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8 On Di�
ulty of Graph Problems

How 
an one 
ompare between easy and hard graph problems?

How 
an one assess the di�
ulty of a newly formulated problem?

✷

Brief outline of this le
ture

• Examples of easily (and e�
iently) solvable graph problems.

• Colouring and Hamiltoni
ity � two traditional hard grah problems.

• How to assess di�
ulty of a problem � using problem redu
tions.



.Petr Hlin¥ný, FI MU Brno, 2014 2 / 24 FI:MA010: Di�
ulty of Graph Problems

8.1 Some Easily Solvable Problems

During the course, we have provided several really simple algorithmic solutions for basic
questions on graphs, e.g.:

• testing connectivity and finding the connected components, ✷

• computing the distance and a shortest path in a graph, ✷

• computing a minimum spanning tree in a weighted graph, ✷

• finding a maximum flow and a minimum cut in a network, ✷

• finding a maximum matching in a bipartite graph, ✷

• testing 2-colourability of graphs, ✷

• testing isomorphism of trees. ✷

Well, that was about algorithm design, and what about the theory side?
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Nice characterizations of problems

Such “easily solvable” problems typically come hand in hand with nice theoretical char-
acterizations of the solutions, and of their existence in greater generality. ✷

For example. . .

• Good characterizations of problems; either

– we have got an obvious or easily verifiable solution, or

– we can find an obvious or easily verifiable obstacle. ✷

Recall some examples of good characterizations:

• For connectivity in a graph; either

– we can find an x-y walk (or path) in the graph, or
– a vertex subset X ⊆ V such that x ∈ X , y 6∈ X and no edge leaves X . ✷

• For maximum matching in a bipartite graph; either

– we can find a matching with k edges, or
– we have got a vertex cover with < k vertices. ✷

• For 2-colourability of a graph; either

– we can find a proper 2-colouring (bipartition), or
– a cycle of an odd length.
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On the dark side

For problems which are “hard to solve”, nice theoretical characterizations of their solu-
tions typically do not (and cannot) exist, e.g.; ✷

• for the 3-colourability problem one can easily verify that a given colouring is
proper (or not), but that is not sufficient! ✷

• there is no known good way of showing that a 3-colouring does not exist in a
given graph, other than trying all possibilities.

Even though we have no such directly provable relation, an absence of a nice charac-
terization of the solutions indicates hardness of a problem. . .✷

Much worse, for some other hard graph problems the correct solution is even not easily
verifiable; ✷

• considering, say, 4-choosability of a given graph, how can one verify that for all
possible assignments of lists of 4 colours a proper colouring does exist?
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More Involved Problems

Obviously, life is not always as easy as in the previous slides. . .✷

There exist graph problems for which an efficient algorithmic solution exists, but both
the algorithms and related theoretical characterizations of their solutions are rather
involved, e.g.; ✷

• a maximum matching in general graphs, and maximum weighted matching, ✷

• testing planarity and finding a plane drawing in linear time
(interestingly, the best algorithms are not dir. related to the Kuratowski thm.),

• the isomorphism of planar graphs in linear time (needs planarity as a tool). ✷

Though not so often, there are examples of problems having theoretically fast algo-
rithms, but which are practically unusable, e.g.; ✷

• the isomorphism of 3-regular graphs, ✷

• testing graph embeddability in (fixed) higher surfaces,

• possibility to draw a graph in the plane with, say, < 100 edge crossings, ✷

• a graph minor testing, and consequently all minor-closed decision properties.
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Strange case of the isomorphism

partial obstacles

practically very fast

randomized obstacle
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8.2 Colouring and Hamiltoni
ity

.............. See Lecture 6.
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Hamiltonian Graphs

Another typi
al hard graph question is that about an existen
e of a 
y
le or a path through

all the verti
es of the given graph (an older and simpli�ed setting of a �travelling salesman�):
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✷

Definition: A cycle C in a graph G is a Hamiltonian cycle if C spans all vertices of G.

Analogously, a Hamiltonian path P in G is a path in G spanning all the vertices. ✷

A graph G is Hamiltonian if G contains a Hamiltonian cycle.

The same terminology applies in the case of digraphs with dir. cycles and paths. ✷

The Hamiltonian 
y
le problem is also related to some attempts to solve the 4 
olour problem:

pre
isely, if every 3-regular planar graph was Hamiltonian, then the 4 
olour theorem would

follow easily. ✷Well, but this 
laim later turned out not to be true. . .
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Hamiltonian tournaments

Definition: A digraph G is called a tournament if for every vertex pair u, v ∈ V (G),
u 6= v, exactly one of the arcs (u, v), (v, u) is in G.

In other words, a tournament on n verti
es results by arbitrarily orienting ea
h edge of Kn. ✷

Proposition 8.1. Every tournament G contains a Hamiltonian (directed) path.

Proof: We apply a straightforward induction on n, the number of vertices of G. ✷

• If n ∈ {1, 2}, then G itself is a directed path.

• Assume n ≥ 3, and choose v0 ∈ V (G) arbitrarily. Form G0 = G \ v0 by deleting
the vertex v0, and let P = (v1, v2, . . . , vn−1) be a dir. Hamiltonian path in G0

(in this order of vertices), which exists by the induction assumption. ✷

• If (vn−1, v0) ∈ E(G), then P with v0 at the end is a Ham. path in G. Similarly,
if (v0, v1) ∈ E(G), then P prefixed with v0 is a Ham. path in G. ✷

Otherwise, let j ∈ {1, . . . , n− 1} be the least index such that (v0, vj) ∈ E(G),
and hence (vj−1, v0) ∈ E(G). Then (v1, . . . , vj−1, v0, vj , . . . , vn−1) is a Ham.
path in G.

✷
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Proposition 8.2. A tournament G contains a Hamiltonian (directed) cycle if, and only
if, G is strongly connected.

Proof:

......................................... ✷
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Dirac’s theorem

Theorem 8.3. Every graph G on n ≥ 3 vertices and with minimum degree ≥ n/2 is
Hamiltonian. ✷

Proof (a sketch): Let P ⊆ G be a longest possible path in the graph G, such that the
vertices on P occur in this order; (u0, u1, . . . , uk). ✷It is easy to claim:

• every neighbour of u0 or uk belongs to P (since otherwise we prolong P ),

• since dG(u0), dG(uk) ≥ 1
2n ≥ 1

2 (k + 1), by the pigeon-hole principle, there is
0 < i < k such that u0ui+1 ∈ E(G) and ukui ∈ E(G) (draw a picture), ✷

• consequently, we have got a cycle C ⊆ G on V (P ) in the cyclic order of vertices
(u0, ui+1, ui+2, . . . , uk, ui, ui−1, . . . , u0). ✷

That is all since, if there was a vertex x ∈ V (G) \ V (C) (missed by C), then x
would have a neighbour on C and we would get another path longer than original P ,
a contradiction. ✷
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8.3 Problem Redu
tions

The term polynomial reduction is formally defined in every computational complexity
course. However, this course is not on complexity but on graphs, and so we stay with
an informal explanation of the concept.

• Imagine that somebody asks us to solve an instance of Problem A, which we
do not know how to solve, but we have a nice algorithm / solution for another
Problem B. ✷

• If we are lucky, then we can take an input of Problem A, and transform it to an
input of Problem B such that a (possible) solution is preserved (meaning that we
can always “decode” a solution for A from a solution for such transformed B). ✷

• Obviously, our tranformation should be “easy and efficient”. We say that we have
got a

reduction from Problem A to Problem B.

If we have got a reduction from A to B then, informally, Problem A is not harder (of
at most the same difficulty) than Problem B.

From a different point of view; if we know that Problem A cannot be solved nicely,
then neither can Problem B (a “hardness reduction”).
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Example 8.4. Show that the following two problems are of the same difficulty:

A: to decide whether a given graph G has a Hamiltonian path,

B: to decide whether G has a Hamiltonian path starting in a given vertex.

To provide a proof, we have to show two problem reductions; from A to B and from B
to A. We start with the latter one.

• (From B to A): Imagine somebody asks for a Ham. path in G starting with
v ∈ V (G), and we could only solve the general Ham. path problem.

Then we construct a graph G′ from G by adding a new vertex v′ adjacent only
to v. Any Ham. path in G′ has to start in v′ and continue with v, and so it gives
a Ham. path in G starting with v.

• (From A to B): We could solve general Ham. path by asking for a Ham. path
starting in every vertex of G separately, but there is a much nicer alt. solution.

Construct a graph G′′ from given G by adding a new vertex x adjacent to all
V (G), and ask for a Ham. path starting in x. Trivially, a Ham. cycle in G exists
iff such a cycle can be prolonged till x to make a Ham. cyce in G′′.

✷
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Example 8.5. Show that the following two problems are of the same difficulty:

• to decide whether a given graph G is 3-colourable,

• to decide whether a given graph G is 4-colourable.

To reduce from 3-colourability to 4-colourability is very easy, simply make a graph G′

from original G by adding a new vertex x adjacent to all V (G). Then every 3-colouring
of G is in a one-to-one correspondece with a 4-colouring of G′ using colour 4 at the
vertex x.

A converse reduction is much more involved and tricky ............... ✷
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Class NP and NP-
ompleteness

Decision problems

• Decision problems are those, roughly saying, whose answer can be Yes/No. ✷

• This seems quite restrictive, however;

– for the colouring problems, we usually ask if a graph G is k-colourable,
meaning whether χ(G) ≤ k, but not about the precise value of χ(G), ✷

– simiarly, in the clique and independent set problems, we may ask whether
ω(G) ≤ k and α(G) ≤ k, and ✷

– knowing how to solve the decision variant of a problem usually means we
can also find a witnessing solution. ✷

Class NP

• A prominent rank among graph decision problems belongs to those problems in
which an answer Yes can be verified, with the help of a suitable advice (oracle),
by an efficient procedure/algorithm. ✷

– In computational complexity, the class of such problems is called NP . ✷

• Actually, the decision version of most common graph problems are of this kind.

For example, in the 
olouring problem the advi
e is a proper 
olouring of the given

graph whi
h 
an be readily veri�ed. Likewise for the Hamiltonian problem, the advi
e

is a Hamiltonian 
y
le, et
.



SAT = problém splnitelnosti logických formulí v konjunktivní normální formě
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The Satisfiability problem

The following one is the “master NP-complete” problem:

Problem 8.6. 3-SAT (a special version of satisfiability SAT)
The following problem is NP-complete (reading “hardest in NP”), meaning that it
belongs to the class NP and no other problem in NP can be more difficult: ✷

Input: A propositonal logic formula Φ in a conjunctive normal form, such that every
clause of Φ contains ≤ 3 literals.

Output: Is there a valuation of the Φ-variables that makes Φ true?

For instan
e, Φ ≡ (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x3). ✷

The true informal meaning of NP-
ompleteness of a problem is as follows;

• �I am the hardest problem in the very natural 
lass NP, and if you 
ould solve me,

then you would be able to solve everything in NP .� ✷

• Consequently, it is very likely that NP-
omplete problems 
annot be solved ni
ely

(again, we refer to 
omputational 
omplexity 
ourses for a pre
ise de�nition of this).

• As it turns out, many typi
al problems in graph theory are of the same, �highest�,

di�
ulty�they are NP-
omplete. We will outline this fa
t, in a series of problem

redu
tions, next.
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8.4 Sample Redu
tions for Hard Problems

Problem 8.7. 3-COL (3-Colouring of graphs)
The following problem is as hard as SAT:

Input: A graph G.

Output: Can the vertices of G be properly coloured using three colours?

Proof (a sketch): The problem is in NP and we construct a reduction from 3-SAT. ✷

For a given formula Φ we construct a graph GΦ: The basis of the construction of GΦ is
a triangle with vertices denoted by X,T, F . Each variable xi in Φ is assigned a vertex
pair adjacent to X . Each clause of Φ is assigned a subgraph on 6 vertices (three of
them adjacent to T ), as in the picture. Then the remaining free “halfedges” are joined
together in the way corresponding to the literals (xi or ¬xi) in the clauses.
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lauses ←

(val. T or F)
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¬x1
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¬xi

s

s

s

...

ss

s
e.g. (x1 ∨ ¬xi ∨ . . . ) :

→ to variables

(while all-F not 
olourable!)

Then one may easily check that GΦ has a 3-colouring iff Φ is satisfiable. ✷
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Problem 8.8. IS (Independent Set)
The following problem is as hard as SAT and 3-COL:

Input: A graph G, and an integer k.

Output: Is there an independent set (i.e., a subset of the vertices with no edges between
them) of size at least k in G? ✷

Proof: The problem is in NP and we construct a reduction from 3-COL.
Let H be a graph on n vertices which should be 3-coloured. We set k = n, and
construct a graph GH made of three disjoint copies of H as shown in the picture:
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Assume c : V (H) → {1, 2, 3} is a 3-colouring of H . Then one can choose k = n indep.
vertices in GH ; for each v ∈ V (H) choosing the c(v)-th copy of v in the graph GH . ✷

Convers., if I is an indep. set in GH of size k = n, then every triangle Tv, v ∈ V (H),
intersects I prec. in one vertex. This determines one of three colours for v in H . ✷
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Definition: A vertex cover in a graph G is such a set C ⊆ V (G) that every edge of
G is incident with a vertex of C, i.e. G− C is independent.

Problem 8.9. VC (Vertex Cover)
The following problem is as hard as SAT and IS:

Input: A graph G, and an integer ℓ.

Output: Is there a vertex cover of size at most ℓ in G? ✷
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independent set vertex cover

Proof: The problem is in NP and we construct a really trivial reduction from IS.

Notice that the complement C = V (G)\I of an arbitrary independent set I is actually
a vertex cover, and vice versa. So the reduction works with the same graph G and
with ℓ = n− k (where k is the desired IS size). ✷
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Definition: A dominating set in a graph G is a set D ⊆ V (G) such that every vertex
of G not in D has a neighbour in D.

Problem 8.10. DOM (Dominating set)
The following problem is as hard as SAT and VC:

Input: A graph G, and an integer ℓ.

Output: Is there a dominating set of size at most ℓ in G?✷

Proof: The problem is in NP and we construct an easy reduction from VC.
Given any graph H , we construct an input graph GH for the DOM problem as follows:
For every edge e ∈ E(H), a new vertex ve is added, forming a triangle with e.
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vertex cover dominating set

Now a vertex cover of the former graph is the same as a dominating set in the latter
graph (any domin. set in the latter can be “pushed away” from the new vertices). ✷
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Problem 8.11. HC (Hamiltonian cycle, directed)
The following problem is NP-complete:

Input: A digraph G.

Output: Is there a directed cycle in G passing through all the vertices?✷

Proof (a sketch): The problem is in NP and we outline a reduction from VC.
Given any graph H and integer ℓ (an instance of VC), we construct a digraph GH for
the HC problem as follows. Every vertex v ∈ V (H) is transformed into a directed cycle
Cv of length dH(v) and each arc of Cv is then further transformed into one side of the
gadget in the following picture, for every edge uv ∈ E(H):
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edge uv ∈ E(H) gadget:

❢

The point of this gadget is that while traversing it, one has to return to the same Cu

as started from. ✷Finally, exactly ℓ new vertices are added to GH as adjacent to and
from every one of transformed Cv’s (this models that we can “jump across” altogether
ℓ of Cv’s while covering all the edge gadgets). ✷
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Problem 8.12. HAM (Hamiltonian cycle)
The following problem is as hard as SAT and HC:

Input: A graph G.

Output: Is there an (undirected) cycle in G passing through all the vertices? ✷

Proof:

sv ❀
s s s

Pv

It is an easy reduction from the previous problem HC. Each vertex v of a directed graph
H is replaced with three vertices forming a path Pv in the graph GH . ✷

Then the directed edges coming into v are joined to the first vertex of Pv, while the
edges leaving from v are joined to the last vertex of Pv. Having to travers also the
middle vertex of Pv now “enforces” the right direction of passing throuh each Pv as
through the original vertex v of H . ✷



.Petr Hlin¥ný, FI MU Brno, 2014 23 / 24 FI:MA010: Di�
ulty of Graph Problems

8.5 Appendix: The interesting story of Vertex Cover

Consider the (at first glance) very similar problems of a vertex cover and of a dominating
set in a graph—both are among the classical NP-complete problems. Yet, we discover
a huge difference between them, briefly outlined as follows. ✷

• If, in the computational complexity analysis, we focus on the value of the input
parameter k, then we still cannot solve Dominating Set in a better way than
exhaustively checking (almost) all k-tuples of vertices.

Even when k is fixed small, say k = 10, 20, this an intractable problem. ✷

What does it mean �
annot solve�?

In this parti
ular 
ase, a solution to Dominating Set signi�
antly faster than 
he
king

all k-tuples of verti
es, would violate the Exponential Time Hypothesis. ✷

• On the other hand, a Vertex Cover of size k can be decided by a very simple
algorithm running in time O(2k · n), which is quite usable for small fixed values
of k such as k = 10, 20, giving actually a linear time algorithm!
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Algorithm 8.14. k-VC (Vertex Cover)
For any fixed parameter k we are solving the following problem.

Input: A graph G.

Output: Is there a vertex cover of size at most k in G? ✷

We initialize C = ∅ and F = E(G).

• If F = ∅, then C is returned as a vertex cover.
If, otherwise, |C| ≥ k, then the return value is “NO”. ✷

• We pick an arbitrary edge f = uv ∈ F , and for each of its ends x = u, v we do:

– C′ = C∪{x}, and the edge set F ′ results from F by removing all the edges
incident with x in G;

– the algorithm is called recursively for G, C′ and F ′. ✷

Finally, how many (self-)recursive calls occurs in Algorithm 8.14 altogether? Every call
generates two further recursive calls, but only up to a fixed depth k. Hence the total
running time is asymptotically only O(2k · n). ✷

Remark: The fa
tor 2k 
an be improved by more 
areful 
hoi
e of bran
hing. (2006: 1.2738k)


