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3 Graph Distan
e and Path Finding

In some other appli
ations, graphs are used to model distan
es; e.g., as in road networks and

in work�ow diagrams. The basi
 task then is to �nd shortest paths or routes, and the optimal

distan
e.

✷
Brief outline of this le
ture

• Distan
e in a graph, basi
 properties, BFS.

• Weighted distan
e in digraphs; the problem of negative 
y
les and

Bellman�Ford's algorithm.

• Dijkstra's algorithm for the single-sour
e shortest paths.

• A sket
h of some advan
ed ideas in pra
ti
al path planning.
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3.1 Unit Distan
e in Graphs

Recall that a walk of length n in a graph G is an alternating sequence of vertices and
edges (v0, e1, v1, e2, v2, . . . , en, vn) such that each ei has the ends vi−1, vi.

Definition 3.1. Distance dG(u, v) between two vertices u, v of a graph G

is defined as the length of the shortest walk between u and v in G.

If there is no walk between u, v, then we declare dG(u, v) =∞. ✷

Naturally, the distan
e between u, v equals the least possible number of edges travelled from

u to v, and it is always a
hieved by a path from Lemma 2.6. Spe
. dG(u, u) = 0.

s s s s

s s s s

❢ ❢
u v

✷ ✷

Remark: Distan
e 
an be analogously de�ned for digraphs, using dire
ted walks or paths.

A more general view in Se
tion 3.3 will 
onsider also non-unit lengths of edges in G.
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Triangle inequality

s s s s
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Lemma 3.2. The graph distance satisfies the triangle inequality:

∀u, v, w ∈ V (G) : dG(u, v) + dG(v, w) ≥ dG(u,w) .✷

Proof. Easily; starting with a walk of length dG(u, v) from u to v, and appending a
walk of length dG(v, w) from v to w, results in a walk of length dG(u, v) + dG(v, w)
from u to w. This is an upper bound on the distance from u to w. ✷ ✷

Fact: The distance in an undirected graph is symmetric, i.e. dG(u, v) = dG(v, u).
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Other related terms

Definition 3.3. Let G be a graph. We define, with resp. to G, the following notions:

• The excentricity of a vertex exc(v) is the largest distance from v to another
vertex; exc(v) = maxx∈V (G) dG(v, x). ✷

• The diameter diam(G) of G is the largest excentricity over its vertices, and the
radius rad(G) of G is the smallest excentricity over its vertices.

s s s s

s s s s

✷
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✷

It always holds diam(G) ≤ 2 · rad(G). ✷

• The center of G is the subset U ⊆ V (G) of vertices such that their excentricity
equals rad(G).
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An excersise

Example 3.4. What is the largest possible number of vertices a cubic (i.e., 3-regular)
graph of radius 2 may have? ✷

Let G be the graph. First of all, the definition of radius tells us that, for some vertex
u ∈ V (G), all the vertices of G are at distance ≤ 2 from u. ✷

Second, there can be ≤ 10 such vertices by the degree-3 condition:
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✷

And third, we are able (or lucky?) to fill in the remaining six edges (to get all the
degrees equal 3) as in the picture. Hence, 10 vertices is possible, and this is the
answer. ✷ ✷

Remark: Note, moreover, that we have a
tually 
onstru
ted a graph of diameter 2, whi
h is

a stronger requirement than radius 2.
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3.2 Simple Computation of Distan
e (BFS)

Computing the (unit) distance from a given vertex u0 to any other vertex of a graph
is a matter of an extremely simple algorithm, based on BFS:

Algorithm 3.5. Computing all distances from a starting vertex u0 ∈ V (G). ✷

For a given graph (or digraph) G and any u0 ∈ V (G), we run Algorithm 2.1 with the
implementation of PROCESS(v;e) as follows (and with void PROCESS(e)):

initialize dist[u0,v]←∞, for all v ∈ V (G);
dist[u0,u0]← 0;

...

PROCESS(v;e) {

u← the starting vertex of “e = uv”;
dist[u0,v]← dist[u0,u]+1;

}

s
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BFS distance – the proof

Theorem 3.6. Let u0, v, w be vertices of a connected graph G such that
dG(u0, v) < dG(u0, w). Then the breadth-first search algorithm on G, starting from u0,
finds the vertex v before w. ✷

Proof. We apply induction on the distance dG(u0, v): If dG(u0, v) = 0, i.e. u0 = v,
then it is trivial that v is found first. So let dG(u0, v) = d > 0 and v′ be a neighbour
of v closer to u0, which means dG(u0, v

′) = d−1. Analogously choose w′ a neighbour
of w closer to u0. Then

dG(u0, w
′) ≥ dG(u0, w)− 1 > dG(u0, v)− 1 = dG(u0, v

′) ,

and so v′ has been found before w′ by the inductive assumption. Hence v′ has been
stored into U before w′, and (cf. FIFO) the neighbours of v′ (v among them, but
not w) are found before the neighbours of w′ (such as w). ✷ ✷

Corollary 3.7. The search tree of the BFS Algorithm 2.1 on G determines the distances
from u0 ∈ V (G) to all vertices of G.

Hence, Alg. 3.5 is correct, meaning that dist(u0, v) = dG(u0, v) for all v ∈ V (G).
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3.3 Weighted Distan
e in Digraphs

Re
all (Se
tion 2.3): A weighted graph is a pair of a graph G together with a weighting w of

the edges by real numbers w : E(G)→ R (edge lengths in this 
ase).

A positively weighted graph (G,w) is su
h that w(e) > 0 for all edges e. ✷

Definition 3.8. Weighted distance (length) in a weighted (di)graph (G,w).
The length of a weighted (dir.) walk S = v0, e1, v1, e2, v2, . . . , en, vn in G is the sum

dwG(S) = w(e1) + w(e2) + · · ·+ w(en) .✷

The weighted distance in (G,w) from a vertex u to a vertex v is

dwG(u, v) = min{dwG(S) : S is a (dir.) walk from u to v } .✷

s s s

s s

s s
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For undir. graphs G, the definition considers the symmetric orientation of the edges.
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Basic facts

• Weighted distance in a digraph (G,w) satisfies the triangle inequality.
(The same statement and proof hold here as in Lemma 3.2.) ✷

• Ordinary graph distance is obtained for weights (G,w1) s.t. w1(e) = 1 for all e.✷

• If a weighted digraph (G,w) contains a cycle (a closed walk) of negative length,
then the distance between a pair of vertices in G may not be defined (“−∞”):
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✷

Proposition 3.9. If (G,w) is a weighted digraph containing no cycles (and hence no
closed walks) of negative length, then ✷

• the weighted distance in (G,w) is always well defined, and ✷

• the weighted distance is achieved by a (dir.) path in G.
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Negative or positive weights?

• By the previous facts, negative-length edges may cause huge problems with
(di)graph distance. So, why to consider them at all?

(Do they make sense, anyway?) ✷

• For undirected graphs, the negative-length problem seems fatal, and hence we
consider only positively weighted undirected graphs.

For digraphs, though, negative-length edges might be useful to consider, as long
as there is no cycle of negative length (Prop. 3.9). E.g., for DAGs.
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.Petr Hlin¥ný, FI MU Brno, 2014 11 / 33 FI:MA010: Graph Distan
e and Paths

Bellman�Ford Algorithm

Definition: A cycle of negative length in a w. digraph with is called a negative cycle.✷

Algorithm 3.10. Computing the distance or detecting a negative cycle.
For a given weighted digraph (G,w), and a starting vertex u0 ∈ V (G), the task is to
compute the distance dist[u0, v] = dwG(u0, v) from u0 to any vertex v ∈ V (G).

initialize dist[u0,v]←∞, for all v ∈ V (G);
dist[u0,u0]← 0; ✷

repeat |V (G)| − 1 times {

foreach ( e = uv∈ E(G) ) {

dist[u0,v] ← min( dist[u0,v],dist[u0,u] +w(e)); (*)

}

} ✷

foreach ( e = uv∈ E(G) ) {

if ( dist[u0,v]> dist[u0,u]+w(e) )

output “Error; a negative cycle exists in (G,w).”
}

output “Distances from u0 in dist[u0, ·].”
✷

(One can also easily store the predecessors for the computed distances on line (*). . . )
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Proof of the Bellman–Ford algorithm

Proof. To claim that dist[u0, v] = dwG(u0, v) if there is no negative cycle in (G,w),
and that a negative cycle is detected otherwise, we prove the following three steps.

1. At every step of Alg. 3.10, it is dist[u0, v] ≥ dwG(u0, v): ✷

This holds at the beginning, and follows trivially by induction on the number of
elementary steps “dist[u0,v] ← min(dist[u0,v], dist[u0,u] +w(e))”.✷

2. Assume there is no negative dir. cycle in (G,w). Let (cf. Prop. 3.9) Vi ⊆ V (G)
be the subset of vertices v for which dwG(u0, v) is achieved by a dir. u0-v path
with ≤ i edges. Then, after iteration no. k of “foreach (e = uv∈ E(G))”, the
value of dist[u0,v] equals dwG(u0, v) for all v ∈ Vk: ✷

Again, this triv. holds for k = 0 and follows easily by induction. ✷

3. Let C ⊆ G be any directed cycle. If “dist[u0,v] 6> dist[u0,u]+w(e)” for all
e = uv ∈ E(C), then C is not a negative cycle in (G,w): ✷

We have dist(u0, v)− dist(u0, u) ≤ w(e) and summing these over all e ∈ E(C)
we get 0 ≤

∑

e∈E(C) w(e). Consequently, negative cycles in (G,w) are detected

in the algorithm (but only detected, they cannot be easily constructed).
✷
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3.4 Positive-length Shortest Paths

In contrast to previous Algorithm 3.10, shortest paths may be computed much faster
when all the edge lengths are positive (which is true, e.g., in practical routing problems).

For the general single-source positive-length shortest paths problem, a nearly optimal
algorithm is the following traditional one.

Dijkstra’s algorithm:

• For a given positively weighted digraph (G,w), and an arbitrary starting vertex
u0 ∈ V (G), the algorithms computes dist[u0, v] for all v ∈ V (G). ✷

• In the graph-search scheme of Algorithm 2.1, one simply implements

– “choose (e,u)∈ U” by picking (e, u), e = tu, from U such that
dist(u0, t) + w(e = tu) is minimized, ✷

– “PROCESS(u;e=tu)” as dist[u0,u]← dist[u0,t]+w(tu), ✷

– “PROCESS(e)” as void, and

– the search tree T storing shortest paths from u0. ✷

• This algorithm works in the same way for undirected as for directed graphs.
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A self-contained exposition of Dijkstra’s algorithm is quite simple:

Algorithm 3.11. Dijkstra’s for single-source shortest paths.
For a positively weighted digraph (G,w), and a vertex u0 ∈ V (G), compute shortest
paths predec[·] and distances dist[u0, ·] in (G,w) from the source u0 to all of G.

initialize dist[u0,v]←∞, for all v ∈ V (G);
dist[u0,u0]← 0;

U ← {u0}; ✷

while ( U 6= ∅ ) {

choose u∈ U minimizing dist[u0,u];

foreach (edge f starting in u ) {

v ← the opposite vertex of “f = uv”;
if ( dist[u0,u]+w(uv) < dist[u0,v] ) {

U ← U ∪ {v};
predec[v] ← u;

dist[u0,v] ← dist[u0,u]+w(uv);

}

}

U ← U \ {u};
}

output ’distances in dist[.], predecessors in shortest paths in predec[]’;
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Proposition 3.12. If the stack U is implemented as a minimum heap, then the number
of steps performed by Algorithm 3.11 is O

(

|E(G)|+ |V (G)| · log |V (G)|
)

. ✷

A vertex u ∈ V (G) is called “relaxed” after it is removed in “U ← U \ {u}” above.

Theorem 3.13. Every iteration of Algorithm 3.11 maintains an invariant that

• dist[u0,v] is the length of a shortest path from u0 to v using only those internal
vertices which are relaxed, and such a shortest path is stored in predec[.].✷

Consequently, all the distances and shortest paths to reachable vertices are correct.

Proof: Briefly using mathematical induction:

• In the first iteration of “while ( U 6= ∅ )”, u0 is chosen and the straight distances
(edge lengths) to its neighbours are stored. ✷

• Subsequently, for every chosen vertex u in “u∈ U minimizing dist[u0,u]”, the
current value of dist[u0,u] is optimal since no negative edges exist in (G,w)
(and so every possible detour via non-relaxed vertices would only be longer).✷

Then, all working distances and the shortest-paths record are properly updated
(wrt. u) while “relaxing” u:

if ( dist[u0,u℄+w(uv) < dist[u0,v℄ ) {

prede
[v℄ ← u; dist[u0,v℄ ← dist[u0,u℄+w(uv); ✷
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Bidirectional Dijkstra’s algorithm

In some settings, the following improved variant may be significantly more efficient in
the single-pair shortest path problem in a digraph (G,w): ✷

• To find a shortest u0–v0 path, run two instances of Algorithm 3.11 concurently:

– A searches shortest paths from u0 in (G,w), as usual, and ✷

– A← searches shortest paths from v0 in (G←, w) where G← results from G by
reversing all edges; e ∈ E(G) to e← ∈ E(G←) such that w(e←) = w(e).✷

• A and A← may simply alternate their iterations, or better;

– minima u ∈ U and u′ ∈ U← are chosen concurently, and the instance
achieving smaller value among dist(u0, u) and dist←(v0, u

′) is run. ✷

• Termination condition; the whole algorithm stops when the search subtrees T

and T← of A and A← meet each other.
That is, whenever some vertex is relaxed in both A and A←.
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All-pairs Shortest Distan
es

The last algorithm we are going to present in this section is extraordinarily simple and
beautiful, although rather slow since it can compute only all-pairs distances at once. ✷

Algorithm 3.14. Floyd–Warshall’s algorithm for all-pairs distances
For a positively weighted digraph (G,w), compute distances dist[·, ·] between all pairs
of vertices of G.

initialize dist[u,v]←∞, for all u, v ∈ V (G);
foreach ( uv∈ E(G) ) dist[u,v]← w(uv);

foreach ( t∈ V (G) ) {

foreach ( u,v∈ V (G) ) {

dist[u,v] ← min( dist[u,v],dist[u,t]+dist[t,v]);

}

}

output ’The complete distance matrix of (G,w) in d[ , ]’;

The number of steps of this algorithm is O
(

|V (G)|3
)

, which is quite slow compared to
repeated Dijkstra in the case of sparse graphs. ✷

Remark: Floyd�Warshall's algorithm has many shapes; it appears, e.g., in 
omputation of the

transitive 
losure and in the translation of a �nite automaton to a regular expression. ✷

The algorithm is also related to matrix multipli
ation.
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Algorithm 3.14 is based on the following beautifully simple dynamic-programming idea:

Computing all-pairs distances dynamically

• Given is a weighted (di)graph (G,w) on n vertices; V (G) = {t0, t1, . . . , tn−1}.✷

Let disti(u, v) denote the length of a shortest u–v walk S in G such that all
vertices of S except the ends u, v are from the subset {t0, . . . , ti−1}. ✷

• For computing disti+1, the admissible walks are those as for disti plus those
walks passing through ti (“u–ti–v”). ✷

Consequently,

disti+1(u, v) = min
(

disti(u, v), disti(u, ti) + disti(ti, v)
)

✷

and
dist[u, v] = distn(u, v).✷

• This algorithm works correctly also with negative edge lengths, as long as there
is no negative cycle (same as Bellman–Ford):

Proposition 3.15. Algorithm 3.14 correctly computes distances between all pairs of
vertices in a weighted (di)graph (G,w), provided that there is no negative cycle.
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3.5 Some Advan
ed Ideas in Path Finding

Based on the above comparison of approaches, Dijkstra’s algorithm seems to be the
ultimate tool for practical path finding (or route planning) problems.

• Being quite fast and, actually, “almost optimal” for the shortest path problem in
weighted graphs, ✷Dijkstra’s algorithm turns out to be too slow for, e.g., practical
route planning applications in navigation devices containing map data of tens or
hundreds millions of edges. ✷

• So, what can be done better? ✷

• An answer lies in preprocessing of the graph:

It is quite natural to assume that the graph (of a road network) is relatively
stable, and hence it can be thoroughly preprocessed on powerful computers. ✷

However, what of the preprocessing results can be stored? It is, say, completely
unrealistic to store all the optimal routes in advance. . .✷

• Two perhaps simplest practically usable approaches will be briefly sketched next.
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First, an alternative to Dijkstra’s alg. is the Algorithm A∗, which uses a suitable poten-
tial function to direct the search “towards the goal”. Whenever we have a good “sense
of direction” (e.g. in a topo-map navigation), A∗ can perform way much better!

Algorithm A∗

• In a basic setting, A∗ re-implements Dijkstra with suitably modified edge costs
on digraphs. ✷

• Let pv(x) be a potential function giving an arbitrary lower bound on the distance
from x to the destination v (i.e., pv is admissible).
E.g., in a map navigation, pv(x) may be the Euclidean distance from x to v. ✷

• Each directed edge xy of the weighted graph (G,w) gets a new cost

w′(xy) = w(xy) + pv(y) − pv(x) .

The potential pv is consistent when all w′(xy) ≥ 0, i.e. w(xy) ≥ pv(x)− pv(y).

The above Euclidean potential is always consistent. ✷

• The modif. length of any u–v walk S then is dw
′

G (S) = dwG(S) + pv(v)− pv(u),
which is a constant difference from dwG(S). ✷

Consequently, some S is optimal for the weighting w iff S is optimal for w′.

Here the Euclidean potential “strongly prefers” edges in the destin. direction.
Other (also preprocessed) potential functions are possible as well, though.
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Se
ond, . . .

The idea of a “reach”

• It is based on a natural observation that for long-distance route planning, vaste
majority of edges of real-world road maps are basically irrelevant.✷

Definition: Let Su,v denote a shortest walk from u to v in weightedG. For e ∈ E(Su,v)
let prefix(Su,v, e), suffix(Su,v, e) denote the starting (ending) segment of Su,v up
to (after) e. ✷The reach of an edge e ∈ E(G) is given as

reachG(e) = max
{

min
(

dwG(prefix(Su,v, e)), d
w
G(suffix(Su,v, e))

)

:

∀u, v ∈ V (G) ∧ e ∈ E(Su,v)
}

.✷

The rea
h of e mathemati
ally quanti�es (ir)relevan
e of e for route planning; the smaller

reachG(e) is, the 
loser to the start or end of an optimal route e has to be. ✷

The immediate use of precomputed reach values is as follows:

• We must use the bidirectional variant of Dijkstra or A∗. ✷

• The line “foreach (edge f starting in u )” in Algorithm 3.11 (in each direc-
tion) now takes only those edges f = uv such that reachG(f) ≥ dist[u0, u].
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3.6 Appendix: An example of a run of Dijkstra's alg.

Example 3.15. An illustration run of Dijkstra’s Algorithm 3.11 from u to v in the
following graph.
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