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5 Mat
hing, Covers, and Pa
king

From previous “more applied” areas of Graph theory we now shift closer towards the
traditional theory, and survey the classical topics which belong to every GT curriculum.

We start with matchings in graphs, and related topics of covering and packing. Inter-
estingly, graph matchings play a role, e.g., in statistical physics.
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✷

Brief outline of this le
ture

• Mat
hing in graphs and in bipartite graphs, stable marriage.

• Perfe
t mat
hings, Hall's theorem, fa
tors in graphs, fa
torizations.

• Vertex 
over. Pa
kings in graphs, related 
overings.

• Counting obje
ts in graphs, e.g. spanning trees.
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.Petr Hlin¥ný, FI MU Brno, 2014 2 / 33 FI:MA010: Mat
hing and Pa
king

5.1 Mat
hing in Graphs and Bipartite Graphs

Imagine the task to �mat
h suitable 
ouples� su
h that nobody is in more than one relationship:
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Definition 5.1. A matching in an undirected graph G
is a subset of edges M ⊆ E(G) such that no two edges from M share a vertex.

(The vertices incident to the edges in M are called matched. |M | is the size.) ✷

Fact: We illustrate the definition with several simple claims:

• No matching in G can have more than ⌊|V (G)|/2⌋ edges.

• If G is a star, then no matching in G has more than one edge. ✷

• In any G, one can find a matching with (at least) ⌈δ(G)/2⌉ edges.
(Simply pick the edges greedily from any un-matched vertex. . . )
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Solving the Bipartite Matching Problem

The prime example and application of graph matching is in bipartite graphs. ✷

Algorithm 5.2. Finding maximum cardinality matching in a bipartite graph.

Given a bipartite graph G with the vertex parts A,B, A∪̇B = V (G), construct the
following flow network Ḡ+:
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✷

• Run Algorithm 4.14 on Ḡ+.

• Since all the capacities are integral (1), the resulting max. flow will be integral
as well (0 or 1). ✷Form M ⊆ E(G) from the edges of flow value 1.
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Flows to bipartite matching
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Proof of Algorithm 5.2:

– A matching M ⊆ E(G) gives a flow sized |M |; val. 1 through each edge of M .✷

– Conversely, assume a flow f computed by Algorithm 4.14 on Ḡ+. Proposi-
tion 4.16 implies that f(e) ∈ {0, 1} (only possible int. vals.) for all e ∈ E(G+).

– Then every vertex of G has total flow 0 or 1 (by the capacity from z or to s). ✷

– Select M = {e ∈ E(G) : f(e) = 1} and so M is a matching and |M | = ‖f‖. ✷✷

Closer relation to network flows

• Residual (augmenting) paths in Ḡ+ = free alternating paths in G;
free – both ends of the path in G are currently not matched,
alternating – every second edge of the path is in the current matching.

• Flow network cuts in Ḡ+ = so called vertex covers in G;
i.e., the subsets of V (G) hitting all the edges in E(G) – see later.
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Better runtime bound

Theorem 5.3. (Hopcroft–Karp algorithm) For a bipartite graph G = (V,E), one
can find a maximum matching in time O(|E| ·

√

|V |). ✷
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Proof (sketch): Run Dinitz’s algorithm (4.5) on the network Ḡ+ (see above): ✷

– In one round, all the shortest free alternating paths are found in O(|E|) time,
and the same time takes the augmenting step. ✷

– After
√

|V | rounds, no free alternating path is thus shorter than
√

|V |, and hence

there are at most O(
√

|V |) such paths left! ✷

– All the leftover free alt. paths are finished in next O(
√

|V |) rounds.
✷
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Mat
hing and Optimization

Consider the following problems:

• Maximum weighted matching in a weighted bipartite graph (G,w) asks for a
matching M ⊆ E(G) maximizing

∑

e∈M w(e).

→ A solution can again be obtained similarly to free alternating paths. ✷

• What about maximum cardinality matching in general graphs?

→ The idea of augmenting free alternating paths can be used, too. However;✷

how can one find such an augmenting path efficiently in this general case?✷

→ Edmonds’ Blossom algorithm: rec. contract odd cycles forming alternat-
ing “blossoms” (until eventually reaching the easy bipart. case).

s s s s s s s
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s

the “blossom”
✷

• Maximum weighted matching in general graphs can be solved efficiently as well
[Edmonds] —this is a crucial result in combinatorial optimization.
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The Stable Marriage Theorem

Consider also the following problem related to matchings:

• Given is a graph G together with matching preferences: for every vertex v ∈
V (G), its matching prefence is a linear order <v on the edges incident with v.

Informally, for two edges f = vw and f ′ = vw′
, f <v f ′

means that v would �better

like� to be mat
hed with w′
than with w. ✷

• Call a matching M ⊆ E(G) stable if for every e ∈ E(G)\M there exists f ∈ M
such that e, f share a common end v and e <v f .

Informally, no �lo
al swit
h� in mat
hing M is pro�table for both parties (ends of e).
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✷

Theorem 5.4. (Gale and Shapley) For any bipartite graph G and any matching
preferences for G, there exists a stable matching.
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Proof of stable marriage

Theorem 5.4. For any bipartite graph G and any matching preferences for G, there
exists a stable matching.

Proof (sketch): Let A∪̇B = V (G) be the vertex parts of bipartite G. Consider a
matching M ⊆ E(G) and the following terms: ✷

– Call a vertex b ∈ B available for a vertex a ∈ A if ab ∈ E(G) and the following
holds: whenever b is matched with a′b ∈ M , then a′b <b ab.

Informally, b is happy to 
ouple a (even possibly breaking up with its 
urrent mat
h).✷

– Call a vertex a ∈ A content with M if a is not matched at all, or a is matched
in M to the best available neighbour in B. ✷

Starting with empty M = ∅, repeat the following step (until it fails to find suit. a, b):

– Find an unmatched vertex a ∈ A, and its best available neighbour b ∈ B, and
add ab to M , possibly discarding another b-edge from M . ✷

One can observe two invariants of this procedure; (A) all the vertices in A stay content
with M , and (B) no v. in B gets worse while one b ∈ B gets strictly better each step.✷

The procedure thus terminates, eventually, and the result is a stable matching. ✷
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5.2 Perfe
t Mat
hings

A matching of maximum possible cardinality is characterized as follows:

Definition: A matching M ⊆ E(G) in a graph G is a perfect matching if every vertex
of G is an end of some edge in M . ✷

Fact: A perfect matching exists only if the graph has an even number of vertices. ✷

Theorem 5.5. Let G be a bipartite graph with the parts A,B, i.e. A∪̇B = V (G).
Then G contains a matching of size |A| (in other words, with whole A matched) if,
and only if, for every U ⊆ A the number of neighbours of U in B is at least |U |.

U nghb. U U nghb. U

✷

Re
all Hall's Theorem 4.19:

There exists a system of its distin
t representatives of {M1,M2, . . . ,Mk} if, and only if,

∀J ⊂ {1, 2, . . . , k} :
∣

∣

∣

⋃

j∈J
Mj

∣

∣

∣
≥ |J | ,

i.e., the union of any subfamily has at least as many elements as the number of sets in it. ✷

Where is Thm. 5.5 in this one? A = the sets M1, . . . ,Mk, B = their elements, E(G) ∼∈.
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Hall’s theorem revisited

Theorem 5.5. (repeated) Let G be a bipartite graph with the parts A,B, i.e. A∪̇B =
V (G). Then G contains a matching of size |A| (in other words, with whole A matched)
if, and only if, for every U ⊆ A the number of neighbours of U in B is at least |U |.

Proof (a sketch, see Theorem 5.13 for a related full proof):

• We apply the flow–cut duality (Theorem 4.14 and Algorithm 5.2) onto the asso-
ciated network Ḡ+ (with capacities 1). Schematically:

A ∩D

B ∩D
U

z → 1 1→ s

✷

• So, there is no matching of size |A| iff Ḡ+ has a cut of size < |A|.

Let D ⊆ V (G) by vertices incid. with this cut, one with each cut edge; |D| < |A|.✷

• Consider now U = A \D—all the neighbours of U must belong to B ∩D, and

|B ∩D| = |D| − |A ∩D| < |A| − |A ∩D| = |A \D| = |U | ,

a contradiction to the assumptions. ✷
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Theorem 5.5. (repeated) Let G be a bipartite graph with the parts A,B, i.e. A∪̇B =
V (G). Then G contains a matching of size |A| (in other words, with whole A matched)
if, and only if, for every U ⊆ A the number of neighbours of U in B is at least |U |.

Corollary 5.6. For every k > 0, a k-regular bipartite graph contains a perf. matching.

Proof:Take U ⊆ A. The number of edges incident with U is k · |U | (by k-regularity),
and each neighbour in B meets ≤ k of these edges.
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✷

Hence there are at least k · |U |/k = |U | neighbours of U in B. ✷
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Perfect matchings in regular graphs

Consider a k-regular (undirected) graph G.

• Recall (Cor. 5.6); if G is bipartite, then a perfect matching exists. ✷

• For non-bipartite G, a perfect matching may not exist.
Take, e.g., any odd cycle (k = 2). . . s s

s

✷

What if the number of vertices is even? No, take two odd cycles. . .✷

• An old result of Petersen claims (k = 3):

If G is 3-regular and 2-connected (enough to say “G has no bridges”), then G
has a perfect matching.
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✷

• Is there some nice general characterization of the graphs with a perfect matching?
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Tutte's Condition

Theorem 5.7. (Tutte)
A graph G has a perfect matching if, and only if, for all S ⊆ V (G);

– the graph G−S has at most |S| odd components (those of odd number of vert.).

Note that the stated 
ondition is 
learly ne
essary:
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s

s s
S

Though, we skip the rather involved proof of this beautiful 
hara
terization. . .
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5.3 Fa
tors as Generalization of Mat
hing

A perfe
t mat
hing has the signi�
ant property that every graph vertex is in
ident with exa
tly

one mat
hing edge. What if this number �one� is raised up?

Definition 5.8. An r-factor in an undirected graph G
is a spanning r-regular (i.e., on all vert. of G and with all degrees r) subgraph of G.

Fact: A perfect matching in a graph is the same as a 1-factor. ✷

Example 5.9. Any 4-regular graph contains a 2-factor.
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s
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s

A solution is short, but tricky. . .

Let G be 4-regular, and assume that G is connected (if not, find 2-factors in each of
its components). Since 4 is an even degree, Euler’s theorem 2.17 applies to G. ✷

Hence G consists of one closed trail W = (v0, e1, v1, e2, v2, . . . , em, v0); a walk covering
every edge of G exactly once. Note that the length m = 2|V (G)| is even in this case.

We select every second edge of W , i.e., e1, e3, e5, . . . , em−1. So, for every vertex of G
we select precisely two of the four incident edges, giving a 2-factor. ✷
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Factorization into perfect matchings

We speak about a factorization of a graph (cf. more general packing in Section 5.4) if
the edge set of a graph is to be decomposed into edge-disjoint subgraphs of a certain
kind. . . A r-factorization is a factorization into r-factors. ✷

Proposition 5.10. For every k > 0, a k-regular bipartite graph has a 1-factorization.✷

Proof: Find the first 1-factor M ⊆ E(G) by Corollary 5.6, and continue by induction
with factorization of the (k − 1)-regular subgraph G−M . ✷ ✷

Proposition 5.11. For every n, the complete graph K2n has a 1-factorization. ✷

Proof, a brief sketch:

Take the perfect matching of n edges from the picture,
and rotate it 2n− 1 times around the central vertex.

s

s

s

s

s

s s

s s

s
Why is this a factorization? ✷

Very briefly, every edge of K2n not incident with the cen-
tre in this picture has its “diagonal length”, and the chosen
perfect matching covers each such “length” once.

✷
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5.4 Pa
king and Covers

Consider now kind of “two-sided” graph problems in which the task is to disjointly pack
(a large number of) certain objects into a graph—the packing side. ✷

Seeing the problem from the opposite side, one could ask about finding (a few of)
obstacles which prevent packing any more objects in the graph—the covering side.✷

• For example, the network �ow�
ut duality is of this kind; we would like to �pa
k� as

mu
h �ow as possible, while the obsta
les are the edges of a z�s 
ut in the network. ✷

• In the setting of mat
hings, the following related notion pops up:

s ss

s

s ss s❢

❢

❢

Definition: A vertex cover in a graph G is such a set C ⊆ V (G) that every edge of
G is incident with a vertex of C, i.e. G− C has no edges. ✷

Proposition 5.12. If C is a vertex cover in a graph G, then no matching in G may
contain more than |C| edges.
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Matching–cover duality in bipartite graphs

Theorem 5.13. (König) For an undirected bipartite graph G, the maximum cardi-
nality of a matching in G equals the minimum cardinality of a vertex cover in G.

Proof: Recall (Prop. 5.12) that no matching may be larger than the minimum cardi-
nality vertex cover in G. ✷
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Construct the same flow network Ḡ+ as in Algorithm 5.2. The maximum flow (01-
valued) in Ḡ+, corresponding to the maximum cardinality matching M ⊆ E(G), is by
Theorem 4.10 equal to the minimum edge-cut X ⊆ E(G+) in Ḡ+. ✷

Selecting one vertex from each edge of X , and not z, s, one gets C ⊆ V (G) hitting
all of X , such that clearly |C| ≤ |X | = |M |. We claim that C is a vertex cover in G:
Suppose not, and let e = uv be a (“leftover”) edge in G − C. Then z–u–v–s is a
residual path in Ḡ+ avoiding X , a contradiction to X being a cut in Ḡ+. ✷

Hence, together with Prop. 5.12, |M | ≤ |C| ≤ |X | = |M |, and the equality holds. ✷
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More on packing–covering dualities

• For general graphs, König’s Thm. 5.13 fails; e.g., the complete graph Kn has
a minimum vertex cover of n − 1 vertices while a maximum matching of only
⌊n/2⌋ edges.✷ Though:

Proposition 5.14. In any graph G, the maximum cardinality of a matching and the
minimum vertex cover size are within a multiplicative factor of 2 away from each other.✷

Proof: Let C ⊆ V (G) be a smallest vertex cover in G. Then no matching in G is
larger than |C| (Proposition 5.12); |M | ≤ |C|.

Conversely, take a maximum matching M ⊆ E(G), and set D = V (M) the vertices
incident with M . Since M is maximum, no edge of G may avoid D, and so D is a
vertex cover of size |D| ≤ 2 · |M |. ✷ ✷

• In other words, G cont. a matching of m edges or a v. cover of ≤ 2m vertices.

A prime and famous result (a difficult one) in this direction is the following:

Theorem 5.15. (Erdős–Pósa) There ex. a function f such that, for any k ∈ N, every
graph contains k pairwise disjoint cycles or ≤ f(k) vertices hitting every cycle of G.

(Vertices hitting every cycle in a graph are called feedback vertex set FVS.)
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Packing edge-disjoint trees

In this example, note that we deal with edge-disjoint objects (spanning trees), i.e., we
allow them to share vertices but not edges of the underlying graph G.

• If P is a partition of the vertex set V (G), then |P| denotes the number of parts.
An edge e ∈ E(G) is crossing P if its two ends are in distinct parts.

• If T ⊆ G is a spanning tree then, clearly, at least |P| − 1 of its edges cross P . ✷

Theorem 5.16. (Nash–Williams, Tutte)
A (multi)graph contains k pairwise edge-disjoint spanning trees if, and only if, every
partition P of V (G) is crossed by at least k · (|P| − 1) edges of G. ✷

The proof of this statement (in the �if� dire
tion) is not easy. . .

Theorem 5.17. (Nash–Williams)
A (multi)graph can be partitioned into ≤ k forests if, and only if, every vertex subset
U ⊆ V (G) induces a subgraph with ≤ k · (|U | − 1) edges of G. ✷

The proof here is similar to the previous one, and not easy either (see [Diestel℄).



* pokrytí or. grafu cestami *
.Petr Hlin¥ný, FI MU Brno, 2014 20 / 33 FI:MA010: Mat
hing and Pa
king

Path Covers

In the last example of covering-packing duality, we aim to cover all the vertices of a di-
graph by pairwise disjoint directed paths, and relate these paths to pairwise nonadjacent
vertices (of the paths). ✷ The full result reads:

Theorem 5.18. (Gallai–Milgram)
Every digraph G contains a collection of pairw. disjoint paths P1, . . . , Pp such that

a) P1, . . . , Pp cover all the vertices, i.e. P1 ∪ · · · ∪ Pp = V (G), and ✷

b) these paths have independent representatives, that is, a collection of pairwise
nonadjacent vertices R = {ri ∈ V (Pi) : i = 1, . . . , p}.

Clearly, some paths satisfying a) do exist, just take singleton vertices as the paths. ✷

The core idea is to take any such a covering collection of paths that the set of path
ends L = {ℓi ∈ V (Pi) the end : i = 1, . . . , p} is minimal by inclusion. . .

s s s s ℓpPp

s s s s . . .. . .

s s s s

s s s s

ℓ2

ℓ1

P2

P1
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Claim : In a digraph G, let P1, . . . , Pp be a collection of pairw. disjoint paths covering
all the vertices of G, such that the set of path ends L = {ℓi ∈ V (Pi) the end :
i = 1, . . . , p} is minimal by inclusion

– meaning that no other covering coll. of paths has the ends in a proper subset of L.

Then the paths P1, . . . , Pp have independent representatives. ✷

Proof: We would like to say that the set of ends L are the desired representatives.

s s s s ℓpPp

s s s s . . .. . .

s s s s

s s s s
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P2

P1
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x

By means of contradiction, assume there is an edge e = ℓ2ℓ1 ⊆ L. Then, using induc-
tion on |V (G)|, consider the subgraph G−ℓ1 covered by the paths P1−ℓ1, P2, . . . , Pp:✷

• there exist such independent representatives by induction in G− ℓ1, or ✷

• the new set of ends L1 = {m1, ℓ2, . . . , ℓp} is not minimal—some coll. of paths
covering G− ℓ1 ends in a proper subset of L1. ✷

The latter, though, contradicts original minimality of the ends L in G. ✷
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5.5 Counting Obje
ts in Graphs

How many distinct (this time not disjoint) one can find in a given graph?

• (Trivial) Count the number of vertices, |V (G)|, and of edges, |E(G)|. ✷

• (Rather routine) How many triangles / 4-cycles are there in a graph G? ✷

• (???) Now, how many perfect matchings are there in a (say bipartite) graph G?

Is this again a routine question (with a routine algorithmic answer)? ✷

Surprisingly not! Even though we can easily decide the existence of a perfect
matching, and to find one, we cannot find or count all of them.

→ This problem is “#P-hard”. ✷

• Is there something else (nontrivial) which can be counted easily in graphs? Yes.
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Counting spanning trees

Re
all a de�nition from Se
tion 2.3:

• A spanning tree of G is a subgraph T of G su
h that T is a tree and V (T ) = V (G). ✷

Example 5.19. How many distin
t spanning trees are 
ontained in the following graph?

s s s s s s s

ssss

✷

We argue as follows; whi
h edges have to be removed from our graph to obtain a tree? Easily,

one from ea
h of the two 
y
les. Hen
e, by the prin
iple of independent 
hoi
es, we have got

5 · 6 = 30 spanning trees. ✷ ✷

Example 5.20. How many distin
t spanning trees are 
ontained in the following graph?

s s s s s

ssss

✷

Similarly as in 5.19, we may remove the �diagonal� edge and one more, giving 9 spanning

trees. Or, we keep the �diagonal� and remove one edge from the left and one from the right


y
les, giving additional 4 · 5 = 20 
hoi
es. Altogether 9 + 20 = 29 spanning trees. ✷
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Cayley formula and beyond

The following claim is considered a “beautiful gem” of graph theory.

Theorem 5.21. (Cayley)
The complete graph Kn for n > 0 contains exactly nn−2 distinct spanning trees.

Several ni
e and short proofs of this gem exist, see the textbook [Matou²ek�Ne²et°il℄. . .✷

Even more generally:

Definition. The Laplace matrix Q = (qij)
n
i,j=1 of an n-vertex graph G is defined:

– qii = dG(i) (vertex degree),

– qij = 0 for non-adjacent vertices i 6= j,

– qij = −1 for adjacent vertices i 6= j. ✷

Theorem 5.22. Let Q be the Laplace matrix of a graph G, and let a matrix Q′ result
from Q by erasing the first row and the first column. Then the number of distinct
spanning trees in G equals the determinant |Q′|. ✷

Corollary 5.23. One can count the spanning trees in any graph in polynomial time.

A proof of Thm. 5.22 is, however, quite di�
ult and using advan
ed linear algebra.


