC PDP-6 computer and a DEC
graphics terminal. Later additions were made at the computer graphics labs
at the University of Utah, adding a full 3D rendering of SHRDLU’s "world”.
The name SHRDLU was derived from ETAOIN SHRDLU, the arrangement of
the alpha keys on a Linotype machine, arranged in descending order of usage
frequency in English.

LUNAR is an experimental natural language, information retrieval system. It
was designed to help geologists access, compare, and evaluate
chemical-analysis data on moon rock and soil composition obtained from the
Apollo-11 mission. The primary goal of the designers was research on the
problems involved in building a man-machine interface that would allow
communicate in ordinary English, A "real world” application was chosen for
two reasons: First, it tends to focus effort on the problems really in need of
solution (sometimes this is implicitly avoided in "toy” problems) and second,
the possibility of producing a system capable of performing a worthwhile task.
LUNAR system operates by translating a question entered in English into an
expression in a formal query language (Codd, 1974). The translation is done
with an augmented transition network (ATN) parser coupled with a
rule-driven semantic interpretation procedure, which guides the analysis of
the question.

“ Syntactic Formalisms for Parsing Natural Languages

* The "query” that results from this analysis is then applied to the database to

produce the answer to the request,The query language is a generalization of
the predicate calculus. Its central feature is a quantifier function that is able
to express, in a simple manner, the restrictions placed on a database-retrieval
request by the user. The function is used in concert with special enumeration
functions for classes of database objects, freeing the quantifier function from
explicit dependence on the structure of the database. LUNAR also served as
a foundation for the early work on speech understanding at BBN.

The formal query language used by LUNAR system contains three types of
objects: designators, which name classes of objects in the database (including
functionally defined objects); propositions, which are formed from predicates
with designators as arguments; and commands, which initiates actions.
Request: (DO MY SAMPLES HAVE GREATER THAN 13 PERCENT
ALUMINIUM

Query Language Translation (after parsing):

(TEST (FOR SOME X1 / (SEQ SAMPLES) : T ; (CONTAIN X1

NPR* X2 / "AL203) (GREATERTHAN 13 PCT))))

Response :

YES

Successful NLP Systems Il

m 1976 - TAUM-METEO (University of Montreal)

B prototype MT system for translating weather forecasts between
English and French

m 1985 - METEO (John Chandioux)

m successor of TAUM-METEO
B in operational use at Environnement Canada forecasts until 30th
of September 2001

m 1970 - SYSTRAN

m provided translations for US Air Force’s Foreign Technology
Division

m adopted by XEROX (1978)

m still developed, present in wide range of systems

m Google language tools

m Microsoft spell check

17 /476

LUNAR processes these request in the following three steps:

1. Syntactic analysis using an augmented transition network parser and heuristic
information (including semantics) to produce the most likely derivation tree for
the request;

2. Semantic interpretation to produce a representation of the meaning of the
request in a formal query language;

3. Execution of the query language expression on the database to produce the
answer to the request.

LUNAR’s language processor contains an ATN grammar for a large subset of
English, the semantic rules for interpreting database requests, and a
dictionary of approximately 3,500 words. As an indication of the capabilities
of the processor, it is able to deal with tense and modality, some anaphoric
references and comparatives, restrictive relative clauses, certain adjective
modifiers and embedded complement constructions.

The METEQO System is a Very High Quality Machine Translation system for
weather bulletins that has been in operational use at Environnement Canada
from 1982 to 2001. It stems from a prototype developed in 1975-76 by the
TAUM Group, known as TAUM-METEQ. As many authors confuse the
prototype with the actual system, a bit of history is in order.

The initial motivation to develop that prototype was that a junior translator
came to TAUM to ask for help in doing the extremely boring (and at the
same time difficult) job of translating weather bulletins at Environment
Canada he had to do at the moment.

Indeed, since all official communications emanating from the Canadian
government must be available in French and English, because of the official
bilingual services act of 1968, and weather bulletins represent a large amount
of translation in real time, junior translators had to spend several months of
purgatory producing first draft translations, then revised by seniors. That
was in fact a quite difficult job, because of the specificities of the English and
French sublanguages used, and not very motivating, as the lifetime of a
bulletin is only 4 hours.

Major Issues in NLP Ambiguity Makes NLP difficult

m Structural/Syntactic ambiguity

Ambiguity in L] m | saw the Grand Canyon flying to New York.
mbiguity In Language: m | saw the sheep grazing in the field.

m Syntactic (structural) m Word Sense ambiguity

m Semantic (word sense) ® The man went to the bank to get some cash.
m Referential ® The man went to the bank and jumped in the river.
m Referential ambiguity

m Steve hated Paul. He hit him.
m He = Steve ? or he = Paul ?

1A161 Syntactic Formalisms for Parsing Natural Languages 18 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 19 /476
Lecture 1 Lecture 1

Linguistics levels of analysis Issues in syntax
m Speech
m Written language m Propagation of errors from lower levels - mainly morphology,

need to correctly identify the part of speech (POS)

B Phonetics , ;
“The man did his homework”

m Phonology

m Morphology ® Who did what?

B Syntax man=noun; did=verb; his=genitive; homework=noun
m Semantics

®m Beyond: pragmatic, cognitive, logic... m |dentify collocations

)) B Mother in law, hot dog, ...
Each level has an input and output representation, output

from one level is the input to the next, sometimes levels might
be skipped (merged) or split.

“ Syntactic Formalisms for Parsing Natural Languages 20/476 1A161 Syntactic Formalisms for Parsing Natural Languages 21/476

More issues in Syntax Syntax input and output

m Input: sequence of pairs (lemma, (morphological) tag)
m Anaphora resolution

“The son of my professor entered my class. He scared me.”

m Preposition attachment
“I saw the man in the park with a telescope.”

m Output: sentence structure (tree) with annotated nodes (all
lemmas, (morpho-syntactic tags, functions) of various forms

m Deals with:

B The relation between lemmas & morphological categories and the

sentence structure use syntactic categories such as subject, verb,
object,...

1A161 Syntactic Formalisms for Parsing Natural Languages 22 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 23 /476
Lecture 1 Lecture 1

Syntactic representation Dependency Tree vs. PS Tree

m Tree structure

m Two main ideas for the tree /sleep\ S
B Phrase structure (derivation tree) ideas furiously NP/\P
B Using bracketed grouping
B Brackets annotated by phrase type / /| /\
B Heads (often) explicitly marked Green A N \Y ADV

® Dependency structure | | ‘ |

W Basic relation: head (governor) - dependent Green ideas sleep furiously
B Links annotated by syntactic functions

B Phrase structure implicitly present

“ Syntactic Formalisms for Parsing Natural Languages 24 /476 1A161 Syntactic Formalisms for Parsing Natural Languages

25 /476

Shallow parsing Full parsing

“John loves Mary“

“the man chased the bear” S(Loves(John, Mary))

VP(3x Loves(x, Mary))

“the man” “chased the bear”
Subject - - Predicate NP(john)) NP(Mary)
m |dentify basic structures Name(John) Verb(3y 3x Loves(x, y)) Name(Mary)
®m NP-[the man] VP-[chased the bear] ‘ ‘
John loves Mary

Help figuring out automatically questions like who did what

and when?
1A161 Syntactic Formalisms for Parsing Natural Languages 26 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 27 / 476
Lecture 1 Lecture 1
What is a natural language parsing ? Characteristics of parsing

o f th ‘ | hed tasks in Natural Much of the history of parsing until a few decades ago can be
- La”rf 3a eePTOOCSeSé‘i)rgnTNOEPX researched tasks in Natura understood as the direct consequence of the history of
guag 9 theories of grammar:

m Parsing, in traditional sense, is what happens when))))
a student takes the words of a sentences one by one, assigns m Parsing is done by human beings, rather than by physical

each to a part of speech, specifies its grammatical categories, and machines or abstract machine
lists the grammatical relations between words (identifying subject m What is parsed is a bit of natural language, rather than

and various types of object for bit of | lik boli t
a verb, specifying the word with which some other word agrees, a bit of Some fahguage-iikeé Symbolic System

and so on). m Parsing is heuristic rather than algorithmic

“ Syntactic Formalisms for Parsing Natural Languages 28 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 29 /476

New notions of parsing

In the second half of 20" century the parsing has come to be
extended to a large collection of operations in relation with
theoretical linguistics, formal language theory, computer
science, artificial intelligence and psycholinguistics:

m Parsing is the syntactic analysis of languages.

m The objective of Natural Language Parsing is

B to determine parts of sentences (such as verbs, noun phrases, or
relative clauses), and the relationships between them (such as
subject or object).

m Unlike parsing of formally defined artificial languages (such as
Java or predicate logic), parsing of natural languages presents

problems due to ambiguity, and the productive and creative use

of language.

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 1

Practical function of a parsing

30/476

m Parsing can tell us when a sentence is in a language defined by
a grammar

m Parsing makes the extraction of the information possible by
identifying relations between words, or phrases in sentences.

“ Syntactic Formalisms for Parsing Natural Languages

32/476

Parsing

m The grammar for Natural Language is ambiguous and typical
sentences have multiple possible analyses (syntactically and
semantically).

m Some parsing tools (i.e. grammatical, morphologic, syntactic,
statistic, probabilistic, heuristic, ...) help to find the most
plausible parse tree of a given sentence.

31/476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 1

Practical function of a parsing

m Parsers are being used in a number of disciplines:

B In computer science
B Compiler construction, database interfaces, self-describing
databases, artificial intelligence...
m In linguistics
B Text analysis, corpora analysis, machine translation...

® In document preparation and conversion
m In typesetting chemical formulae
B In chromosome recognition

1A161 Syntactic Formalisms for Parsing Natural Languages

33/476

Practical function of a parsing

m However,

B Many different possible syntactic formalisms:

B Regular expressions, Context-free grammars, Context-sensitive
grammars, ...

m Many different ways of representing the results of parsing:
B Parse tree, Chart, Graph, ...

1A161 Syntactic Formalisms for Parsing Natural Languages 34 /476
Lecture 1

Historical overview of parsing methods

m Directionality in these two ways

Directional vs. Non-directional

m Non-directional top-down methods by S. Unger (1968)
® Non-directional bottom-up methods by CYK

m Directional top-down methods:
B The predict/match automaton, Depth-first search (backtrack),

Breadth-first search (Greibach), Recursive descent, Definite Clause

grammars

m Directional bottom-up methods:

B The shift/reduce automaton, Depth-first search (backtrack),
Breadth-first search, restricted by Earley(1970)

“ Syntactic Formalisms for Parsing Natural Languages 36 /476

Historical overview of parsing methods

m Basically two ways to parse a sentence

E Top-down vs. Bottom-up

We can characterize the search strategy of parsing algorithms in
terms of the direction in which a structure is built:

from the words upwards (bottom-up) or

from the root node downwards (top-down)

1A161 Syntactic Formalisms for Parsing Natural Languages 35/476
Lecture 1

Historical overview of parsing methods

m Methods originating at parsing of formal languages

m Linear directional top-down methods:
W LL(K)

B Linear directional bottom-up methods:
B Precedence, bounded-context, LR (k), LALR(1), SLR(1)

m Methods specifically devised for parsing of natural languages

B Generalized LR (Masaru Tomita)
m Chart parsing (Martin Kay)

1A161 Syntactic Formalisms for Parsing Natural Languages 37 /476

Summary

Natural language parsing as one of the NLP domain

Extended notion of parsing in relation with different fields

]
]

m Ambiguity of language
m What is it to “parse”?
]

Overview of basic parsing methods

38 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 1

References Il

B J. Hutchins: Milestones no.6: Bar-Hillel and the nonfeasibility of FAHQT.
In: International Journal of Language and Documentation no.1, 1999.

B M. Kay: The proper place of men and machines in language translation.

In: Machine Translation, Volume 12, Issue 1-2, Kluwer 1997 (reprint of
1980).

m More on history of MT:
http://www.hutchinsweb.me.uk/history.htm

“ Syntactic Formalisms for Parsing Natural Languages

40 /476

References |

H. Bunt, J. Carroll & G. Satta (eds.): New Developments in Parsing
Technology, Kluwer, Dordrecht/Boston/London 2004

m H. Bunt, P. Merlo, & J. Nivre (eds.): Trends in Parsing Technology:
Dependency Parsing, Domain Adaptation, and Deep Parsing, Springer
Dordrecht, Heidelberg/London/New York 2010

® H. Bunt, M. Tamita (eds.): Recent advances in parsing technology,
Kluwer, Boston, 1996

B G. Dick: Parsing techniques: a practical guide, Springer, 2008

B Roger G. Johnson: Andrew D. Booth - Britain’s Other “Fourth Man”. In:
History of Computing. Learning from the Past, Springer Berlin
Heidelberg, 2010.

m |. Hutchins: From First Conception to First Demonstration: the Nascent
Years of Machine Translation, 1947-1954. A Chronology. In: Machine
Translation, Volume 12, Issue 3, Kluwer, 1997.

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 2

39/476

Syntactic Formalisms for Parsing
Natural Languages

AleS Horak, Milos Jakubicek, Vojtéch Kovar
(based on slides by Juyeon Kang)

ial6l@nlp.fi.muni.cz

Autumn 2013

1A161 Syntactic Formalisms for Parsing Natural Languages

41 /476

Main points

m Context-free grammar
m Parsing methods

Basic parsing methods | ® Top-down or bottom-up
m Directional or non-directional

m Basic parsing algorithms

m Unger

m CKY (or CYK)

B Left-corner parsing
m Earley

1A161 Syntactic Formalisms for Parsing Natural Languages 42 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 43 / 476
Lecture 2 Lecture 2

Ambiguity in Natural Language Ambiguity in Natural Language

m Main idea of parsing

m Notion of ambiguity Parsing (syntactic structure)

m Essential ambiguity: same syntactic structure but the semantics Input: sequence of tokens
differ

m Spurious ambiguity: different syntactic structure but no change in John ate an apple
semantics

Output: parse tree
There is no unambiguous languages!

m An input may have exponentially many parses /5\
m Should identify the “correct” parse N|P /VP\
NAME VERB NP
ART NOUN
John ate Jn apple

“ Syntactic Formalisms for Parsing Natural Languages 44 / 476 1IA161 Syntactic Formalisms for Parsing Natural Languages 45 / 476

Ambiguity in Natural Language

m Basic connection between a sentence and the grammar it
derives from is the “parse tree”, which describes how the
grammar was used to produce the sentences.

m For the reconstruction of this connection we need
a “parsing techniques”

46 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 2

Formal language

m Symbolic string set which describe infinitely unlimited language

as mathematical tool for recognizing and generating languages.

m Topic of formal language: finding finitely infinite languages
using rewriting system.

m Three basic components of formal language: finite symbol set,
finite string set, finite formal rule set

“ Syntactic Formalisms for Parsing Natural Languages

48 /476

Ambiguity in Natural Language

m Word categories: Traditional parts of speech

Noun Names of things boy, cat, truth
Verb Action or state become, hit
Pronoun Used for noun I, you, we

Adverb Modifies V, Adj, Adv sadly, very
Adjective Modifies noun happy, clever
Conjunction Joins things and, but, while
Preposition Relation of N to, from, into
Interjection An outcry ouch, oh, alas, psst

47 / 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 2

Constituency

m Sentences have parts, some of which appear to have subparts.
These groupings of words that go together we will call
constituents.

(How do we know they go together?)

m | hit the man with a cleaver
| hit [the man with a cleaver]
| hit [the man] with a cleaver

m You could not go to her party
You [could not] go to her party
You could [not go] to her party

1A161 Syntactic Formalisms for Parsing Natural Languages

49 /476

The Chomsky hierarchy The Chomsky hierarchy

m Type 0 Languages / Grammars (LRE: Recursively enumerable
grammar)
Rewrite rules a —» B
where a and B are any string of terminals and non-terminals

m Type 1 Context-sensitive Languages / Grammars (LCS) Type0>1>2>3
Rewrite rules aXp - aYp
where X is a non-terminal, and a, Y, B are any string of terminals and

non-terminals, (Y must be non-empty but strings a and B can be according to generative power
empty).

m Type 2 Context-free Languages / Grammars (LCF) m Superior language can generate inferior language but superior
Rewrite rules X - Y language is more inefficient and slow than inferior language.

where X is a hon-terminal and Y is any string of terminals and
non-terminals

m Type 3 Regular Languages / Grammars (LREG)
Rewrite rules X —» aY
where X, Y are single non-terminals, and a is a string of terminals; Y
might be missing.

1A161 Syntactic Formalisms for Parsing Natural Languages 50/476 IA161 Syntactic Formalisms for Parsing Natural Languages 51/476
Lecture 2 Lecture 2

The Chomsky hierarchy Context-free grammar (Type 2)

The most common way of modeling constituency.

The idea of basing a grammar on constituent structure dates
back to Wilhem Wundt (1890), but not formalized until
Chomsky (1956), and, independently, by Backus (1959).

CFG = Context-Free Grammar = Phrase Structure Grammar=
BNF = Backus-Naur Form

Figure : Chomsky hierarchy

“ Syntactic Formalisms for Parsing Natural Languages 52 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 53 /476

Context-free grammar (Type 2) Context-free grammar (Type 2)

m CFG rewriting rule G=<T,N,S, R>

T is set of terminals (lexicon)

X -
N is set of non-terminals (written in capital letter). S is start

where X is a non-terminal symbol and Y is string consisting of ~ Symbol (one of the non-terminals)

terminals/non-terminals. R is rules/productions of the form X -»Y , where X is a

non-terminal and Y is a sequence of terminals and

The.term “Context-free” expresses the fact that the non-terminals (may be empty).
non-terminal v can always be replaced by w, regardless of the
context in which it occurs. A grammar G generates a language L

1A161 Syntactic Formalisms for Parsing Natural Languages 54 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 55/476
Lecture 2 Lecture 2

Examplel of Context-Free Grammar Example2 of Context-Free Grammar
G=<T,N,S,R>
R1: S-> NP VP R13: DET -> his|her
T = { that, this, a, the, man, book, flight, meal, include, read, does } R2: NP -> DET N R14: DET -> the
R3: NP -> NP PNP R15: V -> eat|serve
N = { S, NP, NOM, VP, DET ,N, V, AUX } R4: NP -> PN R16: V -> give
R5: VP -> V R17: V -> speak|speaks
S=S R6: VP -> V NP R18: V -> discuss
R7: VP -> V PNP R19: PN -> John|Mark
R={ R8: VP -> V NP PNP R20: PN -> Mary|juliette
R9: VP -> V PNP PNP R21: N -> daugther|mother
S - NP VP Det — that | this | a | the R10: PNP -> PP NP R22: N -> son|boy
S — Aux NP VP N - book | flight | meal | man R11: PP-> to|from|of R23: N -> salad|soup|meat
S - VP V = book | include | read R12: DET -> an|a R24: N -> desert|cheese|bread
NP - Det NOM AUX - does R25: AD) -> small|kind
NP - N
VP -V
VP - V NP Simplified example of CFG = Gp
}

“ Syntactic Formalisms for Parsing Natural Languages 56 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 57 /476

Example2 of Context-Free Grammar

Using the presented grammar, we make a first derivation for
the sentence “John speaks”,

Gp NP VP (by R1)

-> Gp PN VP (by R4)

-> Gp John VP (by R19)

-> Gp John V (by R5)

-> Gp John speaks (by R17)

1A161 Syntactic Formalisms for Parsing Natural Languages 58 /476
Lecture 2

Production Rule 3

NP -> NP PNP

Because it contains the same symbol in his left and his right,
we say that the production having this property is recursive.

“ Syntactic Formalisms for Parsing Natural Languages

60 /476

Example2 of Context-Free Grammar

Another derivation of “John speaks” from Gp using rule 5
before rule 4

Gp NP VP

Gp NPV

-> Gp NP speaks
-> Gp PN speaks
-> Gp John speaks

1A161 Syntactic Formalisms for Parsing Natural Languages 59 /476
Lecture 2

Production Rule 3

This property of R3 involves that the language generated by
the grammar Gp is infinite, because we can create the
sentences of arbitrary length by iterative application of R3.

Test

NP -> Gp NP PNP -> Gp NP PNP PNP -> G, NP PNP PNP
PNP....

m The son of John speaks
m The son of the mother of John speaks

m The son of the daughter of the daughterof John speaks.

1A161 Syntactic Formalisms for Parsing Natural Languages

61 /476

Production Rule 3

m Last remark concerning this grammar (Gp)

This grammar can generate sentences which are ambiguous.

“lohn speaks to the daughter of Mark”

Example

A conversation between John and the daughter of Mark (R7)
A conversation about Mark between John and the daughter

(R9)

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 2

Commonly used non-terminal abbreviations

S
NP
PP
VP
XP

N

PREP
Vv
DET/ART
AD)
ADV
AUX
PN

sentence
noun phrase
prepositional phrase
verb phrase
X phrase
noun
preposition
verb
determiner / article
adjective
adverb
auxiliary verb

proper noun

“ Syntactic Formalisms for Parsing Natural Languages

62 /476

64 /476

Production Rule 3

O\

Speaks PNP

N\

NP the daughter

PNP of Mark

to

VP

the D

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 2

Parsing methods

m Classification of parsing methods

Top-down parsing vs. Bottom-up parsing

m Directional vs. non-directional parsing

1A161 Syntactic Formalisms for Parsing Natural Languages

PNP

N

of Mark

63 /476

65 /476

Top-down or bottom-up

m Top-down parsing

B The sentence from the start symbol, the production tree is
reconstructed from the top downwards

B Identify the production rules in prefix order

B Never explores a tree that cannot resultinan S

B BUT Wastes time generating trees inconsistent with the input
m Bottom-up parsing

B The sentence back to the start symbol

m |dentify the production rules in postfix order

B Never generates trees that are not grounded in the input
m BUT Wastes time generating trees that do not lead toan S

1A161 Syntactic Formalisms for Parsing Natural Languages 66 /476
Lecture 2

Top-down parsing

Simulation of the operation of parser in top-down
methods

The son speaks

S

NP VP

DET N VP

A 4. a N VP. Fail: input begin by the. We return to DET N VP
the N VP

B the daughter VP. New fail a=le N VP

the son VP
B thesonV
Bl the son speaks.

“ Syntactic Formalisms for Parsing Natural Languages 68 /476

Top-down parsing

m Top-down parsing is goal-directed.

B A top-down parser starts with a list of constituents to be built.

m It rewrites the goals in the goal list by matching one against the
LHS of the grammar rules,

B and expanding it with the RHS,
m ...attempting to match the sentence to be derived.

m If a goal can be rewritten in several ways, then there is a choice
of which rule to apply (search problem)

m Can use depth-first or breadth-first search, and goal ordering.

1A161 Syntactic Formalisms for Parsing Natural Languages 67 /476
Lecture 2

Top-down parsing

Top-down parsing example

S — NPVP
— NAME VP
— “John” VP
— “John” VERV NP
— “John” “ate” NP
— “John” “ate” DET NOUN
— “John” “ate” “an” NOUN
— “John” “ate” “an” “apple”

1A161 Syntactic Formalisms for Parsing Natural Languages 69 /476

Top-down parsing

m s 2 3 €) S
NP VP N‘P VP N‘P VP
NAME NAME
\
John
4 s (5) s (6) s
NP VP NP VP NP VP
\ N \ N \ N
NAME VERB NP NAME VERB NP NAME VERB NP
‘ ART NOUN
John John ate John ate
%] s (8) s
NP VP NP VP
\ \ N
NAME VERB NP NAME VERB NP

ART NOUN

)

ate an

John apple

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 2

Top-down parsing

Problems in top-down parsing

70 /476

m Left recursive rules... e.g. NP = NP PP... lead to infinite recursion

m Will do badly if there are many different rules for the same LHS.
Consider if there are 600 rules for S, 599 of which start with NP,
but one of which starts with a V, and the sentence starts with a

V.

m Top-down parsers do well if there is useful grammar-driven

control: search is directed by the grammar.

m Top-down is hopeless for rewriting parts of speech

(preterminals) with words (terminals).

“ Syntactic Formalisms for Parsing Natural Languages

72 /476

Top-down parsing

Algorithm of top-down left-right (LR) parsing
« is a primal current word, u input to be recognized.

tdlrp = main function

tdirp (o, u)
begin
if (e = u) then return (true) fi
A=U... . UAT
while (3A—- >) do
(B = Ugyqo 1 O) With 6 =c0u 6 = A..
if (tdlrp(u;.....ux1 °Y) = true) then return(true) fi
od

return (false)
end

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 2

Bottom-up parsing

71/ 476

m Bottom-up parsing is data-directed.

m The initial goal list of a bottom-up parser is the string to be parsed.

m If a sequence in the goal list matches the RHS of a rule, then this
sequence may be replaced by the LHS of the rule.

m Parsing is finished when the goal list contains just the start
symbol.

m If the RHS of several rules match the goal list, then there is a
choice of which rule to apply (search problem)

m Can use depth-first or breadth-first search, and goal ordering.

73 /476

1A161 Syntactic Formalisms for Parsing Natural Languages

Bottom-up parsing Bottom-up parsing

Bottom-up parsing example

’

Let’'s suppose that we have a sentence “the son eats his soup’
in the grammar Gp.

n

MJohn" llate llan" llapple"

Question — NAME “ate” "an” “apple”
_ — NAME VERV *“an” “apple”
How we can do to verify that the word belong to the language —» NAME VERV DET “apple”
generated by the grammar Gp and if the answer is positive to s NAME VERV DET NOUN
assign a tree? — NP VERV DET NOUN
— NP VERV NP
- The first idea can be given in the following algorithms: — NP VP
— S
1A161 Syntactic Formalisms for Parsing Natural Languages 74/ 476 IA161 Syntactic Formalisms for Parsing Natural Languages 75/ 476
Lecture 2 Lecture 2
Bottom-up parsing Bottom-up parsing
0 NAME @ NAME VERB @) NAME VERB

Problems with bottom-up parsing

ART

John ate an apple John ate an apple John ate an apple
@ (5) © m Unable to deal with empty categories: termination problem,
N‘P /"P\ unless rewriting empties as constituents is somehow restricted
NAME VERB NAME VERB NP NAME VERB NP (but then it’s generally incomplete)
ART NOUN ART NOUN ART NOUN
\ \ \ \ \ \ m Inefficient when there is great lexical ambiguity
Johnate an apple John ate an apple John ate an apple (grammar-driven control might help here). Conversely, it is
? ®) /s\ data-directed: it attempts to parse the words that are there.
NP VP NP VP
\ N \ N m Both Top-down (LL) and Bottom-up (LR) parsers can (and
NAME VERB NP NAME VERB NP H H
P P frequently do) do work exponential in the sentence length on
ART NOUN ART NOUN NLP problems.
John ate an apple John ate an apple

“ Syntactic Formalisms for Parsing Natural Languages 76 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 77 /] 476

Left-corner parsing Left-corner parsing

Going wrong with top-down parsing

Left-corner parsing

S -> NP VP

m Bottom-up with top-down filtering: NP -> DET N
B combine top-down processing with bottom-up processing in order NP -> PN

to avoid going wrong in the ways that we are prone to go wrong VP -> IV Vincent died.

with pure top-down and pure bottom-up techniques DET -> the

N -> robber

PN -> Vincent
IV -> died

1A161 Syntactic Formalisms for Parsing Natural Languages 78 /476
Lecture 2

Left-corner parsing

1A161 Syntactic Formalisms for Parsing Natural Languages 79 /476
Lecture 2

Left-corner parsing

Going wrong with bottom-up parsing Combining Top-down and Bottom-up Information

The plant died.

S -> NP VP DET plant died S -> NP VP
NP -> DET N NP -> DET N

VP -> IV DET TV IV Fail NP -> PN
VP -> TV NP VP -> IV : :

Vincent died.

TV -> plant DETNIV OK DET -> the

IV -> died N -> robber

DET-> the NP VP OK PN -> Vincent

N -> plant S IV -> died

“ Syntactic Formalisms for Parsing Natural Languages

80 /476

1IA161 Syntactic Formalisms for Parsing Natural Languages

81/476

Left-corner parsing

Now, let’s look at how a left-corner recognizer would proceed
to recognize Vincent died.

Input: Vincent died. Recognize an S. (Top-down prediction.)
S

vincent died

The category of the first word of the input is PN. (Bottom-up
step using a lexical rule.)

S
PN

vincent died

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 2

Left-corner parsing

82 /476

@ Input: died. Recognize a VP. (Top-down prediction.)
The category of the first word of the input is IV. (Bottom-up

step.) N
NP vP
PlN v
vinclent dizled

B Select a rule that has at its left corner: VP->IV. (Bottom-up step.)

El Match! The left hand side of the rule matches with VP, the
category we are trying to recognize.

S
NP/\ VP
Y v

vinclent diled

“ Syntactic Formalisms for Parsing Natural Languages

84 /476

Left-corner parsing

Select a rule that has at its left corner : NP-> PN. (Bottom-up
step using a phrase structure rule.)

S

NP

|
PN

|
vincent died
Select a rule that has at its left corner: S->NP VP. (Bottom-up
step.)

Match! The left hand side of the rule matches with S, the
category we are trying to recognize.

S
NP/\VP
PN

vinclent died

83 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 2

Left-corner parsing

m What is a left-corner of a rule:

m the first symbol on the right hand side. For example, NP is the left
corner of the rule S - NP VP, and IV is the left corner of the rule VP
- |V. Similarly, we can say that Vincent is the left corner of the
lexical rule PN — Vincent.

1A161 Syntactic Formalisms for Parsing Natural Languages

85/476

Left-corner parsing

m What is a left-corner of a rule:

B “Predictive” parser : it uses grammatical knowledge to predict
what should come next, given what it has found already.

B 4 operations creating new items from old:
“Shift”, “Predict”, “Match” and “Reduce”

1A161 Syntactic Formalisms for Parsing Natural Languages 86 /476
Lecture 2

Left-corner parsing

Left-corner table

Non Terminal Left-corners Grammar
S S NP time an VorN files S > NP VP
. . S > S PP

NP NP time an VorN files NP - time

VP VP VorN files VorP like NP - an arrow
NP - VorN

PP PP VorP like VP - VorN
VP - VorP NP

VorN VorN files PP — VorP NP

) VorN - files
VorP VorP like VorP = like

“ Syntactic Formalisms for Parsing Natural Languages 88 /476

Left-corner parsing

m Definition (Corner relation)

The relation £ between non-terminals A and B such that BZ A if

and only if there is a rule A — Ba, where a denotes some
sequence of grammar symbols

m Definition (Left corner relation)
The transitive and reflexive closure of / is denoted by /* ,
which is called left-corner relation

1A161 Syntactic Formalisms for Parsing Natural Languages 87 /476
Lecture 2

How to deal with ambiguity?

m Backtracking
m Try all variants subsequently.

m Determinism

m Just choose one variant and keep it (i.,e. greedy).

m Parallelism

m Try all variants in parallel.

m Underspecification

® Do not desambiguate, keep ambiguity.

1A161 Syntactic Formalisms for Parsing Natural Languages 89 /476

Summary

Syntactic Formalisms for Parsing
Natural Languages

m One view on parsing: parsing as a phrase-structure formal
grammar recognition task AleS Horak, Milos Jakubicek, Vojtéch Kovar

m Parsing approaches: top-down, bottom-up, left-corner (based on slides by Juyeon Kang)

ial6el@nlp.fi.muni.cz

Autumn 2013

1A161 Syntactic Formalisms for Parsing Natural Languages 90 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 91 /476
Lecture 3 Lecture 3

Main points

Chart parsing | m CKY algorithm
m Earley parsing

m General chart parsing methods

“ Syntactic Formalisms for Parsing Natural Languages 92 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 93 /476

Directional or non-directional

Directional top-down
Directional bottom-up

Non-directional top-down method
- firstly by Unger

Non-directional bottom-up
- by Cocke, Younger and Kasami (CYK, also CKY)

— They access the input in an seemingly arbitrary order, so
they require the entire input to be in memory before pars-
ing can start

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 3

Non-directional top-down methods
by Unger

94 /476

m Let G denote a CF grammar and w be an input sentence.

m Principle: if the input sentence w belongs to the language L(G)
it must be derivable from the start symbol S of the grammar G.

Let S be defined as: 5-5,5,..5k

The input sentence w must be obtainable from the sequence of
symbols 51 S,..Sk in a way that S; must derive a first part of the
input, S, a second part, and so on.

51 52 Sk
M\ (@ (BN
Wl---Wpl Wpi+1.-Wpa..... Wpk_1..Wpg

“ Syntactic Formalisms for Parsing Natural Languages

96 /476

Non-directional top-down methods
by Unger

m Capable of working with the entire class of CFG
m Expects as input a sentence and a CFG

m It works by searching for partitionings of the input which
match the right hand side(RHS) of production rules.

95 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 3

Non-directional bottom-up methods
as CYK

CYK is an example of chart parsing

m discovered independently by Cocke, Younger and kasami

m Consider which non-terminals can be used to derive substrings
of the input, beginning with shorter strings and moving up to
longer strings

Start with strings of length one, matching the single character in
the input strings against unit productions in the grammar

Then considers all substrings of length two, looking for production
with right-hand side elements that match the two characters of
the substring.

Continues up to longer strings

1A161 Syntactic Formalisms for Parsing Natural Languages

97 / 476

Non-directional bottom-up methods Non-directional bottom-up methods
as CYK as CYK

CYK example 2

Two example sentences and their potential analysis
He [gave[the young cat][to Bill]].

He [gave [the young cat][some milk]]. Store analyzed constituents: well formed substring table or
(passive) chart

Solutions: chart parsing

The corresponding grammar rules: Partial and complete analyses: (active) chart
VP -> Vditrans NP PPto . . .
VP -> Vyitrans NP VP In other words, instead of recalculating that the young cat is

an NP, we will store that information
Regardless of the final sentence analysis, the ditransitive verb

(gave) and its first object NP (the young cat) will have
the same analysis
-> No need to analyze it twice.

1A161 Syntactic Formalisms for Parsing Natural Languages 98 /476 Syntactic Formalisms for Parsing Natural Languages 99 /476
LOERIG pocita se (trojuhelnikovd) matice V:

CKY algorithm * sloupce = pozice ve vstupni vété

m Dynamic programming: never go backwards

e radky = délky (pod)retézcd vstupni véty
program CKY Parser;

begin e prvky = mnoziny neterminald, které pokryvaji odpovidajici ¢as
vstupni vét
forp:=1tondo V[p,1]:= {AIA—ap,eP},; P y
for g := 2 to n do prvni cyklus naplini prvni radek matice
forp:=1ton—-qg+1do ve vnitfnim cyklu se B a C vybiraji vzdy z uz hotovych poli¢ek
V[b ql = 0; matice (mensi fetézce) - tj. od 2. radku uz vibec

nepracujeme se vstupni vétou, jen s predchozimi radky

fork:=1ltoqg-1do neznamé termindly na vstupu se ignoruji

Vip,q] =
Vip,qlu
U{AJA - BCeP,BeV[p,k],CeVip+k,q—K]};
od
od
od
end

Complexity of CKY is O(n?)
“ Syntactic Formalisms for Parsing Natural Languages 100 /476

CKY example CKY example - solution
abaaba

S — AA|BB|AX|BY|a|b

. X — SA
| |nput grammar: Y - SB
A—a
B—b
S — AA|BB|AX|BY|a|b
S p - position, g - length
A—a p
B—b q 1 2 3 4 5 6
m input string w = abaaba. 1 SSA|SB|SA|SA|SB|SA
2 Y | X |SX| Y | X
3 S 0 Y S
4 X S 0
5 0 X
6 S
“ Syntactic Formalisms for Parsing Natural Languages 101 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 102 /476
nechat pocitat na tabuli studenty - poli¢ka v prvnich radcich Lecture3
Jdou rychleji CKY online demo

napsat na tabuli prdzdnou matici V a do ni doplnovat.
postup: napf. 2. radek, policko [1,2] vznikd z[1,1]a [2,1]1- 4
kombinace SS,SB,AS,AB — v gramatice je jen SB, tj. Y.
kombinace se vzdycky pocitaji ze dvou policek, které se
pohybuji ve “vécku” nad pocitanym polem.

0 v policku znamena, ze prislusny podretézec nejde
vygenerovat z zadného pravidla gramatiky.

slozitost CKY je vzdycky O(n?) na rozdil od ostatnich, kde je
jen Q(n?3) http://www.diotavelli.net/people/void/demos/cky.html
vysledek = true/false podle toho, jestli je v poli¢ku dole
koren. pro generovani strom0 z CKY tabulky bychom si
museli pamatovat v kazdém policku, z jakych poli¢ek vznikl
ktery neterminal.

1A161 Syntactic Formalisms for Parsing Natural Languages 103 /476

DCG

DCG=
Definite Clause Grammars

m Syntactic shorthand for producing parsers with Prolog clauses:
Prolog-based parsing

m Represent the input with difference lists: two lists with the first
containing the input to parse (a suffix of the entire input string)
and the second containing the string remaining after a
successful parse.

B These two lists correspond to the input and output variables of the
clauses.

m Each clause corresponds to a non-terminal in the grammar.

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 3

Earley algorithm

104 /476

Repeat until no new item can be added:

Prediction

For every state in agenda of the form (X - a ¢ Y B, j), add
(Y = v, k) to agenda for every production in the grammar with
Y on the left-hand side (Y = v).

Scanning
If a is the next symbol in the input stream, for every state in
agenda of theform (X »a *a B, j),add (X =aa * B, j) to
agenda.

Completion

For every state in agenda of the form (X = y ¢, j), find states in
agenda of the form (Y - a « XB,i)andadd (Y > a X * B, i) to
agenda.

106 / 476

“ Syntactic Formalisms for Parsing Natural Languages

Earley parser

m Jay Earley, 1968
m Strong resemblance to LR parsing but more dynamic

m Work with what are called Earley items

B Earley item is a production augmented with a marker inserted at
some point in the production’s right hand side and a number to
indicate where in the input matching of the production began.

B Earley item sets are constructed by applying three operations to
the current list of Earley item sets: scanner, predictor, completor

105 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 3

Earley algorithm

Earley’s example

A pointed rule (Marker) is a production increased by a point.

The point indicates the current state of application of the rule
The girl speaks

S->+GN GV

S->GN-GV

GN-> < GN GNP

GN->GN<*GNP

\\\

. ,,:,:;,:,—:,—:,:;,,:::J—"—'::i S ™~ \
° DET->the. ° N->girl. ° V->speaks. °

1A161 Syntactic Formalisms for Parsing Natural Languages

107 / 476

Earley algorithm

S->NPeVP V -> speaks®
S->NPeVP, NP->NPe¢NPP | N -> girle

DET->thee, NP->DET-*N

The girl speaks

108 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 3

Chart parsing

m Three basic approaches:

H top-down
m bottom-up
B head-driven

m No constraints on the CF grammar

m Chart parsers usually contain two data structures chart and
agenda, both of contain which contain edges.
m Edge is a triple [A— «,.f, i, j], where:
BijeN,0<i<j<nforninputwords
B A — af is a grammar rule

/A — BC ¢ DE, 0, 3]

b T .

1 2 3 4b5a6

0

“ Syntactic Formalisms for Parsing Natural Languages

110/ 476

Chart parsing

m The Earley parser can be modified to work bottom-up or
head-corner

m = a variety of chart parsing algorithms (Kay, 1980)

109/ 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 3

General chart parser

program Chart Parser;
begin
initialize (CHART);
initialize (AGENDA);
while (AGENDA not empty) do
E := take edge from AGENDA;
for each (edge F, which can be created by
the edge E and another edge from CHART) do

if ((F is notin AGENDA) and (F is not in CHART) and

(F is different from E)
then add F to AGENDA,;
fi;
od;
add E to CHART;
od;
end;

1A161 Syntactic Formalisms for Parsing Natural Languages

111/ 476

tato struktura programu je spole¢na vsem typlm chart
parserd. ty se navzajem liSi v:

1. jak se inicializuje

2. jak se vybira F
dé se to udélat i jinak (bez agendy), ale tato metoda je
nejCastéjsi
pro¢ se nezacykli:

1. hran je konecny pocet

2. kazdou hranu projde maximalné jednou

Example - chart parsing

Grammar:
S — CLAUSE
CLAUSE — V OPTPREP N
OPTPREP — ¢
OPTPREP — PREP
vV — jel
PREP — kolem
N — domu
N — kolem
Sentence:

"jel kolem domu” (a;=jel, as=kolem, as=domu).

“ Syntactic Formalisms for Parsing Natural Languages 113 /476

Top-down approach

Initialization:
mYpeP|p=S— «addedge [S— .o, 0, 0] to agenda.
m startup chart is empty.

Iteration - take edge E from agenda and then:

a) (fundamental rule) if E is in the form of [A— «a, J, k], then for
each edge [B— v, A 3, i, j] in the chart, create an edge [B— v A
./BI il k]

b) (closed edges) if E is in the form of [B— ~. A 33, I, j], then for each
edge [A— a,, J, k] in the chart, create an edge [B — v A .83, i, k].

c) (read terminal) if E is in the form of [A— «a.a;,0, I, j1, create an
edge [A — a @140, I, j+1].

d) (prediction) if E is in the form of [A— a, B 3, i, j] then for each
grammar rule B— v € P, create an edge [B— , 7, I, i].

1A161 Syntactic Formalisms for Parsing Natural Languages 112 /476
Lecture 3

Example - chart after top-down analysis

CLAUSE - V OPTPREP N .

S- CLAUSE .

CLAUSE -V OPTPREP . N

0PTPREP _PREP OPTPREP >LREP.
' N- kolem.
jel \

PREP - kolem.

domu

N- domu.

OPTPREP - .
CLAUSE - V OPTPREP . N

CLAUSE - .V OPTPRER

VOPTPREP N .

S— CLAUSE .

1A161 Syntactic Formalisms for Parsing Natural Languages 114 /476

. inicializace
. predikce - aplikace d)
. predikce - aplikace d)

1
2
3
4. terminal - aplikace c)
5. uzavrena hrana - aplikace a)
6
7

. vV poslednim - vynechané e-hrany (nevesly by se)

slozitost - poCet pravidel bereme jako konstantu — pak
mame podle délky vstupu n celkem n? moznych hran a v
kazdém kroku zpracujem az n hran — O(n3).

a), b) a c) jsou stejné jako u shora dold, lisi se jen v d).
vétSinou vytvari vic nadbytecnych hran.

Bottom-up approach

Initialization:

mYpeP|p=A—ecaddedges[A—~,, 0,0], [A—~. 1, 1], .., [A—.,
n, n] to agenda.

mYpeP|p=A— ajxadd edge [A— .ajq, i-1, i-1] to agenda.
m startup chart is empty.
Iteration - take an edge E from agenda and then:

a) (fundamental rule) if E is in the form of [A— a,, J, k], then for
each edge [B— v, A 3, I, j] in the chart, create an edge [B— 7 A
B, i, KI.

b) (closed edges) if E is in the form of [B— ~. A 3, I, j], then for each
edge [A— a,, j, k] in the chart, create an edge [B — v A (3, i, k].

c) (read terminal) if E is in the form of [A— «a.a;:10, i, j1, then create
an edge [A = aaj1.6, i, j+1].

d) (prediction) if E is in the form of [A— «,, I, j], then for each
grammar rule B—A~ create an edge [B— (A, i, i].

1A161 Syntactic Formalisms for Parsing Natural Languages 115 /476
Lecture 3

Head-driven chart parsing

m Rule head - any particular right-hand side non-terminal E.g. in
the rule CLAUSE — V OPTPREP N heads can be V, OPTPREP, N.

B An edge is a triple [A— aef[e7, i, j1, Where i, je N, 0 <i <j < n for
n input words, A— a3y is a grammar rule and the head is in .

m The algorithm (bottom-up approach) is very similar to the
previous simpler one. The analysis does not go left to right, but
begins on the head of each rule instead.

1A161 Syntactic Formalisms for Parsing Natural Languages 116 /476

Head-driven chart parsing

Head-driven chart parsing

Iteration - take and edge E from agenda and then:

ai)

Initialization

mYpeP|p=A—caddedges [A—,, 0, 0], [A— .., 1, 1], ...,
[A— .., N, n] to agenda.

az)
by)

mVYpcP|p=A-aap(ajisrule head) add edge [A— a.a;./3, i-1,
i] to agenda.

bs)
m startup chart is empty. C1)

C2)

d)

117 / 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 3

Generalized LR method by Tomita

Tomita’s Algorithm extends the standard LR parsing algorithm:
LR parsing is very efficient, but can only handle a small subset
of CFG

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 3

Generalized LR method by Tomita

if E is in the form of [A— .., j, K], then for each edge [B— 5.7.,A0,
i, j1 in the chart, create edge [B— B.7A.0, i, K].

[B— BA«769, k, 1] in the chart, create edge [B— .,A749, j, /1.

if E is in the form of [B— B47.A9, i, j1, then for each edge [A— (.,
J, k] in the chart, create edge [B— [¢7A40, I, K].

if E is in the form of [B— BA.7.9, K, 1], then [A— .a,, J, k] in the
chart, create edge [B— 3.,A7.9, j, /1.

if E is in the form of [A— Baj.7.9, i, j]1, then create edge
[A— Beaived, i-1, jI.

if E is in the form of [A— $.7.8:10, i, j], then create edge
[A— Bevaji1ed, i, j+11.

if E is in the form of [A— .., i, j], then for each grammar rule
B— 3 A v create edge [B— B.A.7, I, j]1 (A is rule head).

118 /476

m generalized LR parser (GLR)

m Masaru Tomita: Efficient parsing for natural language, 1986

can handle arbitrary CFG
LR efficiency is preserved

In order to keep a record of the parse-state, we maintain a stack
consisting of symbol/state pairs.

“ Syntactic Formalisms for Parsing Natural Languages

119 /476

1A161 Syntactic Formalisms for Parsing Natural Languages

m uses a standard LR table which may contain conflicts
m stack is represented as a DAG

m reduction performed before reading action

120/ 476

Tree ranking

m all chart parsing methods: parallelization as means of fighting
the ambiguity

m key concept: a polynomial data structure holding up to
exponential parse trees

m efficient algorithms to retrieve n-best trees according to some
ranking

m enable taking into account a probabilistic notion of a sentence

1A161 Syntactic Formalisms for Parsing Natural Languages 121 /476
Lecture 3

Statistical parsing

m CFG — PCFG — learned grammar
m — statistical parsing

m — how to obtain probabilities (= how to train the parser?)

“ Syntactic Formalisms for Parsing Natural Languages 123 /476

PCFG

m = Probabilistic CFG
m each rule r € R has a probability P(r) assigned

m probability of a tree t € T usually computed as
P(t) = TrecP(r)

B = tpest = argmax:(P(t))

1A161 Syntactic Formalisms for Parsing Natural Languages 122 /476
Lecture 3

Statistical NLP

m In the 90’s: a change of paradigm in (computational) linguistics
from rationalism to empiricism (corpus-based evidence)

m Simultaneously in NLP: big development of language modelling
and statistical methods based on machine learning (both
supervised and unsupervised).

m — statistical parsing

m vs. Chomsky:

It must be recognised that the notion of a ‘probability of a
sentence’ is an entirely useless one, under any interpretation of
this term (Chomsky, 1969)

[taken from Chapter 1 of Young and Bloothooft, eds, Corpus-Based Methods in Language and Speech
Processing]

1A161 Syntactic Formalisms for Parsing Natural Languages 124 /476

Summary References

B H. Bunt, M. Tamita: Recent advances in parsing technology, Kluwer,
1996

m H. Bunt, P. Merlo, & J. Nivre (eds.): Trends in Parsing Technology:
Dependency Parsing, Domain Adaptation, and Deep Parsing, Springer
Dordrecht, Heidelberg/London/New York 2010
m (Probabilistic) Context-free grammar used in parsing natural m G. Dick: Parsing techniques: a practical guide, Springer, 2008

language
B). Earley: An efficient context-free parsing algorithm. Communications

m Chart parsing methods: CKY, Earley, head-driven chart parsing of the ACM, 13(2):94-102, 1970

B M. Kay: Algorithm schemata and data structures in syntactic
processing. In Readings in natural language processing, pages 35-70.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1986

B M.-J. Nederhof: Generalized left-corner parsing. In Proceedings of the
sixth conference on European chapter of the Association for
Computational Linguistics, pages 305-314, Morristown, NJ, USA, 1993.
Association for Computational Linguistics.

1A161 Syntactic Formalisms for Parsing Natural Languages 125 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 126 /476
Lecture 4 Lecture 4

Syntactic Formalisms for Parsing
Natural Languages

Dependency Syntax and Parsing

AleS Horak, Milos Jakubicek, Vojtéch Kovar
(based on slides by Juyeon Kang)

ial6él@nlp.fi.muni.cz

Autumn 2013

“ Syntactic Formalisms for Parsing Natural Languages 127 / 476 1IA161 Syntactic Formalisms for Parsing Natural Languages 128 /476

Outline

Motivation
Dependency Syntax

Dependency Parsing

1A161 Syntactic Formalisms for Parsing Natural Languages 129 /476
Lecture 4

Motivation

another crucial syntactic phenomenon is dependency
what is a dependency? "some relation between two words”
what is the difference to phrase-structure?

what does constituency express?

what does dependency express?

“ Syntactic Formalisms for Parsing Natural Languages 131 /476

Motivation

m what you have seen as far: applying analysis of formal
languages to a natural language - creating a phrase-structure
derivation tree according to some grammar

m PS accounts for one important syntactic property:
constituency

m is that all?

m but what about: discontinuous phrases, structure sharing

1A161 Syntactic Formalisms for Parsing Natural Languages 130/476
Lecture 4

Dependency Syntax (Melchuk 1988)

A more formal account - what is a dependency? A relation!

Dependency Relation

Let W be a set of all words within a sentence, then dependency relation
— is D C W x W such that:

m D is anti-reflexive: a -~ b=a#b

m D is anti-symmetric: a - bAb—a=a=0>b,=
(anti-reflexivity) a = b= b » a

m D is anti-transitive: a = bAb—-sc=a-»cC

m optionally: D is labeled: there is a mapping /: D — L,L being
the set of labels

1IA161 Syntactic Formalisms for Parsing Natural Languages 132 /476

Dependency Representation

m a — b: adepends on b, a is a dependent b, b is the head
of a

m a dependency graph

m a dependency tree

1A161 Syntactic Formalisms for Parsing Natural Languages 133 /476
Lecture 4

Non-projectivity

m a property of a dependency tree: a sentence is non-projective
whenever drawing (projecting) a line from a node to the surface

of the tree crosses an arc
m a lot of attention has been paid to this problem

m practical implications are rather limited (in most cases
non-projectivity can be easily handled or avoided)

m hard cases:
koupil

/

Malou

S

chaloupku

“ Syntactic Formalisms for Parsing Natural Languages 135/476

Dependency Tree vs. PS Tree

sleep S
ideas furiously NP VP
Green A N \ ADV

Green ideas Ssleep furiously

1A161 Syntactic Formalisms for Parsing Natural Languages 134 /476
Lecture 4

Czech Tradition of Dependency Syntax

m a long tradition of dependency syntax in the Prague linguistic
school (Sgall, Haji¢ova, Panevova)

m Institute of Formal and Applied Linguistics at Charles University

m formalized as Functional Generative Description (FGD) of
language

m Prague Dependency Treebank (PDT)

1A161 Syntactic Formalisms for Parsing Natural Languages 136 /476

Dependencies vs. PS Dependency Parsing

m is one of the formalisms clearly better than the other one?
No.

B dependencies: ¢ account for relational phenomena, & simple
B phrase-structure: @ account for constituency, @& easy chunking

rule-based vs. statistical

transition-based (— deterministic parsing)

m can we perform transformation from one of the formalism to the
other one a vice versa? Technically yes, but. . .

m It is not a problem to convert the structure between a dependency various other approaches (ILP, PS conversion, . . .)

tree and a PS tree ...
m ... butitis a problem to transform the information included

]
]
m graph-based (— spanning trees algorithms)
]
]

very recent advances (vs. long studied PS parsing algorithms)

m = both of the formalisms are convertible but not mutually
equivalent

1A161 Syntactic Formalisms for Parsing Natural Languages 137 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 138 /476
Lecture 4 Lecture 4

Introduction to Dependency parsing Introduction to Dependency parsing

. . m D nden rsin
m Motivation ependency parsing
a. dependency-based syntactic representation seem to be useful in “Task of automatically' analiyzing the dependency structure of a
many applications of language technology: machine translation, given input sentence”

information extraction
_ _ m Dependency parser
— transparent encoding of predicate-argument structure

“Task of producing a labeled dependency structure of the kind
depicted in the follow figure, where the words of the sentence
are connected by typed dependency relations”

b. dependency grammar is better suited than phrase structure
grammar for language with free or flexible word order

— analysis of diverse languages within a common framework

c. leading to the development of accurate syntactic parsers for a PRED
number of languages

PU
— combination with machine learning from syntactically AT

PC
OB]
annotated corpora (e.g. treebank) mfsm\ ﬂﬁ ﬁ-r\

ROOT Economic news had little effect on financial markets

“ Syntactic Formalisms for Parsing Natural Languages 139 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 140/ 476

Definitions of dependency graphs and dependency Definitions of dependency graphs and dependency
parsing parsing

Dependency graphs: syntactic structures over sentences
Dependency graphs: syntactic structures over sentences

Def. 1.: A sentence is a sequence of tokens denoted by
Def. 3.: A dependency graph G = (V,A) is a labeled directed
S=wowi...Wp graph, consists of nodes, V, and arcs, A, such that for
sentence S = wow; ... w, and label set R the following holds:

V C {wow; ... wp}
Def. 2.: Let R ={r,...,rm} be a finite set of possible ACVxRxV
dependency relation types that can hold between any two if (w;,r,w;) € Athen (w;,r',w;) ¢ Aforallr #r

words in a sentence. A relation type r € R is additionally called
an arc label.

1A161 Syntactic Formalisms for Parsing Natural Languages 141 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 142 /476
Lecture 4 Lecture 4

Approach to dependency parsing Data-driven approach

a. data-driven according to the type of parsing model adopted,
it makes essential use of machine learning from linguistic data the algorithms used to learn the model from data
in order to parse new sentences the algorithms used to parse new sentences with the model

b. grammar-based .
it relies on a formal grammar, defining a formal language, so a. transition-based » ,
that it makes sense to ask whether a given input is in the start by defining a transition system, or state machine, for
language defined by the grammar or not. mapping a sentence to its dependency graph.

b. graph-based

— Data-driven have attracted the most attention in start by defining a space of candidate dependency graphs for a
recent years. sentence.

“ Syntactic Formalisms for Parsing Natural Languages 143 /476 1IA161 Syntactic Formalisms for Parsing Natural Languages 144 /476

Data-driven approach Transition-based Parsing

a. transition-based

m learning problem: induce a model for predicting the next state m Transition system consists of a set C of parser configurations
transition, given the transition history and of a set D of transitions between configurations.
B parsing problem: construct the optimal transition sequence for

the input sentence, given induced model m Main idea: a sequence of valid transitions, starting in the

initial configuration for a given sentence and ending in one of
b. graph-based several terminal configurations, defines a valid dependency

. o tree for the input sentence.
B learning problem: induce a model for assigning scores to the P

candidate dependency graphs for a sentence Dym=di(C1),...,dm(Cm)
m parsing problem: find the highest-scoring dependency graph for Y
the input sentence, given induced model

1A161 Syntactic Formalisms for Parsing Natural Languages 145 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 146 / 476
Lecture 4 Lecture 4

Transition-based Parsing Transition-based Parsing

Inference for transition-based parsing

m Definition . .
Score of Dy, factors by configuration-transition pairs (c;, d;): m Common inference strategies:
B Deterministic [Yamada and Matsumoto 2003, Nivre et al. 2004]
S(Dym) = 2;11 s(cj, d;) B Beam search [Johansson and Nugues 2006, Titov and Henderson
2007]
m Learning m Complexity given by upper bound on transition sequence length
Scoring function s(¢;, d;) for dj(¢;) € Dy/m

m Transition system
m Inference

Search for highest scoring sequence D%, given s(c;,d}) [| P_roj.ective O(n) [.Yarrjada and Matsu_moto 2093, Nivre 2003]
B Limited non-projective O(n) [Attardi 2006, Nivre 2007]

B Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

“ Syntactic Formalisms for Parsing Natural Languages 147 / 476 1A161 Syntactic Formalisms for Parsing Natural Languages 148 /476

Transition-based Parsing - Nivre algorithm

Prechody (transitions) z jedného stavu (konfigurécie) do druhého.

Konfiguracia:
- Vstupni buffer (slova vo vete zlava doprava)
- Zasobnik
- Viystupni strom (slova, zavislosti a znacky zavislosti)

Prechody:
- Reduce: uvolnenie vrchného slovo na zésobniku
- Shift: presunutie slovo z bufferu na zasobnik

- Left-arc (LARC): lava zavislost medzi dvoma hormnymi slovami v zasobniku
- Right-arc (RARC): prava zavislost medzi dvoma hornymi slovami v zasobniku

Stack

Stack #dal Petie
Buffer Oto dal Petie dvé hrusky.

Buffer dv hrusky.
Tree dal(Oto)

SHIFT RARC
Stack #0to Stack #dal
Buffer dal Petfe dvé hrusky. Buffer dvé hrusky.
Tree Tree dal(Oto, Petre)
Stack #0Oto
Stack #dal
Buffer dal Petfe dvé hrusky. 2 i
Tree Tree dal(Oto, Petie)
SHIFT SHIFT
Stack #Oto dal K | dvé
Buffer Petre dvé hrusky. Sl :,:‘;;;‘_’E
Stack # Oto dal
Buffer Petfe dvé hrusky. s pedae
T’°°LARC Tree dal(Oto, Petie)
SHIFT
Stack #dal
Buffer Petfe dvé hrusky. 2 Oy

or .
Sen) Tree dal(Oto, Petie)

Stack #dal
Buffer Petfe dvé hrusky.
Tree dal(Oto)

SHIFT
Stack #dal Petie
Buffer dv hrusky.
Tree dal(Oto)

Stack # dal dvé hrusky

Buffer .

Tree dal(Oto, Petie)
LARC

Stack #dal hrusky

Buf

Tree dal(Oto, Petie),

Stack # dal hrusky

Buffer .

Tree dal(Oto, Petfe),hrusky(dvé)
RARC

Stack #dal

Buffes

Tree dal(Oto, Petfe hrusky(dvé)

Stack #dal
Buffer .
Tree dal(Oto, Petie,hrusky(dve))

RARC
Stack #

Buffer -
Tree #(dal(Oto,Pete, hrusky(dvé)))

Stack #

Buffer “

Tree #{dal(Oto,Petre,hrusky(dv)))
SHIFT

Stack #

Buffer .

Tree #dal(Oto,Petfe,hrusky(dvé))

Stack ~ #.
Buffer
Tree #(dal(Oto,Petre,hrusky(dvé))

SHIFT
Stack #

iffer
Tree #dal(Oto,Petie,hrusky(dvé)), .)

/\

Projectivization to pseudo-projectivity:

s

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 4

Transition-based Parsing

Pred AuxP

nivyukalpodklady!

Ad Sb
AN NN

On na to nema

Pred AuxP

AuxP 1 Sb

)

penize.

On na to nema penize.

Pred

AuxP 1t Sb

e

On na to neméa penize.

“ Syntactic Formalisms for Parsing Natural Languages

Transition-based Parsing

Learning for transition-based parsing

m Typical scoring function:
B s(c;,d;) = w-f(c;,d;) where f(c;,d;) is a feature vector over
configuration ¢; and transition d; and w is a weight vector
[w; = weight of featurefi(c;, d;)]
m Transition system

B Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
E Limited non-projective O(n) [Attardi 2006, Nivre 2007]
m Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

m Problem
B Learning is local but features are based on the global history

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 4

Graph-based Parsing

150/ 476

m For a input sentence S we define a graph Gs = (Vs,As) where
Vs = {wo,ws,...,wp} and
As = {(w;,w;,)|wj,w; € Vand | € L}

m Score of a dependency tree T factors by subgraphs Gq,...,Gs:
s(T) =" ,s(G)
m Learning: Scoring function s(G;) for a subgraph G, € T

m Inference: Search for maximum spanning tree scoring sequence
T* of Gs given s(G;j)

152 /476

1A161 Syntactic Formalisms for Parsing Natural Languages

Graph-based Parsing Graph-based Parsing - Eisner algorithm

Learning graph-based models

m Typical scoring function: ‘ h BB
‘ N

B s5(G)) = w-f(G;) where f(G)) is a high-dimensional feature vector
over subgraphs and w is a weight vector
[w; = weight of feature f;(G;)]

root Ema ma mamu root Ema ma mamu

m Structured learning [McDonald et al. 2005a, Smith and
Johnson 20071:

E Learn weights that maximize the score of the correct dependency
tree for every sentence in the training set B
N e el ar S

m Problem root Ema ma mamu root Ema ma mamu root Ema ma mamu
m Learning is global (trees) but features are local (subgraphs)

1A161 Syntactic Formalisms for Parsing Natural Languages 153 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 154 /476
Lecture 4 Lecture 4

Graph-based Parsing - Chu-Liu-Edmonds algorithm Grammar-based approach

a. context-free dependency parsing

r°°t et ol exploits a mapping from dependency structures to CFG
() structure representations and reuses parsing algorithms
ma ma R originally developed for CFG — chart parsing algorithms
P] &;\3 ,// 2 4 © b. constraint-based dependency parsing
mamu Ema mamu En(a mamu B parsing viewed as a constraint satisfaction problem
B grammar defined as a set of constraints on well-formed

dependency graphs
m finding a dependency graph for a sentence that satisfies all the
constraints of the grammar (having the best score)

“ Syntactic Formalisms for Parsing Natural Languages 155 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 156 / 476

Grammar-based approach Conclusions

a. context-free dependency parsing

Advantage: Well-studied parsing algorithms such as CKY,
Earley’s algorithm can be used for dependency parsing as well.

_ need to convert dependency grammars into efficiently Dependency syntax vs. constituency (phrase-structure) syntax

parsable context-free grammars; (e.g. bilexical CFG, Eisner and Non-projectivity
Smith, 2005)

b. constraint-based dependency parsing

Graph-based and Transition-based methods

defines the problem as constraint satisfaction

B Weighted constraint dependency grammar (WCDG, Foth and
Menzel, 2005)
B Transformation-based CDG

1A161 Syntactic Formalisms for Parsing Natural Languages 157 / 476 IA161 Syntactic Formalisms for Parsing Natural Languages 158 /476
Lecture 5 Lecture 5

Syntactic Formalisms for Parsing
Natural Languages

Parsing with (L)TAG and LFG

AleS Horak, Milos Jakubicek, Vojtéch Kovar
(based on slides by Juyeon Kang)

ial6él@nlp.fi.muni.cz

Autumn 2013

“ Syntactic Formalisms for Parsing Natural Languages 159 /476 1IA161 Syntactic Formalisms for Parsing Natural Languages 160/ 476

(Lexicalized) Tree Adjoining Grammar (TAG) and
Lexical Functional Grammar (LFG)

A) Same goal

m formal system to model human speech

B model the syntactic properties of natural language

B syntactic frame work which aims to provide a computationally
precise and psychologically realistic representation of language

B) Properties

B Unfication based
m Constraint-based
B Lexicalized grammar

1A161 Syntactic Formalisms for Parsing Natural Languages 161 /476
Lecture 5
TAG’s basic component
m Representation structure: phrase-structure trees
m Finite set of elementary trees
® Two kinds of elementary trees
B Initial trees («): trees that can be substituted
B Auxiliary trees (3): trees that can be adjoined
“ Syntactic Formalisms for Parsing Natural Languages 163 /476

How to parse the sentence in TAG?
by Joshi, A. Levy, L and Takahashi, M. in 1975

1A161 Syntactic Formalisms for Parsing Natural Languages 162 /476
Lecture 5
TAG’s basic component
m The tree in (XUZ) are called elementary trees.
Initial tree: Aucxiliary tree:
7%

terminal nodes or

substitution nodes
Syntactic Formalisms for Parsing Natural Languages 164 /476

TAG’s basic component

m An initial tree (a)

m all interior nodes are labeled with non-terminal symbols

m the nodes on the frontier of initial tree are either labeled with
terminal symbols, or with non-terminal symbols marked for
substitution ({)

m An auxiliary tree (3)

m one of its frontier nodes must be marked as foot node (x)

m the foot node must be labeled with a non-terminal symbol which is

identical to the label of the root node.

m A derived tree (v)

m tree built by composition of two other trees
B the two composition operations that TAG uses adjoining and
substitution.

1A161 Syntactic Formalisms for Parsing Natural Languages 165 /476

Lecture 5

Main operations of combination (1): adjunction

Y X Y
/XX(® @
X*
PN
S
/S\ NPyl VP
NPyl VP VP vV vP
/N*" /N |
V NPl V VP* has V NP;|
(o) | ®,) | |
loved has loved
| Adjoining |

“ Syntactic Formalisms for Parsing Natural Languages 167 / 476

Lecture 5

Main operations of combination (1): adjunction

m Sentence of the language of a TAG are derived from the
composition of an a and any number of g by this operation.

m It allows to insert a complete structure into an interior node of
another complete structure.

m Three constraints possible

® Null adjunction (NA)
m Obligatory adjunction (OA)
m Selectional adjunction (SA)

1A161 Syntactic Formalisms for Parsing Natural Languages 166 / 476

Lecture 5

Main operations of combination (2): substitution

B It inserts an initial tree or a lexical tree into an elementary tree.
B One constraint possible

B Selectional substitution

S

S

. /N

NPyl VP
NPyl VP NP \% VP
/N /N~ |\
V NPl Dl N loved D/ N
w | @ | |

loved woman woman

Substitution

1A161 Syntactic Formalisms for Parsing Natural Languages 168 /476

Adjoining constraints

Example 1: selective adjunction (SA)

m One possible analysis of “send” could involve selective

adjunction:
Selective Adjunction (SA(T)): only members of a set T C A can N
be adjoined on the given node, but the adjunction ! A Pa
is not mandatory S VP VP
Null Adjunction (NA): any adjunction is disallowed for the NPGEA(B) meay VP*/\PP
given node (NA = SA(¢)) /< o~
Obligatory Adjunction (OA(T)): an auxiliary tree member of send NPJ P NP|
the set T C A must be adjoined on the given node |
for short OA = OA(A) to

send away

send <§ send to

send something

1A161 Syntactic Formalisms for Parsing Natural Languages 169 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 170/ 476
Lecture 5 Lecture 5

Example 2: obligatory adjunction Elementary trees (initial trees and auxiliary trees)

m For when you absolutely must have adjunction at a node: Yesterday a man saw Mary
aq b1 B2 /S\ /NP\
> VP Ve Ge) 1T w0 D e
Qg Oman
RN T T yesryesterday a man
NP| VPoap, 5,0 Aux VP* Aux VP* c
| | | N
V has IS NPO \L VP NP
\Y; NPy | N
seen | |
saw Mary
*: foot node/root node
has has seen |: substitution node
is is seen

“ Syntactic Formalisms for Parsing Natural Languages 171 /476 1A161 Syntactic Formalisms for Parsing Natural Languages

172 /476

Elementary trees (initial trees and auxiliary trees)

/S\

Ad S
| /\
yesterday NP VP
/\ /\
P T
a man saw N
(as) |
Mary

1A161 Syntactic Formalisms for Parsing Natural Languages 173 /476
Lecture 5

Derivation tree and derived tree o;

Tsaw S
- - /\
T o s
-7 /

Phe / yesterday NP VP

®man(1) OMary (2.2) Byest (0) # D/\N V/\N
I

! :l} m.‘sm selw |lj
: (@s) \
ag (1) a

_ _ _: substitution operation
: adjunction operation

“ Syntactic Formalisms for Parsing Natural Languages

175 /476

1A161 Syntactic Formalisms for Parsing Natural Languages

Derivation tree

m Specifies how a derived tree was constructed

m The root node is labeled by an S-type initial tree.

m Other nodes are labeled by auxiliary trees in the case of adjoining
or initial trees in the case of substitution.

B A tree address of the parent tree is associated with each node.

Asaw
-7
- /
-7 /
_ - /

Phe /
@man(1) OMary (2.2)

|

|

|

Qg (1)

1A161 Syntactic Formalisms for Parsing Natural Languages 174 /476
Lecture 5

Example 1: Harry likes peanuts passionately

Byest (0)

(en) (a2) (a3) (B1)

NP NP /S\ VP
‘ ‘ NPJ VP
Harry peanuts VP* ADV
\ NP
likes passionately
: /S\

NP

NP VP NP NP VP
S N\ = N
Harry \‘/ NP{ peanuts Harry \‘/ N‘P

likes

likes peanuts

‘ N + vpx ADV = ‘

Harn ADV
Harry \ NP v

likes peanuts passionately v NP passionately

likes peanuts

176 / 476

Derivation tree and derived tree of Harry likes
peanuts passionately

S

N

NP VP

=) Harry vp ADV

OHarry(1) Opeanuts(2.2) Bpassionately(2)
Vv NP passionately

likes peanuts

1A161 Syntactic Formalisms for Parsing Natural Languages 177 / 476
Lecture 5

Extended domain of locality (EDL): Agreement

m The lexical entry for a verb like “loves” will contain a tree like
the following:

S
/\

NPs3.sqy /VP\
V. NP|
|

loves

With EDL, we can easily state agreement between the subject
and the verb in a lexical entry

“ Syntactic Formalisms for Parsing Natural Languages

179 /476

Two important properties of TAG

m Elementary trees can be of arbitrary size, so the domain of
locality is increased

m Extended domain of locality (EDL)

m Small initial trees can have multiple adjunctions inserted within
them, so what are normally considered non-local phenomena
are treated locally

m Factoring recursion from the domain of dependency (FRD)

1A161 Syntactic Formalisms for Parsing Natural Languages 178 /476
Lecture 5
Factoring recursion from the domain of
dependency (FRD): Extraction
S S’
/\
NP;[+wh] S’ COMP S
L com <£
who INFL NP VP
| — I [
that NP VP did John Vv NP S'*
T
Bill V NP tell Sam
likes €;

The above trees for the sentence “who did John tell Sam that Bill likes ?” allow the
insertion of the auxiliary tree in between the WH-phrase and its extraction site,
resulting a long distance dependency; yet this is factored out from the domain of
locality in TAG.

1A161 Syntactic Formalisms for Parsing Natural Languages

180/ 476

Factoring recursion from the domain of
dependency (FRD): Extraction

<

wpifwh
who CO(\S
o |Nmp
dl‘d jolhn V/\NP
telll Sam/\S'
a3
Bill V/\NP
likes eli

181 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

Variations of TAG

m Synchronous TAG (STAG: Shieber and Schabes, 1990)

B A pair of TAGs characterize correspondences between languages
B Semantic interpretation, language generation and translation

m Muti-component TAG (MCTAG: Chen-Main and Joshi, 2007)
B A set of auxiliary tree can be adjoined to a given elementary tree

m Probabilistic TAG (PTAG: Resnik, 1992, Shieber, 2007)

B Associating a probability with each elementary tree
m Compute the probability of a derivation

“ Syntactic Formalisms for Parsing Natural Languages

183 /476

1A161 Syntactic Formalisms for Parsing Natural Languages

Variations of TAG

m Feature Structure Based TAG (FTAG: Joshi and Shanker, 1988)

each of the nodes of an elementary tree is associated with two
feature structures:
top & bottom Substitution

tr— v

X X
br—7
t = tut
Yy Y pr '
—tr
X Y pr X
t tutr
B S v SR
Ye—— bf
Y tf
/N——b U bf

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

XTAG Project (UPenn, since 1987 ongoing)

Substitution with features

Adjoining with features

182 /476

m A long-term project to develop a wide-coverage grammar for
English using the Lexicalized Tree-Adjoining Grammar (LTAG)
formalism

m Provides a grammar engineering platform consisting of a
parser, a grammar development interface, and a morphological
analyzer

m The project extends to variants of the formalism, and languages
other than English

184 /476

Lecture 5 Lecture 5

XTAG system Components in XTAG system

Input Sentence

' '

Morph Analyzer Tagger

m Morphological Analyzer & Morph DB: 317K inflected items
derived from over 90K stems

m POS Tagger & Lex Prob DB: Wall Street Journal-trained 3-gram
P.O.S Blender tagger with N-best POS sequences

l m Syntactic DB: over 30K entries, each consisting of:
_"""""": B Uninflected form of the word
: Tree Selection m POS
! B List of trees or tree-families associated with the word
Trees DB

m List of feature equations

Parser

Tree Grafting i m Tree DB: 1004 trees, divided into 53 tree families and 221
! individual trees

Derivation Structure

1A161 Syntactic Formalisms for Parsing Natural Languages 185 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 186 /476
Lecture 5 Lecture 5

|) 5_‘ By]
[FiTel Lookup|Mod1 fyljAdd! DeTete Clear| Done mopﬁms Search|Nodify 'Add Delete
% Look-up ** e omm | 1 ENGLISH
Key: e omay
Entry: W Exits Buffers Grammar Parsers Parsing Tools
POS: Part of Speech List A
. LN—%N substitution-adjunctions - results L
Farilies: f Tnx0dxNL Add Fanily to List| C lexicon
Tree | Ts0bAL Delete Family fron List C lex-trees
n C advs-adjs.trees
Features: #_ref]- Add Feature to List v 7
v — C prepositions.trees
- Delete Feature from List C determiners.trees
Examples: Add Example to List c conjl:uvlctimls.trees
Key: company ——Delete Example from List C modifiers.trees
Entries: company N 3sg C auxs.trees
company Vv INF Record # 10f 2 [Next|Previous C negtrees
EW C punct.trees
Key: being conpany F C Tnx0V.trees
Entries: !;g'ing N 3sg F C Tnx0Vnxl.trees
V PROG F C Tnx0VdnL.trees
F C Tnx0Vnxdnx2.trees
Key: acquired F C Tnx0Vnxlpnx2.trees
Entries: acquire V PPART WK e
acquire V PAST WK %
Interface to the XTAG system

(a) Morphology database (b) syntactic database
Interfaces to the database maintenance tools

“ Syntactic Formalisms for Parsing Natural Languages 187 / 476

Parser evaluation in XTAG Project by [Bangalore,S. et.al, 1998]
http://www.cis.upenn.edu/~xtag/

1A161 Syntactic Formalisms for Parsing Natural Languages

How to parse the sentence in LFG?
by Bresnan, J. and Kaplan, R.M. In 1982

189 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

Level of structures and their interaction in LFG

Functional

Projection architecture

semantic
structure

argument
structure

LFG's

/ focus

functional
structure

information
structure

constituent
structure

phonological
structure

“ Syntactic Formalisms for Parsing Natural Languages

191/ 476

Main representation structures

m c-structure: constituent structure

level where the surface syntactic form, including categorical
information, word order and phrasal grouping of constituents,
is encoded.

m f-structure: functional structure

internal structure of language where grammatical relations
are represented. It is largely invariable across languages.
(e.g. SUBJ, OB]J, OBL, (X)COMP, (X)AD]))

B a-structure: argument structure

They encode the number, type and semantic roles of the
arguments of a predicate.

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

Level of structures and their interaction in LFG

190/ 476

m In LFG, the parsing result is grammatically correct only if it
satisfies 2 criteria:

the grammar must be able to assign a correct c-structure

the grammar must be able to assign a correct well-formed
f-structure

1A161 Syntactic Formalisms for Parsing Natural Languages

192 /476

c-structure f-structure
C-structure S fi e Attribute-Value notation for f-structure
O
/\
/PP\ NP VP PRED 0BJ
/\
||: NIP |l| \Y; NP fa PRED ‘'with'
with N | | — T~ with! [PRED 'friend']
saw with OB
frielnds ' Dlet '}l PRED NUM] | NUM PLURAL
the girl
(o] [0)
'friend’ PLURAL

B The constituent structure represents the organization of overt phrasal syntax
M It provides the basis for phonological interpretation
B Languages are very different on the c-structure level :external factors that usually vary by language

representation of the functional structure of a sentence

f-structure match with c-structure

Properties of c-structure

B NA

it has to satisfy three formal constraints: consistency,
B c-structures are conventional phrase structure trees: Coherence' Comp|eteness

they are defined in terms of syntactic categories, terminal nodes, dominance and precedence.
B They are determined by a context free grammar that describes all possible surface strings of the language.

>

language are similar on this level: allow to explain

B LFG does not reserve constituent structure positions for affixes: all leaves are individual words. cross-linguistic properties of phenomena
w
1A161 Syntactic Formalisms for Parsing Natural Languages 193 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 194 /476
Lecture 5 Lecture 5
Examples of f-structure Constraint 1: f-structure must be consistent

Two paths in the graph structure may designate the same

1 2 element-called unification, structure-sharing
o)) [PRED 'Veit'] SUB PRED 'teacher’ Ex: John must leave
TENSE PAST DEF +
NUM SG
PRED 'send(SUBJ, OBJ, OBJ2)'
TENSE PAST PRED
SUBJ [PRED 'Sabine’] PRED 'insist (SUBJ,OBL o, OBJ)"
PCASE OBL ! ' PRED 'must'
PRED 'e-mail’ BL on must . .
0BJ2 DEF - OBLon (o]:]] PRED 'homework' SUBJ [PRED ‘john
NUM SG] DEF + ! Y XCOMP[EEEIJD leave
NUM SG 'leave'
PRED
(o]
'John'

“ Syntactic Formalisms for Parsing Natural Languages 195 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 196 / 476

Constraint 1: f-structure must be consistent

attributes are functionally unique - there may not be two arcs
with the same attribute from the same f-structure

Incosnistent f-structure

. / SuBj [PRED ‘veit' |
o suBj [PRED Tom']
OB OB PRED ‘sleep((1sUB)))"
TENSE PAST
J2 fs0 TENSE FUT
197 / 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

Constraint 2: f-structure must be coherent

All argument functions in an f-structure must be selected by
the local PRED feature.

Complete f-structure Incoherent f-structure

SuUBJ PRED 'John'] SUB]J PRED 'John'
: NUM SG : NUM SG
PERS 3 PERS 3

PRED 'faII%(%SUI/.’%J))' PRED \;f;ll_&(%suéj)w ?

[TENSE ~ PRES TENSE PRES
" [PRED 'Mary’
B
O8] NUM SG
PERS 3
199 /476

“ Syntactic Formalisms for Parsing Natural Languages

Constraint 1: f-structure must be consistent

The symbols used for atomic f-structure are distinct - it is
impossible to have two names for a single atomic f-structure

(“clash™)

*They sleeps
fi

(o]

PRED SUBJ

f2
\NUM
o [e)

‘pro’ INGULAR
excluded
/PLURAL
1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

Constraint 3: f-structure must be complete

'sleep’
PRED

198 / 476

All functions specified in the value of a PRED feature must be
present in the f-structure of that PRED.

Complete f-structure Incoherent f-structure

SuBj PRED 'John' SuB| PRED 'John'

NUM SG { NUM SG

PERS 3 s PERS 3
PRED ‘like(TsuB))(ToB))| [PRED ‘like(?suB))(ToB))"
TENSE PRES ' TENSE PRES

S PRED ‘Mary" ST
?

OBJ NUM SG '

PERS 3

200/ 476

1A161 Syntactic Formalisms for Parsing Natural Languages

Correspondence between different levels in LFG Structural correspondence

C-structure

PP m c-structures and f-structures represent different properties of an
PRED 'with' utterance
P NP PRED ‘friend’
riend . .
| | + 0B m How can these structures be associated properly to a particular
with N NUM PLURAL
| sentence?
friends m Words and their ordering carry information about the linguistic
l dependencies in thesentence
. m This is represented by the c-structure (licensed by a CFG)
JA *\\‘\\ PRED 'witht m LFG proposes simple mechanisms that maps between elements
/ N
! PR i\ PRED ‘friend’ from one structure and those of another: correspondence
) .
P, NPy___ s ,/[NUM PLURAL] functions
Wlith '1'2‘ -7 m A function allows to map c-structures to f-structures & : N — F
|
friends
1A161 Syntactic Formalisms for Parsing Natural Languages 201 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 202 /476
Lecture 5 Lecture 5
Mapping the c-structure into the f-structure Mapping mechanism: 6 steps

m Since there is no isomorphic relationship between structure and
function LFG assumes c-structure and f-structure

STEP 1: PS rules

m The mapping between c-structure and f-structure is the core of
LFG's descriptive power m Context-free phrase structure rules

m The mapping between c-structure and f-structure is located in m Annotated with functional schemata
the grammar (PS) rules

c-structure f-structure EX.: EX.: NP— NP NP Note:

S—NP VP T =~J/ T _ 1=/ is sometimes
2 PRED mouse mother node (TSUBJ)_\L T =\L daughter nodes \I’ omitted!
/\ sus) DEF + (without functional - (with (a list of) VP — V (NP))
NP VP NUM SG schemata) functional schemata) T =\L (TSU BJ)_\L (tll'ﬁ mte?ns :_Odef
=4 without functiona
/\ /\ ? PERS 3 schemata percolate
D N \ NP their entire
| | | /\ ﬁ TENSE PAST functional schema
A h d to th
the mouse admired D N PRED ‘admire (1SUB]) (TOBJ))' umncfth?erljgneodeo ‘
the elephant PRED ‘elephant’
OBJ DEF +
NUM SG
PERS 3

“ Syntactic Formalisms for Parsing Natural Languages 203 /476 1IA161 Syntactic Formalisms for Parsing Natural Languages 204 /476

Mapping mechanism: 6 steps

STEP 2: Lexicon entries

m Lexicon entries consists of three parts: representation of the
word, syntactic category, list of functional schemata

Ex.: mouse N (tPRED)='mouse’

(TPERS)=3

(TNUM)=SG
the D (tDEF)=+
admire V (tPRED)='admire ((+ SUBJ)(1 OBJ))’
-ed Aff (1TENSE)=PAST

205 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

Mapping mechanism: 6 steps

STEP 4: Co-indexation

An f-structure is assigned to each node of the c-structure

Each of these f-structures obtains a name (f; — fp)

Nodes in the c-structure and associated f-structure are co-indexed, i.e. obtain the same name
F-structure names f; — f, can be chosen freely but they may not occur twice

S fi
/\
(T suB)) =4 T={
NP fo VP f5
t=1 t=4 +=1 (1 OB)) =4
D f3 N fa V fg NP f7
| | | —
(1 DEF) = + (1 PRED) = 'mouse’ (1 PRED) = t=1 1=
the (T PRED) = 3 ‘admire ((1 SUBJ) (1 OB)))’ D fg N fg
(1 PRED) = SG (+ TENSE) = PAST [(PRED) = elephant’
AN mouse admired (1 DEF) =+ (1 PRED) = 3
p P p the (1 PRED) = SG
2[] sl 1 fal] ol] elephant
fol]
fz[] fs[] fol]

“ Syntactic Formalisms for Parsing Natural Languages

207 / 476

Mapping mechanism: 6 steps

B Like the PS rules, each node in the tree is associated with a functional schemata
B Wwith the functional schemata of the lexical entries at the leaves we obtain a complete c-structure

S
S — NP VN — T~
(T SUB)) =| t={ (T SuUB)) =4 r=J
NP VP
S
/\
(1 suB)) =) =
NP VP
=l = = (1 08)) =L
D N \ NP
| | —_—
(T DEF) = + (1 PRED) = 'mouse’ (1 PRED) = T=I T=1]
the (T PRED) =3 ‘admire ((1 SUBJ) (1 OB))) "’ D N
(1 PRED) = SG (1 TENSE) = PAST | (1 PRED) = 'elephant’
mouse admired (1 DEF) =+ (1 PRED) = 3
the (1 PRED) = SG
elephant

206 / 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

Mapping mechanism: 6 steps

STEP 5: Metavariable biding

B All meta-variables are replaced by the names of the f-structure representation

S f S fi
/\ /\
(tsuB) = 1=l — (RSUB)) = f =f
NP fo VP f5 NP fao VP f5
S fi
/\
(f1SUBJ) = f2 fi =fs
NP fa VP f5
fo =f3 fi =" fs = fg (f50B)) = f7
D f3 N fy vV fe NP f7
| | —
(f3DEF) = + (f4PRED) = 'mouse’ (fsPRED) = fr =fg fr = fg
the (f4,PRED) = 3 ‘admire ((fsSUB))(f;0B)))" D fy N fo
(f4PRED) = SG (f6 TENSE) = PAST | (foPRED) = 'elephant’
mouse admired (fsDEF) =+ (f,PRED) = 3
the (foPRED) = SG
elephant
1A161 Syntactic Formalisms for Parsing Natural Languages 208 /476

Mapping mechanism: 6 steps Mapping mechanism: 6 steps

. STEP 6: From f-description to f-structure
m We introduce at this point the notion of functional equation e

m By listing all functional equations from a c-structure we obtain) (ML @if M FETmEiE (2 [925Ee O B 1H e e

the functional description, called f-description m For the derivation of f-structures from the f-description it is
important that no information is lost and that no information will
_ be added
;flfl;BJ) - E;ﬁs_éﬁg%):_apirg.:_re ((feSUB))(fs0B))) m The derivation is done by the application of the functional
2 — 13 6 - ti

(f;DEF) = (f;0B)) = f; el

fo=1y fr =1 ’

(f4PRED) — 'mouse’ (ngEF) S List of functional equations

(f,PERS) = 3 fr = f, a) simple equations of the form: f,A) =B

(f4NUM) = SG (foPRED) = "elephant’ b) f-equations of the form: f, = fy,

fi =15 (foPERS) =3 c) f-equations of the form: f,A) =1y,

fs =fs (fbNUM) = SG

Table : £d - — Functional equations with the same name are grouped into
able - -description an f-structure of the same name

1A161 Syntactic Formalisms for Parsing Natural Languages 209 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 210/ 476
Lecture 5 Lecture 5

Application of the functional equation (a): (f,A) =B

(s Application of the functional equation (c): (frbA) =1m
(f4PERS)=3
(Finum)=s
E;;;]PRED) ‘admire ((f¢SUBJ)(f508B)))' (fl SUBJ) :f2
;TENSE)=PAST = =
(rotms (f>08)= fr
(f9PRED)="ELEPHANT' f [DEF +] f
(foPERS)=3 . TDEF + .] ’ ‘ .
s L [memns Fo|onED admie ({fo5US1)(o O%)))
fa ZERMSSEZO e £ :EESE ;;d;¥wre (’(,/},SUBJ)(V/‘UOBJ‘)}‘V i | fb
SuBj) f. . :
i i ; : unification) '/T) PRED 'mouse
Application of the functional equation (b): f, = fo| PERS 3
Ja DEF + unification
f2 = fﬁi
fa=fa /\
n i 5 f2 PRED 'mouse' OBJ f7 PRED 'elephant' f? PRED 'elephant’
ff _ ff f,| PERS 3 4| PERS 3 PERS 3
L=h % NUM SG 8 NUM SG f8/ NOm s6
R e, i {(fo5UB1)(fo %) J4| pEF + fo| DEF + ol DEF +

fo

/o[PRED 'mouse’
/ PERS 3
NUM SG
4| DEF +

/'T PRED 'elephant’
/—"/. PERS 3
unification ~ **|NUM SG

fo| DEF +

“ Syntactic Formalisms for Parsing Natural Languages 211/ 476 1A161 Syntactic Formalisms for Parsing Natural Languages 212 /476

‘—\/ {DEF+

unification

Ir
s

DEF +

Lecture 5

STEP 1: lexical entries

made: V. (+PRED)='MAKE (SUBJ,0BJ,XCOMP)’
(+XCOMP SUBJ)=(10BJ)
(+TENSE)=SIMPLEPAST
gave: V. (1PRED)='GIVE(SUBJ,0BJ,0BJ2)’
(1 TENSE)=SIMPLEPAST
had said: V. (1PRED)='SAY(SUBJ,0BJ)’
(4 TENSE)=PASTPERFECT
the: D (1PRED)="THE’
(+SPECTYPE)=DEF
about: P (+PRED)="ABOUT(OBJ)’
which: N (+PRED)='PRO’
(+PRONTYPE)=REL
John’s: D (+PRED)='JOHN’
(+SPECTYPE)=POSS
many: D (+PRED)='MANY’
(+SPECTYPE)=QUANT
things: N (tPRED)='THINGS’
(+NUM)=PLURAL

STEP 2: c-structure

|

NP VP
(tsug) =L 1=

A N
b- NP H{ T=¢|T=¢}

a. S —

v o Y NP G XCOVMP) -
T=+ (TSUBD =L} xcOMP PRED) = 'be (SUB, PREDIC)’
6 v NP
: (1 PREDIC) =/

1A161 Syntactic Formalisms for Parsing Natural Languages 213 /476

Lecture 6

Syntactic Formalisms for Parsing
Natural Languages

AleS Horak, Milos Jakubicek, Vojtéch Kovar
(based on slides by Juyeon Kang)

ial6él@nlp.fi.muni.cz

Autumn 2013

“ Syntactic Formalisms for Parsing Natural Languages 215/ 476

STEP 3: f-structure

'John made Peter angry"

Sh
/\
(TS’E‘JS}Q ¢ T\/Pﬁ h=fa=1Ffs
| (f15UB))=f>
1= t=L (toB)=) (fxcomp)=| fa=1s
N/ Vfs NP Vis (f:08)=f¢
‘ ‘ ‘ ‘ fo = fr
John made T=] (TPREDIC) =] (f4XCOMP) = fg
Nfr NPf (f1XCOMP PREDIC) ='be (SUBJ, PRED)'
| ‘ (fsPREDIC) =fo
Peter =4 fo = fio

STEP 4: unification

PRED 'make (SUBJ, XCOMP) *
TENSE simplepast
suB) fo, f3[PRED ‘John']

f1, fa, f5/0B) fo. f7[PRED 'Peter']
XCOMP fg|SuB|

PREDIC fo, fio[PRED ‘angry']

1A161 Syntactic Formalisms for Parsing Natural Languages 214 /476

Lecture 6

Parsing with CCG

S

Syntactic Formalisms for Parsing Natural Languages 216 /476

Outline

A-B categorial system
Lambek calculus

Extended Categorial Grammar

B Variation based on Lambek calculus
B Abstract Categorial Grammar, Categorial Type Logic
m Variation based on Combinatory Logic

B Combinatory Categorial Grammar (CCG)
B Multi-modal Combinatory Categorial Grammar

1A161 Syntactic Formalisms for Parsing Natural Languages 217 / 476
Lecture 6

Main idea in CG and application operation

m All natural language consists of operators and of operands.

B Operator (functor) and operand (argument)
m Application: (operator(operand))
m Categorial type: typed operator and operand

“ Syntactic Formalisms for Parsing Natural Languages 219 /476

m Categorial Grammar is

B : a lexicalized theory of grammar along with other theories of
grammar such as HPSG, TAG, LFG, ...

m : linguistically and computationally attractive
— language invariant combination rules, high efficient parsing

1A161 Syntactic Formalisms for Parsing Natural Languages 218 /476
Lecture 6

1. A-B categorial system

The product of the directional adaptation by Bar-Hillel (1953) of Ajdukiewicz's
calculus of syntactic connection (Ajdukiewicz, 1935)

Definition 1 (AB categories).

Given A, a finite set of atomic categories, the set of
categories C is the smallest set such that:

mACC
m(X\Y),X/eCifX,)YeC

1IA161 Syntactic Formalisms for Parsing Natural Languages 220/ 476

1. A-B categorial system

m Categories (type): primitive categories and derivative
categories

E Primitive: S for sentence, N for nominal phrase
m Derivative: S/N,N/N,(S\N)/N,NN/N;S/S ...
m Forward(>) and backward (<) functional application

a.X/YY=X (>)
b. Y X\Y = X (<)

1A161 Syntactic Formalisms for Parsing Natural Languages 221 /476
Lecture 6

1. A-B categorial system

Applicative tree of Brazil defeated Germany

@ ((defeated(Germany))Brazil)

@ defeated (Germany)

defeated Germany Brazil
operator operand operand

“ Syntactic Formalisms for Parsing Natural Languages 223 /476

1. A-B categorial system

m Calculus on types in CG are analogue to algebraic
operations

X/yy—x = 3/5x5=3

Brazil defeated Germany
n (s\n)/n n
>
s\n
s

IA161 Syntactic Formalisms for Parsing Natural Languages 222 /476
Lecture 6

Limitation of AB system

Relative construction

a. team, that t; defeated Germany
b. team; that Brazil defeated t;

a’. that (n\n)/(s\n) team [that]\p)/(s\n) [defeated Germanyls,
b’. that (n\n)/(s/n) team [that]\p)/(s/ny [Brazil defeated]s,,

team that Brazil defeated

(n\n)/(s/n) n (s\m)/n

~—(?)

Many others complex phenomena
m Coordination, object extraction, phrasal verbs, ...

AB’s generative power is too weak - context-free

1A161 Syntactic Formalisms for Parsing Natural Languages 224 /476

2. Lambek calculus (Lambek, 1958, 1961)

the calculus of syntactic types
still context-free

The axioms of Lambek calculus are the following:

X = X

(xy)z — X(yz) — (xy)z (the axioms 1, 2 with inference rules, 3, 4, 5)
If xy — zthen x — z/y, if xy — zthen y — x\z;

If x — z/y then xy — z, if y — x\z then xy — z;

If x - yandy — zthen x — z.

225 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 6

3. Combinatory Categorial Grammar

m Developed originally by M. Steedman (1988, 1990, 2000, ...)

m Combinatory Categorial Grammar (CCG) is a grammar
formalism equivalent to Tree Adjoining Grammar, i.e.

m itis lexicalized

m it is parsable in polynomial time (See Vijay-Shanker and Weir,
1990)

m it can capture cross-serial dependencies

m Just like TAG, CCG is used for grammar writing

m CCG is especially suitable for statistical parsing

“ Syntactic Formalisms for Parsing Natural Languages

227 /476

2. Lambek calculus (Lambek, 1958, 1961)

The rules obtained from the previous axioms are the
following:

Hypothesis: if x and y are types, then x/y and y\x are types.

Application rules : (x/y)y — x,y(y\Xx) — x
ex: Poor John works.

Associativity rule : (x\y)/z <> x\(y/2)
ex: John likes Jane.

Composition rules : (x/y)(y/z) — x/z,(x\y)(y\Z) — x\z
ex: He likes him.

s/(n\s)n\s/n
Type-raising rules : x — y/(x/y),x = (y/Xx)\y

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 6

3. Combinatory Categorial Grammar

226 /476

m several of the combinators which Curry and Feys (1958)
use to define the)\-calculus and applicative systems in
general are of considerable syntactic interest (Steedman, 1988)

m The relationships of these combinators to terms of the
M-calculus are defined by the following equivalences
(Steedman, 2000Db):

a.Bfg = M\x.f(gx) ... composition
b.Tx = \.fx ... type-raising
c.Sfg = Ax.fx(gx) ... substitution

1A161 Syntactic Formalisms for Parsing Natural Languages

228 /476

CCG categories

m Atomic categories: S, N, NP, PP, TV...

m Complex categories are built recursively from atomic categories

and slashes

m Example complex categories for verbs:

B intransitive verb: S\NP walked
B transitive verb: (S\NP)/NP respected
m ditransitive verb: ((S\NP)/NP)/NP gave

229 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 6

The typed lexicon item

m The CCG lexicon assigns categories to words, i.e. it specifies
which categories a word can have.

m Furthermore, the lexicon specifies the semantic counterpart of
the syntactic rules, e.g.:

love (S\NP)/NPXx\y.loves'xy

m Combinatory rules determine what happens with the category
and the semantics on combination

“ Syntactic Formalisms for Parsing Natural Languages

231/476

1A161 Syntactic Formalisms for Parsing Natural Languages

Lexical categories in CCG

m An elementary syntactic structure - a lexical category - is
assigned to each word in a sentence, eg:

walked: S\NP ‘give me an NP to my left and | return a sentence’

m Think of the lexical category for a verb as a function: NP is the
argument, S the result, and the slash indicates the direction of
the argument

230/ 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 6

The typed lexicon item

m Attribution of types to lexical items: examples

Predicate

ex: is as an identificator of nominal
as an operator of predication from a nominal — (S\NP)/NP
from an adjective —— (S\NP)/(N/N)
——= (S\NP)/(S\NP)\(S\NP)
from a preposition—— (S\NP)/((S\NP)\(S\NP)/NP)

ex: verbs § unary (S\NP)

from an adverb

binary (S\NP)/NP
ternary (S\\NP)/NP/NP

232 /476

The typed lexicon item

Adverb of verb

(S\NP)/(S\NP)
(S\NP)/NP/(S\NP) /NP

Adverbs

Adverb of proposition

Adverb of adjective

(N/N)/(N/N)
(NAN)/(N\N)

Adverb of adverb

(S\NP)/(S\NP)/(S\NP)/(S\NP)
(S\NP)/NP/(S\NP)/NP/(S\NP) /NP/(S\NP) /NP

s/s

Adverb: operator of determination of type (X/X)

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 6

Dictionary of typed words

233 /476

Syntactic categories

Syntactic types

Lexical entries

Nom.
Completed nom.
Pron.

Adj.

Adv.

Vb
Prep.

Relative

N
NP
NP
(N/N), (N\N)
(N/N)/(N/N),
(S\NP)\(S\NP)...
(S\NP), (S\NP)/NP...
(S\NP)\(S\NP)/NP
(NP\NP)/NP...
(S\NP)/S...

Olivia, apple...
an apple, the school
She, he...
pretty woman,...
very delicious,...

run, give...
run in the park,
book of John, ...
| believe that...

“ Syntactic Formalisms for Parsing Natural Languages

235 /476

The typed lexicon item

Preposition

Prep. 1: Prep. 2:
constructor of adverbial phrase constructor of adjectival phrase
(S\NP)\(S\NP)/NP (N\N)/NP
(5/5)/NP (N\N)/N
(5/5)/N

Preposition: constructor of determination of type (X/X)

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 6

Combinatorial categorial rules

234 /476

m Functional application (>, <)

m Functional composition (> B, < B)
m Type-raising (< T,>T)

m Distribution (< S,>S)

m Coordination (< ®,> ®)

236 /476

1A161 Syntactic Formalisms for Parsing Natural Languages

Functional application (FA) Derivation in CCG

X/Y . f Y:a= X:fa(forward functional application, >) m The combinatorial rule used in each derivation step is usually

Y:a X\Y:f= X:fa(backward functional application, <) indicated on the right of the derivation line

m Note especially what happens with the semantic information

m Combine a function with its argument: John loves Mary
NPSS\NP NP : John' (S\NP)/NP : Ax\y.loves’xy NP : Mary’
>

Mary sleeps — (sleeps (Mary)) S\NP : \y.loves’Mary'y

NP (S\NP)/NP NP S : loves’Mary’John’

S\NP — (likes (Mary))
S
John likes Mary — ((likes (Mary))John)

m Direction of the slash indicates position of the argument with
respect to the function

1A161 Syntactic Formalisms for Parsing Natural Languages 237 / 476 IA161 Syntactic Formalisms for Parsing Natural Languages 238 /476
Lecture 6 Lecture 6
Function composition (FC) Function composition (FC)
XC;)er\?rah;/eZd'forw:?rd ():(c;?p;::crl?(? (>(B>nB)) Generalized backward composition (< Bn)
' 9 =B X NZ:f X\Y:g=pX\Z:xfgx) (<B)
m Functional composition composes two complex categories (two
fU nctions): The referee gave Unsal a card and Rivaldo the ball
(s/np)/np np np (X\X)/X np np
<T <T <T <T
(S\NP)/PP (PP/NP) =B (S\NP)/NP (s/np)\((s/np)/np) s\(s/np) (s/np)\((s/np)/np) s\(s/np)
<B <B
S/(S\NP) (S5\NP)/NP =g S/NP S\((s/np) /P S\((s/np) /np
<D >
s\ ((s/np)/np
birds like bugs . <
NP (S\NP)/NP NP
S/(S\NP) ”
> B
S/NP
>
S

240/ 476

“ Syntactic Formalisms for Parsing Natural Languages 239 /476 1A161 Syntactic Formalisms for Parsing Natural Languages

Type-raising (T)

Forward type-raising (> T)
X:a=T/(T\X) : Xf.fa (>T)

m Type-raising turns an argument into a function (e.qg. for case
assignment)

NP = S/(S\NP) (nominative)

birds fly

birds fly
NP S\NP NP S\NP
—< —>T
S S/(S5\NP)
S

m This must be used e.q. in the case of WH-questions

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 6

Example of functional composition (> B) and
type-raising (T)

241 /476

Backward type-raising (< T)
X:a=T\(T/X): \.fa (<T)

m Type-raising turns an argument into a function (e.qg. for case
assignment)

NP = (S\NP)\((S\NP)/NP) (accusative)

The referee gave

Unsal a card and Rivaldo the ball
(s/np)/np np np (X\X) /X np np

<T <T <T <T

(s/np)\((s/np)/np) s\(s/np) (s/npP)\((s/np)/np) s\(s/np)
<B B

s\((s/np)/np) s\((s/np)/np)
<P >
s\((s/np)/np)
<

“ Syntactic Formalisms for Parsing Natural Languages

243 /476

1A161 Syntactic Formalisms for Parsing Natural Languages

Example of functional composition (> B) and
type-raising (T)

team that I
o (\n/s/op) e
s/(s\np)

s/s

thought that Brazil
(s\np)/s /s np

_— >

s/(s\np)
>B >B
s/np
s/np

>B

defeated
(s\np)/np
T

>B

s/np

n\n

242 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 6

Coordination (&)

X CONJ X =9 X (Coordination(®))

give a dog a bone and a flower

<T <T <T <T
(VP/NP)/NP (VP/NP)\((VP/NP)/NP) VP\(VP/NP) conj (VP/NP)\ ((VP/NP)/NP) VP\(VP/NP)
<B

<B
VP\ ((VP/NP)/NP) VP\ ((VP/NP)/NP)

< & >

a policeman

VP\ ((VP/NP) /NP)

VP

244 /476

Substitution (S)

Forward substitution (> S)
X/V))ZY]Z=¢ X/Z
m Application to parasitic gap such as the following:

a. team that | persuaded every detractor of to
support

team that | persuaded every detractor of to support
(mM\n)/(s/np) np ((s\np)/(s\np))/np np/np (s\np)/np

>T >B

s/(s\np) ((s\np)/(s\np))/np
>S5
(s\np)/np
>B
s/np
>
n\n
245 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 6

Limit on possible rules

m The Principle of Adjacency:

Combinatory rules may only apply to entities which are
linguistically realised and adjacent.

m The Principle of Directional Consistency:

All syntactic combinatory rules must be consistent with the
directionality of the principal function. ex: X\Y Y #> X

m The Principle of Directional Inheritance:

If the category that results from the application of a
combinatory rule is a function category, then the slash
defining directionality for a given argument in that category
will be the same as the one defining directionality for the
corresponding arguments in the input functions. ex:
X/YY]Z#>X\Z.

“ Syntactic Formalisms for Parsing Natural Languages

247/ 476

Substitution (S)

Backward crossed substitution (< Sx)
Y/Z (X\Y)/Z=5X/Z
m Application to parasitic gap such as the following:

a. John watched without enjoying the game between
Germany and Paraguay.
b. game that John watched without enjoying

game that John [watched]s\pp)/np [Without enjoying]((s\npy\ (s\np))/np

game that John watched without enjoying
(mM\n)/(s/np) np - (s\np)/np ((S\np)\(S\nP))/ng
s/(s\np) (s\np)/np s
s/(s\np)
>
n\n

246 / 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 6

Semantic in CCG

m CCG offers a syntax-semantics interface.

m The lexical categories are augmented with an explicit
identification of their semantic interpretation and the rules of
functional application are accordingly expanded with an explicit
semantics.

m Every syntactic category and rule has a semantic counterpart.

m The lexicon is used to pair words with syntactic categories and
semantic interpretations:

love (S\NP)/NP = X\x\y.loves'xy

248 /476

1A161 Syntactic Formalisms for Parsing Natural Languages

Semantic in CCG

m The semantic interpretation of all combinatory rules is fully
determined by the Principle of Type Transparency:

B Categories: All syntactic categories reflect the semantic type of

the associated logical form.
m Rules: All syntactic combinatory rules are type-transparent

versions of one of a small number of semantic operations over
functions including application, composition, and type-raising.

1A161 Syntactic Formalisms for Parsing Natural Languages 249 / 476
Lecture 6

Semantic in CCG

CCG with semantics : Mary will copy and file without
reading these articles

Mary will copy and file without reading these articles
S/VP VP/NP CONJ VP/NP (VP\VP)/VPing VPing/NP NP
:p.Mary’ Ap.will' :copy’ :and’ file’ Ap.\g.without’'pq :re%d’ :articles’

(VP\VP)/VPing
:AX.Ag.without'(read’ x)q
<S
VP/NP
:Ax.without'(read’x)(file’x)
P >

VP/NP
:ax.and’(without’(read’x)(file’x))(copy’x)

VP
:and’(without’)(read’articles’)(file’articles’))(copy’articles’)

S
:will’(and’(without’)(read’articles’)(file’articles’))(copy’articles’))mary’

“ Syntactic Formalisms for Parsing Natural Languages 251/ 476

Semantic in CCG

proved := (S\NPss) /NP : Ax\y.prove'xy

m the semantic type of the reduction is the same as its syntactic
type, here functional application.

Marcel proved completeness

NP3sm : marcel’ (S\NPss)/NP : D\x\y.prove’xy NP : completeness’
>

S\NPss : \y.prove’completeness’y

S : prove’completeness’marcel’

IA161 Syntactic Formalisms for Parsing Natural Languages 250/ 476
Lecture 6

Parsing a sentence in CCG

Step 1: tokenization
Step 2: tagging the concatenated lexicon
Step 3:

m calculate on types attributed to the concatenated lexicons by
applying the adequate combinatorial rules

m eliminate the applied combinators (we will see how to do on next
week)

Step 4: finding the parsing results presented in the form of an
operator/operand structure (predicate -argument structure)

1A161 Syntactic Formalisms for Parsing Natural Languages 252 /476

Parsing a sentence in CCG Parsing a sentence in CCG
Example: | requested and would prefer musicals STEP 3 : categorial calculus
STEP 1 : tokenization/lemmatization — ex) POS Tagger, a. apply the type-raising rules Subject Type-raising (> T)

tokenizer, lemmatizer NP:a=T/(T\NP) : Ta

. b. apply the functional composition rules —— Forward Composition: (> B
a. l-requested-and-would-prefer-musicals PPy P XYt Y29 o XIZ e

b. I-request-ed-and-would-prefer-musical-s
c. apply the coordination rules —— Coordination: (< & >)

STEP 2 : tagging the concatenated expressions — ex) Xconj X = X
Supertagger, Inventory of typed words I requested- and- would- prefer musicals
/ NP 1/ NP (S\NP)/NP CONJ (S\NP)/VP VP/NP NP
2/S/(S\NP) (S\NP)/NP CONJ (S\NP)/VP VP/NP NP (>T)
f\izuesmd (S\é\lgMNP 3/S/(S\NP) (S\NP)/NP _CON] (S\NP)/NP NP (>B)
Would S\NP) VP 4/S/(S\NP) (S\NP)/NP NP (> @)
p OLfl (\\/P I)\I/P 5/5/(S\NP) (S\NP)/NP NP (>B)
refer / 6/ S/NP N ()
musicals NP 7/ s
1A161 Syntactic Formalisms for Parsing Natural Languages 253 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 254 /476
Lecture 6 Lecture 6
Parsing a sentence in CCG Variation of CCG : Multi-modal CCG (Baldridge,
2002)
STEP 4 : semantic representation (predicate-argument
structure) m Modalized CCG system
m Combination of Categorial Type Logic (CTL, Morrill, 1994;
Moortgat, 1997) into the CCG (Steedman, 2000)
| requested and would prefer musicals m Rules restrictions by introducing the modalities: *, x, e, ¢
17" .request’ :and” :will" :prefer’ . musicals’ m Modalized functional composition rules
2/ AEFI
e R
N .an rerer reques
/ X y' will’(p x)y)(request’xy. (< B) X\oY Y\oZ = X\oZ
5/ 2 xAy.and’(will’(prefer’x)y)(request’xy)
6/ :\y.and’(would’(prefer’ musicals’)y)(request’ musicals’ y)
7/S: and’(will’(prefer’ musicals’) i’)(request’ musicals’ i’) m Invite you to read the paper “Multi-Modal CCG” of (Baldridge

and M.Kruijff, 2003)

“ Syntactic Formalisms for Parsing Natural Languages 255 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 256 /476

The positions of several formalisms on the
Chomsky hierarchy

Turing complete

Syntactic Formalisms for Parsing
Natural Languages

Unrestricted CTL

Context-sensitive

CTL with
Non-expanding Rules

Ales Horak, Milos Jakubicek, Vojtéch Kovar
(based on slides by Juyeon Kang)

Multiset-CCG

Middly
context-sensitive

ial6el@nlp.fi.muni.cz
CCG
TAG

Context-free

AB
CTL Base Logic
Lambek Calculus

1A161 Syntactic Formalisms for Parsing Natural Languages 257 / 476 IA161 Syntactic Formalisms for Parsing Natural Languages 258 /476
Lecture 7 Lecture 7

Overview on syntactic formalisms

Autumn 2013

m Unification based grammars
Parsing with HPSG | ® : HPSG, LFG, TAG, UCG...

m Dependency based grammars

m : Tesniére model; Meaning-Text of Mel’'Cuk...

“ Syntactic Formalisms for Parsing Natural Languages 259 / 476 1A161 Syntactic Formalisms for Parsing Natural Languages 260 /476

Heritage of HPSG Key points of HPSG

B GPSG - Generalized Phrase-Structure Grammar (Gerald Gazdar) m Monostratal theory without derivation

B linear order/hierarchy order feature structure for representation of
information

B Sharing a given information without movement and
transformation

B One representation for different levels of analysis : phonology,

m LFG syntax, semantic

) , m Constraint-based analysis
B Lexicon contains

B Lexical rules
= CG m Unification of given information

B Subcategorization . _
m Computational formalism

1A161 Syntactic Formalisms for Parsing Natural Languages 261 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 262 /476
Lecture 7 Lecture 7

Syntactic representation in HPSG Features

m Basic element of structure in HPSG

Typed feature structure m Should be appropriate to a type

m Most frequently used features

PHON
SYNSEM
LOC/NON-LOC
CAT
CONTEXT
CONTENT
HEAD

suJ

COMPS
S-ARG

m consists of a couple “attribute/value”

m the types are organized into a hierarchy

B ex: sign>phrase, case>nominative

m feature structure is a directed acyclic graph (DAG), with arcs
representing features going between values

“ Syntactic Formalisms for Parsing Natural Languages 263 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 264 /476

Types

m Types are attributed to features -> typed features
B sign

B synsem
B head

B phrase
B content
B Index
[I

m Each of these feature values is itself a complex object:

B The type sign has the features PHON and SYNSEM appropriate for
it

B The feature SYNSEM has a value of type synsem

B This type itself has relevant features (LOCAL and NONLOCAL)

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

Types

265 /476

m In attribute-value matrix (AVM) form, here is the skeleton of an

object:
[sign]
PHON list(PHON)
synsem
SYNSEM LOCAL local
NON-LOCAL non-local
| DTRS list(SIGN) |

“ Syntactic Formalisms for Parsing Natural Languages

267 / 476

Types

m sign is the basic type in HPSG used to describe lexical items (of
type word) and phrases (of type phrase).

m All signs carry the following two features:

m PHON encodes the phonological representation of the sign
B SYNSEM syntax and semantics

PHON
SYNSEM

list (phon—string)]

sign synsem

266 / 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

Structure of signs in HPSG

m synsem introduces the features LOCAL and NONLOCAL

m local introduces CATEGORY (CAT), CONTENT (CONT) and
CONTEXT(CONX)

m non-local will be discussed in connection with unbounded
dependencies

m category includes the syntactic category and the grammatical
argument of the word/phrase

1A161 Syntactic Formalisms for Parsing Natural Languages

268 /476

Lecture 7

Description of an object in HPSG:

lexical sign and phrasal sign

PHON list(phon-string)
sing SYNSEM synsem
word phrase DTRS constituent- struc

CATEGORY category HEAD head
NON-LOCAL non-local CONTEXT context category

LOCAL local] { CONTENT content VAL
local

synsem {

1A161 Syntactic Formalisms for Parsing Natural Languages 269 /476
Lecture 7

Sub-categorization of head type

vform

finite infinitive base gerund present-part. past-part. passive-part.
case pform
nominative accusative of to

“ Syntactic Formalisms for Parsing Natural Languages 271/ 476

CATEGORY

m CATEGORY encode the sign’s syntactic category

B Given via the feature [HEAD head], where head is the supertype
for noun, verb, adjective, preposition, determiner, marker; each of
these types selects a particular set of head features

B Given via the feature [VALENCE ...], possible to combine the
signs with the other signs to a larger phrases

SUBJECT list (synsem)
SPECIFIER list (synsem)
YNSEM|L AT|VALENCE
SYNSEM|LOC|CAT| ¢ valencel COMPLEMENTS list(synsem)

1A161 Syntactic Formalisms for Parsing Natural Languages 270/ 476
Lecture 7

Description of an object in HPSG

PHON list(phon-string)
sing SYNSEM synsem

word phrase [DTRS constituent- struc

CATEGORY category HEAD head
{ LOCAL local } CONTENT content VAL
synsem NON-LOCAL non-local local CONTEXT context category

1A161 Syntactic Formalisms for Parsing Natural Languages 272 /476

Semantic representation: CONTENT Sub-categorization of content type
(& CONTEXT) feature content

m Semantic interpretation of the sign is given as the value to
CONTENT

B nominal-object: an individual/entity (or a set of them),
associated with a referring index, bearing agreement features -
INDEX, RESTR

m Parameterized-state-of-affairs (psoa): a partial situate; an
event relation along with role names for identifying the

psoa

INDEX index
RESTR set(psoa)

nom-obj

GIVER

ref

DRINKER ref

DRUNKEN ref

} THINKER ref }
think:

THOUGHT psoa

participants of the event—- BACKGR Jauah: | LAUGHER ref] |GIVEN ref
g GIFT ref| drink¢

m quantifier: some, all, every, a, the, . .. give*

m Note: many of these have been reformulated by “Minimal

RecurS|0n Sema ntICS (M RS) WhICh a I IOWS underspeClﬁcatlon Of Semantic restriction on the index are represented as a value of RESTR. RESTR is an attribute of a nominal object.

quantiﬁer scopes. The value of RESTR is a set of psoa. In turn, RESTR has the attribute of REL whose value can either be referential
indices or psoas.

1A161 Syntactic Formalisms for Parsing Natural Languages 273 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 274 /476
Lecture 7 Lecture 7

Sub-categorization of index type Lexical input of She
PHON <she>
PERSON person} [-)]
NUMBER number
HEAD CASE nom
index GENDER gender nount i
CATEGORY susj ()]
VALENCE COMPS)
val-SPR 0]
referential there it catt E
SYNSEM LOCAL PER 3rd
INDEX NUM sing
CONTENT
fIGEND fem]
person number pgender re
/\ /’\ pprolRESTR {}
first second third singular plural masculine feminine neuter CONTEXT BACKGR RELN female
psoa INST
contextt
word\ synseml localt

“ Syntactic Formalisms for Parsing Natural Languages 275/ 476 1A161 Syntactic Formalisms for Parsing Natural Languages 276 / 476

Lecture 7

Lexical input of She

PHON Iist(phon-string)}
SIQHS}M Syn<
word [DTRS constituent-struc]
phrase

m Each phrase has a DTRS attribute which has a
constituent-structure value

m This DTRS value corresponds to what we view in a tree as
daughters (with additional grammatical role information, e.q.
adjunct, complement, etc.)

m By distinguishing different kinds of constituent-structures, we
can define different kinds of constructions in a language

1A161 Syntactic Formalisms for Parsing Natural Languages 277 / 476
Lecture 7
head-subject/complement structure
HEAD

SYNSEM | LOC | CAT SUB]J ()
COMPS ()

DTRS head-subj-struc

S H
HEAD
PHON <she> SYNSEM | LOC | CAT SUBJ ()}
SYNSEM COMPS ()
DTRS head-comps-struc
H
C
PHON <drinks>
HEAD [VFORM fin) [PHON :vine>]
ver SYNSEM
SYNSEM | LOC | CAT AL SUB <>
comps ([2])
“ Syntactic Formalisms for Parsing Natural Languages 279 / 476

Structure of phrase

constituent-struc

[HEAD—DTR sign] [CONJ-DTRS set(sign)
head-strucl coord.strucCOMUNCTION-DTR word

COMPS-DTR <sign
—COMP-DTR <>

head-subj-struc
SUBJ-DTR <sign>
—/SUBJ-DTR <>
head-spr-struc

SPR-DTR <sign>
—/SPR-DTR <>

head-mark-struc
MARK-DTR sign
—I MARK-DTR <>

head-filler-struc

head-comps-struc }
>

FILL-DTR sign

—IFILL-DTR <>
head-adj-struc
ADJ-DTR
—ADJ-DTR

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

Questions! (1)

m How exactly did the last example work?

sign
<>

278 /476

B drink has head information specifying that it is a finite verb and

subcategories for a subject and an object

B The head information gets percolated up (the HEAD feature principle)
B The valence information gets “checked off” as one moves up in the

tree (the VALENCE principle)

m Such principles are treated as linguistic universals in HPSG

1A161 Syntactic Formalisms for Parsing Natural Languages

280 /476

HEAD-feature principle

m The value of the HEAD feature of any headed phrase is
token-identical with the HEAD value of the head daughter

[DTRS head-struc] —

phrase

281 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

Questions! (2)

m Note that agreement is handled neatly, simply by the fact that
the SYNSEM values of a word’s daughters are token-identical to
the items on the VALENCE lists

m How exactly do we decide on a syntactic structure?

m Why the subject is checked off at a higher point in the tree?

283 /476

“ Syntactic Formalisms for Parsing Natural Languages

SYNSEM | LOC | CAT | HEAD
DTRS | HEAD-DTR | SYNSEM | LOC | CAT | HEAD

VALENCE principle

m /n a headed phrase, for each valence feature F, the F value of
the head daughter is the concatenation of the phrase’s F value
with the list of F-DTR’s SYNSEM (Pollard and Sag, 1994:348)

phrase

SS | LOC | CAT | VAL [SUBJ al

COMPS [b]

HEAD-DTR ({ss | LOC | CAT | VAL

(fsn)

comporr (fssi2] .. [sstn])

SuB) [1] @ [al >
COMPS [2],...,[n] & [b]

DTRS |syg)-DTR

m Note: Valence Principle constrains the way in which
information is shared between phrases and their head
daughters.

B F can be any one of SUBJ, COMPS, SPR
m When the F-DTR is empty, the F valence feature of the head
daughter will be copied to the mother phrase

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

Immediate Dominance (ID) Principle

282 /476

m Every headed phrase must satisfy exactly one of the ID
schemata

B The exact inventory of valid ID schemata is language specific
m We will introduce a set of ID schemata for English

284 /476

1A161 Syntactic Formalisms for Parsing Natural Languages

Lecture 7

Immediate Dominance (ID) Schemata head-adjunct structure

AT | VAL | COMPS .
ﬁDTRS head-struc] —. PelLoclcAT] | : desubi] (head-subject) PHON <red,boook>
phrase DTRS ead-subj-struc s LoC | CAT HEAD
\V [DTRS head—comps—struc] (head-complement) VAL | SPR <>
| DTRS head-adj-struc
C | CAT | VAL | COMPS
\V SS|Loc ! ! 0 (head-specifier)
IDTRS head-spr-struc
- A H
head- ker-st
\V [DTRS cad-markerstruc (head-marker)
| MARK-DTR | SS | LOC | CAT | HEAD marker]
head-adj-struc
s . PHON <red> PHON <book>
\/ |DTRS |ADJ-DTR | SS | LOC | CAT | HEAD | MOD (head-adjunct) PRD - HEAD noun
- SS | LOC | CAT | HEAD
HEAD-DTR | SS | | | » MOD] SS LOC | CAT

285 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

Semantic principle Example 2

Kim likes bagels

m The CONTENT value of a headed phrase is token identical to the ‘word
CONTENT value of the semantic head daughter PHON (Kim)

m The semantic head daughter is identified as
m The ADJ-DTR in a head-adjunct phrase

B The HEAD-DTR in other headed phrases CAT
SYNSEM | LOC | CONT
[DTRS head—struc]—> head-adj-struc (head-adjunct) SYNSEM |LOCAL
phrase DTRS ADJ-DTR| SYNSEM | LOC | CONT
SYNSEM | LOC | CONT
V —head-adj-struc (non-head-adjunct) CONT

DTRS

HEAD-DTR | SYNSEM | LOC | CONT

“ Syntactic Formalisms for Parsing Natural Languages

287 / 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

VAL | SPR < [LOC | CAT | HEAD det]>

1A161 Syntactic Formalisms for Parsing Natural Languages

286 /476
HEAD noun

ARG 3sg
SUB}J ()
SPR ()
COMPS)
ARG-ST O
INDEX
KEY

named_rel
RELS < INST >

ARG Kim

288 /476

Example 2

Kim likes(1) bagels

Example 2
Kim likes bagels

word
PHON

SYNSEM

word
PHON ({likes)

SYNSEM

(bagels)

LOCAL

[synsem

LOCAL

local

CAT

INDEX
KEY
CONT

CAT

CONT

category

HEAD [FORM ﬁn]

comps <

synsem

local

C
LOCAL

[CONT [INDEX @

synsem

flocal
category
HEAD noun
CAT |suB) ()
SPR 0
comps ()

LOCAL

ICONT [
aresT (@,)
content

6

RELS <E]

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

ARG1
ARG2

ontent

INDEX }

like_rel
EVENT

category

noun
ARG 3sg

HEAD [

susl ()
SPR 0
COMPS ()
content

t overlap_rel
© |ARG1
ARG2 now

289 /476

noun
HEAD AGR pl
SuB) 0
SPR (EN
COMPS ()
ARG-ST (([3] DetP)) |
INDEX
KEY
bagel rel
RELS < 2 - >
LNST]

“ Syntactic Formalisms for Parsing Natural Languages

291 /476

Example 2

Kim likes(2) bagels

word
PHON (likes)
SYNSEM |LOCAL

HEAD verb
FORM fin
sug) ([T)
CAT IsPR ()
comps ([2])
ARG-ST ([T] NP[3sg][4],[2INP[5])
[INDEX [3]
like rel
E’VTE—'\: i t-overlap_rel
CONT e < . |ARG1
ARG1 [4]
ARG ARG2 now

1A161 Syntactic Formalisms for Parsing Natural Languages 290/ 476
Lecture 7
Example 2
m head-complement schema
head-comps-ph
PHON CleDb®. oM
HEAD
SUB
CAT)
SPR
SYNSEM LOCAL COMPS ()
INDEX
CONT |KEY
RELs [FlOM D .. ®[Z
PHON
HEAD
suB)
CAT |cpr
HEAD-DTR SYNSEM [LOCAL COMPS sts([E])
INDEX
CONT |KEY
RELS
PHON Dl PHON [N]
NON-HEAD-DTRS <SYNSEM [RELS], . |SYNSEM [RELS]>
1A161 Syntactic Formalisms for Parsing Natural Languages 292 /476

Example 2

m head-complement schema headed by /ikes

head-comps-ph
PHON

[Cebl

SYNSEM LOCAL

PHON

HEAD-DTR SYNSEM

PHON

NON-HEAD-DTRS <

Example 2

m head-subject schema

head-subj-ph
PHON

SYNSEM

HEAD-DTR

NON-HEAD-DTRS <

HEAD
car U8
SPR
comPs
INDEX
CONT |KEY
RELS
[A(likes)
CAT
LOCAL
CONT
ol

SYNSEM @[LOCAL | CONT | RELS E’]

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

0
E®E
verb
HEAD [FORM ﬁn]
SUBJ (NP[3sg]|z|)
SPR B O
COMPS <|§|N>
INDEX
KEY)
25‘;\: il t-overlap_rel
ARG1 >
RELS < ARGL [4]l" |aRG2 Ew
ARG2

)

293 /476
@
HEAD
CAT sUB) 0
SPR
LOCAL COMPS [D]
INDEX [2]
CONT |[KEY [3]
RELS [E] D
PHON
verb
HEAD [FORM ﬁn]
car |SUB) (4]
SYNSEM |LOCAL SPR
COMPS [D] ()
INDEX
CONT [KEY
RELS
PHON
SYNSEM [4] [LOCAL| CONT | RELS]>
295 /476

“ Syntactic Formalisms for Parsing Natural Languages

Example 2

Kim likes bagels

-head—comps—ph
PHON (likes, bagels)
HEAD verb
FORM fin
SUB 3
CAT J (NP sg]IEP
SPR ()
SYNSEM LOCAL ;COMPS 0
INDEX
KEY
CONT like_rel
EVENT toverlap_rel| [paqe) rel
RELS < ARG1 ARG1 INST
ARG?2 ARG2 now] "’
1A161 Syntactic Formalisms for Parsing Natural Languages 294 /476
Lecture 7
Example 2

m head-subject schema headed by likes bagels

head-subj-ph
PHON D
HEAD
car |2® U
SPR
SYNSEM LOCAL comps [B]
INDEX
CONT |KEY
RELS [E] @
PHON [A] (likes, bagels)
verb
HEAD [FORM fin]
car [8U® (@ Bsdz)
HEAD-DTR SPR
SYNSEM |LOCAL comps [B]0)
INDEX [2]
KEY
CONT like_rel
EVENT t-overlap_rel| [page) rel
RELS E(ARG1 ARG1 INST |§|>
ARG2 @ " LARG2 now] "’
PHON
NON-HEAD-DTRS <SYNSEM [LOCAL| CONT | RELS]>

Syntactic Formalisms for Parsing Natural Languages

296 / 476

o)

Example 2

Kim likes bagels

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

Compare HPSG to CFG

[head-subj-ph
PHON (_Kim, likes, bagels)
verb
HEAD
FORM fin
CAT |SUBJ O
SPR ()
COMPS ()
SYNSEM LOCAL r
INDEX
KEY
CONT named_rel
RELS <|NST
ARG Kim

like_rel
EVENT

. |ARG1 [5]].

ARG2 [6]

ARG1
ARG2

t-overlap_rel

now

bagel_rel

, |INST

297 / 476

@)

m Each sign or HPSG rule consists of SYNSEM, DTRS, and PHON

parts.

m The SYNSEM part specifies how the syntax and semantics of the

phrase (or word) are constrained. It corresponds roughly to the

left-hand side of CFG rules but contains much more information.

m The DTRS part specifies the constituents that make up the
phrase (if it is a phrase). (Each of these constituents is a
complete sign.) This corresponds to part of the information on

the right-hand side of CFG rules, but not to ordering

information.

m The PHON part specifies the ordering of the constituents in

DTRS (where this is constrained) and the pronunciation of these

(if this is specifiable). This corresponds to the the ordering

information on the right-hand side of CFG rules.

“ Syntactic Formalisms for Parsing Natural Languages

299 /476

Example 2

Tree of Kim likes bagels

head-subj-ph

HEAD verb
SUBJ ()
SPR ()
coMPs ()
word head-comps-ph
HEAD noun HEAD verb
Sugj O SuBJ (@
SPR () SPR ()
COMPS () COMPS O
Kim word word
HEAD verb HEAD noun
SUBJ () SUBJ ()
SPR () SPR ()
comps ([2)) COMPS ()
likes bagels

1A161 Syntactic Formalisms for Parsing Natural Languages 298 /476
Lecture 7

Simulation of Bottom-up parsing algorithm in HPSG

m Unify input lexical-signs with lexical-signs in the lexicon.
m Until no more such unifications are possible

m Unify instantiated signs with the daughters of instantiated phrasal
signs or with phrasal signs in the grammar.

if
all instantiated signs but one saturated one (S) are associated with daughters of
other instantiated signs and the PHON value of all instantiated signs is
completely specified
return the complete S structure
else fail.

1A161 Syntactic Formalisms for Parsing Natural Languages 300/ 476

Example 2: processing of unification

Kim walks

The words in the sentence specify only their pronunciations
and their positions.

1 [PHON ((01 kim))]
2 [PHON ((12 walks))]

STEP 1: Unifying 1 with the lexical entry for Kim gives

3 [PHON ((0 1 kim))
SYNSEM [CAT [HEAD noun SUBCAT ()]
CONTENT [INDEX 1 [PER 3rd NUM singl]
CONTEXT [BACKGR {[RELN naming BEARER 1 NAME Kim]}1]]

We now know something about the meaning of Kim (it refers to somebody named
Kim) and something about its syntactic properties (it is third person singular).

Example 2: processing of unification

1 [PHON ((01 kim))]
2 [PHON ((12 walks))]

STEP 2: Unifying 2 with the lexical entry for walks gives

4 [PHON ((1 2 walks))
SYNSEM [CAT [HEAD [VFORM fin]
SUBCAT ([CAT [HEAD noun SUBCAT ()]
CONTENT [INDEX 1 [PER 3rd NUM singl1])]
CONTENT [RELN walk WALKER 11]1]

We know that walks refers to walking and that it requires a subject noun phrase which
refers to the walker but doesn’t require any object.

v

1A161 Syntactic Formalisms for Parsing Natural Languages 301/476 IA161 Syntactic Formalisms for Parsing Natural Languages 302 /476
Lecture 7 Lecture 7
Example 2: processing of unification Example 2: processing of unification
[SYNSEM [CAT [HEAD 1 SUBCAT (2)] 6 [SYNSEM [CAT [HEAD 1 SUBCAT ()]
CORUENT] CONTENT 4]
DTRS [HEAD-DTR [SYNSEM [CAT [HEAD 1 SUBCAT (2)] DTRS [HEAD-DTR [SYNSEM [CAT [HEAD 1 SUBCAT (2)]
CONTENT 4] CONTENT 4]
PHON 3] PHON 3]
SUBJ-DTRS ()] SUBJ-DTRS ([PHON 5

PHON 3]

STEP 3: Unifying 4 with the HEAD-DTR of this rule gives

5 [SYNSEM [CAT [HEAD [VFORM fin]
SUBCAT 2([CAT [HEAD noun SUBCAT ()]
CONTENT [INDEX 1 [PER 3rd NUM sing]l])]
CONTENT 4[RELN walk WALKER 1]]

DTRS [HEAD-DTR [SYNSEM [CAT [HEAD [VFORM fin] SUBCAT (2)]]
CONTENT [4]
PHON 3((1 2 walks))]

SUBJ-DTRS ()]
PHON 3((1 2 walks))]

Now we have a VP with the transitive verb walks as its head (and only constituent).

“ Syntactic Formalisms for Parsing Natural Languages

303 /476

SYNSEM 21])]

PHON (5 < 3)]

STEP 4: Unifying 5 with the HEAD-DTR of this rule gives

7 [SYNSEM [CAT [HEAD 1[VFORM fin SUBCAT ()]]
CONTENT 4[RELN walk WALKER]]
DTRS [HEAD-DTR [SYNSEM [CAT [HEAD 1[VFORM fin]
SUBCAT 2([CAT [HEAD noun SUBCAT ()]
CONTENT [INDEX
[PER 3rd NUM sing]11)]
CONTENT [RELN walk WALKER 41]]
PHON 3((1 2 walks))]
SUBJ-DTRS ([PHON 5
SYNSEM 2[CAT [HEAD noun SUBCAT ()]
CONTENT [INDEX 111)1
PHON (5 < 3((1 2 walks)))]

1IA161 Syntactic Formalisms for Parsing Natural Languages

304 /476

Example 2: processing of unification

STEP 5: Unifying 3 with the SUBJ-DTR of 7 gives

8 [SYNSEM [CAT [HEAD [VFORM fin SUBCAT ()1]
CONTENT [RELN walk WALKER [PER 3rd NUM singl]]
DTRS [HEAD-DTR [SYNSEM [CAT [HEAD [VFORM fin]
SUBCAT ([CAT [HEAD noun SUBCAT ()]

CONTENT [INDEX [PER 3rd NUM sing]]])

CONTENT [RELN walk WALKER [PER 3rd NUM sing]l]
PHON ((1 2 walks))]
SUBJ-DTRS ([PHON ((0 1 kim))
SYNSEM [CAT [HEAD noun SUBCAT ()]
CONTENT [INDEX [PER 3rd NUM sing]1])]
PHON ((0 1 kim) (1 2 walks))]

Now the subject of the sentence is pronounceable, and we're done.

305 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

Example 3: unbounded dependency construction

m An unbounded dependency construction

m involves constituents with different functions
m involves constituents of different categories
m is in principle unbounded

m Two kind of unbounded dependency constructions (UDCs)

m Strong UDCs
m Weak UDCs

“ Syntactic Formalisms for Parsing Natural Languages

307 / 476

Phenomena covered by HPSG parsers

Case assignment

Word order : scrambling

Long distance dependency
Coordination

Scope of adverbs and negation
Topic drop

Agreement

Relative clause

306 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

Strong UDCs

m An overt constituent occurs in a non-argument position:

m Topicalization:
Kim;, Sandy loves_ ;.
B Wh-questions:
I wonder [who; Sandy loves_|].
m Wh-relative clauses:
This is the politician [who; Sandy loves_;].
m It -clefts:
It is Kim i [who; Sandy loves_].
B Pseudoclefts:
[What; Sandy loves_;] is Kim,.

1A161 Syntactic Formalisms for Parsing Natural Languages

308 /476

Weak UDCs

m No overt constituent in a non-argument position:

B Purpose infinitive (for -to clauses):
| bought it; for Sandy to eat_;.
® Tough movement:
Sandyi; is hard to love_ ;.
B Relative clause without overt relative pronoun:
This is [the politician]; [Sandy loves_;].
B It-clefts without overt relative pronoun:
It is Kim; [Sandy loves_;].

1A161 Syntactic Formalisms for Parsing Natural Languages 309 /476
Lecture 7

The bottom of a UDC: Traces

word
PHON ()
LOCAL
SYNSEM
NONLoC [NHERITED | SLASH {ap

TO-BIND | SLASH {}

m phonologically null, but structure-shares local and slash values

“ Syntactic Formalisms for Parsing Natural Languages 311/476

Using the feature SLASH

m To account for UDCs, we will use the feature SLASH (so-named
because it comes from notation like S/NP to mean an S missing
an NP)

m This is a non-local feature which originates with a trace, gets
passed up the tree, and is finally bound by a filler

1A161 Syntactic Formalisms for Parsing Natural Languages 310/ 476
Lecture 7

Traces

B Because the local value of a trace is structure-shared with the
slash value, constraints on the trace will be constraints on the
filler.

m For example, hates specifies that its object be accusative, and this
case information is local
B So, the trace has [synsem|local|cat|head|case acc] as part of its
entry, and thus the filler will also have to be accusative
*He;/Him;, John likes_;

1A161 Syntactic Formalisms for Parsing Natural Languages 312 /476

The middle of a UDC: The Nonlocal Feature The middle of a UDC: The Nonlocal Feature
Principle (NFP) Principle (NFP)
m For each NON-LOCAL feature, the inherited value on the mother m The top of a UDC: filler-head structures

is the union of the inherited values on the daughter minus the

to-bind value on the head daughter. Example for a structure licensed by the filler-head schema

m In other words, the slash information (which is part of inherited) [MLOC [INHERITED | SLaSH (]
percolates “up” the tree F H
m This allows the all the local information of a trace to “move up” [LOCAL] NLOC [INHERITED|SLASH {}}
TO-BIND | SLASH {I

to the filler

1A161 Syntactic Formalisms for Parsing Natural Languages 313 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 314 /476
Lecture 7 Lecture 7

The middle of a UDC: The Nonlocal Feature Example 4
Principle (NFP)

m The analysis of the UDC example
John reads a new book

John; we know She likes_;

s
[ioc | mewren | suas ()] PHON (reads)
I ; VFORM fin
[Lo:;:] boc [MHERTED st H]] HEAD |AUX bool
Iy
INV [
2 B AT verb boo
. o etz] SYNSEM | LOC SUB) (NP5 o) Fom-PR0)
e .
g ¢ VAL COMPS (NP[acc,-PRD])
| LOC | CAT | SUBCAT ()
Kknow woc E;‘l::{g;l) | SLASH ()] SPR <>
-E | SLASH {}
.
: CONT Ko
] L0C | CAT | SUBCAT (T]) word read

INHERITED | SLASH
NLOC | BI]
[TO-BIND | SLASH ~ {}

H c
v NP
LOC | CAT | SUBCAT (T} [2])
NONLOC | TO-BIND | SLASH {}

likes

“ Syntactic Formalisms for Parsing Natural Languages 315 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 316 /476

Loc
INLOC | INHER | SLASH {[3])

Example 4

John reads a N€W book

PHON (new)
PRD
HEAD noun
CAT \aL|sPR ()
CAT | HEAD |mop |LocAL cat
conT |INDEX
SYNSEM | LOCAL nom-ob;[RESTR

synseml local

INDEX

CONT RELN new
RESTR 2
s {ARG v

nom-obj

adj

word local

1A161 Syntactic Formalisms for Parsing Natural Languages 317 /476
Lecture 7
Example 4
John reads @ NeEW book
PHON (a new book)
CAT HEAD
SS | LOC VAL | SPR ()
CONT
PHON {(new book)
PHON (a)
HEAD
@ LOC | CAT | HEAD det SS LOC ¢
S5 SPEC VAL | SPR ([6])
CONT
“ Syntactic Formalisms for Parsing Natural Languages 319 /476

Example 4

John reads a NeEW book

m Note: apply head-adjunct schema

PHON (new book)

HEAD 1

CAT

Ss|Loc VAL | SPR ()
CONT

PHON (book)
car |HEAD
PHON (new) VALl PR (D
CAT | HEAD | MOD L bER 3rd
SS | LOC INDEX [4] ss Loc INDEX [4][NUM sg }
CONT RELN new CONT GEN neut
RESTR U
nom-obj ARG [a] RESTR[5] RELN book
J) INST
|nom-objt
1A161 Syntactic Formalisms for Parsing Natural Languages 318 /476
Lecture 7
Example 4

John reads a new book

PHON (reads a new book)

HEAD
ssjtoc |“AT |vaL SUBl (BINPEY 3, 5g) [nom.-PRDD]
coMPS ()
CONT [9]
H C

PHON (reads) PHON (a new book)
HEAD [VFORM ﬁn] noun
verb HEAD |CASE acc
CAT PRD
Ss| LoC s () ss [Qd |Loc AT suBl ()
COMPS NP [acc,-PRD])
‘g E[VAL COMPS ()
READER SPR ()
CONT [9] |
roaq| READEE CONT | INDEX

1A161 Syntactic Formalisms for Parsing Natural Languages

320/476

Example 4

john reads a new book - completed analysis
Syntactic Formalisms for Parsing

PHON (John reads a new book)

po @ Natural Languages
SS | LOC CAT VAL COMPS ()}
I SPR ()
CONT [9]

Ales Horak, Milos Jakubicek, Vojtéch Kovar

PHON (John) (based on slides by Juyeon Kang)
HeaD [ChSE nom] ial6l@nlp.fi.muni.cz
CAT n PHON (reads a new book)
sugl ()
VAL COMPS <>] HEAD
SsPR () CAT [SUBJ ()]
ss Loc d sS | LOC COMPs ()
INDEX [T it 2;] cont g |REACER [1]} Autumn 2013
CONT GEND masc rond READEE E
RESTR NAME John}
. naming' INST E
Lnom-objt

1A161 Syntactic Formalisms for Parsing Natural Languages 321/476 IA161 Syntactic Formalisms for Parsing Natural Languages 322 /476
Lecture 7 Lecture 7

Outline Applicative system

m CL (Curry & Feys, 1958, 1972) as an applicative system

CL is an applicative system because the basic unique operation
in CL is the application of an operator to an operand

Applicative system

Combinators

]
]

m Combinators vs. A-expressions
m Application to natural language parsing Operator
|

Combinators used in CCG

Operator(Operand)

“ Syntactic Formalisms for Parsing Natural Languages 323 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 324 /476

Combinators

CL defines general operators, called Combinators.

m Each combinator composes between them the
elementary combinators and defines the
complexe combinators.

m Certains combinators are considered as the basic combinators
to define the other combinators.

325/476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

B-reductions

The combinators are associated with the g-reductions in a
canonical form:

B-reduction relation between X and Y
X >3 Y

Y was obtained from X by a g-reduction

“ Syntactic Formalisms for Parsing Natural Languages

327 /476

Lecture 7

Elementary combinators

I =gef AX.X (identificator)
K =gef AX.AY.X (cancellator)
W =4t AXAY.XYY (duplicator)

C =gef AXA\Y.\z.XxZy (permutator)
B =gef MXAY.AZX(Y2Z) (compositor)
S =gef AXAY.AZ.xZ(y2) (substitution)
O =ger AXAY.AZAU.X(yU)(zu) (distribution)
U =gef AXAYAZAUX(YZ)(yu) (distribution)

326 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

B-reductions

Ix >3 X
Kxy >3 X
Wxy >3 Xyy
Cxyz > xzy

Bxyz >3 x(yz)
Sxyz >3 xz(yz)
dxyzu >z Xx(yu)(zu)
Uxyzu >g X(yz)(yu)

Each combinator is an operator which has a certain number of arguments (operands);

sequences of the arguments which follow the comnator are called “the scope of
combinator”.

J

1IA161 Syntactic Formalisms for Parsing Natural Languages

328 /476

Introduction and elimination rules of combinators

B-reductions

Intuitive interpretations of the elementary combinators are
given by the associated g-reductions.

m The combinator | expresses the identity.

Introduction and elimination rules of combinators can be
presented in the style of Gentzen (natural deduction).

m The combinator K expresses the constant function.

m The combinator W expresses the diagonalisation or the
duplication of an argument.

Elim. Rules Intro. Rules

m The combinator C expresses the conversion, that is, the If f
permutation of two arguments of an binary operator. --- [e-l] --- [i-1
m The combinator B expresses the functional composition of two f If
operators.
m The combinator S expresses the functional composition and the Kfx f .
duplication of argument. ~ ==--- [e-K] ---- [i-K]
f Kfx

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

The combinator & expresses the composition in parallel of
operators acting on the common data.

The combinator ¥ expresses the composition by distribution.

329 /476

Introduction and elimination rules of combinators

Elim. Rules

Intro. Rules

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

330/476

Combinators vs.)\ -expressions

The most important difference between the CL and A-calculus

Cfx xf is the use of the bounded variables.
--- [e-C] .-~ [iC] N .
f Cfx Every combinator is an)\ -expression.
Bfxy f(xy)
_____ [e-B] ---- [i-B] Bfg = \x.f(gx)
f(xy) Bfxy Tx = \M.fx
Sfg = \x.fx(gx
dfxyz f(x2)(yz) g (9x)
----- [e-®] ---- [i-®]
f(xz)(yz) dfxyz

“ Syntactic Formalisms for Parsing Natural Languages

331/476

1A161 Syntactic Formalisms for Parsing Natural Languages

332/476

Application to natural language parsing

John is brilliant

m The predicate is brilliant is an operator which operate on the
operand John to construct the final proposition.

m The applicative representation associated to this analysis is the
following:

(is-brillant)john

m We define the operator John* as being constructed from the
lexicon John by

[John* = C* John].

John* (is-brillant)
[John* = C* John]
C*John (is-brillant)

/B ic_brillan hn)
1A161 Syntactic Formalisms for Parsing Natural Languages 333 /476

Lecture 7

Passivisation

Consider the following sentences
a. The man has been killed.
b. One has killed him.

— Invariant of meaning
— Relation between two sentences

:a. unary passive predicate (has-been-killed)

:b. active transitive predicate (have-killed)

“ Syntactic Formalisms for Parsing Natural Languages 335/476

Application to natural language parsing

John is brilliant in A\-term
Operator John* by \-expression

[John* = Ax.x (John’)]

John*(\x.is-brilliant’(x))
[John* = Ax.x (John’)]
(Ax.x(John"))(A\x.is-brilliant’(x))
(Ax.is-brilliant’(x))(John’)
is-brillinat’(John’)

1A161 Syntactic Formalisms for Parsing Natural Languages 334 /476
Lecture 7

Definition of the operator of passivisation 'PASS’

[PASS=B Y C= Yo (]

where B and C are the combinator of composition and of
conversion and where)_ is the existential quantificator which,
by applying to a binary predicate, transforms it into the unary
predicate.

1A161 Syntactic Formalisms for Parsing Natural Languages 336 /476

Definition of the operator of passivisation ’PASS’ Definition of the operator of passivisation 'PASS’

[PASS=B S C =3 0C])

We establish the paraphrastic relation between the passive
sentence with expressed agent and its active counterpart:

1/ has-been-killed (the-man) hypothesis
2/ [has-been-killed=PASS(has killed)] passive lexical predicate
3/ PASS (has-killed)(the-man) repl.2.,1.
4/ [PASS =B C] definition of 'PASS’ The man has been killed by the enemy
5/ B> C (has-killed)(the-man) repl.4.,3.
6/ > (C(has-killed))(the-man) [e-B] v
7/ (C(has-killed)) x (the-man) [e->"] The enemy has killed the man
8/ (has-killed)(the-main) x [e-C]
9/ [xin the agentive subject position = one] definition of ‘'one’
10/ (has-killed)(the-man)one repl.9.,8., normal form
arsing Natural Languages 337 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 338 /476
Lecture 7 Lecture 7
Definition of the operator of passivisation 'PASS’ Definition of the operator of passivisation 'PASS’
Relation between give-to and receive-from J

1/ (receive-from) zy x
2/ C((receive-from) z) x y
z gives y to x 3/ BC(receive-from)z xy
4/ C(BC(receive-from)) zxy

! 5/ C(C(BC(receive-from)) x) y z
x receives'y from X 6/ BC(C(BC(receive-from))) X y z
7/ [give-to=BC(C(BC(receive-from)))]
8/ give-toxyz

The lexical predicate “give-to” has a predicate converse associated to “receive-from";J

[receive-from z y x = give-to x y z]

“ Syntactic Formalisms for Parsing Natural Languages 339/476 1A161 Syntactic Formalisms for Parsing Natural Languages 340/ 476

Combinators used in CCG

Motivation of applying the combinators

to natural language parsing

m Linguistic: complex phenomena of natural language applicable

to the various languages

m Informatics: left to right parsing (LR)
ex: reduce the spurious-ambiguity

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 7

Parsing a sentence in CCG

Example: | requested and would prefer musicals
STEP 1 : tokenization/lemmatization — ex) POS Tagger,

tokenizer, lemmatizer

a. lI-requested-and-would-prefer-musicals
b. I-request-ed-and-would-prefer-musical-s

341/476

STEP 2 : tagging the concatenated expressions — ex)

Supertagger, Inventory of typed words

/
Requested
And

Would
Prefer
musicals

(S\NP)/NP

(S\NP)/VP

“ Syntactic Formalisms for Parsing Natural Languages

343 /476

Parsing a sentence in CCG

Step 1: tokenization

Step 2: tagging the concatenated lexicon

Step 3: calculate on types attributed to the concatenated
lexicons by applying the adequate combinatorial rules

Step 4: eliminate the applied combinators (we will see how to do

on next week)

Step 5: finding the parsing results presented in the form of an
operator/operand structure (predicate -argument structure)

Parsing a sentence in CCG

STEP 3 : categorial calculus
a. apply the type-raising rules

b. apply the functional composition rules ——

c. apply the coordination rules ———

1A161 Syntactic Formalisms for Parsing Natural Languages 342 /476
Lecture 7

Subject Type-raising (> T)
NP:a=T/(T\NP) : Ta

Forward Composition: (> B)
X/Y:f Y/Z.:9= X/Z:Bfg

Coordination: (< & >)

Xconj X = X

I- requested- and- would- prefer- musicals
1/ NP (S\NP)/NP CONJ (S\NP)/VP VP/NP NP
2/5/(S\NP) (S\NP)/NP CONJ (S\NP)/VP VP/NP NP (>T)
3/5/(5\NP) (S\NP)/NP CONJ (S\\P)/NP NP (>B)
4/S/(S\NP) (S\NP)/NP NP (> ®)
5/S/(S\NP) (S\NP)/NP NP (>B)
6/ S/NP NP (>)
7/ S

1A161 Syntactic Formalisms for Parsing Natural Languages 344 /476

Parsing a sentence in CCG Semantic representation in term of the
combinators
STEP 4 : semantic representation (predicate-argument
structure)
B requested and- would- prefer musicals
1/ NP (S\NP)/NP CONJ (S\NP)/VP VP/NP NP
I requested and would prefer musicals 2/ S/C(i\NP) (Sr\é\'q?gfed CONgnd(S\NSV)(/)\L/:d V;/el\;zr Nrf]usicéén
1/:" :request’ :and’ : willl :prefer’ : musicals’ 3/ S/(S\NP) (S\NP)/NP CON]J (S\NP)/NP NP (>B)
CH| requested and B would prefer musicals
2/ INEFI 4/ S/(S\NP) (S\NP)/NP NP (> @)
3/ : A y.will(prefer'x)y 5/ CHl S/Np ® and requested (B would prﬁ;er) mu5|cal(s>B)
4/ 2 Axy.and’(will’(prefer’x)y) (request’xy) . B((C*I)(® and rgquested (B would prefer))) musicals)
5/ D xAy.and’(will’(prefer’x)y)(request’xy) B((C*l)(® and requested (B would prefer))) musicals
6/ :\y.and’(would’(prefer’ musicals’)y)(request’ musicals’ y)

7/S: and’(will’(prefer’ musicals’) i’)(request’ musicals’ i’)

1A161 Syntactic Formalisms for Parsing Natural Languages 345 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 346 /476
Lecture 7 Lecture 7

Semantic representation in term of the Normal form
combinators

A normal form is a combinatory expression which is irreducible
in the sense that it contain any occurrence of a redex.

| requested and would prefer musicals J)))
If a combinatory expression X reduce to a combinatory
expression N which is in normal form, so N is called the
S: B((C*1)(® and requested (B would prefer))) musicals normal form of X.

1/ B((C*I)(® and requested (B would prefer))) musicals

2/ (C*1)((® and requested (B would prefer))) musicals) [e-B]
3/ ((® and requested (B would prefer))) musicals) | [e-C*]
4/ (and (requested musicals) ((B would prefer) musicals)) | [e-®] Bxyz is reducible to x(yz).

x(yz) is a normal form of the combinatory expression Bxyz.

5/ ((and (requested musicals) (would (prefer musicals))) 1) [e-B]

“ Syntactic Formalisms for Parsing Natural Languages 347 /476 1IA161 Syntactic Formalisms for Parsing Natural Languages 348 /476

Lecture 7

Normal form

Prove xyz is the normal form of BBCxyz.

BBCxyz —3 xyz

1/ BBCxyz

2/ C(Cx)yz [e-B]
3/ Cxzy [e-C]
4/ xyz [e-C]

1A161 Syntactic Formalisms for Parsing Natural Languages 349 /476
Lecture 9

Syntactic Formalisms for Parsing
Natural Languages

AleS Horak, Milos Jakubicek, Vojtéch Kovar
(based on slides by Juyeon Kang)

ial6él@nlp.fi.muni.cz

Autumn 2013

351/476

“ Syntactic Formalisms for Parsing Natural Languages

Classwork

Give the semantic representation in term of combinators.

Please refer to the given paper on last lecture on CCG Parsing.

1A161 Syntactic Formalisms for Parsing Natural Languages 350/ 476
Lecture 9

Outline

m HPSG Parser : Enju

m Parsing method
m Description of parser
B Result

m CCG Parser : C&C Tools

m Parsing method
m Description of parser
B Result

1A161 Syntactic Formalisms for Parsing Natural Languages 352 /476

Theoretical backgrounds

Lecture 3 about HPSG Parsing

Lecture 6 & 7 about CCG Parsing and Combinatory Logic

1A161 Syntactic Formalisms for Parsing Natural Languages 353 /476
Lecture 9

Motivations

Parsing based on a proper linguistic formalism is one of the
core research fields in CL and NLP.
But!

a monolithic, esoteric and inward looking field, largely
dissociated from real world application.

“ Syntactic Formalisms for Parsing Natural Languages 355/476

Enju (Y. Miyao,).Tsuijii, 2004, 2008)

m Syntactic parser for English
m Developed by Tsujii Lab. Of the University of Tokyo
m Based on the wide-coverage probabilistic HPSG

m HPSG theory [Pollard and Sag, 1994]

m Useful links to Enju

B http://www-tsujii.is.s.u-tokyo.ac.jp/enju/demo.html
B http://www-tsujii.is.s.u-tokyo.ac.jp/enju/

1A161 Syntactic Formalisms for Parsing Natural Languages 354 /476
Lecture 9

Motivations

So why not!

The integration of linguistic grammar formalisms with
statistical models to propose an robust, efficient and open to
eclectic sources of information other than syntactic ones

1A161 Syntactic Formalisms for Parsing Natural Languages 356 /476

Motivations

Two main ideas

m Development of wide-coverage linguistic grammars

m Deep parser which produces semantic representation
(predicate-argument structures)

1A161 Syntactic Formalisms for Parsing Natural Languages 357 /476
Lecture 9

Parsing method

Parsing based on HPSG

B Mathematically well-defined with sophisticated constraint-based
system

B Linguistically justified

B Deep syntactic grammar that provides semantic analysis

“ Syntactic Formalisms for Parsing Natural Languages

359 /476

Parsing method

m Application of probabilistic model in the HPSG grammar and
development of an efficient parsing algorithm

B Accurate deep analysis

m Disambiguation

m Wide-coverage

m High speed

m Useful for high level NLP application

1A161 Syntactic Formalisms for Parsing Natural Languages 358 /476
Lecture 9

Parsing method

Difficulties in parsing based on HPSG
m Difficult to develop a broad-coverage HPSG grammar
m Difficult to disambiguate

m Low efficiency: very slow

1A161 Syntactic Formalisms for Parsing Natural Languages

360 /476

Parsing method

Solution:
Corpus-oriented development of an HPSG grammar

m The principal aim of grammar development is treebank
construction

m Penn treebank is coverted into an HPSG treebank

m A lexicon and a probabilistic model are extracted from the HPSG
treebank

1A161 Syntactic Formalisms for Parsing Natural Languages 361 /476
Lecture 9

Parsing method

HPSG = lexical entries and grammar rules
Enju grammar has 12 grammar rules and
3797 lexical entries for 10,536 words

(Miyao et al. 2004)

“ Syntactic Formalisms for Parsing Natural Languages

363 /476

1A161 Syntactic Formalisms for Parsing Natural Languages

Lecture 9

Parsing method

Approach:
m develop grammar rules and an HPSG treebank

m collect lexical entries from the HPSG treebank

How to make an HPSG treebank?

Convert Penn Treebank into HPSG and develop grammar by restructuring a treebank
in conformity with HPSG grammar rules

362 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 9

Parsing method

Overview of grammar development

1. Treebank
conversion

2. Grammar rule
application

Modify constituent structures
by adding feature structures

Apply the grammar rule
when a parse tree contains
correct analysis and
specified feature values are filled

Collect terminal nodes
of HPSG parse trees
and assign
predicate-argument structure

364 /476

Parsing method Parsing method

Probabilistic model and HPSG:

Log-linear model for unification-based grammars
(Abney 1997, Johnson et al. 1999, Riezler et al. 2000, Miyao

et al. 2003, Malouf and van Noord 2004, Kaplan et al. 2004, A A A A
Miyao and Tsujii 2005) Jm o\ 12\ 3) S\ wmw S
/ \ £ \ \
p(T|w) S M
w = “A blue eyes girl with white hair and skin walked _ _ _
T— All possible parse trees derived from w with a grammar.

For example, p(T3|w) is the probability of selecting T3 from T1,

\ T2, ..., and Tn.

A b\ue eyes glr\ W|th whlte halr and skin walked

1A161 Syntactic Formalisms for Parsing Natural Languages 365/476 1A161 Syntactic Formalisms for Parsing Natural Languages 366 /476
Lecture 9 Lecture 9

Parsing method Description of parser

Log-linear model for unification-based grammars
m Input sentence: w
w = W1/P1, WQ/PQ, .. Wn/Pn

m Output parse tree T

p(T|w) = |=exp (;%T))
R

Normalization Weight for a Feature function
factor feature function

“ Syntactic Formalisms for Parsing Natural Languages 367 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 368 /476

Description of parser Description of parser

m Chart

m data structure
m two dimensional table

parsing proceeds in the following steps:

1. preprocessing m we call each cell in the table ‘CKY cell.’
Preprocessor converts an input sentence into a word lattice. Example

2. lexicon lookup Let an input sentence s(= wl,w2,w3,...,wn),wl ="1" w2 =

' "saw”, w3 = "a”, w4 = "girl”, w5 = "with”, w6 = 7a”, w7 =

Parser uses the predicate to find lexical entries for the word "telescope” for the sentence “/ saw a girl with a telescope”,
lattice the chart is arranged as follows.

3. kernel parsing

0,5[1,6[2,7
Parser does phrase analysis using the defined grammar rules Iolgii|411152|52'|63| 3,|74|7|
in the kernel parsing process. [0211,3[2,413,514,6]5.7]
[0,1]1,2[2,3[3,4[4,5[5,6][6,7]

I saw a gqirl with a telescope

1A161 Syntactic Formalisms for Parsing Natural Languages 369 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 370/476
Lecture 9 Lecture 9

Description of parser Demonstration

System overview

HEAD noun HEAD verb HEAD noun
Subj < > Subj <NP> Subj < >

COMPS < > COMPS <NP> COMPS < >
I Mar loved ohn
Mary loved John Y J
Enumeration of Deterministic
assignments disambiguation

HEAD noun

http://www-tsujii.is.s.u-tokyo.ac.jp/enju/demo.html

Supertagger

4

I<-

HEAD noun HEAD verb

HEAD noun HEAD verb | HEAD noun
Subj < > Subj <NP> Subj<> |>
COMPS < > COMPS <NP> COMPS < > Mary loved John

“ Syntactic Formalisms for Parsing Natural Languages 371/ 476 1A161 Syntactic Formalisms for Parsing Natural Languages 372 /476

Results

m Fast, robust and accurate analysis

B Phrase structures
B Predicate argument structures

m Accurate deep analysis - the parser can output both phrase
structures and predicate-argument structures. The accuracy of
predicate-argument relations is around 90% for newswire
articles and biomedical papers.

m High speed - parsing speed is less than 500 msec. per
sentence by default (faster than most Penn Treebank parsers),
and less than 50 msec when using the highspeed setting
("mogura”).

373 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 9

CCG Parser [Clark, 20071

Statistical parsing and CCG
Advantages of CCG

m providing a compositional semantic for the grammar

—completely transparent interface between syntax and
semantics

m the recovery of long-range dependencies can be integrated into

the parsing process in a straightforward manner

375/ 476

“ Syntactic Formalisms for Parsing Natural Languages

C&C tools

m Developed by Curran and Clark [Clark and Curran, 2002,
Curran, Clark and Bos, 2007], University of Edinburgh

m Wide-coverage statistical parser based on the CCG: CCG Parser
m Computational semantic tools named Boxer

m Useful links

B http://svn.ask.it.usyd.edu.au/trac/candc
B http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo

374 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 9

Parsing method

m Penn Treebank conversion : TAG, LFG, HPSG and CCG
B CCGBank [Hockenmaier and Steedman, 2007]

m CCG version of the Penn Treebank
B Grammar used in CCG parser

/

‘ Lexical category set ’ ‘

CCGBank \

Training data for
the statistical models

Some rules
used as the grammar

l l

1A161 Syntactic Formalisms for Parsing Natural Languages

376 /476

Parsing method-CCG Bank Parsing method-CCG Bank

B Semi automatic conversion of
phrase-structure trees in the Penn Treebank into
CCG derivations

m Consists mainly of newspaper texts
m Corpus translated from the Penn Treebank, CCGBank contains ®m Grammar:

B Syntactic derivations
m Word-word dependencies
m Predicate-argument structures (Lexical category set

i Combinatory rules
Unary type-changing rules
Normal-form constraints

Punctuation rules

1A161 Syntactic Formalisms for Parsing Natural Languages 377 /476 IA161 Syntactic Formalisms for Parsing Natural Languages 378 /476
Lecture 9 Lecture 9

Parsing method Parsing method-Supertagger

Supertagging [Clark, 2002]

uses conditional maximum entropy models m Set of 425 lexical categories from the CCGbank
implement a maximum entropy supertagger m The per-word accuracy of the Supertagger is around 92% on
unseen WSJ text.
(s\1 s)/(s ((np\s)/n
o EEQ\Z‘ZTZZ o — Using the multi-supertagger increases the accuracy
R T e W W o e W e significantly - to over 98% - with only a small cost in
NOM PRP__ PRO:DEM _ NOM KON VER:pres VER:infi DET:ART increased ambiguity.

tout commentaire sur cette proposition et prefere avancer les

“ Syntactic Formalisms for Parsing Natural Languages 379 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 380/476

Parsing method-Supertagger

m Log-linear models in NLP applications:

m POS tagging

B Name entity recognition
E Chunking

m Parsing

— referred as maximum entropy models and random
fields

381/476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 9

Parsing method-Supertagger

Features common to the dependency and normal-form models

Feature type
LexCat + word
LexCat + POS

Example
(5/S)/NP + Before
(§/S)/NP + IN

RootCat S[dcl]

RootCat + World S[dcl] + was

RootCat + POS Si[dcl/] + VBD

Rule S[dcl] — NP S[dcl]\NP

Rule + Word S[dcl] — NP S[dcl]\NP + bought
Rule + POS S[dcl] — NP S[dc/]\NP + VBD

“ Syntactic Formalisms for Parsing Natural Languages

383 /476

Parsing method-Supertagger

Log-linear parsing models for CCG
the probability of a dependency structure
the normal-form model: the probability of a single derivation

— modeling 2) is simpler than 1)

H defined as P(|S) = Y P(d.7|S)
deA(n)

defined using a log-linear form as follows: P(w|S) = 7-e*"™)

Z W)

wep(S)

382 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 9

Parsing method-Supertagger

Predicate-argument dependency features for the dependency
model

Feature type Example

Word-Word
Word-POS
POS-Word

(bought, (S\NP1)/NPs, 2, stake, (NP\NP)/(S[dcl]/NP))
(bought, (S\NP1)/NP3, 2, NN, (NP\NP)/(S[dcl]/NP))
(VBD, (S5\NP+)/NP3, 2, stake, (NP\NP)/(S[dcl]/NP))
POS-POS (VBD, (S\NP:1)/NP2,2, NN, (NP\NP)/(S[dcl]/NP))
Word + Distance(words) (bought, (S\NP1)/NP2,2,(NP\NP)/(S[dcl]/NP)) + 2
Word + Distance(punct) (bought, (S\NP1)/NP,2,(NP\NP)/(S[dcl]/NP)) + 0
Word + Distance(verbs) (bought, (S\NP1)/NP,2,(NP\NP)/(S[dcl]/NP)) + 0
POS + Distance(words) (VBD, (5\NP.)/NP3,2, (NP\NP)/(S[dcl]/NP)) + 2
POS + Distance(punct) (VBD, (S5\NP.)/NP3,2,(NP\NP)/(S[dcl]/NP)) + 0
POS + Distance(verbs) (VBD, (S5\NP,)/NP3,2, (NP\NP)/(S[dcl]/NP)) + 0

1A161 Syntactic Formalisms for Parsing Natural Languages

384 /476

Parsing method-Supertagger Description of parser
Rule dependency features for the normal-form model Input sentence
Feature type Example
Word-Word (company,Sldcl] — NP S[dcl]\NP, bought) C&C taggers Boxer
Word-POS (company,S|dcl] — NP S[dcl]\NP, VBD)
POS-Word (NN, S[dcl] — NP S[dcl]\NP, bought) Supertaggers Parser ﬁ
POS-POS (NN, S[dcl] — NP S[dcl]\NP, VBD) POStagger ﬁ
Word + Distance(words) (bought,S[dcl] — NP S[dcl]\NP)+ > 2 Chunker
Word + Distance(punct) (bought,S[dcl] — NP S[dcl]\NP) + 2
Word + Distance(verbs) (bought,S[dcl| — NP S[dcl]\NP) + 0
POS + Distance(words) (VBD,S[dcl] — NP S[dc/]\NP)+ > 2
POS + Distance(punct) (VBD, S[dcl] — NP S[dcl]\NP) + 2
POS + Distance(verbs) (VBD, S[dcl] — NP S[dcl\NP) + 0
CCGBank
1A161 Syntactic Formalisms for Parsing Natural Languages 385/476 1A161 Syntactic Formalisms for Parsing Natural Languages 386 /476
Lecture 9 Lecture 9

Demonstration Results

Supertagger ambiguity and accuracy on section00

B k CATS/WORD ACC SENTACC ACC(POS) SENT ACC
http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo 0.075 20 1.27 97.34 67.43 96.34 60.27
0.030 20 1.43 97.92 72.87 97.05 65.50
0.010 20 1.72 98.37 77.73 97.63 70.52
0.005 20 1.98 98.52 79.25 97.86 72.24
0.001 150 3.57 99.17 87.19 98.66 80.24

“ Syntactic Formalisms for Parsing Natural Languages 387 /476 1A161 Syntactic Formalisms for Parsing Natural Languages 388 /476

Results
Parsing accuracy on DepBank
CCG parser CCGbank
Relation Prec Rec F Prec Rec F # GRs
dependent 84.07 82.19 83.12 88.83 84.19 86.44 10,696
aux 95.03 90.75 92.84 96.47 90.33 93.30 400
conj 79.02 75.97 77.46 83.07 80.27 81.65 595
ta 51.52 11.64 18.99 62.07 12.59 20.93 292
det 95.23 94.97 95.10 97.27 94.09 95.66 1,114
arg_mod 81.46 81.76 81.61 86.75 84.19 85.45 8,295
mod 71.30 77.23 74.14 77.83 79.65 78.73 3,908
ncmod 73.36 78.96 76.05 78.88 80.64 79.75 3,550
xmod 42.67 53.93 47.64 56.54 60.67 58.54 178
cmod 51.34 57.14 54.08 64.77 69.09 66.86 168
pmod 0.00 0.00 0.00 0.00 0.00 0.00 12
arg 85.76 80.01 82.78 89.79 82.91 86.21 4,387

DepBank: Parc Dependency Bank
[King et al. 2003]

1A161 Syntactic Formalisms for Parsing Natural Languages 389 /476
Lecture 10

Syntactic Formalisms for Parsing
Natural Languages

AleS Horak, Milos Jakubicek, Vojtéch Kovar
(based on slides by Juyeon Kang)

ial6él@nlp.fi.muni.cz

Autumn 2013

“ Syntactic Formalisms for Parsing Natural Languages 391/476

Results

subj or_dobj 86.08

subj 84.08
nesubj 83.89
Xsubj 0.00
csubj 0.00

comp 86.16
obj 86.30

dobj 87.01
obj2 68.42
iobj 83.22
clausal 77.67
xcomp 77.69
ccomp 77.27
pcomp 0.00

macroaverage 65.71
microaverage 81.95

83.08
75.57
75.78
0.00
0.00
81.71
83.08
88.44
65.00
65.63
72.47
74.02
70.10
0.00

62.29
80.35

84.56
79.60
79.63
0.00
0.00
83.88
84.66
87.71
66.67
73.38
74.98
75.81
73.51
0.00

63.95
81.14

91.01
89.07
88.86
50.00
0.00
89.92
90.42
92.11
66.67
83.59
80.35
80.00
80.81
0.00

71.73
86.86

85.29
78.43
78.51
28.57
0.00
84.74
85.52
90.32
60.00
69.81
77.54
78.49
76.31
0.00

65.85
82.75

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

Study materials

Course materials and homeworks are available on the

following web site

https://is.muni.cz/course/fi/autumn2011/IA161

1A161 Syntactic Formalisms for Parsing Natural Languages

88.06 3,127
83.41 1,363
83.37 1,354
36.36 7
0.00 2
87.25 3,024
87.90 2,328
91.21 1,764
63.16 20
76.08 544
78.92 672
79.24 381
78.49 291
0.00 24
68.67
84.76

390 /476

392/476

Lecture 10

Outline

m Introduction to Statistical parsing methods
m Statistical Parsers

RASP system
Stanford parser
Collins parser
Charniak parser
Berkeley parser

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

Application domains of statistical parsing

Question answering systems of high precision

Named entity extraction

Extraction of people’s opinion about products

]
]
m Syntactically based sentence compressions
|
m Improved interaction in computer ganes

]

Helping linguists find data

“ Syntactic Formalisms for Parsing Natural Languages

393 /476

395/476

Lecture 10

1. Introduction to statistical parsing

m The main theoretical approaches behind modern statistical
parsers

m Over the last 12 years statistical parsing has succeeded
significantly!

m NLP researchers have produced a range of statistical parsers

— wide-coverage and robust parsing accuracy

m They continues to improve the parsers year on year.

1A161 Syntactic Formalisms for Parsing Natural Languages 394 /476
Lecture 10

NLP parsing problem and solution

m The structure of language is ambiguous!
— local and global ambiguities
m Classical parsing problem
— simple 10 grammar rules can generate 592 parsers

— real size wide-coverage grammar generates millions of
parses

1A161 Syntactic Formalisms for Parsing Natural Languages 396 / 476

Lecture 10

NLP parsing problem and solution

NLP parsing solution

We need mechanisms that allow us to find the most likely
parses

— statistical parsing lets us work with very loose grammars
that admit millions of parses for sentences but to still quickly
find the best parses

397 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

Characterization of Statistical parsing

m What the grammar which determines the set of legal syntactic
structures for a sentence? How is that grammar obtained?

m What is the algorithm for determining the set of legal parses for

a sentence?

m What is the model for determining the probability of different
parses for a sentence?

m What is the algorithm, given the model and a set of possible
parses which finds the best parse?

“ Syntactic Formalisms for Parsing Natural Languages

399 /476

Lecture 10

Improved methodology for robust parsing

The annotated data: Penn Treebank (early 90’s)

m Building a treebank seems a lot slower and less useful than
building a grammar

m But it has many helpful things

B Reusability of the labor

B Broad coverage

B Frequencies and distributional information
B A way to evaluate systems

398 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

Characterization of Statistical parsing

Twest = @rg max Score(T,S)
Two components:

m The model: a function Score which assigns scores
(probabilities) to tree and sentence pairs

m The parser: the algorithm which implements the search for
Tbest

1A161 Syntactic Formalisms for Parsing Natural Languages

400/ 476

Lecture 10

Characterization of Statistical parsing

Statistical parsing seen as more of a
pattern recognition/Machine Learning problem plus
search

The grammar is only implicitly defined by the training data

and the method used by the parser for generating hypotheses

401 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

2. Statistical parsers

m Many kinds of parsers based on the statistical
methods:probability, machine learning

m Different objectives: research, commercial, pedagogical
B RASP, Stanford parser, Berkeley parser,

“ Syntactic Formalisms for Parsing Natural Languages

403 /476

Lecture 10

Statistical parsing models

Probabilistic approach would suggest the following for the
Score function

Score(T,S) = P(T|S)

Lots of research on different probability models for Penn
Treebank trees

m Generative models, log-linear (maximum entropy) models, ...

402 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

RASP system

Robust Accurate Statistical Parsing (2"9 release):
[Briscoe&Carroll, 2002; Briscoe et al. 2006]

m system for syntactic annotation of free text
m Semantically-motivated output representation
m Enhanced grammar and part-of-speech tagger lexicon

m Flexible and semi-supervised training method for structural
parse ranking model

Useful links to RASP
http://ilexir.co.uk/applications/rasp/download/

http://www.informatics.susx.ac.uk/research/groups/nlp/rasp/

1A161 Syntactic Formalisms for Parsing Natural Languages

404 / 476

Lecture 10

Components of system

l raw text

Tokeniser

\

PoS Tagger

\

Lemmatiser

\

Parser/Grammar

\

Parse Ranking Model

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

Components of system

l raw text

Tokeniser

\

PoS Tagger

\

Lemmatiser

\

Parser/Grammar

\

Parse Ranking Model

“ Syntactic Formalisms for Parsing Natural Languages

m |[nput:

unannotated text or transcribed (and punc-
tuated) speech

m 15 step:

sentence boundary detection and tokenisa-
tion modules

m 2"9 step:

Tokenized text is tagged with one of 150
POS and punctuation labels (derived from
the CLAWS tagset)

— first-order ("bigram’) HMM tagger

— trained on the manually corrected
tagged version of the Susanne, LOB and
BNC corpora

405/ 476

m 5" step:

Generalized LR Parser

— a non-deterministic LALR table is con-
structed automatically from CF 'backbone’
compiled from the featurebased grammar

— the parser builds a packed parse forest
using this table to guide the actions it
performs

— the n-best parses can be efficiently
extracted by unpacking sub-analyses,

following pointers to contained
subanalyses and choosing alternatives in

order of probabilistic ranking

407 / 476

Lecture 10

Components of system

l raw text

Tokeniser

/

PoS Tagger

\
Lemmatiser

/

Parser/Grammar

\i
Parse Ranking Model

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

Components of system

dependent

ta arg_mod conj

/T
P

ncmod xmod cmod pmod subj_or_dobj

S'lej omp

pcomp

c
ncsubj xsubj csubj

dobj obj2 iobj

1A161 Syntactic Formalisms for Parsing Natural Languages

xcomp

m 3 step:

Morphological analyzer
m 4t step:
Manually developed wide-coverage tag se-

guence grammar in the parser

— 689 unification based phrase structure
rules

— preterminals to this grammar are the
POS and punctuation tags

— terminals are featural description of the
preterminals

— non-terminals project information up the
tree using an X-bar scheme with 41 at-
tributes with a maximum of 33 atomic

values

406 / 476

m Output:

set of named grammatical rela-
tions (GRs)

— resulting set of ranked parses
can be displayed or passed on for
further processing

— transformation of derivation
trees into a set of named GRs

— GR scheme captures those as-
pects of predicate-argument struc-
ture

clausal

ccomp

408 / 476

Lecture 10

Evaluation

m The system has been evaluated using the re-annotation of the
PARC dependency bank (DepBank, King et al., 2003)

m It consists of 560 sentences chosen randomly from section 23 of
the WSJ with grammatical relations compatible with RASP
system.

m Form of relations

(relation subtype head dependent initial)

Encoding additional specifications of the relation
type for some relations and the initial or underlying
logical relation of the grammatical subject in
constructions such as passive

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

Stanford parser

Type of relationship
between the head and
the dependent

409 /476

Java implementation of probabilistic natural language
parsers (version 1.6.9)
: [Klein and Manning, 2003]

m Parsing system for English and has been used in Chinese,
German, Arabic, Italian, Bulgarian, Portuguese

m Implementation, both highly optimized PCFG and lexicalized
dependency parser, and lexicalized PCFG parser

m Useful links

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu:8080/parser/

“ Syntactic Formalisms for Parsing Natural Languages

411/476

Evaluation

Relation Precision Recall F, std GRs

dependent 79.76 77.49 78.61 10696
aux 93.33 91.00 92.15 400
conj 72.39 72.27 72.33 595
ta 42.61 51.37 46.58 292
det 87.73 90.48 89.09 1114
arg_mod 79.18 75.47 77.28 8295 . L.
mod 74.43 67.78 70.95 3908 m Micro-averaged precision,
ncmod 75.72 69.94 72.72 3550
xmod 53.21 46.63 49.70 178 recall and F; score are
cmod 45.95 30.36 36.56 168
Smod 3077 3333 3500 12 calculat_ed fr_om the counts for
arg 77.42 76.45 76.94 4387 all relations in the hierarchy
subj_or_dobj 82.36 74.51 78.24 3127
subj 78.55 66.91 72.27 1363
ncsubj 79.16 67.06 72.61 1354 | Macro-averaged scores are
xsubj 33.33 28.57 30.77 7 H HWH
teub] 1550 50.00 20.00 5 the mean of the |nd|y|dual
comp 75.89 79.53 77.67 3024 scores for each relation
obj 79.49 79.42 79.46 2328
dobj 83.63 79.08 81.29 1764 .
obj2 23.08 30.00 26.09 20 | Mlcro-averaged F]_ score of
iobj 70.77 76.10 73.34 544 [0) H
ot 6098 7940 6302 12 76.3% across all relations
xcomp 76.88 77.69 77.28 381
ccomp 46.44 69.42 55.55 291
pcomp 72.73 66.67 69.57 26
macroaverage 62.12 63.77 62.94

microaverage 77.66 74.98 76.29
Parsing accuracy on DepBank [Briscoe et al., 2006]

1A161 Syntactic Formalisms for Parsing Natural Languages 410 /476
Lecture 10
Stanford parser
makes
m Input
\ conj_and
various form of plain text nsubj dlstrlbutes dobj
|] Output nsubj dObJ
Various analysis formats Bell PTOd“CtS
— Stanford Dependencies (SD): typed de-
. partmod amod
pendencies as GRs
d el
— phrase structure trees based ame ecmmc mod
COTU and
— POS tagged text prep.in Conj and
Angeles computer building
nn
Los

Graphical representation of the SD for the sentence
“Bell, based in Los Angeles, makes and distributes
electronic, computer and building products.”

1A161 Syntactic Formalisms for Parsing Natural Languages

412 /476

Lecture 10

Standford typed dependencies [De Marmette and
Manning, 2008]

m provide a simple description of the grammatical relationships in
a sentence

m represents all sentence relationships uniformly as typed
dependency relations

B quite accessible to non-linguists thinking about tasks involving
information extraction from text and is quite effective in relation
extraction applications.

Lecture 10

Standford typed dependencies [De Marnette and

Manning, 2008]

For an example sentence:

Bell, based in Los Angeles, makes and distributes electronic,
computer and building products.

Stanford Dependencies (SD) representation is:

nsubj(makes-8, Bell-1)
nsubj(distributes-10, Bell-1)
partmod(Bell-1, based-3)
nn(Angeles-6, Los-5)
prep_in(based-3, Angeles-6)
root(ROOT-0, makes-8)

conj_and(makes-8, distributes-10)
amod(products-16, electronic-11)
conj_and(electronic-11, computer-13)
amod(products-16, computer-13)
conj_and(electronic-11, building-15)
amod(products-16, building-15)
dobj(makes-8, products-16)
dobj(distributes-10, products-16)

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

Output

413 /476

A lineup of masseurs was waiting to take the media in hand.

POS tagged text

Parsing [sent. 4 len. 13]: [A, lineup, of, masseurs,
was, waiting, to, take, the, media, in, hand, .]

CFPSG representation

(ROOT
(S
(NP
(NP (DT A) (NN lineup))

(PP (IN of) nsubj(waiting6, lineup2)
(NP (NNS masseurs)))) xsubj(take8, lineup2)
(VP (VBD was) prep_of(lineup2, masseurs4)

(VP (VBG waiting)
(S

(VP (TO to) aux(takes, to7)
(VP (VB take) xcomp(waiting6, take8)
(NP (DT the) (NNS media)) det(medialo, the9)
(PP (IN in) dobj(take8, medial0)
(NP (NN hand)))))))) prep_in(take8, hand12)

()}

v

“ Syntactic Formalisms for Parsing Natural Languages

Typed dependencies
representation

det(lineup2, A1)

aux(waiting6, was5)
root(ROOTO, waiting6)

415/ 476

414 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

Berkeley parser

Learning PCFGs, statistical parser (release 1.1, version
09.2009)
: [Petrov et al., 2006; Petrov and Klein, 2007]

m Parsing system for English and has been used in Chinese,
German, Arabic, Bulgarian, Portuguese, French

m Implementation of unlexicalized PCFG parser

m Useful links
http://nlp.cs.berkeley.edu/
http://tomato.banatao.berkeley.edu:

8080/parser/parser.html
http://code.google.com/p/berkeleyparser/

1A161 Syntactic Formalisms for Parsing Natural Languages

416 / 476

Lecture 10

Comparison of parsing an example sentence

A lineup of masseurs was waiting to take the media in hand.

(ROOT
(s

(NP
(NP (DT A) (NN line-up))
(PP (IN of)
(NP (NNS masseurs))))
(VP (VBD was)
(VP (VBG waiting)
(S(Vp (TO to) [sent. 4 len. 13]: [A, line-up, of, masseu
(VP (VB take)
(NP (DT the) (NNS media))
(PP (IN in)
(NP (NN hand)))))))) (NP (CT A) (NN line-up)
N (PP)

! (NP (NN hand)))))))

A fine-up of MMS waiting W
| e
masseurs] [V
| ———
to VE P FP

I T T
take DT MNS IN NP
(RN Stanford parser

the media in NN

1
hand

‘ Berkeley parser ‘

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

Collins parser

417 / 476

Head-Driven Statistical Models for natural language
parsing (Release 1.0, version 12.2002)
: [Collins, 1999]

m Parsing system for English

m Useful links

http://www.cs.columbia.edu/~mcollins/code.html

“ Syntactic Formalisms for Parsing Natural Languages

419 /476

Lecture 10

charniak parser

Probabilistic LFG F-Structure Parsing
: [Charniak, 2000; Bikel, 2002]

m Parsing system for English
m PCFG based wide coverage LFG parser
m Useful links

http://nclt.computing.dcu.ie/demos.html
http://1lfg-demo.computing.dcu.ie/lfgparser.html

418 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 10

Bikel’s parser

Multilingual statistical parsing engine (release 1.0,
version 06.2008)
: [Charniak, 2000; Bikel, 2002]

m Parsing system for English, Chinese, Arabic, Korean

http://www.cis.upenn.edu/~dbikel/#stat-parser
http://www.cis.upenn.edu/~dbikel/software.html

1A161 Syntactic Formalisms for Parsing Natural Languages

420/ 476

Lecture 10

Comparing parser speed on section 23 of WS) Penn

Treebank

Parser Time (min.)
Collins 45
Charniak 28
Sagae 11
CCG 1.9

421 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 11

Study materials

m Course materials and homeworks are available on the following
web site:
https://is.muni.cz/course/fi/autumn2011/IA161

m Refer to Dependency Parsing, Synthesis: Lectures on Human
Language Technologies, S. kubler, R. McDonald and J. Nivre,
2009

“ Syntactic Formalisms for Parsing Natural Languages

423 /476

Lecture 11

Syntactic Formalisms for Parsing
Natural Languages

Ales Horak, Milos Jakubicek, Vojtéch Kovar
(based on slides by Juyeon Kang)

ial6el@nlp.fi.muni.cz

Autumn 2013

422 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 11

Outline

m Introduction to Dependency parsing methods
m Dependency Parsers

1A161 Syntactic Formalisms for Parsing Natural Languages

424 / 476

Lecture 11

Introduction to Dependency parsing

m Motivation

a. dependency-based syntactic representation seem to be useful in
many applications of language technology: machine translation,
information extraction

— transparent encoding of predicate-argument structure

b. dependency grammar is better suited than phrase structure
grammar for language with free or flexible word order

— analysis of diverse languages within a common framework

c. leading to the development of accurate syntactic parsers for a
number of languages

— combination with machine learning from syntactically
annotated corpora (e.g. treebank)

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 11

Definitions of dependency graphs and dependency
parsing

425 /476

Dependency graphs: syntactic structures over sentences

Def. 1.: A sentence is a sequence of tokens denoted by

S:W()Wl...Wn

Def. 2.: Let R ={ry,...,rm} be a finite set of possible
dependency relation types that can hold between any two
words in a sentence. A relation type r € R is additionally called
an arc label.

“ Syntactic Formalisms for Parsing Natural Languages

427 / 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 11

1A161 Syntactic Formalisms for Parsing Natural Languages

Lecture 11

Introduction to Dependency parsing

m Dependency parsing

“Task of automatically analyzing the dependency structure of a
given input sentence”

m Dependency parser

“Task of producing a labeled dependency structure of the kind
depicted in the follow figure, where the words of the sentence
are connected by typed dependency relations”

PRED

ATT s

NN A

ROOT Economic news had little effect on financial markets

426 / 476

Definitions of dependency graphs and dependency
parsing

Dependency graphs: syntactic structures over sentences

Def. 3.: A dependency graph G = (V,A) is a labeled directed
graph, consists of nodes, V, and arcs, A, such that for
sentence S = wow; ... w, and label set R the following holds:

V C {wow;...wp}
ACVxRxV
if (wj,r,w;) e Athen (w;,r',w;) ¢ Aforall r #r

428 / 476

Approach to dependency parsing

a. data-driven

it makes essential use of machine learning from linguistic data

in order to parse new sentences

b. grammar-based
it relies on a formal grammar, defining a formal language, so
that it makes sense to ask whether a given input is in the
language defined by the grammar or not.

— Data-driven have attracted the most attention in
recent years.

1A161 Syntactic Formalisms for Parsing Natural Languages 429 /476
Lecture 11

Data-driven approach

a. transition-based

m learning problem: induce a model for predicting the next state

transition, given the transition history

m parsing problem: construct the optimal transition sequence for

the input sentence, given induced model

b. graph-based

m learning problem: induce a model for assigning scores to the

candidate dependency graphs for a sentence

m parsing problem: find the highest-scoring dependency graph for

the input sentence, given induced model

“ Syntactic Formalisms for Parsing Natural Languages 431 /476

Lecture 11

Data-driven approach

according to the type of parsing model adopted,

the algorithms used to learn the model from data
the algorithms used to parse new sentences with the model

a. transition-based
start by defining a transition system, or state machine, for
mapping a sentence to its dependency graph.

b. graph-based
start by defining a space of candidate dependency graphs for a
sentence.

1A161 Syntactic Formalisms for Parsing Natural Languages 430 /476
Lecture 11

Transition-based Parsing

m Transition system consists of a set C of parser configurations
and of a set D of transitions between configurations.

m Main idea: a sequence of valid transitions, starting in the
initial configuration for a given sentence and ending in one of
several terminal configurations, defines a valid dependency
tree for the input sentence.

Dym =di(C1),...,dm(Cm)

1A161 Syntactic Formalisms for Parsing Natural Languages 432 /476

Lecture 11

Transition-based Parsing

m Definition

Score of Dy, factors by configuration-transition pairs (c;, d;):

S(Dym) = Y12, s(ci, dy)
m Learning
Scoring function s(c;, d;) for dj(¢;) € Dy

m Inference
Search for highest scoring sequence D3, given s(c;, d;)

1A161 Syntactic Formalisms for Parsing Natural Languages 433 /476
Lecture 11

Transition-based Parsing

Learning for transition-based parsing

m Typical scoring function:
B s(c;,d;) = w-f(c;,d;) where f(c;, d;) is a feature vector over
configuration ¢; and transition d; and w is a weight vector
[w; = weight of featurefi(c;, d;)]
m Transition system

B Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
B Limited non-projective O(n) [Attardi 2006, Nivre 2007]
B Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

m Problem
E Learning is local but features are based on the global history

“ Syntactic Formalisms for Parsing Natural Languages 435 /476

Lecture 11

Transition-based Parsing

Inference for transition-based parsing

m Common inference strategies:

B Deterministic [Yamada and Matsumoto 2003, Nivre et al. 2004]

B Beam search [Johansson and Nugues 2006, Titov and Henderson
20071

m Complexity given by upper bound on transition sequence length

m Transition system

m Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
® Limited non-projective O(n) [Attardi 2006, Nivre 2007]
m Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

1A161 Syntactic Formalisms for Parsing Natural Languages 434 /476
Lecture 11

Graph-based Parsing

m For a input sentence S we define a graph Gs = (Vs,As) where
Vs = {wo,ws,...,wp} and
As = {(w;,w;,l)lw;,w; e Vand [€ L}

m Score of a dependency tree T factors by subgraphs Gq,...,Gs:
s(T)=31", s(Gy)
m Learning: Scoring function s(G;) for a subgraph G, € T

m Inference: Search for maximum spanning tree scoring sequence
T* of Gs given s(G;j)

1A161 Syntactic Formalisms for Parsing Natural Languages 436 / 476

Lecture 11

Graph-based Parsing

Learning graph-based models

m Typical scoring function:

B s5(G)) = w-f(G;) where f(G)) is a high-dimensional feature vector
over subgraphs and w is a weight vector
[w; = weight of feature f;(G;)]

m Structured learning [McDonald et al. 2005a, Smith and
Johnson 20071:

E Learn weights that maximize the score of the correct dependency
tree for every sentence in the training set

m Problem

m Learning is global (trees) but features are local (subgraphs)

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 11

Grammar-based approach

437 / 476

a. context-free dependency parsing

Advantage: Well-studied parsing algorithms such as CKY,
Earley’s algorithm can be used for dependency parsing as well.

— need to convert dependency grammars into efficiently
parsable context-free grammars; (e.g. bilexical CFG, Eisner and
Smith, 2005)

b. constraint-based dependency parsing

defines the problem as constraint satisfaction

B Weighted constraint dependency grammar (WCDG, Foth and
Menzel, 2005)
B Transformation-based CDG

“ Syntactic Formalisms for Parsing Natural Languages

439 /476

Lecture 11

Grammar-based approach

a. context-free dependency parsing
exploits a mapping from dependency structures to CFG
structure representations and reuses parsing algorithms
originally developed for CFG — chart parsing algorithms

b. constraint-based dependency parsing

B parsing viewed as a constraint satisfaction problem

B grammar defined as a set of constraints on well-formed
dependency graphs

m finding a dependency graph for a sentence that satisfies all the
constraints of the grammar (having the best score)

438 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 11

Dependency parsers

m Trainable parsers

Probabilistic dependency parser (Eisner, 1996, 2000)

m MSTParser (McDonald, 2006)-graph-based

m MaltParser (Nivre, 2007, 2008)-transition-based

B K-best Maximum Spanning Tree Dependency Parser (Hall, 2007)
m Vine Parser

m ISBN Dependency Parser

m Parsers for specific languages defines the problem as
constraint satisfaction

Minipar (Lin, 1998)

WCDG Parser (Foth et al., 2005)

Pro3Gres (Schneider, 2004)

Link Grammar Parser (Lafferty et al., 1992)
CaboCha (Kudo and Matsumoto, 2002)

1A161 Syntactic Formalisms for Parsing Natural Languages

440/ 476

Lecture 11

MaltParser

Data-driven dependency parsing system (Last version,
1.6.1,). Hall,). Nilsson and }J. Nivre)

m Transition-based parsing system
m Implementation of inductive dependency parsing
m Useful for inducing a parsing model from treebank data

m Useful for parsing new data using an induced model

Useful links
http://maltparser.org

1A161 Syntactic Formalisms for Parsing Natural Languages 441/ 476
Lecture 11

MSTParser

Running system

m Input: part-of-speech tags or word forms

1 Den _ PO PO DP 2 SS _
2 blir _ Vv BV PS 0 ROOT _
3 gemensam _ Al Al _ 2 SP o
4 far _ PR PR _ 2 OA o
5 alla _ PO PO TP 6 DT _
6 inkomsttagare _ N NN HS 4 PA _
7 oavsett _ PR PR _ 2 AA o
8 civilstéand _ N NN SS 7 PA o
9 . _ P P_ 2 IP o

m Output: column containing a dependency label

“ Syntactic Formalisms for Parsing Natural Languages 443 /476

Lecture 11

Components of system

Building labeled
/ dependency graphs
Deterministic parsing

algorithms

. Predicting the next parser
QIEICIRREREE NN —— | 5ction at nondeterministic

choice points

Discriminative learning

\ Mapping histories to

parser actions

1A161 Syntactic Formalisms for Parsing Natural Languages 442 / 476
Lecture 11

MSTParser

Minimum Spanning Tree Parser (Last version, 0.2, R.
McDonald et al., 2005, 2006)

m Graph-based parsing system

Useful links
http://www.seas.upenn.edu/ strctirn/MSTParser/MSTParser.html

1A161 Syntactic Formalisms for Parsing Natural Languages 444 /476

Lecture 11 Lecture 11

MSTParser MSTParser

Running system Running system

m Output: column containing a dependency label

m Input data format:

Where,

wl w2 e wn B w1l ... wn are the n words of the sentence (tab deliminated) — e L e
A -
pl p2 - pn B pl ... pnare the POS tags for each word foE e e
. . BT T e Jomes industrisio " Sverage plunged emums points o meer o
11 |12 L. In B 11 ... In are the labels of the incoming edge to each word oo owme e o T Barel mamegea 0 stay This side
m .) . or e e e we wb s s e
dl d2 . d2 dl ... dn are integers representing the postition of each By oW Y w8 W % b on om omoom
words parent N T A N T T T T A R B
m Example: wowomowow
For example, the sentence ”John hit the ball” would be: M I e S
b or
John hit the ball o 6w 1 x
N V D N COE A A
B
SB] ROOT MOD OB ke
)) . @ m m w
2 0 4 2 RN A A A A A T O
heavy setting standara 6 poor s sesstock indes futures in
h: go relentl ly t tocks do
1A161 Syntactic Formalisms for Parsing Natural Languages 445 / 476 IA161 Syntactic Formalisms for Parsing Natural Languages 446 / 476
Lecture 11 Lecture 11
- - -
Comparing parsing accuracy Link Parser

Graph-based Vs. Transition-based MST Vs. Malt
Syntactic parser of English, based on the Link Grammar

Language I\GIIET9 g’lglt (version, 4.7.4, Feb. 2011, D. Temperley, D, Sleator, .
Arabic 91 71

Bulgarian | 87.57 | 87.41 Lafferty, 2004)

Chinese 85.90 86.92

Czech 80.18 | 78.42 ,

Danish 84.79 | 84.77 m Words as blocks with connectors + or -

Dutch 79.19 | 78.59 .. .

German 87.34 | 85.82 m Words rules for defining the connection between the connectors
Japanese 90.71 | 91.65 . .

Portuguese | 86.82 | 87.60 m Deep syntactic parsing system

Slovene 73.44 | 70.30

Spanish 82.25 | 81.29]

Swedish 82.55 | 84.58 Useful links

Turkish 63.19 65.68 . : : :

Average | 80.83 | 8075 http://www.link.cs.cmu.edu/link/index.html

http://www.abisource.com/

Presented in Current Trends in Data-Driven Dependency Parsing by Joakim Nivre, 2009

“ Syntactic Formalisms for Parsing Natural Languages 447 |/ 476 1A161 Syntactic Formalisms for Parsing Natural Languages 448 /476

Lecture 11

Link Parser

Link Parser

John gives a book to Mary.

ound 2 no P.P. viol
r (UNUSED=0 DI
m Example of a parsing in the Link Grammar:

let’s test our proper sentences!

LEFT-WALL John gives.v a book.n to Mary .

r RN for the next linkage.
http://www.link.cs.cmu.edu/link/submit-sentence-4.html] > ‘

vector = (UNUSED=0 DIS=1 AND=0 LEN=7

1A161 Syntactic Formalisms for Parsing Natural Languages 449 / 476
Lecture 11

Link Parser

1A161 Syntactic Formalisms for Parsing Natural Languages 450 /476
Lecture 11

WCDG parser

Some fans on Friday will be seeking to add another store-opening shirt to collections
they’'ve assembled as if they were rare baseball cards.

© © ® link-4.1b : parse

Weighted Constraint Dependency Grammar Parser

(version, 0.97-1, May, 2011, W. Menzel, N. Beuck, C.
Baumgartner)

m incremental parsing

m syntactic predictions for incomplete sentences

m Deep syntactic parsing system

Useful links
http://nats-www.informatik.uni-
hamburg.de/view/CDG/ParserDemo

“ Syntactic Formalisms for Parsing Natural Languages 451 /476 1A161 Syntactic Formalisms for Parsing Natural Languages

452 /476

Lecture 12

Syntactic Formalisms for Parsing
Natural Languages

Ales Horak, Milos Jakubicek, Vojtéch Kovar
(based on slides by Juyeon Kang)

ial6él@nlp.fi.muni.cz

Autumn 2013

1A161 Syntactic Formalisms for Parsing Natural Languages 453 /476
Lecture 12

Parsing Results

m usually some complex (i.e. non-scalar) structure, mostly a tree
or a graph-like structure

m crucial question: how to measure the “goodness” of the result?

“ Syntactic Formalisms for Parsing Natural Languages 455 /476

Lecture 12

Parsing Evaluation

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 12

Extrinsic vs. Intrinsic Evaluation

m Intrinsic
B by comparing to a “gold”, i.e. correct, representation

m Extrinsic

454 /476

B by exploiting the result in a 3rd party task and evaluating its

results

m Which is better?

1A161 Syntactic Formalisms for Parsing Natural Languages

456 / 476

Lecture 12 Lecture 12

Intrinsic Evaluation - Phrase-Structure Syntax PARSEVAL metric
m i.e. compare two phrase-structure trees and tell a number m basic idea: penalize crossing brackets in the tree
m PARSEVAL metric m i.e. compare all constituents in the test tree to the gold tree
m LAA (Leaf-ancestor assessment) metric m = parsing viewed as classification problem

1A161 Syntactic Formalisms for Parsing Natural Languages 457 | 476 IA161 Syntactic Formalisms for Parsing Natural Languages 458 /476
Lecture 12 Lecture 12

Precision, recall F-score

m for classification problems in NLP, the standard evaluation is by
means of precision and recall m also F-measure

m general form: Fgz score

. precision-recall
(B2+precision)+recall

Fs score = (1 + 3?)

m special case of g =1 corresponds to the harmonic mean of
precision and recall

precision = —'tesrtgsamd‘ recall = —'tesfgglgf'd‘ _ N
m [can be used for favouring precision over recall (for 3 < 1) or
m two numbers, we just want to have one - F-score vice versa (for 5 > 1)
F1 score = 2-precision-recall

precision-+recall

“ Syntactic Formalisms for Parsing Natural Languages 459 / 476 1A161 Syntactic Formalisms for Parsing Natural Languages 460 /476

Lecture 12

PARSEVAL metric

basic idea: penalize crossing brackets in the tree
i.e. compare all constituents in the test tree to the gold tree

= parsing viewed as classification problem

[]
]
]
m = F-score on correct bracketings/constituents
m might even disregard non-terminal names

]

sort of standardized tool available: the evalb script at
http://nlp.cs.nyu.edu/evalb/

1A161 Syntactic Formalisms for Parsing Natural Languages 461 /476
Lecture 12

PARSEVAL metric

test vs. gold

S
_— N\
S TP VP
_— N\ _— N\
|\|1P VP John \|/ NP
,/f””/:;;jf\\\\\\\\ ///////A\\\\\
John T NP PP likes NP PP
likes ice cream with chocolate ice cream with chocolate

test:[S [NP John][VP [V likes][NP ice cream] [PP with chocolate]]]

gold:[S [NP John][VP [V likes][NP [NP ice cream] [PP with chocolatel]lll]]

precision = 6/6 = 1.0, recall = 6/7 = 0.86, F-score = 0.92

“ Syntactic Formalisms for Parsing Natural Languages 463 /476

Lecture 12

PARSEVAL metric - example

test vs. gold
S
_— N\
S NP VP
_— N\ _—— N\
NP VP Jo|hn \|/ NP
,//””/i::;7’\\\\\\\\\ ////////N\\\\\
Jo|hn \|/ NP PP likes NP PP
likes ice cream with chocolate ice cream with chocolate

test:[S [NP John][VP [V likes][NP ice cream] [PP with chocolate]]]
gold:[S [NP John][VP [V likes][NP [NP ice cream] [PP with chocolatellll]

precision = 6/6 = 1.0, recall = 6/7 = 0.86, F-score = 0.92

1A161 Syntactic Formalisms for Parsing Natural Languages 462 /476
Lecture 12

PARSEVAL metric

m often subject to criticism (see e.g. Sampson, 2000)

m Sampson proposed another metric, the leaf-ancestor
assessment (LAA)

1A161 Syntactic Formalisms for Parsing Natural Languages 464 / 476

Lecture 12

LAA metric

m basic idea: for each leaf (word), compare the path to the root of
the tree, compute the edit distance between both paths, finally
take the average of all words

m in the previous example, the paths (lineages) are:

m (John) NP S vs. (John) NP S

m (likes) V VP S vs. (likes) VVP S

m (ice cream) NP VP S vs. (ice cream) NP NP VP S

m (with chocolate) PP VP S vs. (with chocolate) PP NP VP S

465 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 12

Intrinsic Evaluation - Building Treebanks

m treebank = a syntactically annotated text corpus
m manual annotation according to some guidelines

m from the evaluation point of view: inter-annotator agreement
(IAA) is a crucial property

467 / 476

“ Syntactic Formalisms for Parsing Natural Languages

Lecture 12

Intrinsic Evaluation - Dependency Syntax

B much easier

m just precision, labeled or unlabeled (as the number of correct
dependencies)

466 / 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 12

Measuring IAA

m naive approach: count how many times people agreed on

m problem: it does not account for agreement by chance

468 /476

1A161 Syntactic Formalisms for Parsing Natural Languages

Lecture 12

Chance-corrected coefficients for IAA

m S (Benett, Alpert and Goldstein, 1954)
m 7 (Scott, 1955)
m « (Cohen, 1960)

m (there is lot of terminology confusion, we follow Ron Artstein,
Massimo Poesio: Inter-coder Agreement for Computational
Linguistics, 2008)

m A, - observed agreement
m A, - expected (chance) agreement

m for all coefficients, they compute:

Ao — Ae
1—-Ae

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 12

Intrinsic Evaluation - Conclusions

S, k=

469 /476

m generally not easy
m builds on the assumption of having THE correct parse

m there is evidence that it does not correlate with extrinsic
evaluation, i.e. how good the tool is for some particular job

471/ 476

“ Syntactic Formalisms for Parsing Natural Languages

Lecture 12

Chance-corrected coefficients for IAA

m S (Benett, Alpert and Goldstein, 1954)

B assumes that all categories and all annotators have uniform
probability distribution

m 7 (Scott, 1955)

B assumes that different categories have different distributions
shared across annotators

m « (Cohen, 1960)

B assumes that different categories and different annotators have

different distributions

m devised for 2 annotators, various modifications for more than 2

annotators available

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 12

Extrinsic Evaluation

470/ 476

m = evaluation on a particular task/application
m advantages: measures direct fitness for that task

m disadvantages: may not generalize for other tasks

m leads to crucial question: what can be parsing used for?

472/ 476

1A161 Syntactic Formalisms for Parsing Natural Languages

Lecture 12

What can parsing be used for?

m in theory, (full) parsing is suitable/appropriate/necessary for
many NLP tasks

m practically it turns out to be:

m often not accurate enough

m often too complicated to exploit

B sometimes just an overkill compared to shallow parsing or yet
simpler approaches

473 /476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 12

Where is parsing actually used now?

B prototype systems
m academia work

m production systems 7?77

“ Syntactic Formalisms for Parsing Natural Languages

475/ 476

1A161 Syntactic Formalisms for Parsing Natural Languages

Lecture 12

What can parsing be used for?

m in theory, (full) parsing is suitable/appropriate/necessary for
many NLP tasks

information extraction
information retrieval
machine translation
corpus linguistics
computer lexicography
guestion answering

474 / 476

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 12

What to evaluate parsing on

Sample (more or less well defined) applications
m (partial) morphological disambiguation
m text correcting systems
m word sketches
m phrase extraction

m simple treebank of high IAA

476 / 476

