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Preface
This is an exciting time to be working in speech and language processing.
Historically distinct fields (natural language processing, speech recognition,
computational linguistics, computational psycholinguistics) have begun to
merge. The commercial availability of speech recognition,and the need
for web-based language techniques have provided an important impetus for
development of real systems. The availability of very largeon-line corpora
has enabled statistical models of language at every level, from phonetics to
discourse. We have tried to draw on this emerging state of theart in the
design of this pedagogical and reference work:

1. Coverage
In attempting to describe a unified vision of speech and language pro-
cessing, we cover areas that traditionally are taught in different courses
in different departments: speech recognition in electrical engineering,
parsing, semantic interpretation, and pragmatics in natural language
processing courses in computer science departments, computational
morphology and phonology in computational linguistics courses in lin-
guistics departments. The book introduces the fundamentalalgorithms
of each of these fields, whether originally proposed for spoken or writ-
ten language, whether logical or statistical in origin, andattempts to
tie together the descriptions of algorithms from differentdomains. We
have also included coverage of applications like spelling checking and
information retrieval and extraction, as well as to areas like cognitive
modeling. A potential problem with this broad-coverage approach is
that it required us to include introductory material for each field; thus
linguists may want to skip our description of articulatory phonetics,
computer scientists may want to skip such sections as regular expres-
sions, and electrical engineers the sections on signal processing. Of
course, even in a book this long, we didn’t have room for everything.
Thus this book should not be considered a substitute for important rel-
evant courses in linguistics, automata and formal languagetheory, or,
especially, statistics and information theory.

2. Emphasis on practical applications
It is important to show how language-related algorithms andtech-
niques (from HMMs to unification, from the lambda calculus to
transformation-based learning) can be applied to important real-world
problems: spelling checking, text document search, speechrecogni-

xxi
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tion, Web-page processing, part-of-speech tagging, machine transla-
tion, and spoken-language dialog agents. We have attemptedto do this
by integrating the description of language processing applications into
each chapter. The advantage of this approach is that as the relevant
linguistic knowledge is introduced, the student has the background to
understand and model a particular domain.

3. Emphasis on scientific evaluation
The recent prevalence of statistical algorithms in language processing,
and the growth of organized evaluations of speech and language pro-
cessing systems has led to a new emphasis on evaluation. We have,
therefore, tried to accompany most of our problem domains with a
Methodology Box describing how systems are evaluated (e.g. in-
cluding such concepts as training and test sets, cross-validation, and
information-theoretic evaluation metrics like perplexity).

4. Description of widely available language processing resources
Modern speech and language processing is heavily based on com-
mon resources: raw speech and text corpora, annotated corpora and
treebanks, standard tagsets for labeling pronunciation, part of speech,
parses, word-sense, and dialog-level phenomena. We have tried to in-
troduce many of these important resources throughout the book (for ex-
ample the Brown, Switchboard,CALLHOME, ATIS, TREC, MUC, and
BNC corpora), and provide complete listings of many useful tagsets
and coding schemes (such as the Penn Treebank, CLAWS C5 and C7,
and the ARPAbet) but some inevitably got left out. Furthermore, rather
than include references to URLs for many resources directlyin the
textbook, we have placed them on the book’s web site, where they can
more readily updated.

The book is primarily intended for use in a graduate or advanced under-
graduate course or sequence. Because of its comprehensive coverage and the
large number of algorithms, the book it also useful as a reference for students
and professionals in any of the areas of speech and language processing.

Overview of the book
The book is divided into 4 parts in addition to an introduction and end matter.
Part I, “Words”, introduces concepts related to the processing of words: pho-
netics, phonology, morphology, and algorithms used to process them: finite
automata, finite transducers, weighted transducers, N-grams, and Hidden
Markov Models. Part II, “Syntax”, introduces parts-of-speech and phrase
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structure grammars for English, and gives essential algorithms for process-
ing word classes and structured relationships among words:part-of-speech
taggers based on HMMs and transformation-based learning, the CYK and
Earley algorithms for parsing, unification and typed feature structures, lex-
icalized and probabilistic parsing, and analytical tools like the Chomsky
hierarchy and the pumping lemma. Part III, “Semantics”, introduces first
order predicate calculus and other ways of representing meaning, several
approaches to compositional semantic analysis, along withapplications to
information retrieval, information extraction, speech understanding, and ma-
chine translation. Part IV, “Pragmatics”, covers reference resolution and dis-
course structure and coherence, spoken dialog phenomena like dialog and
speech act modeling, dialog structure and coherence, and dialog managers,
as well as a comprehensive treatment of natural language generation and of
machine translation.

Using this book
The book provides enough material to be used for a full year sequence in
speech and language processing. It is also designed so that it can be used for
a number of different useful one-term courses:

NLP NLP Speech + NLP Comp. Linguistics
1 quarter 1 semester 1 semester 1 quarter
1. Intro 1. Intro 1. Intro 1. Intro
2. Regex, FSA 2. Regex, FSA 2. Regex, FSA 2. Regex, FSA
8. POS tagging 3. Morph., FST 3. Morph., FST 3. Morph., FST
9. CFGs 6. N-grams 4. Comp. Phonol. 4. Comp. Phonol.
10. Parsing 8. POS tagging 5. Prob. Pronun. 10. Parsing
11. Unification 9. CFGs 6. N-grams 11. Unification
14. Semantics 10. Parsing 7. HMMs & ASR 13. Complexity
15. Sem. Analysis11. Unification 8. POS tagging 16. Lex. Semantics
18. Discourse 12. Prob. Parsing 9. CFG 18. Discourse
20. Generation 14. Semantics 10. Parsing 19. Dialog

15. Sem. Analysis 12. Prob Parsing
16. Lex. Semantics14. Semantics
18. Discourse 15. Sem. Analysis
19. WSD and IR 19. Dialog
20. Generation 21. Machine Transl.
21. Machine Transl.

Selected chapters from the book could also be used to augmentcourses
in Artificial Intelligence, Cognitive Science, or Information Retrieval.
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1 INTRODUCTION

Dave Bowman: Open the pod bay doors, HAL.

HAL: I’m sorry Dave, I’m afraid I can’t do that.

Stanley Kubrick and Arthur C. Clarke,
screenplay of2001: A Space Odyssey

The HAL 9000 computer in Stanley Kubrick’s film2001: A Space
Odysseyis one of the most recognizable characters in twentieth-century
cinema. HAL is an artificial agent capable of such advanced language-
processing behavior as speaking and understanding English, and at a crucial
moment in the plot, even reading lips. It is now clear that HAL’s creator
Arthur C. Clarke was a little optimistic in predicting when an artificial agent
such as HAL would be available. But just how far off was he? What would
it take to create at least the language-related parts of HAL?Minimally, such
an agent would have to be capable of interacting with humans via language,
which includes understanding humans viaspeech recognitionandnatural
language understanding(and of courselip-reading), and of communicat-
ing with humans vianatural language generationandspeech synthesis.
HAL would also need to be able to doinformation retrieval (finding out
where needed textual resources reside),information extraction (extracting
pertinent facts from those textual resources), andinference (drawing con-
clusions based on known facts).

Although these problems are far from completely solved, much of the
language-related technology that HAL needs is currently being developed,
with some of it already available commercially. Solving these problems,
and others like them, is the main concern of the fields known asNatural
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Language Processing, Computational Linguistics and Speech Recognition
and Synthesis, which together we callSpeech and Language Processing.
The goal of this book is to describe the state of the art of thistechnology
at the start of the twenty-first century. The applications wewill consider
are all of those needed for agents like HAL, as well as other valuable areas
of language processing such asspelling correction, grammar checking,
information retrieval , andmachine translation.

1.1 KNOWLEDGE IN SPEECH ANDLANGUAGE PROCESSING

By speech and language processing, we have in mind those computational
techniques that process spoken and written human language,as language.
As we will see, this is an inclusive definition that encompasses everything
from mundane applications such as word counting and automatic hyphen-
ation, to cutting edge applications such as automated question answering on
the Web, and real-time spoken language translation.

What distinguishes these language processing applications from other
data processing systems is their use ofknowledge of language. Consider the
Unix wc program, which is used to count the total number of bytes, words,
and lines in a text file. When used to count bytes and lines,wc is an ordinary
data processing application. However, when it is used to count the words
in a file it requiresknowledge about what it means to be a word, and thus
becomes a language processing system.

Of course,wc is an extremely simple system with an extremely lim-
ited and impoverished knowledge of language. More sophisticated language
agents such as HAL require much broader and deeper knowledgeof lan-
guage. To get a feeling for the scope and kind of knowledge required in
more sophisticated applications, consider some of what HALwould need to
know to engage in the dialogue that begins this chapter.

To determine what Dave is saying, HAL must be capable of analyzing
an incoming audio signal and recovering the exact sequence of words Dave
used to produce that signal. Similarly, in generating its response, HAL must
be able to take a sequence of words and generate an audio signal that Dave
can recognize. Both of these tasks require knowledge aboutphonetics and
phonology, which can help model how words are pronounced in colloquial
speech (Chapter 4 and Chapter 5).

Note also that unlike Star Trek’s Commander Data, HAL is capable of
producing contractions likeI’m andcan’t. Producing and recognizing these
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and other variations of individual words (for example recognizing thatdoors
is plural) requires knowledge aboutmorphology, which captures informa-
tion about the shape and behavior of words in context (Chapter 2, Chapter 3).

Moving beyond individual words, HAL must know how to analyzethe
structure underlying Dave’s request. Such an analysis is necessary among
other reasons for HAL to determine that Dave’s utterance is arequest for
action, as opposed to a simple statement about the world or a question about
the door, as in the following variations of his original statement.

HAL, the pod bay door is open.

HAL, is the pod bay door open?

In addition, HAL must use similar structural knowledge to properly string
together the words that constitute its response. For example, HAL must
know that the following sequence of words will not make senseto Dave,
despite the fact that it contains precisely the same set of words as the original.

I’m I do, sorry that afraid Dave I’m can’t.

The knowledge needed to order and group words together comesunder the
heading ofsyntax.

Of course, simply knowing the words and the syntactic structure of
what Dave said does not tell HAL much about the nature of his request.
To know that Dave’s command is actually about opening the podbay door,
rather than an inquiry about the day’s lunch menu, requires knowledge of
the meanings of the component words, the domain oflexical semantics,
and knowledge of how these components combine to form largermeanings,
compositional semantics.

Next, despite its bad behavior, HAL knows enough to be politeto
Dave. It could, for example, have simply repliedNo or No, I won’t open
the door. Instead, it first embellishes its response with the phrasesI’m sorry
andI’m afraid, and then only indirectly signals its refusal by sayingI can’t,
rather than the more direct (and truthful)I won’t.1 The appropriate use of this
kind of polite and indirect language comes under the headingof pragmatics.

Finally, rather than simply ignoring Dave’s command and leaving the
door closed, HAL chooses to engage in a structured conversation relevant
to Dave’s initial request. HAL’s correct use of the wordthat in its answer
to Dave’s request is a simple illustration of the kind of between-utterance

1 For those unfamiliar with HAL, it is neither sorry nor afraid, nor is it incapable of opening
the door. It has simply decided in a fit of paranoia to kill its crew.
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device common in such conversations. Correctly structuring these such con-
versations requires knowledge ofdiscourse conventions.

To summarize, the knowledge of language needed to engage in com-
plex language behavior can be separated into six distinct categories.� Phonetics and Phonology – The study of linguistic sounds.� Morphology – The study of the meaningful components of words.� Syntax – The study of the structural relationships between words.� Semantics – The study of meaning.� Pragmatics – The study of how language is used to accomplish goals.� Discourse – The study of linguistic units larger than a single utterance.

1.2 AMBIGUITY

A perhaps surprising fact about the six categories of linguistic knowledge is
that most or all tasks in speech and language processing can be viewed as
resolvingambiguity at one of these levels. We say some input is ambiguousAMBIGUITY

if there are multiple alternative linguistic structures than can be built for it.
Consider the spoken sentenceI made her duck.Here’s five different mean-
ings this sentence could have (there are more) each of which exemplifies an
ambiguity at some level:

(1.1) I cooked waterfowl for her.

(1.2) I cooked waterfowl belonging to her.

(1.3) I created the (plaster?) duck she owns.

(1.4) I caused her to quickly lower her head or body.

(1.5) I waved my magic wand and turned her into undifferentiated
waterfowl.

These different meanings are caused by a number of ambiguities. First, the
wordsduckandher are morphologically or syntactically ambiguous in their
part of speech.Duck can be a verb or a noun, whileher can be a dative
pronoun or a possessive pronoun. Second, the wordmakeis semantically
ambiguous; it can meancreateor cook. Finally, the verbmakeis syntac-
tically ambiguous in a different way.Makecan be transitive, i.e. taking a
single direct object (1.2), or it can be ditransitive, i.e. taking two objects
(1.5), meaning that the first object (her) got made into the second object
(duck). Finally, makecan take a direct object and a verb (1.4), meaning that
the object (her) got caused to perform the verbal action (duck). Furthermore,
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in a spoken sentence, there is an even deeper kind of ambiguity; the first
word could have beeneyeor the second wordmaid.

We will often introduce the models and algorithms we presentthrough-
out the book as ways toresolve these ambiguities. For example deciding
whetherduck is a verb or a noun can be solved bypart of speech tagging.
Deciding whethermakemeans ‘create’ or ‘cook’ can be solved byword
sense disambiguation. Deciding whetherher andduckare part of the same
entity (as in (1.1) or (1.4)) or are different entity (as in (1.2)) can be solved
by probabilistic parsing. Ambiguities that don’t arise in this particular ex-
ample (like whether a given sentence is a statement or a question) will also
be resolved, for example byspeech act interpretation.

1.3 MODELS AND ALGORITHMS

One of the key insights of the last fifty years of research in language pro-
cessing is that the various kinds of knowledge described in the last sections
can be captured through the use of a small number of formal models, or the-
ories. Fortunately, these models and theories are all drawnfrom the standard
toolkits of Computer Science, Mathematics, and Linguistics and should be
generally familiar to those trained in those fields. Among the most important
elements in this toolkit arestate machines, formal rule systems, logic, as
well asprobability theory and other machine learning tools. These mod-
els, in turn, lend themselves to a small number of algorithmsfrom well-
known computational paradigms. Among the most important ofthese are
state space searchalgorithms anddynamic programming algorithms.

In their simplest formulation, state machines are formal models that
consist of states, transitions among states, and an input representation. Among
the variations of this basic model that we will consider aredeterministic and
non-deterministic finite-state automata, finite-state transducers, which
can write to an output device,weighted automata, Markov models and
hidden Markov models which have a probabilistic component.

Closely related to these somewhat procedural models are their declar-
ative counterparts: formal rule systems. Among the more important ones we
will consider areregular grammars and regular relations, context-free
grammars, feature-augmented grammars, as well as probabilistic vari-
ants of them all. State machines and formal rule systems are the main tools
used when dealing with knowledge of phonology, morphology,and syntax.

The algorithms associated with both state-machines and formal rule
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systems typically involve a search through a space of statesrepresenting hy-
potheses about an input. Representative tasks include searching through a
space of phonological sequences for a likely input word in speech recog-
nition, or searching through a space of trees for the correctsyntactic parse
of an input sentence. Among the algorithms that are often used for these
tasks are well-known graph algorithms such asdepth-first search, as well
as heuristic variants such asbest-first, andA* search. The dynamic pro-
gramming paradigm is critical to the computational tractability of many of
these approaches by ensuring that redundant computations are avoided.

The third model that plays a critical role in capturing knowledge of
language is logic. We will discussfirst order logic , also known as thepred-
icate calculus, as well as such related formalisms as feature-structures,se-
mantic networks, and conceptual dependency. These logicalrepresentations
have traditionally been the tool of choice when dealing withknowledge of
semantics, pragmatics, and discourse (although, as we willsee, applications
in these areas are increasingly relying on the simpler mechanisms used in
phonology, morphology, and syntax).

Probability theory is the final element in our set of techniques for cap-
turing linguistic knowledge. Each of the other models (state machines, for-
mal rule systems, and logic) can be augmented with probabilities. One major
use of probability theory is to solve the many kinds of ambiguity problems
that we discussed earlier; almost any speech and language processing prob-
lem can be recast as: ‘given N choices for some ambiguous input, choose
the most probable one’.

Another major advantage of probabilistic models is that they are one of
a class ofmachine learningmodels. Machine learning research has focused
on ways to automatically learn the various representationsdescribed above;
automata, rule systems, search heuristics, classifiers. These systems can be
trained on large corpora and can be used as a powerful modeling technique,
especially in places where we don’t yet have good causal models. Machine
learning algorithms will be described throughout the book.

1.4 LANGUAGE, THOUGHT, AND UNDERSTANDING

To many, the ability of computers to process language as skillfully as we do
will signal the arrival of truly intelligent machines. The basis of this belief is
the fact that the effective use of language is intertwined with our general cog-
nitive abilities. Among the first to consider the computational implications
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of this intimate connection was Alan Turing (1950). In this famous paper,
Turing introduced what has come to be known as theTuring Test. Turing TURING TEST

began with the thesis that the question of what it would mean for a machine
to think was essentially unanswerable due to the inherent imprecision in the
termsmachineand think. Instead, he suggested an empirical test, a game,
in which a computer’s use of language would form the basis fordetermin-
ing if it could think. If the machine could win the game it would be judged
intelligent.

In Turing’s game, there are three participants: 2 people anda computer.
One of the people is a contestant and plays the role of an interrogator. To
win, the interrogator must determine which of the other two participants is
the machine by asking a series of questions via a teletype. The task of the
machine is to fool the interrogator into believing it is a person by responding
as a person would to the interrogator’s questions. The task of the second
human participant is to convince the interrogator that the other participant is
the machine, and that they are human.

The following interaction from Turing’s paper illustratesthe kind of
interactions he had in mind. Clearly a convincing simulation of humanity
doesn’t require being an expert in all domains:

Q: Please write me a sonnet on the topic of the Forth Bridge.
A: Count me out on this one. I never could write poetry
Q: Add 34957 to 70764
A: (Pause about 30 seconds and then give answer as) 105621.

Turing predicted that roughly by the end of the twentieth century a machine
with 10 gigabytes of memory would have around a 30% chance of fooling a
human interrogator after 5 minutes of questioning. Given the fact that you
can fool some of the people all the time, it is not clear how rigorous this
particular standard is. Nevertheless, the critical issue for Turing was that
using language as humans do is sufficient, by itself, as an operational test for
intelligence.

Surprisingly, many of the issues raised by Turing became relevant as
early as 1966 in the context of the ELIZA program (Weizenbaum, 1966).
ELIZA was an early natural language processing system capable of carry-
ing on a limited form of conversation with a user. Consider the following
session with a version of ELIZA that imitated the responses of a Rogerian
psychotherapist.
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User1: You are like my father in some ways.
ELIZA1: WHAT RESEMBLANCE DO YOU SEE
User2: You are not very aggressive but I think you don’t want me to notice that.
ELIZA2: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
User3: You don’t argue with me.
ELIZA3: WHY DO YOU THINK I DON’T ARGUE WITH YOU
User4: You are afraid of me.
ELIZA4: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

As we will discuss in more detail in Chapter 2, ELIZA is a remarkably sim-
ple program that makes use of pattern-matching to process the input and
translate it into suitable outputs. The success of this simple technique in this
domain is due to the fact that ELIZA doesn’t actually need toknowanything
to mimic a Rogerian psychotherapist. As Weizenbaum notes, this is one of
the few dialogue genres where the listener can act as if they know nothing of
the world.

ELIZA deep relevance to Turing’s ideas is that many people who in-
teracted with ELIZA came to believe that it reallyunderstoodthem and their
problems. Indeed, Weizenbaum (1976) notes that many of these people con-
tinued to believe in ELIZA’s abilities even after the program’s operation was
explained to them. In more recent years, Weizenbaum’s informal reports
have been repeated in a somewhat more controlled setting. Since 1991, an
event known as the Loebner Prize competition has attempted to put various
computer programs to the Turing test. Although these contests have proven
to have little scientific interest, a consistent result overthe years has been
that even the crudest programs can fool some of the judges some of the time
(Shieber, 1994). Not surprisingly, these results have donenothing to quell
the ongoing debate over the suitability of the Turing test asa test for intelli-
gence among philosophers and AI researchers (Searle, 1980).

Fortunately, for the purposes of this book, the relevance ofthese results
does not hinge on whether or not computers will ever be intelligent, or un-
derstand natural language. Far more important is recent related research in
the social sciences that has confirmed another of Turing’s predictions from
the same paper.

Nevertheless I believe that at the end of the century the use of
words and educated opinion will have altered so much that we
will be able to speak of machines thinking without expectingto
be contradicted.

It is now clear that regardless of what people believe or knowabout the in-
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ner workings of computers, they talk about them and interactwith them as
social entities. People act toward computers as if they werepeople; they are
polite to them, treat them as team members, and expect among other things
that computers should be able to understand their needs, andbe capable of
interacting with them naturally. For example, Reeves and Nass (1996) found
that when a computer asked a human to evaluate how well the computer had
been doing, the human gives more positive responses than when a different
computer asks the same questions. People seemed to be afraidof being im-
polite. In a different experiment, Reeves and Nass found that people also
give computers higher performance ratings if the computer has recently said
something flattering to the human. Given these predispositions, speech and
language-based systems may provide many users with the mostnatural in-
terface for many applications. This fact has led to a long-term focus in the
field on the design ofconversational agents, artificial entities which com-
municate conversationally.

1.5 THE STATE OF THE ART AND THE NEAR-TERM

FUTURE

We can only see a short distance ahead, but we can see plenty
there that needs to be done.

– Alan Turing.

This is an exciting time for the field of speech and language processing.
The recent commercialization of robust speech recognitionsystems, and the
rise of the World-Wide Web, have placed speech and language processing
applications in the spotlight, and have pointed out a plethora of exciting pos-
sible applications. The following scenarios serve to illustrate some current
applications and near-term possibilities.

A Canadian computer program accepts daily weather data and gener-
ates weather reports that are passed along unedited to the public in English
and French (Chandioux, 1976).

TheBabel Fishtranslation system from Systran handles over 1,000,000
translation requests a day from the AltaVista search enginesite.

A visitor to Cambridge, Massachusetts, asks a computer about places
to eat using only spoken language. The system returns relevant information
from a database of facts about the local restaurant scene (Zueet al., 1991).

These scenarios represent just a few of applications possible given cur-
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rent technology. The following, somewhat more speculativescenarios, give
some feeling for applications currently being explored at research and devel-
opment labs around the world.

A computer reads hundreds of typed student essays and assigns grades
to them in a manner that is indistinguishable from human graders (Landauer
et al., 1997).

A satellite operator uses language to ask questions and commands to a
computer that controls a world-wide network of satellites (?).

German and Japanese entrepreneurs negotiate a time and place to meet
in their own languages using small hand-held communicationdevices (?).

Closed-captioning is provided in in any of a number of languages for
a broadcast news program by a computer listening to the audiosignal (?).

A computer equipped with a vision system watches a professional soc-
cer game and provides an automated natural language accountof the game
(?).

1.6 SOME BRIEF HISTORY

Historically, speech and language processing has been treated very differ-
ently in computer science, electrical engineering, linguistics, and psychol-
ogy/cognitive science. Because of this diversity, speech and language pro-
cessing encompasses a number of different but overlapping fields in these
different departments:computational linguistics in linguistics,natural lan-
guage processingin computer science,speech recognitionin electrical en-
gineering,computational psycholinguistics in psychology. This section
summarizes the different historical threads which have given rise to the field
of speech and language processing. This section will provide only a sketch;
the individual chapters will provide more detail on each area.

Foundational Insights: 1940’s and 1950’s

The earliest roots of the field date to the intellectually fertile period just
after World War II which gave rise to the computer itself. This period
from the 1940s through the end of the 1950s saw intense work ontwo
foundational paradigms: theautomaton andprobabilistic or information-
theoretic models.

The automaton arose in the 1950s out of Turing’s (1950) modelof
algorithmic computation, considered by many to be the foundation of mod-
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ern computer science. Turing’s work led to theMcCulloch-Pitts neuron
(McCulloch and Pitts, 1943), a simplified model of the neuronas a kind of
computing element that could be described in terms of propositional logic,
and then to the work of Kleene (1951) and (1956) on finite automata and reg-
ular expressions. Automata theory was contributed to by Shannon (1948),
who applied probabilistic models of discrete Markov processes to automata
for language. Drawing the idea of a finite-state Markov process from Shan-
non’s work, Chomsky (1956) first considered finite-state machines as a way
to characterize a grammar, and defined a finite-state language as a language
generated by a finite-state grammar. These early models led to the field of
formal language theory, which used algebra and set theory to define formal
languages as sequences of symbols. This includes the context-free grammar,
first defined by Chomsky (1956) for natural languages but independently dis-
covered by Backus (1959) and Nauret al. (1960) in their descriptions of the
ALGOL programming language.

The second foundational insight of this period was the development of
probabilistic algorithms for speech and language processing, which dates to
Shannon’s other contribution: the metaphor of thenoisy channelandde-
coding for the transmission of language through media like communication
channels and speech acoustics. Shannon also borrowed the concept ofen-
tropy from thermodynamics as a way of measuring the information capacity
of a channel, or the information content of a language, and performed the
first measure of the entropy of English using probabilistic techniques.

It was also during this early period that the sound spectrograph was
developed (Koeniget al., 1946), and foundational research was done in in-
strumental phonetics that laid the groundwork for later work in speech recog-
nition. This led to the first machine speech recognizers in the early 1950’s.
In 1952, researchers at Bell Labs built a statistical systemthat could rec-
ognize any of the 10 digits from a single speaker (Daviset al., 1952). The
system had 10 speaker-dependent stored patterns roughly representing the
first two vowel formants in the digits. They achieved 97–99% accuracy by
choosing the pattern which had the highest relative correlation coefficient
with the input.

The Two Camps: 1957–1970

By the end of the 1950s and the early 1960s, speech and language processing
had split very cleanly into two paradigms: symbolic and stochastic.

The symbolic paradigm took off from two lines of research. The first
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was the work of Chomsky and others on formal language theory and gen-
erative syntax throughout the late 1950’s and early to mid 1960’s, and the
work of many linguistics and computer scientists on parsingalgorithms, ini-
tially top-down and bottom-up, and then via dynamic programming. One
of the earliest complete parsing systems was Zelig Harris’sTransformations
and Discourse Analysis Project (TDAP), which was implemented between
June 1958 and July 1959 at the University of Pennsylvania (Harris, 1962).2

The second line of research was the new field of artificial intelligence. In
the summer of 1956 John McCarthy, Marvin Minsky, Claude Shannon, and
Nathaniel Rochester brought together a group of researchers for a two month
workshop on what they decided to call artificial intelligence. Although AI al-
ways included a minority of researchers focusing on stochastic and statistical
algorithms (include probabilistic models and neural nets), the major focus of
the new field was the work on reasoning and logic typified by Newell and
Simon’s work on the Logic Theorist and the General Problem Solver. At this
point early natural language understanding systems were built, These were
simple systems which worked in single domains mainly by a combination
of pattern matching and key-word search with simple heuristics for reason-
ing and question-answering. By the late 1960’s more formal logical systems
were developed.

The stochastic paradigm took hold mainly in departments of statistics
and of electrical engineering. By the late 1950’s the Bayesian method was
beginning to be applied to to the problem of optical character recognition.
Bledsoe and Browning (1959) built a Bayesian system for text-recognition
that used a large dictionary and computed the likelihood of each observed let-
ter sequence given each word in the dictionary by multiplying the likelihoods
for each letter. Mosteller and Wallace (1964) applied Bayesian methods to
the problem of authorship attribution onThe Federalistpapers.

The 1960s also saw the rise of the first serious testable psychological
models of human language processing based on transformational grammar,
as well as the first online corpora: the Brown corpus of American English,
a 1 million word collection of samples from 500 written textsfrom different
genres (newspaper, novels, non-fiction, academic, etc.), which was assem-
bled at Brown University in 1963-64 (Kučera and Francis, 1967; Francis,
1979; Francis and Kučera, 1982), and William S. Y. Wang’s 1967 DOC (Dic-

2 This system was reimplemented recently and is described by Joshi and Hopely (1999)
and Karttunen (1999), who note that the parser was essentially implemented as a cascade of
finite-state transducer.
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tionary on Computer), an on-line Chinese dialect dictionary.

Four Paradigms: 1970–1983

The next period saw an explosion in research in speech and language pro-
cessing, and the development of a number of research paradigms which still
dominate the field.

The stochastic paradigm played a huge role in the development of
speech recognition algorithms in this period, particularly the use of the Hid-
den Markov Model and the metaphors of the noisy channel and decoding,
developed independently by Jelinek, Bahl, Mercer, and colleagues at IBM’s
Thomas J. Watson Research Center, and Baker at Carnegie Mellon Univer-
sity, who was influenced by the work of Baum and colleagues at the Institute
for Defense Analyses in Princeton. AT&T’s Bell Laboratories was also a
center for work on speech recognition and synthesis; see (Rabiner and Juang,
1993) for descriptions of the wide range of this work.

The logic-basedparadigm was begun by the work of Colmerauer and
his colleagues on Q-systems and metamorphosis grammars (Colmerauer,
1970, 1975), the forerunners of Prolog and Definite Clause Grammars (Pereira
and Warren, 1980). Independently, Kay’s (1979) work on functional gram-
mar, and shortly later, (1982)’s (1982) work on LFG, established the impor-
tance of feature structure unification.

Thenatural language understandingfield took off during this period,
beginning with Terry Winograd’s SHRDLU system which simulated a robot
embedded in a world of toy blocks (Winograd, 1972a). The program was
able to accept natural language text commands (Move the red block on top
of the smaller green one) of a hitherto unseen complexity and sophistication.
His system was also the first to attempt to build an extensive (for the time)
grammar of English, based on Halliday’s systemic grammar. Winograd’s
model made it clear that the problem of parsing was well-enough understood
to begin to focus on semantics and discourse models. Roger Schank and his
colleagues and students (in was often referred to as theYale School) built a
series of language understanding programs that focused on human concep-
tual knowledge such as scripts, plans and goals, and human memory organi-
zation (Schank and Abelson, 1977; Schank and Riesbeck, 1981; Cullingford,
1981; Wilensky, 1983; Lehnert, 1977). This work often used network-based
semantics (Quillian, 1968; Norman and Rumelhart, 1975; Schank, 1972;
Wilks, 1975c, 1975b; Kintsch, 1974) and began to incorporate Fillmore’s
notion of case roles (Fillmore, 1968) into their representations (Simmons,
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1973a).
The logic-based and natural-language understanding paradigms were

unified on systems that used predicate logic as a semantic representation,
such as the LUNAR question-answering system (Woods, 1967, 1973).

The discourse modelingparadigm focused on four key areas in dis-
course. Grosz and her colleagues proposed ideas of discourse structure and
discourse focus (Grosz, 1977a; Sidner, 1983a), a number of researchers be-
gan to work on automatic reference resolution (Hobbs, 1978a), and theBDI
(Belief-Desire-Intention) framework for logic-based work on speech acts
was developed (Perrault and Allen, 1980; Cohen and Perrault, 1979).

Empiricism and Finite State Models Redux: 1983-1993

This next decade saw the return of two classes of models whichhad lost
popularity in the late 50’s and early 60’s, partially due to theoretical argu-
ments against them such as Chomsky’s influential review of Skinner’sVerbal
Behavior(Chomsky, 1959b). The first class was finite-state models, which
began to receive attention again after work on finite-state phonology and
morphology by (Kaplan and Kay, 1981) and finite-state modelsof syntax by
Church (1980). A large body of work on finite-state models will be described
throughout the book.

The second trend in this period was what has been called the ‘return of
empiricism’; most notably here was the rise of probabilistic models through-
out speech and language processing, influenced strongly by the work at the
IBM Thomas J. Watson Research Center on probabilistic models of speech
recognition. These probabilistic methods and other such data-driven ap-
proaches spread into part of speech tagging, parsing and attachment ambi-
guities, and connectionist approaches from speech recognition to semantics.

This period also saw considerable work on natural language genera-
tion.

The Field Comes Together: 1994-1999

By the last five years of the millennium it was clear that the field was vastly
changing. First, probabilistic and data-driven models hadbecome quite stan-
dard throughout natural language processing. Algorithms for parsing, part
of speech tagging, reference resolution, and discourse processing all began
to incorporate probabilities, and employ evaluation methodologies borrowed
from speech recognition and information retrieval. Second, the increases in
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the speed and memory of computers had allowed commercial exploitation
of a number of subareas of speech and language processing, inparticular
speech recognition and spelling and grammar checking. Finally, the rise of
the Web emphasized the need for language-based informationretrieval and
information extraction.

A Final Brief Note on Psychology

Many of the chapters in this book include short summaries of psychological
research on human processing. Of course, understanding human language
processing is an important scientific goal in its own right, and is part of the
general field of cognitive science. However, an understanding of human
language processing can often be helpful in building bettermachine mod-
els of language. This seems contrary to the popular wisdom, which holds
that direct mimicry of nature’s algorithms is rarely usefulin engineering ap-
plications. For example the argument is often made that if wecopied nature
exactly, airplanes would flap their wings; yet airplanes with fixed wings are a
more successful engineering solution. But language is not aeronautics. Crib-
bing from nature is sometimes useful for aeronautics (afterall, airplanes do
have wings), but it is particularly useful when we are tryingto solve human-
centered tasks. Airplane flight has different goals than bird flight; but the
goal of speech recognition systems, for example, is to perform exactly the
task that human court reporters perform every day: transcribe spoken dialog.
Since people already do this well, we can learn from nature’sprevious solu-
tion. Since we are building speech recognition systems in order to interact
with people, it makes sense to copy a solution that behaves the way people
are accustomed to.

1.7 SUMMARY

This chapter introduces the field of speech and language processing. The
following are some of the highlights of this chapter.� A good way to understand the concerns of speech and language pro-

cessing research is to consider what it would take to create an intelli-
gent agent like HAL from 2001: A Space Odyssey.� Speech and language technology relies on formal models, or represen-
tations, of knowledge of language at the levels of phonologyand pho-
netics, morphology, syntax, semantics, pragmatics and discourse. A



16 Chapter 1. Introduction

small number of formal models including state machines, formal rule
systems, logic, and probability theory are used to capture this knowl-
edge.� The foundations of speech and language technology lie in computer
science, linguistics, mathematics, electrical engineering and psychol-
ogy. A small number of algorithms from standard frameworks are used
throughout speech and language processing,� The critical connection between language and thought has placed speech
and language processing technology at the center of debate over intel-
ligent machines. Furthermore, research on how people interact with
complex media indicates that speech and language processing technol-
ogy will be critical in the development of future technologies.� Revolutionary applications of speech and language processing are cur-
rently in use around the world. Recent advances in speech recognition
and the creation of the World-Wide Web will lead to many more appli-
cations.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Research in the various subareas of speech and language processing is spread
across a wide number of conference proceedings and journals. The con-
ferences and journals most centrally concerned with computational linguis-
tics and natural language processing are associated with the Association for
Computational Linguistics (ACL), its European counterpart (EACL), and the
International Conference on Computational Linguistics (COLING). The an-
nual proceedings of ACL and EACL, and the biennial COLING conference
are the primary forums for work in this area. Related conferences include
the biennial conference on Applied Natural Language Processing (ANLP)
and the conference on Empirical Methods in Natural LanguageProcessing
(EMNLaP). The journalComputational Linguisticsis the premier publica-
tion in the field, although it has a decidedly theoretical andlinguistic ori-
entation. The journalNatural Language Engineeringcovers more practical
applications of speech and language research.

Research on speech recognition, understanding, and synthesis is pre-
sented at the biennial International Conference on Spoken Language Pro-
cessing (ICSLP) which alternates with the European Conference on Speech
Communication and Technology (EUROSPEECH). The IEEE International
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Conference on Acoustics, Speech, & Signal Processing (IEEEICASSP)
is held annually, as is the meeting of the Acoustical Societyof America.
Speech journals includeSpeech Communication, Computer Speech and Lan-
guage, and IEEE Transactions on Pattern Analysis and Machine Intelli-
gence.

Work on language processing from an Artificial Intelligenceperspec-
tive can be found in the annual meetings of the American Association for Ar-
tificial Intelligence (AAAI), as well as the biennial International Joint Con-
ference on Artificial Intelligence (IJCAI) meetings. The following artificial
intelligence publications periodically feature work on speech and language
processing:Artificial Intelligence, Computational Intelligence, IEEE Trans-
actions on Intelligent Systems, and the Journal of Artificial Intelligence Re-
search. Work on cognitive modeling of language can be found at the annual
meeting of the Cognitive Science Society, as well as its journal Cognitive
Science. An influential series of closed workshops was held by ARPA, called
variously theDARPA Speech and Natural Language Processing Workshopor
theARPA Workshop on Human Language Technology.

The are a fair number of textbooks available covering various aspects
of speech and language processing. (Manning and Schütze, 1999) (Foun-
dations of Statistical Language Processing) focuses on statistical models of
tagging, parsing, disambiguation, collocations, and other areas. Charniak
(1993) (Statistical Language Learning) is an accessible, though less exten-
sive, introduction to similar material. Allen (1995) (Natural Language Un-
derstanding) provides extensive coverage of language processing from the
AI perspective. (Gazdar and Mellish, 1989) (Natural Language Process-
ing in Lisp/Prolog) covers especially automata, parsing, features, and uni-
fication. (Pereira and Shieber, 1987) gives a Prolog-based introduction to
parsing and interpretation. Russell and Norvig (1995) is anintroduction to
artificial intelligence that includes chapters on natural language processing.
Partee (1990) has a very broad coverage of mathematical linguistics. (Cole,
1997) is a volume of survey papers covering the entire field ofspeech and
language processing. A somewhat dated but still tremendously useful col-
lection of foundational papers can be found in (Groszet al., 1986) (Readings
in Natural Language Processing).

Of course, a wide-variety of speech and language processingresources
are now available on the World-Wide Web. Pointers to these resources are
maintained on the homepage for this book at www.cs.colorado.edu/ mar-
tin/slp.html.





Part I
WORDS

Words are the fundamental building block of language. Everyhuman
language, spoken, signed, or written, is composed of words.Every
area of speech and language processing, from speech recognition to
machine translation to information retrieval on the web, requires ex-
tensive knowledge about words. Psycholinguistic models ofhuman
language processing and models from generative linguisticare also
heavily based on lexical knowledge.

The six chapters in this part introduce computational models
of the spelling, pronunciation, and morphology of words andcover
three important real-world tasks that rely on lexical knowledge: au-
tomatic speech recognition (ASR), text-to-speech synthesis (TTS),
and spell-checking. Finally, these chapters define perhapsthe most
important computational model for of speech and language process-
ing: the automaton. Four kinds of automata are covered: finite-
state automata (FSAs) and regular expressions, finite-state transducers
(FSTs), weighted transducers, and the Hidden Markov Model (HMM),
as well as theN-gram model of word sequences.





2
REGULAR EXPRESSIONS
AND AUTOMATA

“In the old days, if you wanted to impeach a witness you had to
go back and fumble through endless transcripts. Now it’s on a
screen somewhere or on a disk and I can search for a particular
word – say every time the witness used the wordglove– and then
quickly ask a question about what he said years ago. Right away
you see the witness get flustered.”

Johnnie L. Cochran Jr., attorney,New York Times, 9/28/97

Imagine that you have become a passionate fan of woodchucks.De-
siring more information on this celebrated woodland creature, you turn to
your favorite web browser and type inwoodchuck. Your browser returns a
few sites. You have a flash of inspiration and type inwoodchucks. This time
you discover ‘interesting links to woodchucks and lemurs’ and ‘all about
Vermont’s unique, endangered species’. Instead of having to do this search
twice, you would have rather typed one search command specifying some-
thing like woodchuck with an optional final s. Furthermore, you might want
to find a site whether or not it spelledwoodchuckswith a capitalW (Wood-
chuck). Or perhaps you might want to search for all the prices in some docu-
ment; you might want to see all strings that look like$199or $25or $24.99.
In this chapter we introduce theregular expression, the standard notation
for characterizing text sequences. The regular expressionis used for spec-
ifying text strings in situations like this web-search example, and in other
information retrieval applications, but also plays an important role in word-
processing (in PC, Mac, or UNIX applications), computationof frequencies
from corpora, and other such tasks.
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After we have defined regular expressions, we show how they can be
implemented via thefinite-state automaton. The finite-state automaton is
not only the mathematical device used to implement regular expressions, but
also one of the most significant tools of computational linguistics. Variations
of automata such as finite-state transducers, Hidden MarkovModels, and
N-gram grammars are important components of the speech recognition and
synthesis, spell-checking, and information-extraction applications that we
will introduce in later chapters.

2.1 REGULAR EXPRESSIONS

SIR ANDREW Her C’s, her U’s and her T’s: why that?
Shakespeare,Twelfth Night

One of the unsung successes in standardization in computer science
has been theregular expression(RE), a language for specifying text searchREGULAR

EXPRESSION

strings. The regular expression languages used for searching texts in UNIX
(vi, Perl, Emacs, grep), Microsoft Word (version 6 and beyond), and Word-
Perfect are almost identical, and many RE features exist in the various Web
search engines. Besides this practical use, the regular expression is an im-
portant theoretical tool throughout computer science and linguistics.

A regular expression (first developed by Kleene (1956) but see the His-
tory section for more details) is a formula in a special language that is used
for specifying simple classes ofstrings. A string is a sequence of symbols;STRINGS

for the purpose of most text-based search techniques, a string is any sequence
of alphanumeric characters (letters, numbers, spaces, tabs, and punctuation).
For these purposes a space is just a character like any other,and we represent
it with the symbol .

Formally, a regular expression is an algebraic notation forcharacteriz-
ing a set of strings. Thus they can be used to specify search strings as well as
to define a language in a formal way. We will begin by talking about regular
expressions as a way of specifying searches in texts, and proceed to other
uses. Section 2.3 shows that the use of just three regular expression opera-
tors is sufficient to characterize strings, but we use the more convenient and
commonly-used regular expression syntax of the Perl language throughout
this section. Since common text-processing programs agreeon most of the
syntax of regular expressions, most of what we say extends toall UNIX, Mi-
crosoft Word, and WordPerfect regular expressions. Appendix A shows the



Section 2.1. Regular Expressions 23

few areas where these programs differ from the Perl syntax.
Regular expression search requires apattern that we want to search

for, and acorpus of texts to search through. A regular expression searchCORPUS

function will search through the corpus returning all textsthat contain the
pattern. In an information retrieval (IR) system such as a web search engine,
the texts might be entire documents or web pages. In a word-processor, the
texts might be individual words, or lines of a document. In the rest of this
chapter, we will use this last paradigm. Thus when we give a search pattern,
we will assume that the search engine returns theline of the documentre-
turned. This is what the UNIX ‘grep’ command does. We will underline the
exact part of the pattern that matches the regular expression. A search can be
designed to return all matches to a regular expression or only the first match.
We will show only the first match.

Basic Regular Expression Patterns

The simplest kind of regular expression is a sequence of simple characters.
For example, to search forwoodchuck, we type/woodchuck/ . So the reg-
ular expression/Buttercup/ matches any string containing the substring
Buttercup, for example the lineI’m called little Buttercup) (recall that we
are assuming a search application that returns entire lines). From here on
we will put slashes around each regular expression to make itclear what is
a regular expression and what is a pattern. We use the slash since this is the
notation used by Perl, but the slashes arenot part of the regular expressions.

The search string can consist of a single letter (like/!/ ) or a sequence
of letters (like/urgl /); Thefirst instance of each match to the regular ex-
pression is underlined below (although a given applicationmight choose to
return more than just the first instance):

RE Example Patterns Matched
/woodchucks/ “interesting links to woodchucksand lemurs”
/a/ “Mary Ann stopped by Mona’s”
/Claire says,/ “Dagmar, my gift please,” Claire says,”
/song/ “all our pretty songs”
/!/ “You’ve left the burglar behind again!” said Nori

Regular expressions arecase sensitive; lower-case/s/ is distinct from
upper-case/S/ ; (/s/ matches a lower casesbut not an upper-caseS). This
means that the pattern/woodchucks/ will not match the stringWood-
chucks. We can solve this problem with the use of the square braces[ and] .
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The string of characters inside the braces specify adisjunction of characters
to match. For example Figure 2.1 shows that the pattern/[wW]/ matches
patterns containing eitherw or W.

RE Match Example Patterns
/[wW]oodchuck/ Woodchuck or woodchuck“Woodchuck”
/[abc]/ ‘a’, ‘b’, or ‘c’ “In uomini, in soldati”
/[1234567890]/ any digit “plenty of 7 to 5”

Figure 2.1 The use of the brackets[] to specify a disjunction of characters.

The regular expression/[1234567890]/ specified any single digit.
While classes of characters like digits or letters are important building blocks
in expressions, they can get awkward (e.g. it’s inconvenient to specify

/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

to mean ‘any capital letter’). In these cases the brackets can be used with
the dash (- ) to specify any one character in arange. The pattern/[2-RANGE

5]/ specifies any one of the characters2, 3, 4, or 5. The pattern/[b-g]/
specifies one of the charactersb, c, d, e, f, or g. Some other examples:

RE Match Example Patterns Matched
/[A-Z]/ an uppercase letter“we should call it ‘Drenched Blossoms’”
/[a-z]/ a lowercase letter “my beans were impatient to be hoed!”
/[0-9]/ a single digit “Chapter 1: Down the Rabbit Hole”

Figure 2.2 The use of the brackets[] plus the dash- to specify a range.

The square braces can also be used to specify what a single charac-
ter cannotbe, by use of the caretˆ . If the caretˆ is the first symbol after
the open square brace[ , the resulting pattern is negated. For example, the
pattern/[ˆa]/ matches any single character (including special characters)
excepta. This is only true when the caret is the first symbol after the open
square brace. If it occurs anywhere else, it usually stands for a caret; Fig-
ure 2.3 shows some examples.

The use of square braces solves our capitalization problem for wood-
chucks. But we still haven’t answered our original question; how dowe
specify bothwoodchuckandwoodchucks? We can’t use the square brack-
ets, because while they allow us to say ‘s or S’, they don’t allow us to say
‘s or nothing’. For this we use the question-mark/?/ , which means ‘the
preceding character or nothing’, as shown in Figure 2.4.
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RE Match (single characters) Example Patterns Matched
[ˆA-Z] not an uppercase letter “Oyfn pripetchik”
[ˆSs] neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
[ˆ\.] not a period “our resident Djinn”
[eˆ] either ‘e’ or ‘̂ ’ “look up ˆ now”
aˆb the pattern ‘aˆb ’ “look up aˆ bnow”

Figure 2.3 Uses of the caret̂ for negation or just to mean̂

RE Match Example Patterns Matched
woodchucks? woodchuck or woodchucks“woodchuck”
colou?r color or colour “colour”

Figure 2.4 The question-mark? marks optionality of the previous expres-
sion.

We can think of the question-mark as meaning ‘zero or one instances
of the previous character’. That is, it’s a way of specifyinghow many of
something that we want. So far we haven’t needn’t to specify that we want
more than one of something. But sometimes we need regular expressions
that allow repetitions of things. For example, consider thelanguage of (cer-
tain) sheep, which consists of strings that look like the following:

baa!
baaa!
baaaa!

baaaaa!
baaaaaa!
. . .

This language consists of strings with ab, followed by at least 2a’s,
followed by an exclamation point. The set of operators that allow us to say
things like “some number of ‘a’s” are based on the asterisk or* , commonly
called theKleene * (pronounced “cleany star”). The Kleene star meansKLEENE *

‘zero or more occurrences of the immediately previous character or regular
expression’. So/a*/ means ‘any string of zero or more a’s’. This will
matcha or aaaaaabut it will also matchOff Minor, since the stringOff
Minor has zero a’s. So the regular expression for matching one or more
a is /aa*/ , meaning onea followed by zero or morea’s. More complex
patterns can also be repeated. So/[ab]*/ means ‘zero or more ‘a’s or ‘b’s’
(not ‘zero or more right square braces). This will match strings likeaaaaor
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abababor bbbb.
We now know enough to specify part of our regular expression for

prices: multiple digits. Recall that the regular expression for an individual
digit was /[0-9]/ . So the regular expression for an integer (a string of
digits) is/[0-9][0-9]*/ . (Why isn’t it just /[0-9]*/ )?

Sometimes it’s annoying to have to write the regular expression for dig-
its twice, so there is a shorter way to specify ‘at least one’ of some character.
This is theKleene +, which means ‘one or more of the previous character’.KLEENE +

Thus the expression/[0-9]+/ is the normal way to specify ‘a sequence of
digits’. There are thus two ways to specify the sheep language: /baaa*!/
or /baa+!/ .

One very important special character is the period (/./ , a wildcard
expression that matches any single character (excepta carriage return):

RE Match Example Patterns
/beg.n/ any character between ‘beg’ and ‘n’ begin, beg’n, begun

Figure 2.5 The use of the period. to specify any character.

The wildcard is often used together with the Kleene star to mean ‘any
string of characters’. For example suppose we want to find anyline in which
a particular word, for exampleaardvark, appears twice. We can specify this
with the regular expression/aardvark.*aardvark/ .

Anchors are special characters that anchor regular expressions to par-ANCHORS

ticular places in a string. The most common anchors are the caret ˆ and the
dollar-sign$. The caret̂ matches the start of a line. The pattern/ˆThe/
matches the wordTheonly at the start of a line. Thus there are three uses
of the caret̂ : to match the start of a line, as a negation inside of square
brackets, and just to mean a caret. (What are the contexts that allow Perl to
know which function a given caret is supposed to have?). The dollar sign$
matches the end of a line. So the pattern$ is a useful pattern for matching
a space at the end of a line, and/ˆThe dog\.$/ matches a line that con-
tains only the phraseThe dog.(We have to use the backslash here since we
want the. to mean ‘period’ and not the wildcard).

There are also two other anchors:\b matches a word boundary, while
\B matches a non-boundary. Thus/\bthe\b/ matches the wordthe but
not the wordother. More technically, Perl defines a word as any sequence
of digits, underscores or letters; this is based on the definition of ‘words’ in
programming languages like Perl or C. For example,/\b99/ will match
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the string99 in There are 99 bottles of beer on the wall(because 99 follows
a space) but not99 in There are 299 bottles of beer on the wall(since 99
follows a number). But it will match99 in $99 (since99 follows a dollar
sign ($), which is not a digit, underscore, or letter).

Disjunction, Grouping, and Precedence

Suppose we need to search for texts about pets; perhaps we areparticularly
interested in cats and dogs. In such a case we might want to search for either
the stringcat or the stringdog. Since we can’t use the square-brackets to
search for ‘cat or dog’ (why not?) we need a new operator, thedisjunction DISJUNCTION

operator, also called thepipe symbol| . The pattern/cat|dog/ matches
either the stringcat or the stringdog .

Sometimes we need to use this disjunction operator in the midst of
a larger sequence. For example, suppose I want to search for information
about pet fish for my cousin David. How can I specify bothguppy and
guppies? We cannot simply say/guppy|ies/ , because that would match
only the stringsguppyand ies. This is because sequences likeguppy take
precedenceover the disjunction operator| . In order to make the disjunctionPRECEDENCE

operator apply only to a specific pattern, we need to use the parenthesis
operators( and ) . Enclosing a pattern in parentheses makes it act like a
single character for the purposes of neighboring operatorslike the pipe|
and the Kleene* . So the pattern/gupp(y|ies)/ would specify that we
meant the disjunction only to apply to the suffixesy andies .

The parenthesis operator( is also useful when we are using counters
like the Kleene* . Unlike the | operator, the Kleene* operator applies by
default only to a single character, not a whole sequence. Suppose we want
to match repeated instances of a string. Perhaps we have a line that has
column labels of the formColumn 1 Column 2 Column 3. The expression
/Column [0-9]+ */ will not match any column; instead, it will match
a column followed by any number of spaces! The star here applies only to
the space that precedes it, not the whole sequence. With the parentheses,
we could write the expression/(Column [0-9]+ *)*/ to match the
word Column, followed by a number and optional spaces, the whole pattern
repeated any number of times.

This idea that one operator may take precedence over another, requir-
ing us to sometimes use parentheses to specify what we mean, is formalized
by theoperator precedence hierarchyfor regular expressions. The follow-OPERATOR

PRECEDENCE

ing table gives the order of RE operator precedence, from highest precedence
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to lowest precedence:

Parenthesis ()
Counters * + ? {}
Sequences and anchorsthe ˆmy end$
Disjunction |

Thus, because counters have a higher precedence than sequences,/the*/
matchestheeeeebut notthethe. Because sequences have a higher precedence
than disjunction,/the|any/ matchestheor anybut nottheny.

Patterns can be ambiguous in another way. Consider the expression
/[a-z]*/ when matching against the textonce upon a time. Since/[a-
z]*/ matches zero or more letters, this expression could match nothing, or
just the first lettero, oron, oronc, oronce. In these cases regular expressions
always match thelargeststring they can; we say that patterns aregreedy,GREEDY

expanding to cover as much of a string as they can.

A simple example

Suppose we wanted to write a RE to find cases of the English article the. A
simple (but incorrect) pattern might be:

/the/

One problem is that this pattern will miss the word when it begins
a sentence and hence is capitalized (i.e.The). This might lead us to the
following pattern:

/[tT]he/

But we will still incorrectly return texts withthe embedded in other
words (e.g.otheror theology). So we need to specify that we want instances
with a word boundary on both sides:

/\b[tT]he\b/

Suppose we wanted to do this without the use of/\b/ ? We might
want this since/\b/ won’t treat underscores and numbers as word bound-
aries; but we might want to findthein some context where it might also have
underlines or numbers nearby (the or the25). We need to specify that we
want instances in which there are no alphabetic letters on either side of the
the:

/[ˆa-z][tT]he[ˆa-z]/
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But there is still one more problem with this pattern: it won’t find the
word thewhen it begins a line. This is because the regular expression[ˆa-
z] , which we used to avoid embeddedthes, implies that there must be some
single (although non-alphabetic) character before thethe . We can avoid
this by specifying that before thethewe requireeither the beginning-of-line
or a non-alphabetic character:

/(ˆ|[ˆa-z])[tT]he[ˆa-z]/

A More Complex Example

Let’s try out a more significant example of the power of REs. Suppose we
want to build an application to help a user buy a computer on the web. The
user might want ‘any PC with more than 500 Mhz and 32 Gb of disk space
for less than $1000’. In order to do this kind of retrieval we will first need to
be able to look for expressions like500 MHzor 3.5 Gbor 32 Megabytes, or
Compaqor Mac or $999.99. In the rest of this section we’ll work out some
simple regular expressions for this task.

First, let’s complete our regular expression for prices. Here’s a regular
expression for a dollar sign followed by a string of digits. Note that Perl is
smart enough to realize that$ here doesn’t mean end-of-line; how might it
know that?

/$[0-9]+/

Now we just need to deal with fractions of dollars. We’ll add adecimal
point and two digits afterwards:

/$[0-9]+\.[0-9][0-9]/

This pattern only allows$199.99but not$199. We need to make the
cents optional, and make sure we’re at a word boundary:

/\b$[0-9]+(\.[0-9][0-9])?\b/

How about specifications for processor speed (in Megahertz =Mhz or
Gigahertz = Ghz)? Here’s a pattern for that:

/\b[0-9]+ *(Mhz|[Mm]egahertz|Ghz|[Gg]igahertz)\b/

Note that we use/ */ to mean ’zero or more spaces’, since there
might always be extra spaces lying around. Dealing with diskspace (in Gb
= gigabytes), or memory size (in Mb = megabytes or Gb = gigabytes), we
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need to allow for optional gigabyte fractions again (5.5 Gb). Note the use of
? for making the finals optional:

/\b[0-9]+ *(Mb|[Mm]egabytes?)\b/
/\b[0-9](\.[0-9]+)? *(Gb|[Gg]igabytes?)\b/

Finally, we might want some simple patterns to specify operating sys-
tems and vendors:

/\b(Win|Win95|Win98|WinNT|Windows *(NT|95|98)?)\b/
/\b(Mac|Macintosh|Apple)\b/

Advanced Operators

RE Expansion Match Example Patterns
\d [0-9] any digit Party of 5
\D [ˆ0-9] any non-digit Blue moon
\w [a-zA-Z0-9 ] any alphanumeric or spaceDaiyu
\W [ˆ\w] a non-alphanumeric !!!!
\s [ \r\t\n\f] whitespace (space, tab)
\S [ˆ\s] Non-whitespace in Concord

Figure 2.6 Aliases for common sets of characters.

There are also some useful advanced regular expression operators. Fig-
ure 2.6 shows some useful aliases for common ranges, which can be used
mainly to save typing. Besides the Kleene * and Kleene +, we can also use
explicit numbers as counters, by enclosing them in curly brackets. The reg-
ular expression/{3}/ means “exactly 3 occurrences of the previous char-
acter or expression”. So/a\.{24}z/ will match a followed by 24 dots
followed byz (but nota followed by 23 or 25 dots followed by az).

A range of numbers can also be specified; so/{n,m}/ specifies from
n to m occurrences of the previous char or expression, while/{n,}/ means
at least n occurrences of the previous expression. REs for counting are sum-
marized in Figure 2.7.

Finally, certain special characters are referred to by special notation
based on the backslash (\ ). The most common of these are thenewlineNEWLINE

character\n and thetab character\t . To refer to characters that are special
themselves, (like. , * , [ , and\ ), precede them with a backslash, (i.e./\./ ,
/\*/ , /\[/ , and/\\/ ).
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RE Match
* zero or more occurrences of the previous char or expression
+ one or more occurrences of the previous char or expression
? exactly zero or one occurrence of the previous char or expression
{n} n occurrences of the previous char or expression
{n,m} from n to m occurrences of the previous char or expression
{n,} at least n occurrences of the previous char or expression

Figure 2.7 Regular expression operators for counting.

RE Match Example Patterns Matched
\* an asterisk “*” “K* A*P*L*A*N”
\. a period “.” “Dr. Livingston, I presume”
\? a question mark “Would you light my candle?”
\n a newline
\t a tab

Figure 2.8 Some characters that need to be backslashed.

The reader should consult Appendix A for further details of regular
expressions, and especially for the differences between regular expressions
in Perl, UNIX, and Microsoft Word.

Regular Expression Substitution, Memory, and ELIZA

An important use of regular expressions is insubstitutions. For example, the SUBSTITU­
TIONS

Perl substitution operators/regexp1/regexp2/ allows a string charac-
terized by one regular expression to be replaced by a string characterized by
a different regular expression:

s/colour/color/

It is often useful to be able to refer to a particular subpart of the string
matching the first pattern. For example, suppose we wanted toput angle
brackets around all integers in a text, changing e.g.the 35 boxesto the<35> boxes. We’d like a way to refer back to the integer we’ve found so
that we can easily add the brackets. To do this, we put parentheses( and
) around the first pattern, and use thenumber operator\1 in the second
pattern to refer back. Here’s how it looks:

s/([0-9]+)/<\1>/
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The parenthesis and number operators can also be used to specify that
a certain string or expression must occur twice in the text. For example,
suppose we are looking for the pattern ‘the Xer they were, theXer they will
be’, where we want to constrain the two X’s to be the same string. We do
this by surrounding the first X with the parenthesis operator, and replacing
the second X with the number operator\1 , as follows:

/the (.*)er they were, the \1er they will be/

Here the\1 will be replaced by whatever string matched the first item in
parentheses. So this will matchThe bigger they were, the bigger they will be
but notThe bigger they were, the faster they will be.

The number operator can be used with other numbers: if you match
two different sets of parenthesis,\2 means whatever matched thesecond
set. For example

/the (.*)er they (.*), the \1er they \2/

will matchThe bigger they were, the bigger they werebut notThe bigger they
were, the bigger they will be. These numbered memories are calledregistersREGISTERS

(e.g. register 1, register 2, register 3, etc). This memory feature is not part
of every regular expression language, and is often considered an ‘extended’
feature of regular expressions.

Substitutions using memory are very useful in implementinga simple
natural-language understanding program like ELIZA (Weizenbaum, 1966).
Recall that ELIZA simulated a Rogerian psychologist, and could carry on
conversations with the user like the following:

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other..
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED.

Eliza worked by having a cascade of regular expression substitutions
that each matched some part of the input lines and changed them. The first
substitutions changed all instances ofmy to YOUR, and I’m to YOU ARE,
and so on. The next set of substitutions looked for relevant patterns in the
input and created an appropriate output; here are some examples:

s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
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s/.* YOU ARE (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

Since multiple substitutions could apply to a given input, substitutions
were assigned a rank and were applied in order. Creation of such patterns is
addressed in Exercise 2.2.

2.2 FINITE-STATE AUTOMATA

The regular expression is more than just a convenient metalanguage for text
searching. First, a regular expression is one way of describing afinite-state
automaton (FSA). Finite-state automata are the theoretical foundation ofFINITE­STATE

AUTOMATON

FSAa good deal of the computational work we will describe in thisbook, Any
regular expression can be implemented as a finite-state automaton (except
regular expressions that use the memory feature; more on this later). Sym-
metrically, any finite-state automaton can be described with a regular expres-
sion. Second, a regular expression is one way of characterizing a particular
kind of formal language called aregular language. Both regular expres- REGULAR

LANGUAGE

sions and finite-state automata can be used to described regular languages.
The relation among these three theoretical constructions is sketched out in
Figure 2.9.

regular
expressions

   regular
languages

finite 
automata

Figure 2.9 The relationship between finite automata, regular expressions,
and regular languages; figure suggested by Martin Kay.

This section will begin by introducing finite-state automata for some of
the regular expressions from the last section, and then suggest how the map-
ping from regular expressions to automata proceeds in general. Although
we begin with their use for implementing regular expressions, FSAs have a
wide variety of other uses which we will explore in this chapter and the next.
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Using an FSA to Recognize Sheeptalk

After a while, with the parrot’s help, the Doctor got to learnthe
language of the animals so well that he could talk to them himself
and understand everything they said.

Hugh Lofting, The Story of Doctor Dolittle

Let’s begin with the ‘sheep language’ we discussed previously. Recall
that we defined the sheep language as any string from the following (infinite)
set:

baa!
baaa!
baaaa!

baaaaa!
baaaaaa!
. . .

q
0

q
1

ab

q q

!
a

q

a

2 3 4

Figure 2.10 A finite-state automaton for talking sheep.

The regular expression for this kind of ‘sheep talk’ is/baa+!/ . Fig-
ure 2.10 shows anautomaton for modeling this regular expression. TheAUTOMATON

automaton (i.e. machine, also calledfinite automaton, finite-state automa-
ton, orFSA) recognizes a set of strings, in this case the strings characterizing
sheep talk, in the same way that a regular expression does. Werepresent the
automaton as a directed graph: a finite set of vertices (also called nodes),
together with a set of directed links between pairs of vertices called arcs.
We’ll represent vertices with circles and arcs with arrows.The automaton
has fivestates, which are represented by nodes in the graph. State 0 is theSTATE

start state which we represent by the incoming arrow. State 4 is thefinalSTART STATE

stateor accepting state, which we represent by the double circle. It also has
four transitions, which we represent by arcs in the graph.

The FSA can be used for recognizing (we also sayaccepting) strings
in the following way. First, think of the input as being written on a long tape
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broken up into cells, with one symbol written in each cell of the tape, as in
Figure 2.11.

q
0

a b a ! b

Figure 2.11 A tape with cells.

The machine starts in the start state (q0), and iterates the following
process: Check the next letter of the input. If it matches thesymbol on
an arc leaving the current state, then cross that arc, move tothe next state,
and also advance one symbol in the input. If we are in the accepting state
(q4) when we run out of input, the machine has successfully recognized an
instance of sheeptalk. If the machine never gets to the final state, either
because it runs out of input, or it gets some input that doesn’t match an arc
(as in Figure 2.11), or if it just happens to get stuck in some non-final state,
we say the machinerejects or fails to accept an input. REJECTS

We can also represent an automaton with astate-transition table. As STATE­
TRANSITION
TABLE

in the graph notation, the state-transition table represents the start state, the
accepting states, and what transitions leave each state with which symbols.
Here’s the state-transition table for the FSA of Figure 2.10.

Input
State b a !
0 1 /0 /0
1 /0 2 /0
2 /0 3 /0
3 /0 3 4
4: /0 /0 /0

Figure 2.12: The state-transition table for the FSA of Figure 2.10

We’ve marked state 4 with a colon to indicate that it’s a final state (you
can have as many final states as you want), and the/0 indicates an illegal or
missing transition. We can read the first row as “if we’re in state 0 and we
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see the inputb we must go to state 1. If we’re in state 0 and we see the input
a or !, we fail”.

More formally, a finite automaton is defined by the following 5param-
eters:� Q: a finite set ofN statesq0;q1; : : :qN� Σ: a finite input alphabet of symbols� q0: the start state� F: the set of final states,F �Q� δ(q; i): the transition function or transition matrix between states. Given

a stateq 2 Q and an input symboli 2 Σ, δ(q; i) returns a new state
q0 2Q. δ is thus a relation fromQ�Σ to Q;

For the sheeptalk automaton in Figure 2.10,Q = fq0;q1;q2;q3;q4g,
Σ = fa;b; !g, F = fq4g, andδ(q; i) is defined by the transition table in Fig-
ure 2.12.

Figure 2.13 presents an algorithm for recognizing a string using a state-
transition table. The algorithm is calledD-RECOGNIZE for ‘deterministic
recognizer’. Adeterministic algorithm is one that has no choice points;DETERMINIS­

TIC

the algorithm always knows what to do for any input. The next section will
introduce non-deterministic automata that must make decisions about which
states to move to.

D-RECOGNIZE takes as input a tape and an automaton. It returnsac-
cept if the string it is pointing to on the tape is accepted by the automaton,
and reject otherwise. Note that sinceD-RECOGNIZE assumes it is already
pointing at the string to be checked, its task is only a subpart of the general
problem that we often use regular expressions for, finding a string in a corpus
(the general problem is left as an exercise to the reader in Exercise 2.8).

D-RECOGNIZE begins by initializing the variablesindexandcurrent-
stateto the beginning of the tape and the machine’s initial state.D-RECOGNIZE

then enters a loop that drives the rest of the algorithm. It first checks whether
it has reached the end of its input. If so, it either accepts the input (if the cur-
rent state is an accept state) or rejects the input (if not).

If there is input left on the tape,D-RECOGNIZE looks at the transition
table to decide which state to move to. The variablecurrent-stateindicates
which row of the table to consult, while the current symbol onthe tape indi-
cates which column of the table to consult. The resulting transition-table cell
is used to update the variablecurrent-stateandindexis incremented to move
forward on the tape. If the transition-table cell is empty then the machine
has nowhere to go and must reject the input.
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function D-RECOGNIZE(tape, machine) returns accept or reject

index Beginning of tape
current-state Initial state of machine
loop
if End of input has been reachedthen
if current-state is an accept statethen

return accept
else

return reject
elsif transition-table[current-state,tape[index]]is emptythen

return reject
else

current-state transition-table[current-state,tape[index]]
index index+ 1

end

Figure 2.13 An algorithm for deterministic recognition of FSAs. This al-
gorithm returnsacceptif the entire string it is pointing at is in the language
defined by the FSA, and reject if the string is not in the language.

Figure 2.14 traces the execution of this algorithm on the sheep lan-
guage FSA given the sample input stringbaaa!.

b a a a !

q
0

q q q q q
1 2 3 3 4

Figure 2.14 Tracing the execution of FSA #1 on some sheeptalk.

Before examining the beginning of the tape, the machine is instateq0.
Finding ab on input tape, it changes to stateq1 as indicated by the contents
of transition-table[q0,b] in Figure 2.12 on page 35. It then finds ana and
switches to stateq2, anothera puts it in stateq3, a thirda leaves it in stateq3,
where it reads the ‘!’, and switches to stateq4. Since there is no more input,
theEnd of input condition at the beginning of the loop is satisfied for
the first time and the machine halts inq4. Stateq4 is an accepting state,
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and so the machine has accepted the stringbaaa! as a sentence in the sheep
language.

The algorithm will fail whenever there is no legal transition for a given
combination of state and input. The inputabcwill fail to be recognized since
there is no legal transition out of stateq0 on the inputa, (i.e. this entry of
the transition table in Figure 2.12 on page 35 has a/0). Even if the automaton
had allowed an initiala it would have certainly failed onc, sincec isn’t even
in the sheeptalk alphabet!). We can think of these ‘empty’ elements in the
table as if they all pointed at one ‘empty’ state, which we might call thefail
stateor sink state. In a sense then, we could view any machine with emptyFAIL STATE

transitionsas if we had augmented it with a fail state, and drawn in all the
extra arcs, so we always had somewhere to go from any state on any possible
input. Just for completeness, Figure 2.15 shows the FSA fromFigure 2.10
with the fail stateqF filled in.

q
0

q
1

ab

q q

!

q

a

2 3 4

q
F

a
a

a

bb b
b

!!!
!

Figure 2.15 Adding a fail state to Figure 2.10.

Formal Languages

We can use the same graph in Figure 2.10 as an automaton forGENERATING

sheeptalk. If we do, we would say that the automaton starts atstateq0, and
crosses arcs to new states, printing out the symbols that label each arc it
follows. When the automaton gets to the final state it stops. Notice that at
state 3, the automaton has to chose between printing out a! and going to
state 4, or printing out ana and returning to state 3. Let’s say for now that
we don’t care how the machine makes this decision; maybe it flips a coin.
For now, we don’t care which exact string of sheeptalk we generate, as long
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as it’s a string captured by the regular expression for sheeptalk above.

Key Concept #1.Formal Language:A model which can both gener-
ate and recognize all and only the strings of a formal language acts as
adefinitionof the formal language.

A formal languageis a set of strings, each string composed of symbolsFORMAL
LANGUAGE

from a finite symbol-set called analphabet (the same alphabet used aboveALPHABET

for defining an automaton!). The alphabet for the sheep language is the set
Σ = fa;b; !g. Given a modelm (such as a particular FSA), we can useL(m)
to mean “the formal language characterized bym”. So the formal language
defined by our sheeptalk automatonm in Figure 2.10 (and Figure 2.12) is the
infinite set:

L(m) = fbaa!;baaa!;baaaa!;baaaaa!;baaaaaa! : : :g (2.1)

The usefulness of an automaton for defining a language is thatit can
express an infinite set (such as this one above) in a closed form. Formal
languages are not the same asnatural languages, which are the kind of NATURAL

LANGUAGES

languages that real people speak. In fact a formal language may bear no re-
semblance at all to a real language (for example a formal language can be
used to model the different states of a soda machine). But we often use a
formal language to model part of a natural language, such as parts of the
phonology, morphology, or syntax. The termgenerative grammaris some-
times used in linguistics to mean a grammar of a formal language; the origin
of the term is this use of an automaton to define a language by generating all
possible strings.

Another Example

In the previous examples our formal alphabet consisted of letters; but we
can also have a higher-level alphabet consisting of words. In this way we
can write finite-state automata that model facts about word combinations.
For example, suppose we wanted to build an FSA that modeled the subpart
of English dealing with amounts of money. Such a formal language would
model the subset of English consisting of phrases liketen cents, three dol-
lars, one dollar thirty-five centsand so on.

We might break this down by first building just the automaton to ac-
count for the numbers from one to ninety-nine, since we’ll need them to deal
with cents. Figure 2.16 shows this.
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Figure 2.16 An FSA for the words for English numbers 1 – 99.

We could now addcentsanddollars to our automaton. Figure 2.17
shows a simple version of this, where we just made two copies of the au-
tomaton in Figure 2.16 and appended the wordscentsanddollars.
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Figure 2.17 FSA for the simple dollars and cents.

We would now need to add in the grammar for different amounts of
dollars; including higher numbers likehundred, thousand. We’d also need to
make sure that the nouns likecentsanddollarsare singular when appropriate
(one cent, one dollar), and plural when appropriate (ten cents, two dollars).
This is left as an exercise for the reader (Exercise 2.3). We can think of the
FSAs in Figure 2.16 and Figure 2.17 as simple grammars of parts of English.
We will return to grammar-building in Part II of this book, particularly in
Chapter 9.

Nondeterministic FSAs

Let’s extend our discussion now to another class of FSAs:non-deterministicNON­
DETERMINISTIC

FSAs(or NFSAs). Consider the sheeptalk automaton in Figure 2.18, whichNFSA

is much like our first automaton in Figure 2.10:
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Figure 2.18 A non-deterministic finite-state automaton for talking sheep
(NFSA #1). Compare with the deterministic automaton in Figure 2.10.

The only difference between this automaton and the previousone is
that here in Figure 2.18 the self-loop is on state 2 instead ofstate 3. Con-
sider using this network as an automaton for recognizing sheeptalk. When
we get to state 2, if we see ana we don’t know whether to remain in state
2 or go on to state 3. Automata with decision points like this are called
non-deterministic FSAs (or NFSAs). Recall by contrast that Figure 2.10NON­

DETERMINISTIC
FSA

NFSAspecified adeterministic automaton, i.e. one whose behavior during recog-
nition is fully determinedby the state it is in and the symbol it is looking at.
A deterministic automaton can be referred to as aDFSA. That is not true for DFSA

the machine in Figure 2.18 (NFSA #1).
There is another common type of non-determinism, which can be caused

by arcs that have no symbols on them (calledε-transitions). The automaton ε­
TRANSITIONS

in Figure 2.19 defines the exact same language as the last one,or our first
one, but it does it with anε-transition.

q
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q
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ab

q q

!

q

a

2 3 4

ε
Figure 2.19 Another NFSA for the sheep language (NFSA #2). It differs
from NFSA #1 in Figure 2.18 in having anε-transition.

We interpret this new arc as follows: if we are in state 3, we are al-
lowed to move to state 2without looking at the input, or advancing our input
pointer. So this introduces another kind of non-determinism – we might not
know whether to follow theε-transition or the! arc.
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Using an NFSA to accept strings

If we want to know whether a string is an instance of sheeptalkor not, and
if we use a non-deterministic machine to recognize it, we might follow the
wrong arc and reject it when we should have accepted it. That is, since there
is more than one choice at some point, we might take the wrong choice. This
problem of choice in non-deterministic models will come up again and again
as we build computational models, particularly for parsing.

There are three standard solutions to this problem:� Backup: Whenever we come to a choice point, we could put amarker
to mark where we were in the input, and what state the automaton was
in. Then if it turns out that we took the wrong choice, we couldback
up and try another path.� Look-ahead: We could look ahead in the input to help us decide which
path to take.� Parallelism: Whenever we come to a choice point, we could look at
every alternative path in parallel.

We will focus here on the backup approach and defer discussion of the
look-ahead and parallelism approaches to later chapters.

The backup approach suggests that we should blithely make choices
that might lead to deadends, knowing that we can always return to unex-
plored alternative choices. There are two keys to this approach: we need
to remember all the alternatives for each choice point, and we need to store
sufficient information about each alternative so that we canreturn to it when
necessary. When a backup algorithm reaches a point in its processing where
no progress can be made (because it runs out of input, or has nolegal tran-
sitions), it returns to a previous choice point, selects oneof the unexplored
alternatives, and continues from there. Applying this notion to our non-
deterministic recognizer, we need only remember two thingsfor each choice
point: the state, or node, of the machine that we can go to and the corre-
sponding position on the tape. We will call the combination of the node and
position thesearch-stateof the recognition algorithm. To avoid confusion,SEARCH­

STATE

we will refer to the state of the automaton (as opposed to the state of the
search) as anode or a machine-state. Figure 2.21 presents a recognition
algorithm based on this approach.

Before going on to describe the main part of this algorithm, we should
note two changes to the transition table that drives it. First, in order to rep-
resent nodes that have outgoingε-transitions, we add a newε-column to the
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Input
State b a ! ε
0 1 /0 /0 /0
1 /0 2 /0 /0
2 /0 2,3 /0 /0
3 /0 /0 4 /0
4: /0 /0 /0 /0

Figure 2.20: The transition table from NFSA #1 in Figure 2.18.

transition table. If a node has anε-transition, we list the destination node in
theε-column for that node’s row. The second addition is needed toaccount
for multiple transitions to different nodes from the same input symbol. We
let each cell entry consist of a list of destination nodes rather than a single
node. Figure 2.20 shows the transition table for the machinein Figure 2.18
(NFSA #1). While it has noε-transitions, it does show that in machine-state
q2 the inputa can lead back toq2 or on toq3.

Figure 2.21 shows the algorithm for using a non-deterministic FSA
to recognize an input string. The functionND-RECOGNIZEuses the variable
agendato keep track of all the currently unexplored choices generated during
the course of processing. Each choice (search state) is a tuple consisting of a
node (state) of the machine and a position on the tape. The variablecurrent-
search-staterepresents the branch choice being currently explored.

ND-RECOGNIZEbegins by creating an initial search-state and placing
it on the agenda. For now we don’t specify what order the search-states are
placed on the agenda. This search-state consists of the initial machine-state
of the machine and a pointer to the beginning of the tape. The functionNEXT

is then called to retrieve an item from the agenda and assign it to the variable
current-search-state.

As with D-RECOGNIZE, the first task of the main loop is to determine
if the entire contents of the tape have been successfully recognized. This
is done via a call toACCEPT-STATE?, which returnsacceptif the current
search-state contains both an accepting machine-state anda pointer to the
end of the tape. If we’re not done, the machine generates a setof possible
next steps by callingGENERATE-NEW-STATES, which creates search-states
for anyε-transitions and any normal input-symbol transitions fromthe tran-
sition table. All of these search-state tuples are then added to the current
agenda.

Finally, we attempt to get a new search-state to process fromthe agenda.
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If the agenda is empty we’ve run out of options and have to reject the input.
Otherwise, an unexplored option is selected and the loop continues.

It is important to understand whyND-RECOGNIZE returns a value of
reject only when the agenda is found to be empty. UnlikeD-RECOGNIZE, it
does not return reject when it reaches the end of the tape in annon-accept
machine-state or when it finds itself unable to advance the tape from some
machine-state. This is because, in the non-deterministic case, such road-
blocks only indicate failure down a given path, not overall failure. We can
only be sure we can reject a string when all possible choices have been ex-
amined and found lacking.

Figure 2.22 illustrates the progress ofND-RECOGNIZEas it attempts to
handle the inputbaaa! . Each strip illustrates the state of the algorithm at
a given point in its processing. Thecurrent-search-statevariable is captured
by the solid bubbles representing the machine-state along with the arrow rep-
resenting progress on the tape. Each strip lower down in the figure represents
progress from onecurrent-search-stateto the next.

Little of interest happens until the algorithm finds itself in stateq2

while looking at the second a on the tape. An examination of the entry
for transition-table[q2,a] returns bothq2 andq3. Search states are created
for each of these choices and placed on the agenda. Unfortunately, our al-
gorithm chooses to move to stateq3, a move that results in neither an accept
state nor any new states since the entry for transition-table[q3, a] is empty.
At this point, the algorithm simply asks the agenda for a new state to pursue.
Since the choice of returning toq2 from q2 is the only unexamined choice on
the agenda it is returned with the tape pointer advanced to the next a. Some-
what diabolically,ND-RECOGNIZE finds itself faced with the same choice.
The entry for transition-table[q2,a] still indicates that looping back toq2 or
advancing toq3 are valid choices. As before, states representing both are
placed on the agenda. These search states are not the same as the previous
ones since their tape index values have advanced. This time the agenda pro-
vides the move toq3 as the next move. The move toq4, and success, is then
uniquely determined by the tape and the transition-table.

Recognition as Search

ND-RECOGNIZE accomplishes the task of recognizing strings in a regular
language by providing a way to systematically explore all the possible paths
through a machine. If this exploration yields a path ending in an accept
state, it accepts the string, otherwise it rejects it. This systematic exploration
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function ND-RECOGNIZE(tape, machine) returns accept or reject

agenda f(Initial state of machine, beginning of tape)g
current-search-state NEXT(agenda)
loop

if ACCEPT-STATE?(current-search-state) returns truethen
return accept

else
agenda agenda[ GENERATE-NEW-STATES(current-search-state)

if agendais emptythen
return reject

else
current-search-state NEXT(agenda)

end

function GENERATE-NEW-STATES(current-state) returns a set of search-
states

current-node the node the current search-state is in
index the point on the tape the current search-state is looking at
return a list of search states from transition table as follows:

(transition-table[current-node,ε], index)[
(transition-table[current-node, tape[index]], index + 1)

function ACCEPT-STATE?(search-state) returns true or false

current-node the node search-state is in
index the point on the tape search-state is looking at
if indexis at the end of the tapeand current-nodeis an accept state of machine

then
return true

else
return false

Figure 2.21 An algorithm for NFSA recognition. The wordnodemeans
a state of the FSA, whilestateor search-statemeans ‘the state of the search
process’, i.e. a combination ofnodeandtape-position

is made possible by the agenda mechanism, which on each iteration selects a
partial path to explore and keeps track of any remaining, as yet unexplored,
partial paths.

Algorithms such asND-RECOGNIZE, which operate by systematically
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Figure 2.22 Tracing the execution of NFSA #1 (Figure 2.18) on some
sheeptalk.

searching for solutions, are known asstate-space searchalgorithms. InSTATE­SPACE
SEARCH

such algorithms, the problem definition creates a space of possible solu-
tions; the goal is to explore this space, returning an answerwhen one is
found or rejecting the input when the space has been exhaustively explored.
In ND-RECOGNIZE, search states consist of pairings of machine-states with
positions on the input tape. The state-space consists of allthe pairings of
machine-state and tape positions that are possible given the machine in ques-
tion. The goal of the search is to navigate through this spacefrom one state to
another looking for a pairing of an accept state with an end oftape position.

The key to the effectiveness of such programs is often theorder in
which the states in the space are considered. A poor orderingof states may
lead to the examination of a large number of unfruitful states before a suc-
cessful solution is discovered. Unfortunately, it is typically not possible to
tell a good choice from a bad one, and often the best we can do isto insure
that each possible solution is eventually considered.
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Careful readers may have noticed that the ordering of statesin ND-
RECOGNIZEhas been left unspecified. We know only that unexplored states
are added to the agenda as they are created and that the (undefined) func-
tion NEXT returns an unexplored state from the agenda when asked. How
should the function NEXT be defined? Consider an ordering strategy where
the states that are considered next are the most recently created ones. Such
a policy can be implemented by placing newly created states at the front
of the agenda and having NEXT return the state at the front of the agenda
when called. Thus the agenda is implemented by astack. This is commonly
referred to as adepth-first searchor Last In First Out (LIFO ) strategy. DEPTH­FIRST

Such a strategy dives into the search space following newly developed
leads as they are generated. It will only return to consider earlier options
when progress along a current lead has been blocked. The trace of the ex-
ecution ofND-RECOGNIZE on the stringbaaa! as shown in Figure 2.22
illustrates a depth-first search. The algorithm hits the first choice point after
seeingba when it has to decide whether to stay inq2 or advance to state
q3. At this point, it chooses one alternative and follows it until it is sure it’s
wrong. The algorithm then backs up and tries another older alternative.

Depth first strategies have one major pitfall: under certaincircum-
stances they can enter an infinite loop. This is possible either if the search
space happens to be set up in such a way that a search-state canbe acciden-
tally re-visited, or if there are an infinite number of searchstates. We will
revisit this question when we turn to more complicated search problems in
parsing in Chapter 10.

The second way to order the states in the search space is to consider
states in the order in which they are created. Such a policy can be imple-
mented by placing newly created states at the back of the agenda and still
have NEXT return the state at the front of the agenda. Thus the agenda is
implemented via aqueue. This is commonly referred to as abreadth-first BREADTH­

FIRST

search or First In First Out (FIFO ) strategy. Consider a different trace
of the execution ofND-RECOGNIZE on the stringbaaa! as shown in Fig-
ure 2.23. Again, the algorithm hits its first choice point after seeingba when
it had to decide whether to stay inq2 or advance to stateq3. But now rather
than picking one choice and following it up, we imagine examining all pos-
sible choices, expanding one ply of the search tree at a time.

Like depth-first search, breadth-first search has its pitfalls. As with
depth-first if the state-space is infinite, the search may never terminate. More
importantly, due to growth in the size of the agenda if the state-space is
even moderately large, the search may require an impractically large amount
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Figure 2.23 A breadth-first trace of FSA #1 on some sheeptalk.

of memory. For small problems, either depth-first or breadth-first search
strategies may be adequate, although depth-first is normally preferred for its
more efficient use of memory. For larger problems, more complex search
techniques such asdynamic programming or A� must be used, as we will
see in Chapter 7 and Chapter 10.

Relating Deterministic and Non-deterministic Automata

It may seem that allowing NFSAs to have non-deterministic features likeε-
transitions would make them more powerful than DFSAs. In fact this is not
the case; for any NFSA, there is an exactly equivalent DFSA. In fact there is
a simple algorithm for converting an NFSA to an equivalent DFSA, although
the number of states in this equivalent deterministic automaton may be much
larger. See Lewis and Papadimitriou (1981) or Hopcroft and Ullman (1979)
for the proof of the correspondence. The basic intuition of the proof is worth
mentioning, however, and builds on the way NFSAs parse theirinput. Recall
that the difference between NFSAs and DFSAs is that in an NFSAa stateqi

may have more than one possible next state given an inputi (for exampleqa

andqb). The algorithm in Figure 2.21 dealt with this problem by choosing
eitherqa or qb and thenbacktrackingif the choice turned out to be wrong.
We mentioned that a parallel version of the algorithm would follow both
paths (towardqa andqb) simultaneously.
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The algorithm for converting a NFSA to a DFSA is like this parallel
algorithm; we build an automaton that has a deterministic path for every path
our parallel recognizer might have followed in the search space. We imagine
following both paths simultaneously, and group together into an equivalence
class all the states we reach on the same input symbol (i.e.qa andqb). We
now give a new state label to this new equivalence class state(for example
qab). We continue doing this for every possible input for every possible group
of states. The resulting DFSA can have as many states as thereare distinct
sets of states in the original NFSA. The number of different subsets of a set
with N elements is 2N, hence the new DFSA can have as many as 2N states.

2.3 REGULAR LANGUAGES AND FSAS

As we suggested above, the class of languages that are definable by regular
expressions is exactly the same as the class of languages that are character-
izable by finite-state automata (whether deterministic or non-deterministic).
Because of this, we call these languages theregular languages. In order to REGULAR

LANGUAGES

give a formal definition of the class of regular languages, weneed to refer
back to two earlier concepts: the alphabetΣ, which is the set of all symbols in
the language, and theempty stringε, which is conventionally not included in
Σ. In addition, we make reference to theempty set/0 (which is distinct from
ε). The class of regular languages (orregular sets) overΣ is then formally
as follows:1

1. /0 is a regular language

2. 8a2 Σ[ ε; fag is a regular language

3. If L1 andL2 are regular languages, then so are:

(a) L1 � L2 = fxyjx2 L1;y2 L2g; theconcatenationof L1andL2

(b) L1[L2; theunion or disjunction of L1andL2

(c) L�1; theKleene closureof L1

All and only the sets of languages which meet the above properties
are regular languages. Since the regular languages are the set of languages
characterizable by regular expressions, it must be the casethat all the regu-
lar expression operators introduced in this chapter (except memory) can be
implemented by the three operations which define regular languages: con-

1 Following van Santen and Sproat (1998), Kaplan and Kay (1994), and Lewis and Pa-
padimitriou (1981).
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catenation, disjunction/union (also called ‘j’), and Kleene closure. For ex-
ample all the counters (* ,+, {n,m} ) are just a special case of repetition plus
Kleene *. All the anchors can be thought of as individual special symbols.
The square braces[] are a kind of disjunction (i.e.[ab] means “a or b”, or
the disjunction ofa andb). Thus it is true that any regular expression can be
turned into a (perhaps larger) expression which only makes use of the three
primitive operations.

Regular languages are also closed under the following operations (where
Σ� means the infinite set of all possible strings formed from thealphabetΣ):� intersection: ifL1 andL2 are regular languages, then so isL1\L2, the

language consisting of the set of strings that are in bothL1 andL2.� difference: ifL1 andL2 are regular languages, then so isL1�L2, the
language consisting of the set of strings that are inL1 but notL2.� complementation: IfL1 is a regular language, then so isΣ��L1, the
set of all possible strings that aren’t inL1� reversal: IfL1 is a regular language, then so isLR

1 , the language con-
sisting of the set of reversals of all the strings inL1.

The proof that regular expressions are equivalent to finite-state au-
tomata can be found in Hopcroft and Ullman (1979), and has twoparts:
showing that an automaton can be built for each regular language, and con-
versely that a regular language can be built for each automaton. We won’t
give the proof, but we give the intuition by showing how to do the first part:
take any regular expression and build an automaton from it. The intuition is
inductive: for the base case we build an automaton to correspond to regular
expressions of a single symbol (e.g. the expressiona) by creating an initial
state and an accepting final state, with an arc between them labeleda. For
the inductive step, we show that each of the primitive operations of a regular
expression (concatenation, union, closure) can be imitated by an automaton:� concatenation: We just string two FSAs next to each other by con-

necting all the final states of FSA1 to the initial state of FSA2 by an
ε-transition.� closure: We connect all the final states of the FSA back to the initial
states byε-transitions (this implements the repetition part of the Kleene
*), and then put direct links between the initial and final states byε-
transitions (this implements the possibly of havingzerooccurrences).
We’d leave out this last part to implement Kleene-plus instead.� union: We add a single new initial stateq00, and add new transitions
from it to all the former initial states of the two machines tobe joined.
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Figure 2.24 The concatenation of two FSAs.
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Figure 2.25 The closure (Kleene *) of an FSA.
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Figure 2.26 The union (j) of two FSAs.

2.4 SUMMARY

This chapter introduced the most important fundamental concept in language
processing, thefinite automaton, and the practical tool based on automaton,
the regular expression. Here’s a summary of the main points we covered
about these ideas:� theregular expressionlanguage is a powerful tool for pattern-matching.
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bols, disjunction of symbols ([] , | , and . ), counters (* , +, and
{n,m} ), anchors(ˆ , $) and precedence operators (( ,) ).� any regular expression can be realized as afinite automaton.� memory (\1 together with() ) is an advanced operation which is often
considered part of regular expressions, but which cannot berealized as
a finite automaton.� an automaton implicitly defines aformal languageas the set of strings
the automatonaccepts.� an automaton can use any set of symbols for its vocabulary, including
letters, words, or even graphic images.� the behavior of adeterministic automata (DFSA) is fully determined
by the state it is in.� anon-deterministic (NFSA) automata sometimes has to make a choice
between multiple paths to take given the same current state and next in-
put.� anyNFSA can be converted to aDFSA.� the order in which aNFSA chooses the next state to explore on the
agenda defines itssearch strategy. Thedepth-first search or LIFO
strategy corresponds to the agenda-as-stack; thebreadth-first search
or FIFO strategy corresponds to the agenda-as-queue.� any regular expression can be automatically compiled into aNFSAand
hence into aFSA.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Finite automata arose in the 1950’s out of Turing’s (1936) model of algo-
rithmic computation, considered by many to be the foundation of modern
computer science. The Turing machine was an abstract machine with a finite
control and an input/output tape. In one move, the Turing machine could
read a symbol on the tape, write a different symbol on the tape, change state,
and move left or right. (Thus the Turing machine differs froma finite-state
automaton mainly in its ability to change the symbols on its tape).

Inspired by Turing’s work, McCulloch and Pitts built an automata-like
model of the neuron (see von Neumann, 1963, p. 319). Their model, which
is now usually called theMcCulloch-Pitts neuron (McCulloch and Pitts,MCCULLOCH­

PITTS
NEURON
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1943), was a simplified model of the neuron as a kind of ‘computing ele-
ment’ that could be described in terms of propositional logic. The model
was a binary device, at any point either active or not, which took excitatory
and inhibitatory input from other neurons and fired if its activation passed
some fixed threshold. Based on the McCulloch-Pitts neuron, Kleene (1951)
and (1956) defined the finite automaton and regular expressions, and proved
their equivalence. Non-deterministic automata were introduced by Rabin
and Scott (1959), who also proved them equivalent to deterministic ones.

Ken Thompson was one of the first to build regular expressionscompil-
ers into editors for text searching (Thompson, 1968). His editor ed included
a command “g/regular expression/p”, or Global Regular Expression Print,
which later became the UNIXgreputility.

There are many general-purpose introductions to the mathematics un-
derlying automata theory; such as Hopcroft and Ullman (1979) and Lewis
and Papadimitriou (1981). These cover the mathematical foundations the
simple automata of this chapter, as well as the finite-state transducers of
Chapter 3, the context-free grammars of Chapter 9, and the Chomsky hier-
archy of Chapter 13. Friedl (1997) is a very useful comprehensive guide to
the advanced use of regular expressions.

The metaphor of problem-solving as search is basic to Artificial Intel-
ligence (AI); more details on search can be found in any AI textbook such as
Russell and Norvig (1995).

EXERCISES

2.1 Write regular expressions for the following languages: Youmay use
either Perl notation or the minimal ‘algebraic’ notation ofSection 2.3, but
make sure to say which one you are using. By ‘word’, we mean an alphabetic
string separated from other words by white space, any relevant punctuation,
line breaks, etc.

a. the set of all alphabetic strings.

b. the set of all lowercase alphabetic strings ending in ab.

c. the set of all strings with two consecutive repeated words (for example
‘Humbert Humbert’ and ‘the the’ but not ‘the bug’ or ‘the big bug’).
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d. the set of all strings from the alphabeta;b such that eacha is immedi-
ately preceded and immediately followed by ab.

e. all strings which start at the beginning of the line with an integer (i.e.
1,2,3...10...10000...) and which end at the end of the line with a word.

f. all strings which have both the wordgrottoand the wordravenin them.
(but not, for example, words likegrottosthat merelycontainthe word
grotto).

g. write a pattern which places the first word of an English sentence in a
register. Deal with punctuation.

2.2 Implement an ELIZA-like program, using substitutions suchas those
described on page 32. You may choose a different domain than aRogerian
psychologist, if you wish, although keep in mind that you would need a
domain in which your program can legitimately do a lot of simple repeating-
back.

2.3 Complete the FSA for English money expressions in Figure 2.16 as
suggested in the text following the figure. You should handleamounts up
to $100,000, and make sure that “cent” and “dollar” have the proper plural
endings when appropriate.

2.4 Design an FSA that recognizes simple date expressions likeMarch 15,
the 22nd of November, Christmas. You should try to include all such ‘ab-
solute’ dates, (e.g. not ‘deictic’ ones relative to the current day likethe day
before yesterday). Each edge of the graph should have a word or a set of
words on it. You should use some sort of shorthand for classesof words to
avoid drawing too many arcs (e.g. Furniture! desk, chair, table)

2.5 Now extend your date FSA to handle deictic expressions likeyesterday,
tomorrow, a week from tomorrow, the day before yesterday, Sunday, next
Monday, three weeks from Saturday.

2.6 Write an FSA for time-of-day expressions likeeleven o’clock, twelve-
thirty, midnight, or a quarter to tenand others.

2.7 Write a regular expression for the language accepted by the NFSA in
Figure 2.27

2.8 Currently the functionD-RECOGNIZEin Figure 2.13 only solves a sub-
part of the important problem of finding a string in some text.Extend the
algorithm to solve the following two deficiencies: (1)D-RECOGNIZE cur-
rently assumes that it is already pointing at the string to bechecked. (2)
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Figure 2.27 A mystery language

D-RECOGNIZE fails if the string it is pointing includes as a proper substring
a legal string for the FSA. That is,D-RECOGNIZE fails if there is an extra
character at the end of the string.

2.9 Give an algorithm for negating a deterministic FSA. The negation of an
FSA accepts exactly the set of strings that the original FSA rejects (over the
same alphabet), and rejects all the strings that the original FSA accepts.

2.10 Why doesn’t your previous algorithm work with NFSAs? Now extend
your algorithm to negate an NFSA.





3
MORPHOLOGY AND
FINITE-STATE
TRANSDUCERS

A writer is someone who writes, and a stinger is something that
stings. But fingers don’t fing, grocers don’t groce, haberdash-
ers don’t haberdash, hammers don’t ham, and humdingers don’t
humding.

Richard Lederer,Crazy English

Chapter 2 introduced the regular expression, showing for example how
a single search string could help a web search engine find bothwoodchuck
andwoodchucks. Hunting for singular or plural woodchucks was easy; the
plural just tacks anson to the end. But suppose we were looking for another
fascinating woodland creatures; let’s say afox, and afish, that surlypeccary
and perhaps a Canadianwild goose. Hunting for the plurals of these animals
takes more than just tacking on ans. The plural offox is foxes; of peccary,
peccaries; and ofgoose, geese. To confuse matters further, fish don’t usually
change their form when they are plural (as Dr. Seuss points out: one fish two
fish, red fish, blue fish).

It takes two kinds of knowledge to correctly search for singulars and
plurals of these forms.Spelling rulestell us that English words ending in-y
are pluralized by changing the-y to -i- and adding an-es. Morphological
rules tell us thatfishhas a null plural, and that the plural ofgooseis formed
by changing the vowel.

The problem of recognizing thatfoxesbreaks down into the two mor-
phemesfox and-esis calledmorphological parsing.

Key Concept #2. Parsingmeans taking an input and producing somePARSING

sort of structure for it.

We will use the term parsing very broadly throughout this book, including
many kinds of structures that might be produced; morphological, syntactic,
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semantic, pragmatic; in the form of a string, or a tree, or a network. In
the information retrieval domain, the similar (but not identical) problem of
mapping fromfoxesto fox is calledstemming. Morphological parsing orSTEMMING

stemming applies to many affixes other than plurals; for example we might
need to take any English verb form ending in-ing (going, talking, congrat-
ulating) and parse it into its verbal stem plus the-ing morpheme. So given
thesurfaceor input form going, we might want to produce the parsed formSURFACE

VERB-go + GERUND-ing. This chapter will survey the kinds of mor-
phological knowledge that needs to be represented in different languages and
introduce the main component of an important algorithm for morphological
parsing: thefinite-state transducer.

Why don’t we just list all the plural forms of English nouns, and all the
-ing forms of English verbs in the dictionary? The major reason isthat -ing
is aproductive suffix; by this we mean that it applies to every verb. Simi-PRODUCTIVE

larly -s applies to almost every noun. So the idea of listing every noun and
verb can be quite inefficient. Furthermore, productive suffixes even apply to
new words (so the new wordfax automatically can be used in the-ing form:
faxing). Since new words (particularly acronyms and proper nouns)are cre-
ated every day, the class of nouns in English increases constantly, and we
need to be able to add the plural morpheme-s to each of these. Additionally,
the plural form of these new nouns depends on the spelling/pronunciation of
the singular form; for example if the noun ends in-z then the plural form is
-esrather than-s. We’ll need to encode these rules somewhere. Finally, we
certainly cannot list all the morphological variants of every word in morpho-
logically complex languages like Turkish, which has words like the follow-
ing:

(3.1) uygarlaştıramadıklarımızdanmışsınızcasına

uygar
civilized

+laş
+BEC

+tır
+CAUS

+ama
+NEGABLE

+dık
+PPART

+lar
+PL

+ımız
+P1PL

+dan
+ABL

+mış
+PAST

+sınız
+2PL

+casına
+AsIf

‘(behaving) as if you are among those whom we could not
civilize/cause to become civilized’

The various pieces of this word (themorphemes) have these meanings:

+BEC is ‘become’ in English
+CAUS is the causative voice marker on a verb
+NEGABLE is ‘not able’ in English
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+PPart marks a past participle form
+P1PL is 1st person pl possessive agreement
+2PL is 2nd person pl
+ABL is the ablative (from/among) case marker
+AsIf is a derivational marker that forms an adverb from a finite verb form

In such languages we clearly need to parse the input since it is impos-
sible to store every possible word. Kemal Oflazer (p.c.), whocame up with
this example, notes that verbs in Turkish have 40,000 forms not counting
derivational suffixes; adding derivational suffixes allowsa theoretically in-
finite number of words. This is true because for example any verb can be
‘causativized’ like the example above, and multiple instances of causativiza-
tion can be embedded in a single word (you cause X to cause Y to .... do W).
Not all Turkish words look like this; Oflazer finds that the average Turkish
word has about three morphemes (a root plus two suffixes). Even so, the
fact that such words are possible means that it will be difficult to store all
possible Turkish words in advance.

Morphological parsing is necessary for more than just information re-
trieval. We will need it in machine translation to realize that the French
wordsva andaller should both translate to forms of the English verbgo.
We will also need it in spell checking; as we will see, it is morphological
knowledge that will tell us thatmisclamandantiundogginglyare not words.

The next sections will summarize morphological facts aboutEnglish
and then introduce thefinite-state transducer.

3.1 SURVEY OF (MOSTLY) ENGLISH MORPHOLOGY

Morphology is the study of the way words are built up from smaller meaning-
bearing units,morphemes. A morpheme is often defined as the minimalMORPHEMES

meaning-bearing unit in a language. So for example the wordfoxconsists of
a single morpheme (the morphemefox) while the wordcatsconsists of two:
the morphemecat and the morpheme-s.

As this example suggests, it is often useful to distinguish two broad
classes of morphemes:stemsandaffixes. The exact details of the distinc-STEMS

AFFIXEStion vary from language to language, but intuitively, the stem is the ‘main’
morpheme of the word, supplying the main meaning, while the affixes add
‘additional’ meanings of various kinds.

Affixes are further divided intoprefixes, suffixes, infixes, andcircum-
fixes. Prefixes precede the stem, suffixes follow the stem, circumfixes do
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both, and infixes are inserted inside the stem. For example, the wordeatsis
composed of a stemeatand the suffix-s. The wordunbuckleis composed of
a stembuckleand the prefixun-. English doesn’t have any good examples
of circumfixes, but many other languages do. In German, for example, the
past participle of some verbs formed by addingge- to the beginning of the
stem and-t to the end; so the past participle of the verbsagen(to say) is
gesagt(said). Infixes, in which a morpheme is inserted in the middleof a
word, occur very commonly for example in the Philipine language Tagalog.
For example the affixum, which marks the agent of an action, is infixed to
the Tagalog stemhingi ‘borrow’ to producehumingi. There is one infix that
occurs in some dialects of English in which the taboo morpheme ‘f**king’
or others like it are inserted in the middle of other words (‘Man-f**king-
hattan’) (McCawley, 1978).

Prefixes and suffixes are often calledconcatenative morphologysince
a word is composed of a number of morphemes concatenated together. A
number of languages have extensivenon-concatenative morphology, in
which morphemes are combined in more complex ways. The Tagalog in-
fixation example above is one example of non-concatenative morphology,
since two morphemes (hingi and um) are intermingled. Another kind of
non-concatenative morphology is calledtemplatic morphology or root-
and-pattern morphology. This is very common in Arabic, Hebrew, and
other Semitic languages. In Hebrew, for example, a verb is constructed us-
ing two components: a root, consisting usually of three consonants (CCC)
and carrying the basic meaning, and a template, which gives the ordering of
consonants and vowels and specifies more semantic information about the
resulting verb, such as the semantic voice (e.g. active, passive, middle). For
example the Hebrew tri-consonantal rootlmd, meaning ‘learn’ or ‘study’,
can be combined with the active voice CaCaC template to produce the word
lamad, ‘he studied’, or the intensive CiCeC template to produce the word
limed, ‘he taught’, or the intensive passive template CuCaC to produce the
word lumad, ‘he was taught’.

A word can have more than one affix. For example, the wordrewrites
has the prefixre-, the stemwrite, and the suffix-s. The wordunbelievably
has a stem (believe) plus three affixes (un-, -able, and-ly). While English
doesn’t tend to stack more than 4 or 5 affixes, languages like Turkish can
have words with 9 or 10 affixes, as we saw above. Languages thattend to
string affixes together like Turkish does are calledagglutinative languages.

There are two broad (and partially overlapping) classes of ways to form
words from morphemes:inflection andderivation. Inflection is the combi-INFLECTION

DERIVATION
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nation of a word stem with a grammatical morpheme, usually resulting in a
word of the same class as the original stem, and usually filling some syntac-
tic function like agreement. For example, English has the inflectional mor-
pheme-s for marking theplural on nouns, and the inflectional morpheme
-ed for marking the past tense on verbs. Derivation is the combination of a
word stem with a grammatical morpheme, usually resulting ina word of a
differentclass, often with a meaning hard to predict exactly. For example the
verbcomputerizecan take the derivational suffix-ation to produce the noun
computerization.

Inflectional Morphology

English has a relatively simple inflectional system; only nouns, verbs, and
sometimes adjectives can be inflected, and the number of possible inflec-
tional affixes is quite small.

English nouns have only two kinds of inflection: an affix that marks
plural and an affix that markspossessive. For example, many (but not all)PLURAL

English nouns can either appear in the bare stem orsingular form, or take a SINGULAR

plural suffix. Here are examples of the regular plural suffix-s, the alternative
spelling-es, and irregular plurals:

Regular Nouns Irregular Nouns

Singular cat thrush mouse ox
Plural cats thrushes mice oxen

While the regular plural is spelled-s after most nouns, it is spelled-es
after words ending in-s(ibis/ibises) , -z, (waltz/waltzes) -sh, (thrush/thrushes)
-ch, (finch/finches) and sometimes-x (box/boxes). Nouns ending in-y pre-
ceded by a consonant change the-y to -i (butterfly/butterflies).

The possessive suffix is realized by apostrophe +-s for regular singular
nouns (llama’s) and plural nouns not ending in-s (children’s) and often by a
lone apostrophe after regular plural nouns (llamas’) and some names ending
in -s or -z (Euripides’ comedies).

English verbal inflection is more complicated than nominal inflection.
First, English has three kinds of verbs;main verbs, (eat, sleep, impeach),
modal verbs (can, will, should), andprimary verbs (be, have, do) (using
the terms of Quirket al., 1985a). In this chapter we will mostly be concerned
with the main and primary verbs, because it is these that haveinflectional
endings. Of these verbs a large class areregular, that is to say all verbs of REGULAR
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this class have the same endings marking the same functions.These regular
verbs (e.g.walk, or inspect), have four morphological forms, as follow:

Morphological Form Classes Regularly Inflected Verbs
stem walk merge try map
-s form walks merges tries maps
-ing participle walking merging trying mapping
Past form or-edparticiple walked merged tried mapped

These verbs are called regular because just by knowing the stem we
can predict the other forms, by adding one of three predictable endings, and
making some regular spelling changes (and as we will see in Chapter 4, reg-
ular pronunciation changes). These regular verbs and formsare significant in
the morphology of English first because they cover a majorityof the verbs,
and second because the regular class isproductive. As discussed earlier, a
productive class is one that automatically includes any newwords that enter
the language. For example the recently-created verbfax (My mom faxedme
the note from cousin Everett), takes the regular endings-ed, -ing, -es. (Note
that the-s form is spelledfaxesrather thanfaxs; we will discuss spelling
rules below).

The irregular verbs are those that have some more or less idiosyn-IRREGULAR
VERBS

cratic forms of inflection. Irregular verbs in English oftenhave five different
forms, but can have as many as eight (e.g. the verbbe) or as few as three (e.g.
cut or hit). While constituting a much smaller class of verbs (Quirket al.
(1985a) estimate there are only about 250 irregular verbs, not counting aux-
iliaries), this class includes most of the very frequent verbs of the language.1

The table below shows some sample irregular forms. Note thatan irregular
verb can inflect in the past form (also called thepreterite) by changing itsPRETERITE

vowel (eat/ate), or its vowel and some consonants (catch/caught), or with no
ending at all (cut/cut).

1 In general, the more frequent a word form, the more likely it is to have idiosyncratic
properties; this is due to a fact about language change; veryfrequent words preserve their
form even if other words around them are changing so as to become more regular.
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Morphological Form ClassesIrregularly Inflected Verbs
stem eat catch cut
-s form eats catches cuts
-ing participle eating catching cutting
Past form ate caught cut
-edparticiple eaten caught cut

The way these forms are used in a sentence will be discussed inChap-
ters 8–12 but is worth a brief mention here. The-s form is used in the ‘ha-
bitual present’ form to distinguish the 3rd-person singular ending (She jogs
every Tuesday) from the other choices of person and number (I/you/we/they
jog every Tuesday). The stem form is used in the infinitive form, and also
after certain other verbs (I’d rather walk home, I want to walk home). The
-ing participle is used when the verb is treated as a noun; this particular
kind of nominal use of a verb is called agerund use:Fishing is fine if you GERUND

live near water.The -edparticiple is used in theperfect construction (He’s PERFECT

eaten lunch already) or the passive construction (The verdict was overturned
yesterday.).

In addition to noting which suffixes can be attached to which stems,
we need to capture the fact that a number of regular spelling changes occur
at these morpheme boundaries. For example, a single consonant letter is
doubled before adding the-ing and-edsuffixes (beg/begging/begged). If the
final letter is ‘c’, the doubling is spelled ‘ck’ (picnic/picnicking/picnicked).
If the base ends in a silent-e, it is deleted before adding-ing and-ed(merge/-
merging/merged). Just as for nouns, the-s ending is spelled-esafter verb
stems ending in-s (toss/tosses) , -z, (waltz/waltzes) -sh, (wash/washes) -ch,
(catch/catches) and sometimes-x (tax/taxes). Also like nouns, verbs ending
in -y preceded by a consonant change the-y to -i (try/tries).

The English verbal system is much simpler than for example the Eu-
ropean Spanish system, which has as many as fifty distinct verb forms for
each regular verb. Figure 3.1 shows just a few of the examplesfor the verb
amar, ‘to love’. Other languages can have even more forms than this Spanish
example.

Derivational Morphology

While English inflection is relatively simple compared to other languages,
derivation in English is quite complex. Recall that derivation is the combi-
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Present Imper.Imperfect Future PreteritePresent ConditionalImperfect Future
Indicative Indicative Subjnct. Subjnct. Subjnct.

amo amaba amaré amé ame amarı́a amara amare
amas ama amabas amarás amaste ames amarı́as amaras amares

ames
ama amaba amará amó ame amarı́a amara amáreme
amamos amábamosamaremosamamosamemosamarı́amosamáramosamáremos
amáis amad amabais amaréis amasteisaméis amarı́ais amarais amareis

amáis
aman amaban amarán amaron amen amarı́an amaran amaren

Figure 3.1 To love in Spanish.

nation of a word stem with a grammatical morpheme, usually resulting in a
word of adifferentclass, often with a meaning hard to predict exactly.

A very common kind of derivation in English is the formation of new
nouns, often from verbs or adjectives. This process is called nominalization.NOMINALIZA­

TION

For example, the suffix-ationproduces nouns from verbs ending often in the
suffix -ize (computerize! computerization). Here are examples of some
particularly productive English nominalizing suffixes.

Suffix Base Verb/AdjectiveDerived Noun

-ation computerize (V) computerization
-ee appoint (V) appointee
-er kill (V) killer
-ness fuzzy (A) fuzziness

Adjectives can also be derived from nouns and verbs. Here areexam-
ples of a few suffixes deriving adjectives from nouns or verbs.

Suffix Base Noun/VerbDerived Adjective

-al computation (N)computational
-able embrace (V) embraceable
-less clue (N) clueless

Derivation in English is more complex than inflection for a number of
reasons. One is that it is generally less productive; even a nominalizing suf-
fix like -ation, which can be added to almost any verb ending in-ize, cannot
be added to absolutely every verb. Thus we can’t say *eatationor *spella-
tion (we use an asterisk (*) to mark ‘non-examples’ of English). Another
is that there are subtle and complex meaning differences among nominaliz-
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ing suffixes. For examplesincerityhas a subtle difference in meaning from
sincereness.

3.2 FINITE-STATE MORPHOLOGICALPARSING

Let’s now proceed to the problem of parsing English morphology. Consider
a simple example: parsing just the productive nominal plural (-s) and the
verbal progressive (-ing). Our goal will be to take input forms like those in
the first column below and produce output forms like those in the second
column.

Input Morphological Parsed Output
cats cat +N +PL
cat cat +N +SG
cities city +N +PL
geese goose +N +PL
goose (goose +N +SG) or (goose +V )
gooses goose +V +3SG
merging merge +V +PRES-PART
caught (catch +V +PAST-PART ) or (catch +V +PAST )

The second column contains the stem of each word as well as assorted
morphologicalfeatures. These features specify additional information aboutFEATURES

the stem. For example the feature+N means that the word is a noun;+SG
means it is singular,+PL that it is plural. We will discuss features in Chap-
ter 11; for now, consider+SG to be a primitive unit that means ‘singular’.
Note that some of the input forms (likecaughtor goose) will be ambiguous
between different morphological parses.

In order to build a morphological parser, we’ll need at leastthe follow-
ing:

1. alexicon: The list of stems and affixes, together with basic information LEXICON

about them (whether a stem is a Noun stem or a Verb stem, etc).

2. morphotactics: the model of morpheme ordering that explains whichMORPHOTAC­
TICS

classes of morphemes can follow other classes of morphemes inside a
word. For example, the rule that the English plural morphemefollows
the noun rather than preceding it.

3. orthographic rules: thesespelling rulesare used to model the changes
that occur in a word, usually when two morphemes combine (forex-
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ample they! ie spelling rule discussed above that changescity + -s
to cities rather thancitys).

The next part of this section will discuss how to represent a simple ver-
sion of the lexicon just for the sub-problem of morphological recognition,
including how to use FSAs to model morphotactic knowledge. We will then
introduce the finite-state transducer (FST) as a way of modeling morpholog-
ical features in the lexicon, and addressing morphologicalparsing. Finally,
we show how to use FSTs to model orthographic rules.

The Lexicon and Morphotactics

A lexicon is a repository for words. The simplest possible lexicon would
consist of an explicit list of every word of the language (everyword, i.e.
including abbreviations (‘AAA’) and proper names (‘Jane’ or ‘Beijing’) as
follows:

a
AAA
AA
Aachen
aardvark
aardwolf
aba
abaca
aback
. . .

Since it will often be inconvenient or impossible, for the various rea-
sons we discussed above, to list every word in the language, computational
lexicons are usually structured with a list of each of the stems and affixes of
the language together with a representation of the morphotactics that tells us
how they can fit together. There are many ways to model morphotactics; one
of the most common is the finite-state automaton. A very simple finite-state
model for English nominal inflection might look like Figure 3.2.

The FSA in Figure 3.2 assumes that the lexicon includes regular nouns
(reg-noun) that take the regular-s plural (e.g. cat, dog, fox, aardvark).
These are the vast majority of English nouns since for now we will ignore
the fact that the plural of words likefox have an insertede: foxes. The
lexicon also includes irregular noun forms that don’t take-s, both singular
irreg-sg-noun (goose, mouse) and pluralirreg-pl-noun (geese, mice).
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q
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q
1

q
2

plural (−s)reg−noun

irreg−pl−noun

irreg−sg−noun

Figure 3.2 A finite-state automaton for English nominal inflection.

reg-noun irreg-pl-noun irreg-sg-noun plural

fox geese goose -s
cat sheep sheep
dog mice mouse
aardvark

A similar model for English verbal inflection might look likeFig-
ure 3.3.

prog (−ing)

qq
0

q
reg−verb−stem

irreg−verb−stem

reg−verb−stem

1

q
2

3

irreg−past−verb−form

preterite (−ed)

pst participle (−ed)

3−sing (−s)

Figure 3.3 A finite-state automaton for English verbal inflection

This lexicon has three stem classes (reg-verb-stem, irreg-verb-stem,
and irreg-past-verb-form), plus 4 more affix classes (-edpast,-edparticiple,
-ing participle, and 3rd singular-s):
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reg-verb- irreg-verb- irreg-past- past past-part pres-part 3sg
stem stem verb

walk cut caught -ed -ed -ing -s
fry speak ate
talk sing eaten
impeach sang

cut
spoken

English derivational morphology is significantly more complex than
English inflectional morphology, and so automata for modeling English deriva-
tion tend to be quite complex. Some models of English derivation, in fact,
are based on the more complex context-free grammars of Chapter 9 (Sproat,
1993; Orgun, 1995).

As a preliminary example, though, of the kind of analysis it would
require, we present a small part of the morphotactics of English adjectives,
taken from Antworth (1990). Antworth offers the following data on English
adjectives:

big, bigger, biggest
cool, cooler, coolest, coolly
red, redder, reddest
clear, clearer, clearest, clearly, unclear, unclearly
happy, happier, happiest, happily
unhappy, unhappier, unhappiest, unhappily
real, unreal, really

An initial hypothesis might be that adjectives can have an optional pre-
fix (un-), an obligatory root (big, cool, etc) and an optional suffix (-er, -est,
or -ly). This might suggest the the FSA in Figure 3.4.

Alas, while this FSA will recognize all the adjectives in thetable above,
it will also recognize ungrammatical forms likeunbig, redly, and realest.
We need to set up classes of roots and specify which can occur with which
suffixes. Soadj-root1 would include adjectives that can occur withun- and
-ly (clear, happy, andreal) while adj-root2 will include adjectives that can’t
(big, cool, andred). Antworth (1990) presents Figure 3.5 as a partial solution
to these problems.

This gives an idea of the complexity to be expected from English
derivation. For a further example, we give in Figure 3.6 another fragment
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Figure 3.4 An FSA for a fragment of English adjective morphology:
Antworth’s Proposal #1.
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Figure 3.5 An FSA for a fragment of English adjective morphology:
Antworth’s Proposal #2.

of an FSA for English nominal and verbal derivational morphology, based
on Sproat (1993), Bauer (1983), and Porter (1980). This FSA models a
number of derivational facts, such as the well known generalization that any
verb ending in-izecan be followed by the nominalizing suffix-ation (Bauer,
1983; Sproat, 1993)). Thus since there is a wordfossilize, we can predict the
word fossilizationby following statesq0, q1, andq2. Similarly, adjectives
ending in-al or -ableatq5 (equal, formal, realizable) can take the suffix-ity,
or sometimes the suffix-nessto stateq6 (naturalness, casualness). We leave
it as an exercise for the reader (Exercise 3.2) to discover some of the indi-
vidual exceptions to many of these constraints, and also to give examples of
some of the various noun and verb classes.

We can now use these FSAs to solve the problem ofmorphological
recognition; that is, of determining whether an input string of letters makes
up a legitimate English word or not. We do this by taking the morphotactic
FSAs, and plugging in each ‘sub-lexicon’ into the FSA. That is, we expand
each arc (e.g. thereg-noun-stemarc) with all the morphemes that make up
the set ofreg-noun-stem. The resulting FSA can then be defined at the level
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Figure 3.6 An FSA for another fragment of English derivational morphol-
ogy.

of the individual letter.

e

c a t s

d
o g

n k e
y

a
a r d v a r

k

g

o o s
e

e

s

h e e

m

o u s

e

i c

f o x

p

ε

Figure 3.7 Compiled FSA for a few English nouns with their inflection.
Note that this automaton will incorrectly accept the inputfoxs. We will see
beginning on page 76 how to correctly deal with the insertede in foxes.

Figure 3.7 shows the noun-recognition FSA produced by expanding
the Nominal Inflection FSA of Figure 3.2 with sample regular and irregular
nouns for each class. We can use Figure 3.7 to recognize strings likeaard-
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varksby simply starting at the initial state, and comparing the input letter by
letter with each word on each outgoing arc, etc., just as we saw in Chapter 2.

Morphological Parsing with Finite-State Transducers

Now that we’ve seen how to use FSAs to represent the lexicon and inciden-
tally do morphological recognition, let’s move on to morphological parsing.
For example, given the inputcats, we’d like to outputcat +N +PL , telling
us that cat is a plural noun. We will do this via a version oftwo-level mor- TWO­LEVEL

phology, first proposed by Koskenniemi (1983). Two level morphologyrep-
resents a word as a correspondence between alexical level, which represents
a simple concatenation of morphemes making up a word, and thesurface SURFACE

level, which represents the actual spelling of the final word. Morphological
parsing is implemented by building mapping rules that map letter sequences
like cats on the surface level into morpheme and features sequences like
cat +N +PL on the lexical level. Figure 3.8 shows these two levels for the
word cats. Note that the lexical level has the stem for a word, followedby
the morphological information+N +PL which tells us thatcats is a plural
noun.

Lexical

Surface

c a t

c a t s

+N +PL

Figure 3.8 Example of the lexical and surface tapes.

The automaton that we use for performing the mapping betweenthese
two levels is thefinite-state transduceror FST. A transducer maps betweenFST

one set of symbols and another; a finite-state transducer does this via a fi-
nite automaton. Thus we usually visualize an FST as a two-tape automaton
which recognizes or generatespairs of strings. The FST thus has a more
general function than an FSA; where an FSA defines a formal language by
defining a set of strings, an FST defines arelation between sets of strings.
This relates to another view of an FST; as a machine that readsone string
and generates another, Here’s a summary of this four-fold way of thinking
about transducers:� FST as recognizer: a transducer that takes a pair of strings as input

and outputsacceptif the string-pair is in the string-pair language, and



72 Chapter 3. Morphology and Finite-State Transducers

a reject if it is not.� FST as generator:a machine that outputs pairs of strings of the lan-
guage. Thus the output is a yes or no, and a pair of output strings.� FST as translator: a machine that reads a string and outputs another
string.� FST as set relater:a machine that computes relations between sets.

An FST can be formally defined in a number of ways; we will rely
on the following definition, based on what is called theMealy machineMEALY

MACHINE

extension to a simple FSA:� Q: a finite set ofN statesq0;q1; : : :qN� Σ: a finite alphabet of complex symbols. Each complex symbol is
composed of an input-output pairi : o; one symboli from an input
alphabetI , and one symbolo from an output alphabetO, thus Σ �
I �O. I andO may each also include the epsilon symbolε.� q0: the start state� F: the set of final states,F �Q� δ(q; i : o): the transition function or transition matrix between states.
Given a stateq2Q and complex symboli : o2 Σ, δ(q; i : o) returns a
new stateq0 2Q. δ is thus a relation fromQ�Σ to Q;

Where an FSA accepts a language stated over a finite alphabet of single
symbols, such as the alphabet of our sheep language:

Σ = fb;a; !g (3.2)

an FST accepts a language stated overpairs of symbols, as in:

Σ = fa : a; b : b; ! : ! ; a : !; a : ε; ε : !g (3.3)

In two-level morphology, the pairs of symbols inΣ are also calledfeasible
pairs.FEASIBLE

PAIRS

Where FSAs are isomorphic to regular languages, FSTs are isomor-
phic to regular relations. Regular relations are sets of pairs of strings, aREGULAR

RELATIONS

natural extension of the regular languages, which are sets of strings. Like
FSAs and regular languages, FSTs and regular relations are closed under
union, although in general they are not closed under difference, complemen-
tation and intersection (although some useful subclasses of FSTsare closed
under these operations; in general FSTs that are not augmented with theε
are more likely to have such closure properties). Besides union, FSTs have
two additional closure properties that turn out to be extremely useful:
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input and output labels. Thus ifT maps from the input alphabetI to
the output alphabetO, T�1 maps fromO to I .� composition: if T1 is a transducer fromI1 to O1 andT2 a transducer COMPOSI­

TION

from I2 to O2, thenT1ÆT2 maps fromI1 to O2.

Inversion is useful because it makes it easy to convert a FST-as-parser
into an FST-as-generator. Composition is useful because itallows us to take
two transducers that run in series and replace them with one more complex
transducer. Composition works as in algebra; applyingT1 ÆT2 to an input
sequenceS is identical to applyingT1 to S and thenT2 to the result; thus
T1ÆT2(S) = T2(T1(S)). We will see examples of composition below.

We mentioned that for two-level morphology it’s convenientto view
an FST as having two tapes. Theupper or lexical tape, is composed from LEXICAL TAPE

characters from the left side of thea : b pairs; thelower or surface tape,
is composed of characters from the right side of thea : b pairs. Thus each
symbola : b in the transducer alphabetΣ expresses how the symbola from
one tape is mapped to the symbolb on the another tape. For examplea : ε
means that ana on the upper tape will correspond tonothingon the lower
tape. Just as for an FSA, we can write regular expressions in the complex
alphabetΣ. Since it’s most common for symbols to map to themselves, in
two-level morphology we call pairs likea : a default pairs, and just refer to DEFAULT

PAIRS

them by the single lettera.
We are now ready to build an FST morphological parser out of our

earlier morphotactic FSAs and lexica by adding an extra “lexical” tape and
the appropriate morphological features. Figure 3.9 shows an augmentation
of Figure 3.2 with the nominal morphological features (+SGand+PL) that
correspond to each morpheme. Note that these features map tothe empty
stringε or the word/morpheme boundary symbol # since there is no segment
corresponding to them on the output tape.

In order to use Figure 3.9 as a morphological noun parser, it needs to be
augmented with all the individual regular and irregular noun stems, replacing
the labelsregular-noun-stemetc. In order to do this we need to update the
lexicon for this transducer, so that irregular plurals likegeesewill parse into
the correct stemgoose +N +PL . We do this by allowing the lexicon to
also have two levels. Since surfacegeesemaps to underlyinggoose , the
new lexical entry will be ‘g:g o:e o:e s:s e:e ’. Regular forms are
simpler; the two-level entry forfox will now be ‘f:f o:o x:x ’, but by
relying on the orthographic convention thatf stands forf:f and so on, we
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Figure 3.9 A transducer for English nominal number inflectionTnum.
Since bothq1 andq2 are accepting states, regular nouns can have the plural
suffix or not. The morpheme-boundary symbol ˆ and word-boundary marker
# will be discussed below.

can simply refer to it asfox and the form forgeeseas ‘g o:e o:e s e ’.
Thus the lexicon will look only slightly more complex:

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose
cat sheep sheep
dog m o:i u:ε s:c e mouse
aardvark

Our proposed morphological parser needs to map from surfaceforms
like geeseto lexical forms likegoose +N +SG. We could do this bycas-
cading the lexicon above with the singular/plural automaton of Figure 3.9.
Cascading two automata means running them in series with theoutput of
the first feeding the input to the second. We would first represent the lexi-
con of stems in the above table as the FSTTstemsof Figure 3.10. This FST
maps e.g.dog to reg-noun-stem. In order to allow possible suffixes,Tstems
in Figure 3.10 allows the forms to be followed by the wildcard@ symbol;@ SYMBOL

@:@stands for ‘any feasible pair’. A pair of the form@:x, for example will
mean ‘any feasible pair which hasx on the surface level’, and correspond-
ingly for the formx:@. The output of this FST would then feed the number
automatonTnum.

Instead of cascading the two transducers, we cancomposethem using
the composition operator defined above. Composing is a way oftaking a
cascade of transducers with many different levels of inputsand outputs and
converting them into a single ‘two-level’ transducer with one input tape and
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one output tape. The algorithm for composition bears some resemblance to
the algorithm for determinization of FSAs from page 49; given two automata
T1 andT2 with state setsQ1 andQ2 and transition functionsδ1 andδ2, we
create a new possible state(x;y) for every pair of statesx2Q1 andy2Q2.
Then the new automaton has the transition function:

δ3((xa;ya); i : o) = (xb;yb) if9 c s:t: δ1(xa; i : c) = xb

andδ2(ya;c : o) = yb (3.4)

The resulting composed automaton,Tlex = TnumÆTstems, is shown in
Figure 3.11 (compare this with the FSA lexicon in Figure 3.7 on page 70).2

Note that the final automaton still has two levels separated by the: . Because
the colon was reserved for these levels, we had to use thej symbol inTstems
in Figure 3.10 to separate the upper and lower tapes.

q
0

irreg−pl−noun−form  |  g o:e o:e s e

irreg−pl−noun−form  |  m o:i u:  s:c eε

q
1

@:@

reg−noun−stem  |  a a r d v a r k

reg−noun−stem  |  d o g

reg−noun−stem  |  c a t

reg−noun−stem  |  f o x

irreg−sg−noun−form  |  g o o s e

irreg−sg−noun−form  |  s h e e p

irreg−sg−noun−form  |  m o u s e

irreg−pl−noun−form  |  s h e e p

Figure 3.10 The transducerTstems, which maps roots to their root-class.

This transducer will map plural nouns into the stem plus the morpho-
logical marker+PL, and singular nouns into the stem plus the morpheme
+SG. Thus a surfacecatswill map tocat +N +PL as follows:

c:c a:a t:t +N: ε +PL:ˆs#

That is,c maps to itself, as doa andt , while the morphological feature
+N (recall that this means ‘noun’) maps to nothing (ε), and the feature+PL
(meaning ‘plural’) maps tôs . The symbol̂ indicates amorpheme bound- ˆ

ary, while the symbol# indicates aword boundary, Figure 3.12 refers to MORPHEME
BOUNDARY

#

WORD
BOUNDARY

2 Note that for the purposes of clear exposition Figure 3.11 has not been minimized in the
way that Figure 3.7 has.
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Figure 3.11 A fleshed-out English nominal inflection FSTTlex = TnumÆ
Tstems.

tapes with these morpheme boundary markers asintermediate tapes; the
next section will show how the boundary marker is removed.

f o x ^ s

Lexical f o x +N +PL

Intermediate #

Figure 3.12 An example of the lexical and intermediate tapes.

Orthographic Rules and Finite-State Transducers

The method described in the previous section will successfully recognize
words likeaardvarksandmice. But just concatenating the morphemes won’t
work for cases where there is a spelling change; it would incorrectly reject
an input likefoxesand accept an input likefoxs. We need to deal with the
fact that English often requires spelling changes at morpheme boundaries by
introducingspelling rules(or orthographic rules). This section introducesSPELLING

RULES

a number of notations for writing such rules and shows how to implement
the rules as transducers. Some of these spelling rules:
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Name Description of Rule Example

Consonant 1-letter consonant doubled before-ing/-ed beg/begging
doubling
E deletion Silent e dropped before-ing and-ed make/making
E insertion e added after-s,-z,-x,-ch, -shbefore-s watch/watches
Y replacement-y changes to-ie before-s, -i before-ed try/tries
K insertion verbs ending withvowel + -cadd-k panic/panicked

We can think of these spelling changes as taking as input a simple
concatenation of morphemes (the ‘intermediate output’ of the lexical trans-
ducer in Figure 3.11) and producing as output a slightly-modified, (correctly-
spelled) concatenation of morphemes. Figure 3.13 shows thethree levels
we are talking about: lexical, intermediate, and surface. So for example
we could write an E-insertion rule that performs the mappingfrom the in-
termediate to surface levels shown in Figure 3.13. Such a rule might say

Surface

f o x ^ s

f o x se

Lexical f o x +N +PL

Intermediate #

Figure 3.13 An example of the lexical, intermediate and surface tapes.
Between each pair of tapes is a 2-level transducer; the lexical transducer of
Figure 3.11 between the lexical and intermediate levels, and the E-insertion
spelling rule between the intermediate and surface levels.The E-insertion
spelling rule inserts ane on the surface tape when the intermediate tape has a
morpheme boundary ˆ followed by the morpheme-s.

something like “insert aneon the surface tape just when the lexical tape has
a morpheme ending inx (or z, etc) and the next morpheme is-s. Here’s a
formalization of the rule:

ε! e /

8<: x
s
z

9=; ˆ s# (3.5)

This is the rule notation of Chomsky and Halle (1968); a rule of the
form a ! b/c d means ‘rewritea as b when it occurs betweenc and
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d’. Since the symbolε means an empty transition, replacing it means in-
serting something. The symbol ˆ indicates a morpheme boundary. These
boundaries are deleted by including the symbol ˆ:ε in the default pairs for
the transducer; thus morpheme boundary markers are deletedon the surface
level by default. (Recall that the colon is used to separate symbols on the in-
termediate and surface forms). The # symbol is a special symbol that marks
a word boundary. Thus (3.5) means ‘insert ane after a morpheme-finalx,
s, or z, and before the morphemes’. Figure 3.14 shows an automaton that
corresponds to this rule.

ε:e^: ε

other
#

##, other

#, other z, x

s
s ^: ε

^: ε

z, s, x

z, s, x
z, s, x

other

q

q
5

qq q q
0 1 2 3 4

Figure 3.14 The transducer for the E-insertion rule of (3.5), extended from
a similar transducer in Antworth (1990).

The idea in building a transducer for a particular rule is to express only
the constraints necessary for that rule, allowing any otherstring of symbols
to pass through unchanged. This rule is used to insure that wecan only
see theε:e pair if we are in the proper context. So stateq0, which models
having seen only default pairs unrelated to the rule, is an accepting state,
as isq1, which models having seen az, s, or x. q2 models having seen the
morpheme boundary after thez, s, or x, and again is an accepting state. State
q3 models having just seen the E-insertion; it is not an accepting state, since
the insertion is only allowed if it is followed by thesmorpheme and then the
end-of-word symbol#.

The other symbol is used in Figure 3.14 to safely pass through any
parts of words that don’t play a role in the E-insertion rule.other means
‘any feasible pair that is not in this transducer’; it is thusa version of@:@
which is context-dependent in a transducer-by-transducerway. So for exam-
ple when leaving stateq0, we go toq1 on thez, s, or x symbols, rather than
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following the other arc and staying inq0. The semantics ofother depends
on what symbols are on other arcs; since# is mentioned on some arcs, it
is (by definition) not included inother, and thus, for example, is explicitly
mentioned on the arc fromq2 to q0.

A transducer needs to correctly reject a string that appliesthe rule when
it shouldn’t. One possible bad string would have the correctenvironment for
the E-insertion, but have no insertion. Stateq5 is used to insure that thee
is always inserted whenever the environment is appropriate; the transducer
reachesq5 only when it has seen ansafter an appropriate morpheme bound-
ary. If the machine is in stateq5 and the next symbol is#, the machine rejects
the string (because there is no legal transition on# from q5). Figure 3.15
shows the transition table for the rule which makes the illegal transitions
explicit with the ‘–’ symbol.

State\ Input s:s x:x z:z ˆ:ε ε:e # other
q0: 1 1 1 0 - 0 0
q1: 1 1 1 2 - 0 0
q2: 5 1 1 0 3 0 0
q3 4 - - - - - -
q4 - - - - - 0 -
q5 1 1 1 2 - - 0

Figure 3.15 The state-transition table for E-insertion rule of Figure 3.14,
extended from a similar transducer in Antworth (1990).

The next section will show a trace of this E-insertion transducer run-
ning on a sample input string.

3.3 COMBINING FST LEXICON AND RULES

We are now ready to combine our lexicon and rule transducers for parsing
and generating. Figure 3.16 shows the architecture of a two-level morphol-
ogy system, whether used for parsing or generating. The lexicon transducer
maps between the lexical level, with its stems and morphological features,
and an intermediate level that represents a simple concatenation of mor-
phemes. Then a host of transducers, each representing a single spelling rule
constraint, all run in parallel so as to map between this intermediate level and
the surface level. Putting all the spelling rules in parallel is a design choice;



80 Chapter 3. Morphology and Finite-State Transducers

we could also have chosen to run all the spelling rules in series (as a long
cascade), if we slightly changed each rule.

Surface f o x se

Lexical f o x +N +PL

f o x ^ s

FST1 FSTn

orthographic rules

LEXICON−FST

Intermediate

Figure 3.16 Generating or Parsing with FST lexicon and rules

The architecture in Figure 3.16 is a two-level cascade of transducers.
Recall that a cascade is a set of transducers in series, in which the output
from one transducer acts as the input to another transducer;cascades can
be of arbitrary depth, and each level might be built out of many individual
transducers. The cascade in Figure 3.16 has two transducersin series: the
transducer mapping from the lexical to the intermediate levels, and the col-
lection of parallel transducers mapping from the intermediate to the surface
level. The cascade can be run top-down to generate a string, or bottom-up
to parse it; Figure 3.17 shows a trace of the systemacceptingthe mapping
from foxˆsto foxes.

The power of finite-state transducers is that the exact same cascade
with the same state sequences is used when the machine is generating the
surface tape from the lexical tape, or when it is parsing the lexical tape from
the surface tape. For example, for generation, imagine leaving the Interme-
diate and Surface tapes blank. Now if we run the lexicon transducer, given
fox +N +PL , it will produce foxˆs#on the Intermediate tape via the same
states that it accepted the Lexical and Intermediate tapes in our earlier exam-
ple. If we then allow all possible orthographic transducersto run in parallel,
we will produce the same surface tape.

Parsing can be slightly more complicated than generation, because of
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4

Surface f o x se

Lexical f o x +N +PL

f o x ^ sIntermediate

0 1 2 5 6

#

1 2000 03

7Tlex

Te−insert

Figure 3.17 Acceptingfoxes: The lexicon transducerTlex from Figure 3.11
cascaded with the E-insertion transducer in Figure 3.14.

the problem ofambiguity. For example,foxescan also be a verb (albeitAMBIGUITY

a rare one, meaning ‘to baffle or confuse’), and hence the lexical parse for
foxescould befox +V +3SG as well asfox +N +PL . How are we to
know which one is the proper parse? In fact, for ambiguous cases of this sort,
the transducer is not capable of deciding.Disambiguatingwill require some DISAMBIGUAT­

ING

external evidence such as the surrounding words. Thusfoxesis likely to be
a noun in the sequenceI saw two foxes yesterday, but a verb in the sequence
That trickster foxes me every time!. We will discuss such disambiguation
algorithms in Chapter 8 and Chapter 17. Barring such external evidence, the
best our transducer can do is just enumerate the possible choices; so we can
transducefoxˆs#into bothfox +V +3SG andfox +N +PL .

There is a kind of ambiguity that we need to handle: local ambiguity
that occurs during the process of parsing. For example, imagine parsing the
input verbassess. After seeingass, our E-insertion transducer may propose
that thee that follows is inserted by the spelling rule (for example, as far as
the transducer is concerned, we might have been parsing the word asses). It
is not until we don’t see the# afterasses, but rather run into anothers, that
we realize we have gone down an incorrect path.

Because of this non-determinism, FST-parsing algorithms need to in-
corporate some sort of search algorithm. Exercise 3.8 asks the reader to
modify the algorithm for non-deterministic FSA recognition in Figure 2.21
in Chapter 2 to do FST parsing.
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Running a cascade, particularly one with many levels, can beunwieldy.
Luckily, we’ve already seen how to compose a cascade of transducers in se-
ries into a single more complex transducer. Transducers in parallel can be
combined byautomaton intersection. The automaton intersection algo-

AUTOMATON
INTERSEC­
TION

rithm just takes the Cartesian product of the states, i.e. for each stateqi in
machine 1 and stateq j in machine 2, we create a new stateqi j . Then for
any input symbola, if machine 1 would transition to stateqn and machine 2
would transition to stateqm, we transition to stateqnm.

Figure 3.18 sketches how this intersection (^) and composition (Æ) pro-
cess might be carried out.

LEXICON−FST

LEXICON−FST

FSTA 1 2 N

FSTA

LEXICON−FST

compose

FST1 FSTn }
}

intersect
( = FST ^ FST ^.. ^ FST  )

Figure 3.18 Intersection and composition of transducers.

Since there are a number of rule!FST compilers, it is almost never
necessary in practice to write an FST by hand. Kaplan and Kay (1994) give
the mathematics that define the mapping from rules to two-level relations,
and Antworth (1990) gives details of the algorithms for rulecompilation.
Mohri (1997) gives algorithms for transducer minimizationand determiniza-
tion.

3.4 LEXICON-FREEFSTS: THE PORTER STEMMER

While building a transducer from a lexicon plus rules is the standard al-
gorithm for morphological parsing, there are simpler algorithms that don’t
require the large on-line lexicon demanded by this algorithm. These are used
especially in Information Retrieval (IR) tasks (Chapter 17) in which a user
needs some information, and is looking for relevant documents (perhaps on
the web, perhaps in a digital library database). She gives the system a query
with some important characteristics of documents she desires, and the IR
system retrieves what it thinks are the relevant documents.One common
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type of query is Boolean combinations of relevantkeywordsor phrases, e.g. KEYWORDS

(marsupial OR kangaroo OR koala). The system then returns documents that
have these words in them. Since a document with the wordmarsupialsmight
not match the keywordmarsupial, some IR systems first run a stemmer on
the keywords and on the words in the document. Since morphological pars-
ing in IR is only used to help form equivalence classes, the details of the
suffixes are irrelevant; what matters is determining that two words have the
same stem.

One of the most widely used suchstemmingalgorithms is the simple STEMMING

and efficient Porter (1980) algorithm, which is based on a series of simple
cascaded rewrite rules. Since cascaded rewrite rules are just the sort of thing
that could be easily implemented as an FST, we think of the Porter algorithm
as a lexicon-free FST stemmer (this idea will be developed further in the
exercises (Exercise 3.7). The algorithm contains rules like:

(3.6) ATIONAL ! ATE (e.g. relational! relate)

(3.7) ING! ε if stem contains vowel (e.g. motoring! motor)

The algorithm is presented in detail in Appendix B.
Do stemmers really improve the performance of information retrieval

engines? One problem is that stemmers are not perfect. For example Krovetz
(1993) summarizes the following kinds of errors of omissionand of commis-
sion in the Porter algorithm:

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
generalization generic matrices matrix
numerical numerous noise noisy
policy police sparse sparsity
university universe explain explanation
negligible negligent urgency urgent

Krovetz also gives the results of a number of experiments testing whether
the Porter stemmer actually improved IR performance. Overall he found
some improvement, especially with smaller documents (the larger the docu-
ment, the higher the chance the keyword will occur in the exact form used
in the query). Since any improvement is quite small, IR engines often don’t
use stemming.
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3.5 HUMAN MORPHOLOGICALPROCESSING

In this section we look at psychological studies to learn howmulti-morphemic
words are represented in the minds of speakers of English. For example, con-
sider the wordwalk and its inflected formswalks, andwalked. Are all three
in the human lexicon? Or merelywalk plus as well as-ed and -s? How
about the wordhappyand its derived formshappilyandhappiness? We can
imagine two ends of a theoretical spectrum of representations. Thefull list-
ing hypothesis proposes that all words of a language are listed in the mentalFULL LISTING

lexicon without any internal morphological structure. On this view, mor-
phological structure is simply an epiphenomenon, andwalk, walks, walked,
happy, andhappily are all separately listed in the lexicon. This hypothesis
is certainly untenable for morphologically complex languages like Turkish
(Hankamer (1989) estimates Turkish as 200 billion possiblewords). The
minimum redundancy hypothesis suggests that only the constituent mor-MINIMUM

REDUNDANCY

phemes are represented in the lexicon, and when processingwalks, (whether
for reading, listening, or talking) we must access both morphemes (walkand
-s) and combine them.

Most modern experimental evidence suggests that neither ofthese is
completely true. Rather, some kinds of morphological relationships are men-
tally represented (particularly inflection and certain kinds of derivation), but
others are not, with those words being fully listed. Stanners et al. (1979),
for example, found that derived forms (happiness, happily) are stored sepa-
rately from their stem (happy), but that regularly inflected forms (pouring)
are not distinct in the lexicon from their stems (pour). They did this by using
a repetition priming experiment. In short, repetition priming takes advantage
of the fact that a word is recognized faster if it has been seenbefore (if it is
primed). They found thatlifting primed lift , andburnedprimedburn, butPRIMED

for exampleselectivedidn’t primeselect. Figure 3.19 sketches one possible
representation of their finding:

−s

−ing

selectiveselect turn

Figure 3.19 Stannerset al. (1979) result: Different representations of in-
flection and derivation
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In a more recent study, Marslen-Wilsonet al.(1994) found thatspoken
derived words can prime their stems, but only if the meaning of the derived
form is closely related to the stem. For examplegovernmentprimesgovern,
but departmentdoes not primedepart. Graingeret al. (1991) found similar
results with prefixed words (but not with suffixed words). Marslen-Wilson
et al. (1994) represent a model compatible with their own findings as fol-
lows:

department depart

−ing

−s

govern

−al −ure

Figure 3.20 Marslen-Wilsonet al. (1994) result: Derived words are linked
to their stems only if semantically related

Other evidence that the human lexicon represents some morphological
structure comes fromspeech errors, also calledslips of the tongue. In
normal conversation, speakers often mix up the order of the words or initial
sounds:

if you breakit it’ll drop
I don’t have time to workto watch television because I have to
work

But inflectional and derivational affixes can also appear separately from
their stems, as these examples from Fromkin and Ratner (1998) and Garrett
(1975) show:

it’s not only us who have screw looses(for ‘screws loose’)
wordsof rule formation (for ‘rules of word formation’)
easy enoughly(for ‘easily enough’)
which by itself is the most unimplausible sentence you can imagine

The ability of these affixes to be produced separately from their stem
suggests that the mental lexicon must contain some representation of the
morphological structure of these words.

In summary, these results suggest that morphology does playa role in
the human lexicon, especially productive morphology like inflection. They
also emphasize the important of semantic generalizations across words, and
suggest that the human auditory lexicon (representing words in terms of their
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sounds) and the orthographic lexicon (representing words in terms of letters)
may have similar structures. Finally, it seems that many properties of lan-
guage processing, like morphology, may apply equally (or atleast similarly)
to languagecomprehensionand languageproduction.

3.6 SUMMARY

This chapter introducedmorphology, the arena of language processing deal-
ing with the subparts of words, and thefinite-state transducer, the com-
putational device that is commonly used to model morphology. Here’s a
summary of the main points we covered about these ideas:� morphological parsing is the process of finding the constituentmor-

phemesin a word (e.g.cat +N +PL for cats).� English mainly usesprefixes andsuffixesto expressinflectional and
derivational morphology.� Englishinflectional morphology is relatively simple and includes per-
son and number agreement (-s) and tense markings (-edanding).� Englishderivational morphology is more complex and includes suf-
fixes like-ation, -ness, -ableas well as prefixes likeco- andre-.� many constraints on the Englishmorphotactics (allowable morpheme
sequences) can be represented by finite automata.� finite-state transducersare an extension of finite-state automata that
can generate output symbols.� two-level morphology is the application of finite-state transducers to
morphological representation and parsing.� spelling rulescan be implemented as transducers.� there are automatic transducer-compilers that can producea transducer
for any simple rewrite rule.� the lexicon and spelling rules can be combined bycomposingandin-
tersectingvarious transducers.� the Porter algorithm is a simple and efficient way to dostemming,
stripping off affixes. It is not as accurate as a transducer model that in-
cludes a lexicon, but may be preferable for applications like informa-
tion retrieval in which exact morphological structure is not needed.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

Despite the close mathematical similarity of finite-state transducers to finite-
state automata, the two models grew out of somewhat different traditions.
Chapter 2 described how the finite automaton grew out of Turing’s (1936)
model of algorithmic computation, and McCulloch and Pitts finite-state-like
models of the neuron. The influence of the Turing machine on the trans-
ducer was somewhat more indirect. Huffman (1954) proposed what was
essentially a state-transition table to model the behaviorof sequential cir-
cuits, based on the work of Shannon (1938) on an algebraic model of relay
circuits. Based on Turing and Shannon’s work, and unaware ofHuffman’s
work, Moore (1956) introduced the termfinite automaton for a machine
with a finite number of states with an alphabet of input symbols and an al-
phabet of output symbols. Mealy (1955) extended and synthesized the work
of Moore and Huffman.

The finite automata in Moore’s original paper, and the extension by
Mealy differed in an important way. In a Mealy machine, the input/output
symbols are associated with the transitions between states. The finite-state
transducers in this chapter are Mealy machines. In a Moore machine, the
input/output symbols are associated with the state; we willsee examples of
Moore machines in Chapter 5 and Chapter 7. The two types of transduc-
ers are equivalent; any Moore machine can be converted into an equivalent
Mealy machine and vice versa.

Many early programs for morphological parsing used anaffix-stripping
approach to parsing. For example Packard’s (1973) parser for ancient Greek
iteratively stripped prefixes and suffixes off the input word, making note of
them, and then looked up the remainder in a lexicon. It returned any root that
was compatible with the stripped-off affixes. This approachis equivalent to
thebottom-up method of parsing that we will discuss in Chapter 10.

AMPLE (A Morphological Parser for Linguistic Exploration)(Weber
and Mann, 1981; Weberet al., 1988; Hankamer and Black, 1991) is another
early bottom-up morphological parser. It contains a lexicon with all possible
surface variants of each morpheme (these are calledallomorphs), together
with constraints on their occurrence (for example in English the -es allo-
morph of the plural morpheme can only occur after s, x, z, sh, or ch). The
system finds every possible sequence of morphemes which match the input
and then filters out all the sequences which have failing constraints.
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An alternative approach to morphological parsing is calledgenerate-
and-testor analysis-by-synthesisapproach. Hankamer’s (1986) keCi is a
morphological parser for Turkish which is guided by a finite-state represen-
tation of Turkish morphemes. The program begins with a morpheme that
might match the left edge of the word, and applies every possible phonolog-
ical rule to it, checking each result against the input. If one of the outputs
succeeds, the program then follows the finite-state morphotactics to the next
morpheme and tries to continue matching the input.

The idea of modeling spelling rules as finite-state transducers is really
based on Johnson’s (1972) early idea that phonological rules (to be discussed
in Chapter 4) have finite-state properties. Johnson’s insight unfortunately did
not attract the attention of the community, and was independently discovered
by Roland Kaplan and Martin Kay, first in an unpublished talk Kaplan and
Kay (1981) and then finally in print (Kaplan and Kay, 1994). Kaplan and
Kay’s work was followed up and most fully worked out by Koskenniemi
(1983), who described finite-state morphological rules forFinnish. Kart-
tunen (1983) built a program called KIMMO based on Koskenniemi’s mod-
els. Antworth (1990) gives many details of two-level morphology and its
application to English. Besides Koskenniemi’s work on Finnish and that of
Antworth (1990) on English, two-level or other finite-statemodels of mor-
phology have been worked out for many languages, such as Turkish (Oflazer,
1993) and Arabic (Beesley, 1996). Antworth (1990) summarizes a number
of issues in finite-state analysis of languages with morphologically complex
processes like infixation and reduplication (for example Tagalog) and gem-
ination (for example Hebrew). Karttunen (1993) is a good summary of the
application of two-level morphology specifically to phonological rules of the
sort we will discuss in Chapter 4. Bartonet al. (1987) bring up some com-
putational complexity problems with two-level models, which are responded
to by Koskenniemi and Church (1988).

Students interested in further details of the fundamental mathematics
of automata theory should see Hopcroft and Ullman (1979) or Lewis and
Papadimitriou (1981). Mohri (1997) and Roche and Schabes (1997b) give
additional algorithms and mathematical foundations for language applica-
tions, including e.g. the details of the algorithm for transducer minimization.
Sproat (1993) gives a broad general introduction to computational morphol-
ogy.
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EXERCISES

3.1 Add some adjectives to the adjective FSA in Figure 3.5.

3.2 Give examples of each of the noun and verb classes in Figure 3.6, and
find some exceptions to the rules.

3.3 Extend the transducer in Figure 3.14 to deal withsh andch .

3.4 Write a transducer(s) for the K insertion spelling rule in English.

3.5 Write a transducer(s) for the consonant doubling spelling rule in En-
glish.

3.6 The Soundex algorithm (Odell and Russell, 1922; Knuth, 1973) is a
method commonly used in libraries and older Census records for represent-
ing people’s names. It has the advantage that versions of thenames that are
slightly misspelled or otherwise modified (common, for example, in hand-
written census records) will still have the same representation as correctly-
spelled names. (For example, Jurafsky, Jarofsky, Jarovsky, and Jarovski all
map to J612).

a. Keep the first letter of the name, and drop all occurrences ofnon-initial
a, e, h, i, o, u, w, y

b. Replace the remaining letters with the following numbers:

b, f, p, v! 1
c, g, j, k, q, s, x, z! 2
d, t! 3
l ! 4
m, n! 5
r ! 6

c. Replace any sequences of identical numbers with a single number (i.e.
666! 6)

d. Convert to the formLetter Digit Digit Digit by dropping
digits past the third (if necessary) or padding with trailing zeros (if
necessary).

The exercise: write a FST to implement the Soundex algorithm.

3.7 Implement one of the steps of the Porter Stemmer as a transducer.



90 Chapter 3. Morphology and Finite-State Transducers

3.8 Write the algorithm for parsing a finite-state transducer, using the pseudo-
code introduced in Chapter 2. You should do this by modifyingthe algorithm
nd-recognize in Figure 2.21 in Chapter 2.

3.9 Write a program that takes a word and, using an on-line dictionary,
computes possible anagrams of the word.

3.10 In Figure 3.14, why is there az, s, xarc fromq5 to q1?



4
COMPUTATIONAL
PHONOLOGY AND
TEXT-TO-SPEECH

You like po-tay-to and I like po-tah-to.
You like to-may-to and I like to-mah-to.
Po-tay-to, po-tah-to,
To-may-to, to-mah-to,
Let’s call the whole thing off!

George and Ira Gershwin,Let’s Call the Whole Thing Off
from Shall We Dance, 1937

The previous chapters have all dealt with language in text format. We now
turn to speech. The next four chapters will introduce the fundamental in-
sights and algorithms necessary to understand modern speech recognition
and speech synthesis technology, and the related branch of linguistics called
computational phonology.

Let’s begin by defining these areas. The core task of automatic speech
recognition is take an acoustic waveform as input and produce as output
a string of words. The core task of text-to-speech synthesisis to take a
sequence of text words and produce as output an acoustic waveform. The
uses of speech recognition and synthesis are manifold, including automatic
dictation/transcription, speech-based interfaces to computers and telephones,
voice-based input and output for the disabled, and many others that will be
discussed in greater detail in Chapter 7.

This chapter will focus on an important part of both speech recognition
and text-to-speech systems: how words are pronounced in terms of individ-
ual speech units calledphones. A speech recognition system needs to have
a pronunciation for every word it can recognize, and a text-to-speech system
needs to have a pronunciation for every word it can say. The first section of
this chapter will introducephonetic alphabetsfor describing pronunciation,
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part of the field ofphonetics. We then introducearticulatory phonetics, thePHONETICS

ARTICULA­
TORY
PHONETICS

study of how speech sounds are produced by articulators in the mouth.
Modeling pronunciation would be much simpler if a given phone was

always pronounced the same in every context. Unfortunatelythis is not the
case. As we will see, the phone[t] is pronounced very differently in different
phonetic environments.Phonology is the area of linguistics that describes
the systematic way that sounds are differently realized in different environ-
ments, and how this system of sounds is related to the rest of the grammar.
The next section of the chapter will describe the way we writephonological
rules to describe these different realizations.

We next introduce an area known ascomputational phonology. OneCOMPUTA­
TIONAL
PHONOLOGY

important part of computational phonology is the study of computational
mechanisms for modeling phonological rules. We will show how the spelling-
rule transducers of Chapter 3 can be used to model phonology.We then
discuss computational models ofphonological learning: how phonological
rules can be automatically induced by machine learning algorithms.

Finally, we apply the transducer-based model of phonology to an im-
portant problem in text-to-speech systems: mapping from strings of letters
to strings of phones. We first survey the issues involved in building a large
pronunciation dictionary, and then show how the transducer-based lexicons
and spelling rules of Chapter 3 can be augmented with pronunciations to
map from orthography to pronunciation.

This chapter focuses on the non-probabilistic areas of computational
linguistics and pronunciations modeling. Chapter 5 will turn to the role of
probabilistic models, including such areas as probabilistic models of pronun-
ciation variation and probabilistic methods for learning phonological rules.

4.1 SPEECHSOUNDS AND PHONETIC TRANSCRIPTION

The study of the pronunciation of words is part of the field ofphonetics, thePHONETICS

study of the speech sounds used in the languages of the world.We will be
modeling the pronunciation of a word as a string of symbols which represent
phonesor segments. A phone is a speech sound; we will represent phonesPHONES

with phonetic symbols that bears some resemblance to a letter in an alpha-
betic language like English. So for example there is a phone represented byl
that usually corresponds to the letterl and a phone represented byp that usu-
ally corresponds to the letterp. Actually, as we will see later, phones have
much more variation than letters do. This chapter will only briefly touch
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on other aspects of phonetics such asprosody, which includes things like
changes in pitch and duration.

IPA ARPAbet IPA ARPAbet
Symbol Symbol Word Transcription Transcription
[p] [p] parsley ["parsli] [p aa r s l iy]
[t] [t] t arragon ["tær@gAn] [t ae r ax g aa n]
[k] [k] c atnip ["kætn1p] [k ae t n ix p]
[b] [b] bay [beI] [b ey]
[d] [d] dill [dIl] [d ih l]
[g] [g] garlic ["gArl1k] [g aa r l ix k]
[m] [m] mint [mInt] [m ih n t]
[n] [n] nutmeg ["n2tmEg] [n ah t m eh g
[N] [ng] ginseng ["dZIns1N] [jh ih n s ix ng]
[f] [f] f ennel ["fEnl"] [f eh n el]
[v] [v] clov e [kloUv] [k l ow v]
[T] [th] thistle ["TIsl"] [th ih s el]
[D] [dh] heather ["hEDÄ] [h eh dh axr]
[s] [s] sage [seIdZ] [s ey jh]
[z] [z] hazelnut ["heIzl"n2t] [h ey z el n ah t]
[S] [sh] squash [skwAS] [s k w a sh]
[Z] [zh] ambrosia [æm"broUZ@] [ae m b r ow zh ax]
[tS] [ch] chicory ["tSIkÄi] [ch ih k axr iy ]
[dZ] [jh] sage [seIdZ] [s ey jh]
[l] [l] l icorice ["lIkÄ1S] [l ih k axr ix sh]
[w] [w] kiw i ["kiwi] [k iy w iy]
[r] [r] parsley ["pArsli] [p aa r s l iy]
[j] [y] y ew [yu] [y uw]
[h] [h] horseradish ["hOrsrædIS] [h ao r s r ae d ih sh]
[P] [q] uh-oh [P2PoU] [q ah q ow]
[R] [dx] butter ["b2RÄ] [b ah dx axr ]
[R̃] [nx] wintergreen [wI�RÄgrin] [w ih nx axr g r i n ]
[l"] [el] thistle ["TIsl"] [th ih s el]

Figure 4.1 IPA and ARPAbet symbols for transcription of English
consonants.

This section surveys the different phones of English, particularly Amer-
ican English, showing how they are produced and how they are represented
symbolically. We will be using two different alphabets for describing phones.
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The first is theInternational Phonetic Alphabet (IPA ). The IPA is an evolv-IPA

ing standard originally developed by the International Phonetic Association
in 1888 with the goal of transcribing the sounds of all human languages.
The IPA is not just an alphabet but also a set of principles fortranscription,
which differ according to the needs of the transcription, sothe same utter-
ance can be transcribed in different ways all according to the principles of
the IPA. In the interests of brevity in this book we will focuson the symbols
that are most relevant for English; thus Figure 4.1 shows a subset of the IPA
symbols for transcribing consonants, while Figure 4.2 shows a subset of the
IPA symbols for transcribing vowels.1 These tables also give the ARPAbet
symbols; ARPAbet (?) is another phonetic alphabet, but one that is specifi-
cally designed for American English and which uses ASCII symbols; it can
be thought of as a convenient ASCII representation of an American-English
subset of the IPA. ARPAbet symbols are often used in applications where
non-ASCII fonts are inconvenient, such as in on-line pronunciation dictio-
naries.

Many of the IPA and ARPAbet symbols are equivalent to the Roman
letters used in the orthography of English and many other languages. So for
example the IPA and ARPAbet symbol[p] represents the consonant sound at
the beginning ofplatypus, puma, andpachyderm, the middle ofleopard, or
the end ofantelope(note that the final orthographice of antelopedoes not
correspond to any final vowel; thep is the last sound).

The mapping between the letters of English orthography and IPA sym-
bols is rarely as simple as this, however. This is because themapping be-
tween English orthography and pronunciation is quite opaque; a single letter
can represent very different sounds in different contexts.Figure 4.3 shows
that the English letterc is represented as IPA [k] in the wordcougar, but IPA
[s] in the wordcivet. Besides appearing asc andk, the sound marked as [k]
in the IPA can appear as part ofx (fox), asck (jackal), and ascc (raccoon).
Many other languages, for example Spanish, are much more transparent in
their sound-orthography mapping than English.

The Vocal Organs

We turn now toarticulatory phonetics, the study of how phones are pro-ARTICULA­
TORY
PHONETICS

duced, as the various organs in the mouth, throat, and nose modify the airflow
from the lungs.

1 For simplicity we use the symbol[r] for the American English ‘r’ sound, rather than the
more standard IPA symbol[ô].
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IPA ARPAbet IPA ARPAbet
Symbol Symbol Word Transcription Transcription[i] [iy] lily ["lIli] [l ih l iy][I] [ih] li ly ["lIli] [l ih l iy][eI] [ey] daisy ["deIzi] [d ey z i][E] [eh] poinsettia [poIn"sERi@] [p oy n s eh dx iy ax][æ] [ae] aster ["æstÄ] [ae s t axr][A] [aa] poppy ["papi] [p aa p i][O] [ao] orchid ["Ork1d] [ao r k ix d][U] [uh] woodruff ["wUdr2f] [w uh d r ah f][oU] [ow] lotus ["loUR@s] [l ow dx ax s][u] [uw] tulip ["tul1p] [t uw l ix p][2] [uh] buttercup ["b2RÄ�k2p] [b uh dx axr k uh p][Ç] [er] bird ["bÇd] [b er d][aI] [ay] iris ["aIr1s] [ay r ix s][aU] [aw] sunflower ["s2nflaUÄ] [s ah n f l aw axr][oI] [oy] poinsettia [poIn"sERi@] [p oy n s eh dx iy ax][ju] [y uw] feverfew [fivÄfju] [f iy v axr f y u][@] [ax] woodruff ["wUdr@f] [w uh d r ax f][Ä] [axr] heather ["hEDÄ] [h eh dh axr][1] [ix] tu lip ["tul1p] [t uw l ix p][0] [ux] [] []

Figure 4.2 IPA and ARPAbet symbols for transcription of English vowels

Word jackal raccoon cougar civet
IPA ["dZæ.kl"] [ræ."kun] ["ku.gÄ] ["sI.v1t]
ARPAbet [jh ae k el] [r ae k uw n] [k uw g axr] [s ih v ix t]

Figure 4.3 The mapping between IPA symbols and letters in English or-
thography is complicated; both IPA [k] and English orthographic [c] have
many alternative realizations

Sound is produced by the rapid movement of air. Most sounds inhu-
man languages are produced by expelling air from the lungs through the
windpipe (technically thetrachea) and then out the mouth or nose. As it
passes through the trachea, the air passes through thelarynx , commonly
known as the Adam’s apple or voicebox. The larynx contains two small
folds of muscle, thevocal folds(often referred to non-technically as thevo-
cal cords) which can be moved together or apart. The space between these



96 Chapter 4. Computational Phonology and Text-to-Speech

Figure 4.4 The vocal organs, shown in side view. From Sundberg (1977).

two folds is called theglottis. If the folds are close together (but not tightlyGLOTTIS

closed), they will vibrate as air passes through them; if they are far apart,
they won’t vibrate. Sounds made with the vocal folds together and vibrating
are calledvoiced; sounds made without this vocal cord vibration are calledVOICED

unvoiced or voiceless. Voiced sounds include [b], [d], [g], [v], [z], and allUNVOICED

VOICELESS the English vowels, among others. Unvoiced sounds include [p], [t], [k], [f],
[z], and others.

The area above the trachea is called thevocal tract, and consists of the
oral tract and thenasal tract. After the air leaves the trachea, it can exit the
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body through the mouth or the nose. Most sounds are made by airpassing
through the mouth. Sounds made by air passing through the nose are called
nasal sounds; nasal sounds use both the oral and nasal tracts as resonating NASAL

SOUNDS

cavities; English nasal sounds includem, andn, andng.
Phones are divided into two main classes:consonantsand vowels. CONSO­

NANTS

VOWELSBoth kinds of sounds are formed by the motion of air through the mouth,
throat or nose. Consonants are made by restricting or blocking the airflow in
some way, and may be voiced or unvoiced. Vowels have less obstruction, are
usually voiced, and are generally louder and longer-lasting than consonants.
The technical use of these terms is much like the common usage; [p], [b],
[t], [d], [k], [g], [f], [v], [s], [z], [r], [l], etc., are consonants; [aa], [ae], [aw],
[ao], [ih], [aw], [ow], [uw], etc., are vowels.Semivowels(such as [y] and
[w]) have some of the properties of both; they are voiced likevowels, but
they are short and less syllabic like consonants.

Consonants: Place of Articulation

Because consonants are made by restricting the airflow in some way, con-
sonants can be distinguished by where this restriction is made: the point
of maximum restriction is called theplace of articulation of a consonant. PLACE

Places of articulation, shown in Figure 4.5, are often used in automatic
speech recognition as a useful way of grouping phones together into equiva-
lence classes:

dental
palatal alveolar

bilabialvelar

glottal

(nasal  tract)

Figure 4.5 Major English places of articulation.� labial: Consonants whose main restriction is formed by the two lipsLABIAL
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coming together have abilabial place of articulation. In English these
include [p] as inpossum, [b] as inbear, and [m] as inmarmot. The En-
glish labiodental consonants [v] and [f] are made by pressing the bot-
tom lip against the upper row of teeth and letting the air flow through
the space in the upper teeth.� dental: Sounds that are made by placing the tongue against the teethDENTAL

are dentals. The main dentals in English are the[T] of thing or the [D]
of though, which are made by placing the tongue behind the teeth with
the tip slightly between the teeth.� alveolar: The alveolar ridge is the portion of the roof of the mouth justALVEOLAR

behind the upper teeth. Most speakers of American English make the
phones [s], [z], [t], and [d] by placing the tip of the tongue against the
alveolar ridge.� palatal: The roof of the mouth (thepalate) rises sharply from thePALATAL

PALATE back of the alveolar ridge. Thepalato-alveolar sounds[S] (shrimp),[tS] (chinchilla ), [Z] (Asian), and[dZ] (jaguar) are made with the blade
of the tongue against this rising back of the alveolar ridge.The palatal
sound [y] ofyak is made by placing the front of the tongue up close to
the palate.� velar: Thevelum or soft palate is a movable muscular flap at the veryVELAR

VELUM back of the roof of the mouth. The sounds [k] (cuckoo), [g] (goose),
and [N] (kingfisher) are made by pressing the back of the tongue up
against the velum.� glottal: The glottal stop[P] is made by closing the glottis (by bringingGLOTTAL

the vocal folds together).

Consonants: Manner of Articulation

Consonants are also distinguished byhow the restriction in airflow is made,
for example whether there is a complete stoppage of air, or only a partial
blockage, etc. This feature is called themanner of articulation of a conso-MANNER

nant. The combination of place and manner of articulation isusually suffi-
cient to uniquely identify a consonant. Here are the major manners of artic-
ulation for English consonants:� stop: A stop is a consonant in which airflow is completely blockedSTOP

for a short time. This blockage is followed by an explosive sound as
the air is released. The period of blockage is called theclosure and
the explosion is called therelease. English has voiced stops like [b],
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[d], and [g] as well as unvoiced stops like [p], [t], and [k]. Stops are
also calledplosives. It is possible to use a more narrow (detailed) tran-
scription style to distinctly represent the closure and release parts of
a stop, both in ARPAbet and IPA-style transcriptions. For example
the closure of a [p], [t], or [k] would be represented as [pcl], [tcl], or
[kcl] (respectively) in the ARPAbet, and[p^], [t^], or [k^] (respectively)
in IPA style. When this form of narrow transcription is used,the un-
marked ARPABET symbols [p], [t], and [k] indicate purely therelease
of the consonant. We will not be using this narrow transcription style
in this chapter.� nasals: The nasal sounds [n], [m], and[N] are made by lowering theNASALS

velum and allowing air to pass into the nasal cavity.� fricative: In fricatives, airflow is constricted but not cut off completely. FRICATIVE

The turbulent airflow that results from the constriction produces a char-
acteristic ‘hissing’ sound. The English labiodental fricatives [f] and[v]
are produced by pressing the lower lip against the upper teeth, allow-
ing a restricted airflow between the upper teeth. The dental fricatives[T] and[D] allow air to flow around the tongue between the teeth. The
alveolar fricatives[s] and[z] are produced with the tongue against the
alveolar ridge, forcing air over the edge of the teeth. In thepalato-
alveolar fricatives[S] and [Z] the tongue is at the back of the alveolar
ridge forcing air through a groove formed in the tongue. The higher-
pitched fricatives (in English [s], [z],[S] and [Z]) are calledsibilants. SIBILANTS

Stops that are followed immediately by fricatives are called affricates;
these include English[tS] (chicken) and[dZ] (giraffe)).� approximant: In approximants, the two articulators are close togetherAPPROXI­

MANT

but not close enough to cause turbulent airflow. In English [y] (yellow),
the tongue moves close to the roof of the mouth but not close enough
to cause the turbulence that would characterize a fricative. In English
[w] (wormwood), the back of the tongue comes close to the velum.
American[r] can be formed in at least two ways; with just the tip of
the tongue extended and close to the palate or with the whole tongue
bunched up near the palate.[l] is formed with the tip of the tongue up
against the alveolar ridge or the teeth, with one or both sides of the
tongue lowered to allow air to flow over it.[l] is called alateral sound
because of the drop in the sides of the tongue.� tap: A tap orflap [R] is a quick motion of the tongue against the alve-TAP

FLAPolar ridge. The consonant in the middle of the wordlotus ([loUR@s]) is
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a tap in most dialects of American English; speakers of many British
dialects would use a [t] instead of a tap in this word.

Vowels

Like consonants, vowels can be characterized by the position of the articu-
lators as they are made. The two most relevant parameters forvowels are
what is called vowelheight, which correlates roughly with the location of
the highest part of the tongue, and the shape of the lips (rounded or not).
Figure 4.6 shows the position of the tongue for different vowels.

heed [iy] had [ae] who’d [uw]

nasal  tract

palate

tongue
closed
velum

Figure 4.6 Positions of the tongue for three English vowels, high front[iy],
low front [ae] and high back[uw]; tongue positions modeled after Ladefoged
(1996).

In the vowel[i], for example, the highest point of the tongue is toward
the front of the mouth. In the vowel[u], by contrast, the high-point of the
tongue is located toward the back of the mouth. Vowels in which the tongue
is raised toward the front are calledfront vowels; those in which the tongueFRONT

is raised toward the back are calledback vowels. Note that while both[I]BACK

and [E] are front vowels, the tongue is higher for[I] than for [E]. Vowels in
which the highest point of the tongue is comparatively high are calledhighHIGH

vowels; vowels with mid or low values of maximum tongue height are called
mid vowelsor low vowels, respectively.

Figure 4.7 shows a schematic characterization of the vowel height of
different vowels. It is schematic because the abstract property height only
correlates roughly with actual tongue positions; it is in fact a more accurate
reflection of acoustic facts. Note that the chart has two kinds of vowels:
those in which tongue height is represented as a point and those in which it
is represented as a vector. A vowels in which the tongue position changes
markedly during the production of the vowel isdiphthong. English is par-DIPHTHONG



Section 4.1. Speech Sounds and Phonetic Transcription 101

high

front back

ae

low

iy

ih

y uw uw

uh

aw

aa

ey
axoy

ay
eh

ow

ao
uh

Figure 4.7 Qualities of English vowels (after Ladefoged (1993)).

ticularly rich in diphthongs; many are written with two symbols in the IPA
(for example the[eI] of hakeor the[oU] of cobra).

The second important articulatory dimension for vowels is the shape
of the lips. Certain vowels are pronounced with the lips rounded (the same
lip shape used for whistling). Theserounded vowels include[u], [O], and the ROUNDED

diphthong[oU].
Syllables

Consonants and vowels combine to make asyllable. There is no completely SYLLABLE

agreed-upon definition of a syllable; roughly speaking a syllable is a vowel-
like sound together with some of the surrounding consonantsthat are most
closely associated with it. The IPA period symbol[.] is used to separate
syllables, soparsleyandcatnip have two syllables (["par.sli] and ["kæt.nIp]
respectively),tarragonhas three["tæ.r@.gan], anddill has one ([dIl]). A syl-
lable is usually described as having an optional initial consonant or set of
consonants called theonset, followed by a vowel or vowels, followed by aONSET

final consonant or sequence of consonants called thecoda. Thusd is the CODA

onset of[dIl], while l is the coda. The task of breaking up a word into sylla-
bles is calledsyllabification. Although automatic syllabification algorithmsSYLLABIFICA­

TION

exist, the problem is hard, partly because there is no agreed-upon definition
of syllable boundaries. Furthermore, although it is usually clear how many
syllables are in a word, Ladefoged (1993) points out there are some words
(meal, teal, seal, hire, fire, hour) that can be viewed eitheras having one
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syllable or two.
In a natural sentence of American English, certain syllables are more

prominent than others. These are calledaccentedsyllables. Accented sylla-ACCENTED

bles may be prominent because they are louder, they are longer, they are as-
sociated with a pitch movement, or any combination of the above. Since ac-
cent plays important roles in meaning, understanding exactly why a speaker
chooses to accent a particular syllable is very complex. Butone important
factor in accent is often represented in pronunciation dictionaries. This fac-
tor is calledlexical stress. The syllable that has lexical stress is the one thatLEXICAL

STRESS

will be louder or longer if the word is accented. For example the wordpars-
ley is stressed in its first syllable, not its second. Thus if the word parsley
is accented in a sentence, it is the first syllable that will bestronger. We
write the symbol["] before a syllable to indicate that it has lexical stress (e.g.["par.sli]). This difference in lexical stress can affect the meaning of a word.
For example the wordcontentcan be a noun or an adjective. When pro-
nounced in isolation the two senses are pronounced differently since they
have different stressed syllables (the noun is pronounced["kAn.tEnt] and the
adjective[k@n."tEnt]. Other pairs like this includeobject (noun ["Ab.dZEkt]
and verb[@b."dZEkt]); see Cutler (1986) for more examples. Automatic dis-
ambiguation of suchhomographs is discussed in Chapter 17. The role ofHOMO­

GRAPHS

prosody is taken up again in Section 4.7.

4.2 THE PHONEME AND PHONOLOGICAL RULES

’Scuse me, while I kiss the sky
Jimi Hendrix,Purple Haze

’Scuse me, while I kiss this guy
Common mis-hearing of same lyrics

All [t]s are not created equally. That is, phones are often produced
differently in different contexts. For example, consider the different pro-
nunciations of[t] in the wordstunafishandstarfish. The [t] of tunafishis
aspirated. Aspiration is a period of voicelessness after a stop closure and
before the onset of voicing of the following vowel. Since thevocal cords are
not vibrating, aspiration sounds like a puff of air after the[t] and before the
vowel. By contrast, a[t] following an initial [s] is unaspirated; thus the[t]UNASPIRATED

in starfish([stArf1S]) has no period of voicelessness after the[t] closure. This
variation in the realization of[t] is predictable: whenever a[t] begins a word



Section 4.2. The Phoneme and Phonological Rules 103

or unreduced syllable in English, it is aspirated. The same variation occurs
for [k]; the[k] of skyis often mis-heard as[g] in Jimi Hendrix’s lyrics because[k] and [g] are both unaspirated. In a very detailed transcription system we
could use the symbol for aspiration[h]after any [t] (or[k] or [p]) which be-
gins a word or unreduced syllable. The wordtunafishwould be transcribed[thun@fIS] (the ARPAbet does not have a way of marking aspiration).

There are other contextual variants of[t]. For example, when[t] occurs
between two vowels, particularly when the first is stressed,it is pronounced
as a tap. Recall that a tap is a voiced sound in which the top of the tongue
is curled up and back and struck quickly against the alveolarridge. Thus the
word buttercupis usually pronounced[b2RÄk2p]/[b uh dx axr k uh p] rather
than[b2tÄk2p]/[b uh t axr k uh p].

Another variant of[t] occurs before the dental consonant[T]. Here the[t] becomes dentalized ([t�]). That is, instead of the tongue forming a closure
against the alveolar ridge, the tongue touches the back of the teeth.

How do we represent this relation between a[t] and its different real-
izations in different contexts? We generally capture this kind of pronunci-
ation variation by positing an abstract class called thephoneme, which is PHONEME

realized as differentallophonesin different contexts. We traditionally writeALLOPHONES

phonemes inside slashes. So in the above examples,/t/ is a phoneme whose
allophones include[th], [R], and [t�]. A phoneme is thus a kind of general-
ization or abstraction over different phonetic realizations. Often we equate
the phonemic and the lexical levels, thinking of the lexiconas containing
transcriptions expressed in terms of phonemes. When we are transcribing
the pronunciations of words we can choose to represent them at this broad
phonemic level; such abroad transcription leaves out a lot of predictable
phonetic detail. We can also choose to use anarrow transcription that

NARROW
TRANSCRIP­
TION

includes more detail, including allophonic variation, anduses the various di-
acritics. Figure 4.8 summarizes a number of allophones of /t/; Figure 4.9
shows a few of the most commonly used IPA diacritics.

The relationship between a phoneme and its allophones is often cap-
tured by writing aphonological rule. Here is the phonological rule for den-
talization in the traditional notation of Chomsky and Halle(1968):/t/! [t�] / T (4.1)

In this notation, the surface allophone appears to the rightof the arrow,
and the phonetic environment is indicated by the symbols surrounding the
underbar ( ). These rules resemble the rules of two-level morphology of
Chapter 3 but since they don’t use multiple types of rewrite arrows, this rule
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Phone Environment Example IPA[th] in initial position toucan [thukhæn][t] after [s] or in reduced syllables starfish [stArf1S][P] word-finally or after vowel before [n] kitten [khIPn][Pt] sometimes word-finally cat [khæPt][R] between vowels buttercup [b2RÄkh2p][t^] before consonants or word-finally fruitcake [frut^kheIk][t�] before dental consonants ([T]) eighth [eIt�T][] sometimes word-finally past [pæs]
Figure 4.8 Some allophones of /t/ in General American English

is ambiguous between an obligatory or optional rule. Here isa version of the
flapping rule:��

t
d

��! [R] / V́ V (4.2)

Diacritics Suprasegmentals� Voiceless [a�] " Primary stress ["pu.m@]h Aspirated [ph] � Secondary stress ["foUR@�græf]" Syllabic [l"] : Long [a:]� Nasalized [�æ] ; Half long [a;]^ Unreleased [t^] . Syllable break ["pu.m@]� Dental [t�]
Figure 4.9 Some of the IPA diacritics and symbols for suprasegmentals.

4.3 PHONOLOGICAL RULES AND TRANSDUCERS

Chapter 3 showed that spelling rules can be implemented by transducers.
Phonological rules can be implemented as transducers in thesame way;
indeed the original work by Johnson (1972) and Kaplan and Kay(1981)
on finite-state models was based on phonological rules rather than spelling
rules. There are a number of different models ofcomputational phonol-
ogy that use finite automata in various ways to realize phonological rules.
We will describe thetwo-level morphologyof Koskenniemi (1983) used in
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Chapter 3, but the interested reader should be aware of otherrecent models.2

While Chapter 3 gave examples of two-level rules, it did not talk about the
motivation for these rules, and the differences between traditional ordered
rules and two-level rules. We will begin with this comparison.

As a first example, Figure 4.10 shows a transducer which models the
application of the simplified flapping rule in (4.3):/t/! [R] / V́ V (4.3)

210

3other

other

V:@

V:@

V:@

V:@

t:dx

t

t

t

V:@

V:@
other

Figure 4.10 Transducer for English Flapping: ARPAbet ‘dx’ indicates a
flap, and the ‘other’ symbol means ‘any feasible pair not usedelsewhere in the
transducer’. ‘@’ means ‘any symbol not used elsewhere on anyarc’.

The transducer in Figure 4.10 accepts any string in which flaps occur
in the correct places (after a stressed vowel, before an unstressed vowel), and
rejects strings in which flapping doesn’t occur, or in which flapping occurs
in the wrong environment. Of course the factors that flappingare actually a
good deal more complicated, as we will see in Section 5.7.

In a traditional phonological system, many different phonological rules
apply between the lexical form and the surface form. Sometimes these rules
interact; the output from one rule affects the input to another rule. One way
to implement rule-interaction in a transducer system is to run transducers in
a cascade. Consider, for example, the rules that are needed to deal with the
phonological behavior of the English noun plural suffix-s. This suffix is

2 For example Bird and Ellison’s (1994) model of the multi-tier representations of autoseg-
mental phonology in which each phonological tier is represented by a finite-state automaton,
and autosegmental association by the synchronization of two automata.
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pronounced[1z] after the phones[s], [S], [z], or [Z] (sopeachesis pronounced[pitS1z], andfaxesis pronounced[fæks1z], [z] after voiced sounds (pigsis pro-
nounced[pIgz]), and[s] after unvoiced sounds (cats is pronounced[kæts]).
We model this variation by writing phonological rules for the realization of
the morpheme in different contexts. We first need to choose one of these
three forms (s, z, and 1z) as the ‘lexical’ pronunciation of the suffix; we
chosez only because it turns out to simplify rule writing. Next we write two
phonological rules. One, similar to the E-insertion spelling rule of page 77,
inserts a[1] after a morpheme-final sibilant and before the plural morpheme[z]. The other makes sure that the-s suffix is properly realized as[s] after
unvoiced consonants.

ε ! 1 / [+sibilant] ˆ z # (4.4)z ! s / [-voice] ˆ # (4.5)

These two rules must beordered; rule (4.4) must apply before (4.5).
This is because the environment of (4.4) includesz, and the rule (4.5) changesz. Consider running both rules on the lexical formfoxconcatenated with the
plural -s:

Lexical form: fAks�z
(4.4) applies: fAks�1z
(4.5) doesn’t apply:fAks�1z

If the devoicing rule (4.5) was ordered first, we would get thewrong
result (what would this incorrect result be?). This situation, in which one
rule destroys the environment for another, is calledbleeding:3

Lexical form: fAks�z
(4.5) applies: fAks�s
(4.4) doesn’t apply:fAks�s

As was suggested in Chapter 3, each of these rules can be represented
by a transducer. Since the rules are ordered, the transducers would also need
to be ordered. For example if they are placed in acascade, the output of the
first transducer would feed the input of the second transducer.

Many rules can be cascaded together this way. As Chapter 3 discussed,
running a cascade, particularly one with many levels, can beunwieldy, and

3 If we had chosen to represent the lexical pronunciation of-sas[s] rather than[z], we would
have written the rule inversely to voice the-s after voiced sounds, but the rules would still
need to be ordered; the ordering would simply flip.
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so transducer cascades are usually replaced with a single more complex
transducer bycomposingthe individual transducers.

Koskenniemi’s method oftwo-level morphology that was sketchily
introduced in Chapter 3 is another way to solve the problem ofrule ordering.
Koskenniemi (1983) observed that most phonological rules in a grammar
are independent of one another; that feeding and bleeding relations between
rules are not the norm.4 Since this is the case, Koskenniemi proposed that
phonological rules be run in parallel rather than in series.The cases where
there is rule interaction (feeding or bleeding) we deal withby slightly modi-
fying some rules. Koskenniemi’s two-level rules can be thought of as a way
of expressingdeclarative constraintson the well-formedness of the lexical-
surface mapping.

Two-level rules also differ from traditional phonologicalrules by ex-
plicitly coding when they are obligatory or optional, by using four differing
rule operators; the, rule corresponds to traditionalobligatory phonolog-
ical rules, while the) rule implementsoptional rules:

Rule type Interpretation
a:b ( c d a is alwaysrealized asb in the contextc d
a:b ) c d a may be realized asb only in the contextc d
a:b , c d a must be realized asb in contextc d and nowhere else
a:b /( c d a is never realized asb in the contextc d

The most important intuition of the two-level rules, and themechanism
that lets them avoiding feeding and bleeding, is their ability to represent
constraints ontwo levels. This is based on the use of the colon (‘:’), which
was touched in very briefly in Chapter 3. The symbola:b means a lexical
a that maps to a surfaceb. Thusa:b , :c meansa is realized asb
after asurface c. By contrasta:b , c: means thata is realized asb
after alexical c. As discussed in Chapter 3, the symbolc with no colon is
equivalent toc:c that means a lexicalc which maps to a surfacec.

Figure 4.11 shows an intuition for how the two-level approach avoids
ordering for the1-insertion andz-devoicing rules. The idea is that thez-
devoicing rule maps alexical z-insertion to asurfaces and the1 rule refers
to thelexical z:

The two-level rules that model this constraint are shown in (4.6) and
(4.7):

ε : 1 , [+sibilant]: ˆ z: # (4.6)
4 Feeding is a situation in which one rules creates the environment for another rule and so
must be run beforehand.
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[+sib] z

s

^ lexical level

surface levelix

[−voice]

Figure 4.11 The constraints for the1-insertion andz-devoicing rules both
refer to alexical z, not asurfaces.z : s , [-voice]: ˆ # (4.7)

As Chapter 3 discussed, there are compilation algorithms for creating
automata from rules. Kaplan and Kay (1994) give the general derivation of
these algorithms, and Antworth (1990) gives one that is specific to two-level
rules. The automata corresponding to the two rules are shownin Figure 4.12
and Figure 4.13. Figure 4.12 is based on Figure 3.14 of Chapter 3; see page
78 for a reminder of how this automaton works. Note in Figure 4.12 that
the plural morpheme is represented byz:, indicating that the constraint is
expressed about an lexical rather than surfacez.

0 2 3 41
ε^: ε

5other
#

##, other

#, other

^: ε

ε other^:

[+sib]

[+sib]
[+sib]

:ix z:
z:

s, sh

Figure 4.12 The transducer for the1-insertion rule 4.4. The rule can be
readwhenever a morpheme ends in a sibilant, and the following morpheme is
z, insert[1].

Figure 4.14 shows the two automata run in parallel on the input [fAks�z]
(the figure uses the ARPAbet notation [f aa k s ˆ z]). Note that both the au-
tomata assuming the default mapping ˆ:ε to remove the morpheme boundary,
and that both automata end in an accepting state.
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0 2 31
^: ε

##, other

z, sh#, other

:[−vce]

:[−vce]
ε^:

z:

otherz, #, 

Figure 4.13 The transducer for thez-devoicing rule 4.5. This rule might be
summarizedDevoice the morphemez if it follows a morpheme-final voiceless
consonant.

Surface f

fIntermediate

0

00

00

aa k

aa k

0

^ #

0

04

0

s z

s ix z

0 2 3

1 1 1 2 0z−devoicing

ix−insertion

Figure 4.14 The transducer for the1-insertion rule 4.4 and thez-devoicing
rule 4.5 run in parallel.

4.4 ADVANCED ISSUES INCOMPUTATIONAL PHONOLOGY

Harmony

Rules like flapping,1-insertion, andz-devoicing are relatively simple as pho-
nological rules go. In this section we turn to the use of the two-level or finite-
state model of phonology to model more sophisticated phenomena; this sec-
tion will be easier to follow if the reader has some knowledgeof phonology.
The Yawelmani dialect of Yokuts is a Native America languagespoken in
California with a complex phonological system. In particular, there are three
phonological rules related to the realization of vowels that had to be ordered
in traditional phonology, and whose interaction thus demonstrates a compli-
cated use of finite-state phonology. These rules were first drawn up in the
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traditional Chomsky and Halle (1968) format by Kisseberth (1969) follow-
ing the field work of Newman (1944).

First, Yokuts (like many other languages including for example Turk-
ish and Hungarian) has a phonological phenomenon calledvowel harmony.VOWEL

HARMONY

Vowel harmony is a process in which a vowel changes its form tolook like
a neighboring vowel. In Yokuts, a suffix vowel changes its form to agree
in backness and roundness with the preceding stem vowel. That is, a front
vowel like /i/ will appear as a backvowel[u] if the stem vowel is/u/ (ex-
amples are taken from Cole and Kisseberth (1995):5

Lexical Surface Glossdub+hin ! dubhun ‘tangles, non-future’xil+hin ! xilhin ‘leads by the hand, non-future’bok'+al ! bok'ol ‘might eat’xat'+al ! xat'al ‘might find’

This Harmony rule has another constraint: it only applies ifthe suffix
vowel and the stem vowel are of the same height. Thus/u/ and/i/ are both
high, while/o/ and/a/ are both low.

The second relevant rule, Lowering, causes long high vowelsto be-
come low; thus/u:/ becomes[o:] in the first example below:

Lexical Surface GlossPu:t'+it ! Po:t'ut ‘steal, passive aorist’mi:k'+it ! me:k'+it ‘swallow, passive aorist’

The third rule, Shortening, shortens long vowels if they occur in closed
syllables:

Lexical Surfaces:ap+hin ! saphinsudu:k+hin ! sudokhun
The Yokuts rules must be ordered, just as the1-insertion andz-devoicing

rules had to be ordered. Harmony must be ordered before Lowering because
the/u:/ in the lexical form/Pu:t'+it/ causes the/i/ to become[u] before it
lowers in the surface form[Po:t'ut]. Lowering must be ordered before Short-
ening because the/u:/ in /sudu:k+hin/ lowers to[o]; if it was ordered after
shortening it would appear on the surface as[u].

Goldsmith (1993) and Lakoff (1993) independently observedthat the
Yokuts data could be modeled by something like a transducer;Karttunen
5 For purposes of simplifying the explanation, this account ignores some parts of the system
such as vowel underspecification (Archangeli, 1984).
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(1998) extended the argument, showing that the Goldsmith and Lakoff con-
straints could be represented either as a cascade of 3 rules in series, or in
the two-level formalism as 3 rules in parallel; Figure 4.15 shows the two
architectures. Just as in the two-level examples presentedearlier, the rules
work by referring sometimes to the lexical context, sometimes to the surface
context; writing the rules is left as Exercise 4.10 for the reader.

Lexical

t

? u: t + h i n

Rounding

Lowering

Shortening

Surface

Rounding Lowering Shortening

? t

? u: t + h i n

? o h u n o h u n

a) Cascade of rules. b) Parallel two−level rules.

Figure 4.15 Combining the rounding, lowering, and shortening rules for
Yawelmani Yokuts.

Templatic Morphology

Finite-state models of phonology/morphology have also been proposed for
the templatic (non-concatenative) morphology (discussedon page 60) com-
mon in Semitic languages like Arabic, Hebrew, and Syriac. McCarthy (1981)
proposed that this kind of morphology could be modeled by using different
levels of representation that Goldsmith (1976) had calledtiers. Kay (1987) TIERS

proposed a computational model of these tiers via a special transducer which
reads four tapes instead of two, as in Figure 4.16:

The tricky part here is designing a machine which aligns the various
strings on the tapes in the correct way; Kay proposed that thebinyan tape
could act as a sort of guide for alignment. Kay’s intuition has led to a number
of more fully-worked-out finite-state models of Semitic morphology such as
Beesley’s (1996) model for Arabic and Kiraz’s (1997) model for Syriac.

The more recent work of Kornai (1991) and Bird and Ellison (1994)
showed how one-tape automata (i.e. finite-state automata rather than 4-tape
or even 2-tape transducers) could be used to model templaticmorphology
and other kinds of phenomena that are handeled with the tier-basedautoseg-
mental representations of Goldsmith (1976). AUTOSEG­

MENTAL
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lexical tape

consonantal root tape

binyan tape

vocalic morph. tape

k

a k t a ib b

t b

V C C V C V C

a i

Figure 4.16 A finite-state model of templatic (‘non-concatenative’) mor-
phology. From Kay (1987).

Optimality Theory

In a traditional phonological derivation, we are given given an underlying
lexical form and a surface form. The phonological system then consists
of one component: a sequence of rules which map the underlying form to
the surface form.Optimality Theory (OT) (Prince and Smolensky, 1993)OPTIMALITY

THEORY

OT offers an alternative way of viewing phonological derivation, based on two
functions (GEN and EVAL) and a set of ranked violable constraints (CON).
Given an underlying form, the GEN function produces all imaginable surface
forms, even those which couldn’t possibly be a legal surfaceform for the
input. The EVAL function then applies each constraint in CONto these
surface forms in order of constraint rank. The surface form which best meets
the constraints is chosen.

A constraint in OT represents a wellformedness constraint on the sur-
face form, such as a phonotactic constraint on what segmentscan follow each
other, or a constraint on what syllable structures are allowed. A constraint
can also check howfaithful the surface form is to the underlying form.FAITHFUL

Let’s turn to our favorite complicated language, Yawelmani, for an ex-
ample.6 In addition to the interesting vowel harmony phenomena discussed
above, Yawelmani has a phonotactic constraints that rules out sequences of
consonants. In particular three consonants in a row (CCC) are not allowed
to occur in a surface word. Sometimes, however, a word contains two con-
secutive morphemes such that the first one ends in two consonants and the
second one starts with one consonant (or vice versa). What does the lan-

6 The following explication of OT via the Yawelmani example draws heavily from
Archangeli (1997) and a lecture by Jennifer Cole at the 1999 LSA Linguistic Institute.
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guage do to solve this problem? It turns out that Yawelmani either deletes
one of the consonants or inserts a vowel in between.

For example, if a stem ends in a C, and its suffix starts with CC,the
first C of the suffix is deleted (‘+’ here means a morpheme boundary):

C-deletion C! ε / C + C (4.8)

Here is an example where the CCVC ‘passive consequent adjunctive’ mor-
phemehne:l (actually the underlying form is/hnil/) drops the initial C if
the previous morpheme ends in two consonants (and an examplewhere it
doesn’t, for comparison):

underlying
morphemes glossdiyel-ne:l-aw ‘guard - passive consequent adjunctive - locative’cawa-hne:l-aw ‘shout - passive consequent adjunctive - locative’

If a stem ends in CC and the suffix starts with C, the language instead
inserts a vowel to break up the first two consonants:

V-insertion ε ! V / C C +C (4.9)

Here are some examples in which ani is inserted into the rootsPilk- ‘sing’
and the rootslogw- ‘pulverize’ only when they are followed by a C-initial
suffix like -hin, ‘past’, not a V-initial suffix like-en, ‘future’:

surface form glossPilik-hin ‘sang’Pilken ‘will sing’logiwhin ‘pulverized’logwen ‘will pulverize’

Kisseberth (1970) suggested that it was not a coincidence that Yawel-
mani had these particular two rules (and for that matter other related deletion
rules that we haven’t presented). He noticed that these rules were function-
ally related; in particular, they all are ways of avoiding 3 consonants in a row.
Another way of stating this generalization is to talk about syllable structure.
Yawelmani syllables are only allowed to be of the form CVC or CV (where
C means a consonant and V means a vowel). We say that languageslike
Yawelmani don’t allowcomplex onsetsor complex codas. From the point COMPLEX

ONSET

COMPLEX
CODAof view of syllabification, then, these insertions and deletions all happen so

as to allow Yawelmani words to be properly syllabified. SinceCVCC sylla-
bles aren’t allowed on the surface, CVCC roots must beresyllabified when RESYLLABI­

FIED

they appear on the surface. For example, here are the syllabifications of the
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Yawelmani words we have discussed and some others; note, forexample,
that the surface syllabification of the CVCC syllables movesthe final conso-
nant to the beginning of the next syllable:

underlying surface gloss
morphemes syllabificationPilk-en Pil.ken ‘will sing’logw-en log.wen ‘will pulverize’logw-hin lo.giw.hin ‘will pulverize’xat-en xa.ten ‘will eat’diyel-hnil-aw di.yel.ne:.law ‘ask - pass. cons. adjunct. - locative’

Here’s where Optimality Theory comes in. The basic idea in Optimal-
ity Theory is that the language has various constraints on things like syllable
structure. These constraints generally apply to the surface form One such
constraint, *COMPLEX, says ‘No complex onsets or codas’. Another class
of constraints requires the surface form to be identical to (faithful to) the
underlying form. Thus FAITH V says ‘Don’t delete or insert vowels’ and
FAITH C says ‘Don’t delete or insert consonants’. Given an underlying form,
the GEN function produces all possible surface forms (i.e. every possible
insertion and deletion of segments with every possible syllabification) and
they are ranked by the EVAL function using these constraints. Figure 4.17
shows the architecture.

/?ilk−hin/

[?i.lik.hin]

?ilk.hin ?i.lik.hin?il.khin ?il.hin ?ak.pid

GEN

EVAL (*COMPLEX, FAITHC, FAITHV)

Figure 4.17 The architecture of a derivation in Optimality Theory (after
Archangeli (1997)).

The EVAL function works by applying each constraint in ranked order;
the optimal candidate is one which either violates no constraints, or violates
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less of them than all the other candidates. This evaluation is usually shown
on atableau (plural tableaux). The top left-hand cell shows the input, theTABLEAU

constraints are listed in order of rank across the top row, and the possible
outputs along the left-most column. Although there are an infinite number
of candidates, it is traditional to show only the ones which are ‘close’; in
the tableau below we have shown the outputPak.pid just to make it clear
that even very different surface forms are to be included. Ifa form violates
a constraint, the relevant cell contains* ; a !* indicates the fatal violation *

!*which causes a candidate to be eliminated. Cells for constraints which are
irrelevant (since a higher-level constraint is already violated) are shaded.

/Pilk-hin/ *COMPLEX FAITH C FAITH VPilk.hin *!Pil.khin *!Pil.hin *!
☞ Pi.lik.hin *Pak.pid *!

One appeal of Optimality Theoretic derivations is that the constraints
are presumed to be cross-linguistic generalizations. Thatis all languages are
presumed to have some version of faithfulness, some preference for simple
syllables, and so on. Languages differ in how they rank the constraints; thus
English, presumably, ranks FAITH C higher than *COMPLEX. (How do we
know this?)

Can a derivation in Optimality Theory be implemented by finite-state
transducers? Frank and Satta (1999), following the foundational work of
Ellison (1994), showed that (1) if GEN is a regular relation (for example
assuming the input doesn’t contain context-free trees of some sort), and (2)
if the number of allowed violations of any constraint has some finite bound,
then an OT derivation can be computed by finite-state means. This second
constraint is relevant because of a property of OT that we haven’t mentioned:
if two candidates violate exactly the same number of constraints, the winning
candidate is the one which has the smallest number of violations of the rele-
vant constraint.

One way to implement OT as a finite-state system was worked outby
Karttunen (1998), following the above-mentioned work and that of Ham-

mond (1997). In Karttunen’s model, GEN is implemented as a finite-state
transducer which is given an underlying form and produces a set of candi-
date forms. For example for the syllabification example above, GEN would
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generate all strings that are variants of the input with consonant deletions or
vowel insertions, and their syllabifications.

Each constraint is implemented as a filter transducer which lets pass
only strings which meet the constraint. For legal strings, the transducer thus
acts as the identity mapping. For example, *COMPLEX would be imple-
mented via a transducer that mapped any input string to itself, unless the
input string had two consonants in the onset or coda, in whichcase it would
be mapped to null.

The constraints can then be placed in a cascade, in which higher-ranked
constraints are simply run first, as suggested in Figure 4.18.

GEN

*COMPLEX

FAITHC

FAITHV

Figure 4.18 Version #1 (‘merciless cascade’) of Karttunen’s finite-state
cascade implementation of OT.

There is one crucial flaw with the cascade model in Figure 4.18. Recall
that the constraints-transducers filter out any candidate which violates a con-
straint. But in many derivations, include the proper derivation of Pi.lik.hin,
even the optimal form still violates a constraint. The cascade in Figure 4.17
would incorrectly filter it out, leaving no surface form at all! Frank and Satta
(1999) and Hammond (1997) both point out that it is essentialto only en-
force a constraint if it does not reduce the candidate set to zero. Karttunen
(1998) formalizes this intuition with thelenient compositionoperator. Le-

LENIENT
COMPOSI­
TION

nient composition is a combination of regular composition and an operation
calledpriority union . The basic idea is that if any candidates meet the con-
straint these candidates will be passed through the filter asusual. If no output
meets the constraint, lenient composition retainsall of the candidates. Fig-
ure 4.19 shows the general idea; the interested reader should see Karttunen
(1998) for the details. Also see Tesar (1995, 1996), Fosler (1996), and Eisner
(1997) for discussions of other computational issues in OT.
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GEN

*COMPLEX

FAITHC

FAITHV

/?ilk−hin/

[?i.lik.hin]

?ilk.hin ?i.lik.hin?il.khin ?il.hin ?ak.pid

GEN

*COMPLEX

?i.lik.hin
FAITHC

?i.lik.hin?il.hin ?ak.pid

FAITHV

L

L

L

Figure 4.19 Version #2 (‘lenient cascade’) of Karttunen’s finite-statecas-
cade implementation of OT, showing a visualization of the candidate popula-
tions that would be passed through each FST constraint.

4.5 MACHINE LEARNING OF PHONOLOGICAL RULES

The task of amachine learningsystem is to automatically induce a modelMACHINE
LEARNING

for some domain, given some data from the domain and, sometimes, other
information as well. Thus a system to learn phonological rules would be
given at least a set of (surface forms of) words to induce from. A supervised SUPERVISED

algorithm is one which is given the correct answers for some of this data,
using these answers to induce a model which can generalize tonew data it
hasn’t seen before. Anunsupervisedalgorithm does this purely from theUNSUPER­

VISED

data. While unsupervised algorithms don’t get to see the correct labels for
the classifications, they can be given hints about the natureof the rules or
models they should be forming. For example, the knowledge that the models
will be in the form of automata is itself a kind of hint. Such hints are called
a learning bias. LEARNING

BIAS

This section gives a very brief overview of some models of unsuper-
vised machine learning of phonological rules; more detailsabout machine
learning algorithms will be presented throughout the book.

Ellison (1992) showed that concepts like the consonant and vowel dis-
tinction, the syllable structure of a language, and harmonyrelationships
could be learned by a system based on choosing the model from the set
of potential models which is the simplest. Simplicity can bemeasured by
choosing the model with the minimum coding length, or the highest proba-
bility (we will define these terms in detail in Chapter 6). Daelemanset al.
(1994) used the Instance-Based Generalization algorithm (Aha et al., 1991)
to learn stress rule for Dutch; the algorithm is a supervisedone which is
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given a number of words together with their stress patterns,and which in-
duces generalizations about the mapping from the sequencesof light and
heavy syllable type in the word (light syllables have no codaconsonant;
heavy syllables have one) to the stress pattern. Tesar and Smolensky (1993)
show that a system which is given Optimality Theory constraints but not
their ranking can learn the ranking from data via a simple greedy algorithm.

Johnson (1984) gives one of the first computational algorithms for
phonological rule induction. His algorithm works for rulesof the form

(4.10) a! b=C
whereC is the feature matrix of the segments arounda. Johnson’s algorithm
sets up a system of constraint equations whichC must satisfy, by consider-
ing both the positive contexts, i.e., all the contextsCi in which ab occurs on
the surface, as well as all the negative contextsCj in which ana occurs on
the surface. Touretzkyet al. (1990) extended Johnson’s insight by using the
version spacesalgorithm of Mitchell (1981) to induce phonological rules in
theirMany Mapsarchitecture, which is similar to two-level phonology. Like
Johnson’s, their system looks at the underlying and surfacerealizations of
single segments. For each segment, the system uses the version space algo-
rithm to search for the proper statement of the context. The model also has a
separate algorithm which handles harmonic effects by looking for multiple
segmental changes in the same word, and is more general than Johnson’s in
dealing with epenthesis and deletion rules.

The algorithm of Gildea and Jurafsky (1996) was designed to induce
transducers representing two-level rules of the type we have discussed ear-
lier. Like the algorithm of Touretzkyet al. (1990), Gildea and Jurafsky’s
algorithm was given sets of pairings of underlying and surface forms. The
algorithm was based on the OSTIA (Oncinaet al., 1993) algorithm, which is
a general learning algorithm for a subtype of finite-state transducers called
subsequential transducers. By itself, the OSTIA algorithm was too general
to learn phonological transducers, even given a large corpus of underlying-
form/surface-form pairs. Gildea and Jurafsky then augmented the domain-
independent OSTIA system with three kinds of learning biases which are
specific to natural language phonology; the main two areFaithfulness (un-
derlying segments tend to be realized similarly on the surface), andCom-
munity (similar segments behave similarly). The resulting systemwas able
to learn transducers for flapping in American English, or German consonant
devoicing.

Finally, many learning algorithms for phonology are probabilistic. For
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example Riley (1991) and Withgott and Chen (1993) proposed adecision-
tree approach to segmental mapping. A decision tree is induced for each
segment, classifying possible realizations of the segmentin terms of contex-
tual factors such as stress and the surrounding segments. Decision trees and
probabilistic algorithms in general will be defined in Chapter 5 and Chap-
ter 6.

4.6 MAPPING TEXT TO PHONES FORTTS

Dearest creature in Creation
Studying English pronunciation
I will teach you in my verse
Sounds like corpse, corps, horse and worse.
It will keep you, Susy, busy,
Make your head with heat grow dizzy
. . .
River, rival; tomb, bomb, comb;
Doll and roll, and some and home.
Stranger does not rime with anger
Neither does devour with clangour.
. . .

G.N. Trenite (1870-1946)The Chaos, reprinted
in Witten (1982).

Now that we have learned the basic inventory of phones in English and
seen how to model phonological rules, we are ready to study the problem of
mapping from an orthographic or text word to its pronunciation.

Pronunciation dictionaries

An important component of this mapping is apronunciation dictionary .
These dictionaries are actually used in both ASR and TTS systems, although
because of the different needs of these two areas the contents of the dictio-
naries are somewhat different.

The simplest pronunciation dictionaries just have a list ofwords and
their pronunciations:
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Word Pronunciation Word Pronunciation
cat [kæt] goose [gus]
cats [kæts] geese [gis]
pig [pIg] hedgehog ["hEdZ.hOg]
pigs [pIgz] hedgehogs["hEdZ.hOgz]
fox [fAx]
foxes ["fAk.sIz]

Three large, commonly-used, on-line pronunciation dictionaries in this
format are PRONLEX, CMUdict, and CELEX. These are used for speech
recognition and can also be adapted for use in speech synthesis. The PRON-
LEX dictionary (LDC, 1995) was designed for speech recognition applica-
tions and contains pronunciations for 90,694 wordforms. Itcovers all the
words used in many years of the Wall Street Journal, as well asthe Switch-
board Corpus. The CMU Pronouncing Dictionary was also developed
for ASR purposes and has pronunciations for about 100,000 wordforms.
The CELEX dictionary (Celex, 1993) includes all the words inthe Oxford
Advanced Learner’s Dictionary (1974) (41,000 lemmata) andthe Longman
Dictionary of Contemporary English (1978) (53,000 lemmata), in total it has
pronunciations for 160,595 wordforms. Its pronunciationsare British while
the other two are American. Each dictionary uses a differentphone set; the
CMU and PRONLEX phonesets are derived from the ARPAbet, while the
CELEX dictionary is derived from the IPA. All three represent three levels
of stress: primary stress, secondary stress, and no stress.Figure 4.20 shows
the pronunciation of the wordarmadillo in all three dictionaries.

Dictionary Pronunciation IPA Version

Pronlex +arm.xd’Il.o [�Arm@"dIloU]
CMU AA2 R M AH0 D IH1 L OW0 [�Arm2"dIloU]
CELEX ”#-m@-’dI-l5 [�A:.m@."dI.l@U]
Figure 4.20 The pronunciation of the wordarmadillo in three dictionaries.
Rather than explain special symbols we have given an IPA equivalent for each
pronunciation. The CMU dictionary represents unstressed vowels ([@], [1], etc.)
by giving a 0 stress level to the vowel (we represented this byunderlining in
the IPA form). Note the British r-dropping and use of the[@U] rather than[oU]
vowel in the CELEX pronunciation.

Often two distinct words are spelled the same (they arehomographs)
but pronounced differently. For example the verbwind (‘You need to wind
this up more neatly’) is pronounced[waInd] while the nounwind (‘blow,
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blow, thou winter wind’) is pronounced[wInd]. This is essential for TTS
applications (since in a given context the system needs to say one or the
other) but for some reason is usually ignored in current speech recognition
systems. Printed pronunciation dictionaries give distinct pronunciations for
each part of speech; CELEX does as well. Since they were designed for
ASR, Pronlex and CMU, although they give two pronunciationsfor the form
wind, don’t specify which one is used for which part of speech.

Dictionaries often don’t include many proper names. This isa seri-
ous problem for many applications; Liberman and Church (1992) report that
21% of the word tokens in their 33 million word 1988 AP newswire cor-
pus were names. Furthermore, they report that a list obtained in 1987 from
the Donnelly marketing organization contains 1.5 million names (covering
72 million households in the United States). But only about 1000 of the
52477 lemmas in CELEX (which is based on traditional dictionaries) are
proper names. By contrast Pronlex includes 20,000 names; this is still only
a small fraction of the 1.5 million. Very few dictionaries give pronunciations
for entries likeDr., which as Liberman and Church (1992) point out can be
“doctor” or “drive”, or 2/3, which can be “two thirds” or “February third” or
“two slash three”.

No dictionaries currently have good models for the pronunciation of
function words (and, I, a, the, of, etc). This is because the variation in these
words due to phonetic context is so great. Usually the dictionaries include
some simple baseform (such as[Di] for the and use other algorithms to de-
rive the variation due to context; Chapter 5 will treat the issue of modeling
contextual pronunciation variation for words of this sort.

One significant difference between TTS and ASR dictionariesis that
TTS dictionaries do not have to represent dialectal variation; thus where
a very accurate ASR dictionary needs to represent both pronunciations of
eitherandtomato, a TTS dictionary can choose one.

Beyond Dictionary Lookup: Text Analysis

Mapping from text to phones relies on the kind of pronunciation dictionaries
we talked about in the last section. As we suggested before, one way to map
text-to-phones would be to look up each word in a pronunciation dictionary
and read the string of phones out of the dictionary. This method would work
fine for any word that we can put in the dictionary in advance. But as we
saw in Chapter 3, it’s not possible to represent every word inEnglish (or any
other language) in advance. Both speech synthesis and speech recognition
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systems need to be able to guess at the pronunciation of wordsthat are not
in their dictionary. This section will first examine the kinds of words that
are likely to be missing in a pronunciation dictionary, and then show how
the finite-state transducers of Chapter 3 can be used to modelthe basic task
of text-to-phones. Chapter 5 will introduce variation in pronunciation and
introduce probabilistic techniques for modeling it.

Three of the most important cases where we cannot rely on a word
dictionary involvenames, morphological productivity , andnumbers. As
a brief example, we arbitrarily selected a brief (561 word) movie review that
appeared in today’s issue of the New York Times. The review, of Vincent
Gallo’s ”Buffalo ’66”, was written by Janet Maslin. Here’s the beginning of
the article:

In Vincent Gallo’s “Buffalo ’66,” Billy Brown (Gallo) steals a
blond kewpie doll named Layla (Christina Ricci) out of her tap
dancing class and browbeats her into masquerading as his wife at
a dinner with his parents. Billy hectors, cajoles and tries to bribe
Layla. (“You can eat all the food you want. Just make me look
good.”) He threatens both that he will kill her and that he won’t
be her best friend. He bullies her outrageously but with such
crazy brio and jittery persistence that Layla falls for him.Gallo’s
film, a deadpan original mixing pathos with bravado, works on
its audience in much the same way.

We then took two large commonly-used on-line pronunciationdictionaries;
the PRONLEX dictionary, that contains pronunciations for 90,694 word-
forms and includes coverage of many years of the Wall Street Journal, as
well as the Switchboard Corpus, and the larger CELEX dictionary, which
has pronunciations for 160,595 wordforms. The combined dictionaries have
approximately 194,000 pronunciations. Of the 561 words in the movie re-
view, 16 (3%) did not have pronunciations in these two dictionaries (not
counting two hyphenated words,baby-blueand hollow-eyed). Here they
are:

Names Inflected Names Numbers Other
Aki Gazzara Gallo’s ’66 c’mere
Anjelica Kaurismaki indie
Arquette Kusturica kewpie
Buscemi Layla sexpot
Gallo Rosanna

Some of these missing words can be found by increasing the dictionary
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size (for example Wells’s (1990) definitive (but not on-line) pronunciation
dictionary of English does havesexpotand kewpie). But the rest need to
generated on-line.

Names are a large problem for pronunciation dictionaries. It is diffi-
cult or impossible to list in advance all proper names in English; furthermore
they may come from any language, and may have variable spellings. Most
potential applications for TTS or ASR involve names; for example names
are essentially in telephony applications (directory assistance, call routing).
Corporate names are important in many applications and are created con-
stantly (CoComp, Intel, Cisco). Medical speech applications (such as tran-
scriptions of doctor-patient interviews) require pronunciations of names of
pharmaceuticals; there are some off-line medical pronunciation dictionaries
but they are known to be extremely inaccurate (Markey and Ward, 1997).
Recall the figure of 1.5 million names mentioned above, and Liberman and
Church’s (1992) finding that 21% of the word tokens in their 33million word
1988 AP newswire corpus were names.

Morphology is a particular problem for many languages otherthan En-
glish. For languages with very productive morphology it is computationally
infeasible to represent every possible word; recall this Turkish example:

(4.11) uygarlaştıramadıklarımızdanmışsınızcasına

uygar
civilized

+laş
+BEC

+tır
+CAUS

+ama
+NEGABLE

+dık
+PPART

+lar
+PL

+ımız
+P1PL

+dan
+ABL

+mış
+PAST

+sınız
+2PL

+casına
+AsIf

‘(behaving) as if you are among those whom we could not
civilize/cause to become civilized’

Even a language as similar to English as German has greater ability to
create words; Sproatet al.(1998) note the spontaneously created German ex-
ampleUnerfindlichkeitsunterstellung(‘allegation of incomprehensibility’).

But even in English, morphologically simple though it is, morphologi-
cal knowledge is necessary for pronunciation modeling. Forexample names
and acronyms are often inflected (Gallo’s, IBM’s, DATs, Syntex’s) as are
new words (faxes, indies). Furthermore, we can’t just ‘add s’ on to the pro-
nunciation of the uninflected forms, because as the last section showed, the
possessive-’s and plural-s suffix in English are pronounced differently in
different contexts;Syntex’sis pronounced[sIntEks1z], faxesis pronounced[fæks1z], IBM’s is pronounced[aIbijEmz], andDATsis pronounced[dæts].
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Finally, pronouncing numbers is a particularly difficult problem. The
’66 in Buffalo ’66 is pronounced[sIkstisIks] not [sIkssIks]. The most natural
way to pronounce the phone number ‘947-2020’ is probably ‘nine’-‘four’-
‘seven’-‘twenty’-‘twenty’ rather than ‘nine’-‘four’-‘seven’-‘two’-‘zero’-‘two’-
‘zero’. Liberman and Church (1992) note that there are five main ways to
pronounce a string of digits (although others are possible):� Serial: each digit is pronounced separately —8765is “eight seven six

five”� Combined: the digit string is pronounced as a single integer, with all
position labels read out — “eight thousand seven hundred sixty five”� Paired: each pair of digits is pronounced as an integer; if there is an
odd number of digits the first one is pronounced by itself — “eighty-
seven sixty-five”.� Hundreds: strings of four digits can be pronounced as counts of hun-
dreds — “eighty-seven hundred (and) sixty-five”� Trailing Unit: strings than end in zeros are pronounced serially until
the last nonzero digit, which is pronounced followed by the appropriate
unit — 8765000is “eight seven six five thousand”.

Pronunciation of numbers and these five methods are discussed further
in Exercises 4.5 and 4.6.

An FST-based pronunciation lexicon

Early work in pronunciation modeling for text-to-speech systems (such as
the seminal MITalk system Allenet al. (1987)) relied heavily onletter-to-
sound rules. Each rule specified how a letter or combination of letters wasLETTER­TO­

SOUND

mapped to phones; here is a fragment of such a rule-base from Witten (1982):

Fragment Pronunciation
-p- [p]
-ph- [f]
-phe- [fi]
-phes- [fiz]
-place- [pleIs]
-placi- [pleIsi]
-plement- [plImEnt]

Such systems consisted of a long list of such rules and a very small dic-
tionary of exceptions (often function words such asa, are, as, both, do, does,
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etc.). More recent systems have completely inverted the algorithm, relying
on very large dictionaries, with letter-to-sound rules only used for the small
number of words that are neither in the dictionary nor are morphological
variants of words in the dictionary. How can these large dictionaries be rep-
resented in a way that allows for morphological productivity? Luckily, these
morphological issues in pronunciation (adding inflectional suffixes, slight
pronunciation changes at the juncture of two morphemes, etc) are identical
to the morphological issues in spelling that we saw in Chapter 3. Indeed,
(Sproat, 1998b) and colleagues have worked out the use of transducers for
text-to-speech. We might break down their transducer approach into five
components:

1. an FST to represent the pronunciation of individual wordsand mor-
phemes in the lexicon

2. FSAs to represent the possible sequencing of morphemes
3. individual FSTs for each pronunciation rule (for exampleexpressing

the pronunciation of-s in different contexts
4. heuristics and letter-to-sound (LTS) rules/transducers used to model

the pronunciations of names and acronyms
5. default letter-to-sound rules/transducers for any other unknown words

We will limit our discussion here to the first four components; those
interested in letter-to-sound rules should see (Allenet al., 1987). These first
components will turn out to be simple extensions of the FST components
we saw in Chapter 3 and on page 109. The first is the representation of the
lexical base form of each word; recall that ‘base’ form meansthe uninflected
form of the word. The previous base forms were stored in orthographic
representation; we will need to augment each of them with thecorrect lexical
phonological representation. Figure 4.21 shows the original and the updated
lexical entries:

The second part of our FST system is the finite state machineryto
model morphology. We will give only one example: the nominalplural suf-
fix -s. Figure 4.22 in Chapter 3 shows the automaton for English plurals,
updated to handle pronunciation as well. The only change wasthe addi-
tion of the [s] pronunciation for the suffix, andε pronunciations for all the
morphological features.

We can compose the inflection FSA in Figure 4.22 with a transducer
implementing the baseform lexicon in Figure 4.21 to producean inflectionally-
enriched lexicon that has singular and plural nouns. The resulting mini-
lexicon is shown in Figure 4.23.
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Orthographic Lexicon Lexicon

Regular Nouns
cat cjk ajæ tjt
fox fjf ojA xjks
dog djd ojA gjg

Irregular Singular Nouns
goose gjg ooju sjs ejε

Irregular Plural Nouns
g o:e o:e s e gjg ooju:eeji sjs ejε
Figure 4.21 FST-based lexicon, extending the lexicon in the table on page
74 in Chapter 3. Each symbol in the lexicon is now a pair of symbols separated
by ’j’, one representing the ‘orthographic’ lexical entry and one the ‘phono-
logical’ lexical entry. The irregular pluralgeesealso pre-specifies the contents
of the intermediate tape ‘:eeji’.

7
irreg−sg−noun−form

irreg−pl−noun−form

+N|  :  |

+N|  :  |

+N|  :  |ε ε ε

ε ε ε

ε ε ε +PL|  :  |ε ε ε

+SG|  :  |ε ε ε

+SG|  :  |εε ε

+PL|  :s|zε

0

1

2

3

4

5

6

reg−noun−stem

Figure 4.22 FST for the nominal singular and plural inflection. The au-
tomaton adds the morphological features [+N], [+PL], and [+SG] at the lexi-
cal level where relevant, and also adds the plural suffixsjz (at the intermediate
level). We will discuss below why we represent the pronunciation of -s asz
rather thans.

The lexicon shown in Figure 4.23 has two levels, an underlying or
‘lexical’ level and an intermediate level. The only thing that remains is to add
transducers which apply spelling rules and pronunciation rules to map the
intermediate level into the surface level. These include the various spelling
rules discussed on page 76 and the pronunciation rules starting on page 104.

The lexicon and these phonological rules and the orthographic rules
from Chapter 3 can now be used to map between a lexical representation
(containing both orthographic and phonological strings) and a surface rep-
resentation (containing both orthographic and phonological strings). As we
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+PL|  :  |

ε+SG|  :  |

+N|  :  |ε ε ε

+N|  :  |ε ε ε

+N|  :  |ε ε ε ε ε ε

ε ε

+SG|  :  |ε ε ε

ε

0

f | f

x | ks

g | g

c | k a | ae t | t

g | g

g | g

s | s e | ε

e | εs | s

1 2

3 4

5 6
7 9

10 11 12 13 14

15
16 17 18 19

20

+PL|  :s|z

o | aa

oo | uw

p | p
i | ih

oo|uw :
   ee | iy

Figure 4.23 Mini-lexicon composing a transducer from the baseform lexi-
con of Figure 4.21 with the inflectional transducer of Figure4.22.

saw in Chapter 3, this mapping can be run from surface to lexical form, or
from lexical to surface form; Figure 4.24 shows the architecture. Recall that
the lexicon FST maps between the ‘lexical’ level, with its stems and mor-
phological features, and an ‘intermediate’ level which represents a simple
concatenation of morphemes. Then a host of FSTs, each representing either
a single spelling rule constraint or a single phonological constraint, all run
in parallel so as to map between this intermediate level and the surface level.
Each level has both orthographic and phonological representations. For text-
to-speech applications in which the input is a lexical form (for example for
text generation, where the system knows the lexical identity of the word, its
part of speech, its inflection, etc), the cascade of FSTs can map from lexi-
cal form to surface pronunciation. For text-to-speech applications in which
the input is a surface spelling (for example for ‘reading text out loud’ ap-
plications), the cascade of FSTs can map from surface orthographic form to
surface pronunciation via the underlying lexical form.

Finally let us say a few words about names and acronyms. Acronyms
can be spelled with or without periods (I.R.S.or IRS. Acronyms with pe-
riods are usually pronounced by spelling them out ([aIArEs]). Acronyms
that usually appear without periods (AIDS, ANSI, ASCAP) mayeither be
spelled out or pronounced as a word; so AIDS is usually pronounced the
same as the third-person form of the verbaid. Liberman and Church (1992)
suggest keeping a small dictionary of the acronyms that are pronounced as
words, and spelling out the rest. Their method for dealing with names begins
with a dictionary of the pronunciations of 50,000 names, andthen applies a
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Surface
f o x se

Lexical
f x +N +PL

f

FST1 FSTn

LEXICON−FST

Intermediate

f +N +PLa k s

f x ^ s

k s ^ z

orthographic and
  phonological  rules

f k s zaa ix

o

o

aa

Figure 4.24 Mapping between the lexicon and surface form for orthogra-
phy and phonology simultaneously. The system can be used to map from a
lexical entry to its surface pronunciation or from surface orthography to sur-
face pronunciation via the lexical entry.

small number of affix-stripping rules (akin to the Porter Stemmer of Chap-
ter 3), rhyming heuristics, and letter-to-sound rules to increase the coverage.
Liberman and Church (1992) took the most frequent quarter million words
in the Donnelly list. They found that the 50,000 word dictionary covered
59% of these 250,000 name tokens. Adding stress-neutral suffixes like -s,
-ville, and -son (Walters = Walter + s, Abelson = Abel + son, Lucasville
= Lucas + ville) increased the coverage to 84%. Adding name-name com-
pounds (Abdulhussein, Baumgaertner) and rhyming heuristics increased the
coverage to 89%. (The rhyming heuristics used letter-to-sound rules for the
beginning of the word and then found a rhyming word to help pronounce the
end; so Plotsky was pronounced by using the LTS rule forPl- and guessing
-otskyfrom TrotskyThey then added a number of more complicated morpho-
logical rules (prefixes likeO’Brien), stress-changing suffixes (Adamovich),
suffix-exchanges (Bierstadt = Bierbaum - baum + stadt) and used a system
of letter-to-sound rules for the remainder. This system wasnot implemented



Section 4.7. Prosody in TTS 129

as an FST; Exercise 4.11 will address some of the issues in turning such a
set of rules into an FST. Readers interested in further details about names,
acronyms and other unknown words should consult sources such as Liber-
man and Church (1992), Vitale (1991), and Allenet al. (1987).

4.7 PROSODY IN TTS

The orthography to phone transduction process just described produces the
main component for the input to the part of a TTS system which actually
generates the speech. Another important part of the input isa specification
of theprosody. The termprosody is generally used to refer to aspects of aPROSODY

sentence’s pronunciation which aren’t described by the sequence of phones
derived from the lexicon. Prosody operates on longer linguistic units than
phones, and hence is sometimes called the study ofsuprasegmentalphe- SUPRASEG­

MENTAL

nomena.

Phonological Aspects of Prosody

There are three main phonological aspects to prosody:prominence, struc- PROMINENCE

ture andtune. STRUCTURE

TUNEAs 102 discussed, prominence is a broad term used to coverstress
STRESSandaccent. Prominence is a property of syllables, and is often described in
ACCENTa relative manner, by saying one syllable is more prominent than another.

Pronunciation lexicons mark lexical stress; for exampletable has its stress
on the first syllable, whilemachinehas its stress on the second. Function
words likethere, theor a are usually unaccented altogether. When words are
joined together, their accentual patterns combine and forma larger accent
pattern for the whole utterance. There are some regularities in how accents
combine. For example adjective-noun combinations like like new truckare
likely to have accent on the right word (new *truck, while noun-noun com-
pounds like*tree surgeonare likely to have accent on the left. In generally,
however, there are many exceptions to these rules, and so accent prediction
is quite complex. For example the noun-noun compound*apple cakehas the
accent on the first word while the noun-noun compoundapple *pieor city
*hall both have the accent on the second word (Liberman and Sproat,1992;
Sproat, 1994, 1998a). Furthermore, rhythm plays a role in keeping the ac-
cented syllables spread apart a bit; thuscity *hall and*parking lot combine
as*city hall *parking lot (Liberman and Prince, 1977). Finally, the location
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of accent is very strongly affected by the discourse factorswe will describe
in Chapter 18 and Chapter 19; in particular new or focused words or phrases
often receive accent.

Sentences have prosodic structure in the sense that some words seem to
group naturally together and some words seem to have a noticeable break or
disjuncture between them. Often prosodic structure is described in terms of
prosodic phrasing, meaning that an utterance has a prosodic phrase struc-PROSODIC

PHRASING

ture in a similar way to it having a syntactic phrase structure. For example, in
the sentenceI wanted to go to London, but could only get tickets for France
there seems to be two main prosodic phrases, their boundary occurring at the
comma. Commonly used terms for these larger prosodic units includeinto-
national phraseor IP (Beckman and Pierrehumbert, 1986),intonation unitINTONA­

TIONAL
PHRASE

IP (Du Bois et al., 1983), andtone unit (Crystal, 1969). Furthermore, in the
first phrase, there seems to be another set of lesser prosodicphrase bound-
aries (often calledintermediate phrases) that split up the words as follows

INTERMEDI­
ATE
PHRASES

I wanted j to go j to London. The exact definitions of prosodic phrases
and subphrases and their relation to syntactic phrases likeclauses and noun
phrases and semantic units have been and still are the topic of much debate
(Chomsky and Halle, 1968; Langendoen, 1975; Streeter, 1978; Hirschberg
and Pierrehumbert, 1986; Selkirk, 1986; Nespor and Vogel, 1986; Croft,
1995; Ladd, 1996; Ford and Thompson, 1996; Fordet al., 1996). Despite
these complications, algorithms have been proposed which attempt to au-
tomatically break an input text sentence into intonationalphrases. For ex-
ample Wang and Hirschberg (1992), Ostendorf and Veilleux (1994), Tay-
lor and Black (1998), and others have built statistical models (incorporating
probabilistic predictors such as the CART-style decision trees to be defined
in Chapter 5) for predicting intonational phrase boundaries based on such
features as the parts of speech of the surrounding words, thelength of the
utterance in words and seconds, the distance of the potential boundary from
the beginning or ending of the utterance, and whether the surrounding words
are accented.

Two utterances with the same prominence and phrasing patterns can
still differ prosodically by having differenttunes. Tune refers to the into-
national melody of an utterance. Consider the utteranceoh, really. Without
varying the phrasing or stress, it is still possible to have many variants of
this by varying the intonational tune. For example, we mighthave an ex-
cited versionoh, really! (in the context of a reply to a statement that you’ve
just won the lottery); a sceptical versionoh, really?— in the context of not
being sure that the speaker is being honest; to an angryoh, really! indicat-



Section 4.7. Prosody in TTS 131

ing displeasure. Intonational tunes can be broken into component parts, the
most important of which is thepitch accent. Pitch accents occur on stressedPITCH

ACCENT

syllables and form a characteristic pattern in the F0 contour (as explained be-
low). Depending on the type of pattern, different effects (such as those just
outlined above) can be produced. A popular model of pitch accent classifi-
cation is the Pierrehumbert or ToBI model (Pierrehumbert, 1980; Silverman
et al., 1992), which says there are 5 pitch accents in English, which are made
from combining two simple tones (highH, and lowL ) in various ways. A
H+L pattern forms a fall, while aL+H pattern forms a rise. An asterisk (* )
is also used to indicate which tone falls on the stressed syllable. This gives
an inventory ofH*, L*, L+H*, L*+H, H+L* (a sixth pitch accentH*+L
which was present in early versions of the model was later abandoned). Our
three examples ofoh, reallymight be marked with the accentsL+H*, L*+H
and L* respectively. In addition to pitch accents, this model alsohas two
phrase accentsL- andH- and two boundary tonesL% andH% , which are
used at the ends of phrases to control whether the intonational tune rises or
falls.

Other intonational modals differ from ToBI by not using discrete phone-
mic classes for intonation accents. For example the Tilt (Taylor, 2000) and
Fujisaki models (Fujisaki and Ohno, 1997) use continuous parameters rather
than discrete categories to model pitch accents. These researchers argue that
while the discrete models are often easier to visualize and work with, con-
tinuous models may be more robust and more accurate for computational
purposes.

Phonetic or Acoustic Aspects of Prosody

The three phonological factors interact and are realized bya number of dif-
ferent phonetic or acoustic phenomena. Prominent syllables are generally
louder and longer that non-prominent syllables. Prosodic phrase boundaries
are often accompanied by pauses, by lengthening of the syllable just before
the boundary, and sometimes lowering of pitch at the boundary. Intonational
tune is manifested in the fundamental frequency (F0) contour.

Prosody in Speech Synthesis

A major task for a TTS system is to generate appropriate linguistic repre-
sentations of prosody, and from them generate appropriate acoustic patterns
which will be manifested in the output speech waveform. The output of
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a TTS system with such a prosodic component is a sequence of phones,
each of which has a duration and an F0 (pitch) value. The duration of each
phone is dependent on the phonetic context (see Chapter 7). The F0 value
is influenced by the factors discussed above, including the lexical stress, the
accented or focused element in the sentence, and the intonational tune of the
utterance (for example a final rise for questions). Figure 4.25 shows some
sample TTS output from the FESTIVAL (Blacket al., 1999) speech synthe-
sis system for the sentenceDo you really want to see all of it?. This output,
together with the F0 values shown in Figure 4.26 would be the input to the
waveform synthesiscomponent described in Chapter 7. The durations here
are computed by a CART-style decision tree (Riley, 1992).

H* L* L- H%
do you really want to see all of it

d uw y uw r ih l iy w aa n t t ax s iy ao l ah v ih t
110 110 50 50 75 64 57 82 57 50 72 41 43 47 54 130 76 90 44 62 46 220

Figure 4.25 Output of the FESTIVAL (Blacket al., 1999) generator for the sentenceDo
you really want to see all of it?. The exact intonation countour is shown in Figure 4.26.

do you really want to see all of it

H*
H%

L-
L*

Figure 4.26 The F0 contour for the sample sentence generated by the FES-
TIVAL synthesis system in Figure 4.25.

As was suggested above, determining the proper prosodic pattern for
a sentence is difficult, as real-world knowledge and semantic information is
needed to know which syllables to accent, and which tune to apply. This sort
of information is difficult to extract from the text and henceprosody modules
often aim to produce a “neutral declarative” version of the input text, which
assume the sentence should be spoken in a default way with no reference to
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discourse history or real-world events. This is one of the main reasons why
intonation in TTS often sounds “wooden”.

4.8 HUMAN PROCESSING OFPHONOLOGY AND MORPHOLOGY

Chapter 3 suggested that productive morphology plays a psychologically real
role in the human lexicon. But we stopped short of a detailed model of how
the morphology might be represented. Now that we have studied phono-
logical structure and phonological learning, we return to the psychological
question of the representation of morphological/phonological knowledge.

One view of human morphological or phonological processingmight
be that it distinguishes productive, regular morphology from irregular or ex-
ceptional morphology. Under this view, the regular past tense morpheme
-ed, for example, could be mentally represented as a rule which would be
applied to verbs likewalk to producewalked. Irregular past tense verbs like
broke, sang, andbrought, on the other hand, would simply be stored as part
of a lexical representation, and the rule wouldn’t apply to these. Thus this
proposal strongly distinguishes representation viarules from representation
via lexical listing.

This proposal seems sensible, and is indeed identical to thetransducer-
based models we have presented in these last two chapters. Unfortunately,
this simple model seems to be wrong, One problem is that the irregular verbs
themselves show a good deal of phonologicalsubregularity. For example, SUBREGU­

LARITY

theI/æ alternation relatingring andrangalso relatessingandsangandswim
and swam(Bybee and Slobin, 1982). Children learning the language of-
ten extend this pattern to incorrectly producebring-brang, and adults often
make speech errors showing effects of this subregular pattern. A second
problem is that there is psychological evidence that high-frequency regular
inflected forms (needed, covered) are stored in the lexicon just like the stems
coverandneed(Losiewicz, 1992). Finally, word and morpheme frequency
in general seems to play an important role in human processing.

Arguments like these led to ‘data-driven’ models of morphological
learning and representation, which essentially store all the inflected forms
they have seen. These models generalize to new forms by a kindof analogy;
regular morphology is just like subregular morphology but acquires rule-like
trappings simply because it occurs more often. Such models include the
computationalconnectionistor Parallel Distributed Processingmodel of CONNEC­

TIONIST
PARALLEL
DISTRIBUTED
PROCESSING

Rumelhart and McClelland (1986) and subsequent improvements (Plunkett
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and Marchman, 1991; MacWhinney and Leinbach, 1991) and the similar
network model of Bybee (1985, 1995). In these models, the behavior of
regular morphemes like-edemergesfrom its frequent interaction with other
forms. Proponents of the rule-based view of morphology suchas Pinker
and Prince (1988), Marcuset al. (1995), and others, have criticized the con-
nectionist models and proposed a compromisedual processingmodel, in
which regular forms like-edare represent as symbolic rules, but subregular
examples (broke, brought) are represented by connectionist-style pattern as-
sociators. This debate between the connectionist and dual processing models
has deep implications for mental representation of all kinds of regular rule-
based behavior and is one of the most interesting open questions in human
language processing. Chapter 7 will briefly discuss connectionist models of
human speech processing; readers who are further interested in connection-
ist models should consult the references above and textbooks like Anderson
(1995).

4.9 SUMMARY

This chapter has introduced many of the important notions weneed to un-
derstand spoken language processing. The main points are asfollows:� We can represent the pronunciation of words in terms of unitscalled

phones. The standard system for representing phones is theInterna-
tional Phonetic Alphabet or IPA . An alternative English-only tran-
scription system that uses ASCII letters is theARPAbet.� Phones can be described by how they are producedarticulatorily by
the vocal organs; consonants are defined in terms of theirplace and
manner of articulation andvoicing, vowels by theirheight andback-
ness.� A phonemeis a generalization or abstraction over different phonetic
realizations.Allophonic rules express how a phoneme is realized in a
given context.� Transducerscan be used to model phonological rules just as they were
used in Chapter 3 to model spelling rules.Two-level morphology is
a theory of morphology/phonology which models phonological rules
as finite-statewell-formedness constraintson the mapping between
lexical and surface form.
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tomatic speech recognition. They give the pronunciation ofwords as
strings of phones, sometimes including syllabification andstress. Most
on-line pronunciation dictionaries have on the order of 100,000 words
but still lack many names, acronyms, and inflected forms.� The text-analysis component of a text-to-speech system maps from
orthography to strings of phones. This is usually done with alarge
dictionary augmented with a system (such as a transducer) for handling
productive morphology, pronunciation changes, names, numbers, and
acronyms.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The major insights of articulatory phonetics date to the linguists of 800-150
B.C. India. They invented the concepts of place and manner ofarticulation,
worked out the glottal mechanism of voicing, and understoodthe concept of
assimilation. European science did not catch up with the Indian phoneticians
until over 2000 years later, in the late 19th century. The Greeks did have
some rudimentary phonetic knowledge; by the time of Plato’sTheaetetusand
Cratylus, for example, distinguished vowels from consonants, and stop con-
sonants from continuants. The Stoics developed the idea of the syllable and
were aware of phonotactic constraints on possible words. Anunknown Ice-
landic scholar of the twelfth century exploited the conceptof the phoneme,
proposed a phonemic writing system for Icelandic, including diacritics for
length and nasality. But his text remained unpublished until 1818 and even
then was largely unknown outside Scandinavia (Robins, 1967). The modern
era of phonetics is usually said to have begun with (1877), who proposed
what is essentially the phoneme in hisHandbook of Phonetics(1877). He
also devised an alphabet for transcription and distinguished betweenbroad
andnarrow transcription, proposing many ideas that were eventually incor-
porated into the IPA. Sweet was considered the best practicing phonetician
of his time; he made the first scientific recordings of languages for phonetic
purposes, and advanced the start of the art of articulatory description. He
was also infamously difficult to get along with, a trait that is well captured
in the stage character that George Bernard Shaw modeled after him: Henry
Higgins. The phoneme was first named by the Polish scholar Baudouin de
Courtenay, who published his theories in 1894.
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The idea that phonological rules could be modeled as regularrela-
tions dates to Johnson (1972), who showed that any phonological system
that didn’t allow rules to apply to their own output (i.e. systems that did not
have recursive rules) could be modeled with regular relations (or finite-state
transducers). Virtually all phonological rules that had been formulated at
the time had this property (except some rules with integral-valued features,
like early stress and tone rules). Johnson’s insight unfortunately did not at-
tract the attention of the community, and was independentlydiscovered by
Roland Kaplan and Martin Kay; see Chapter 3 for the rest of thehistory of
two-level morphology. Karttunen (1993) gives a tutorial introduction to two-
level morphology which includes more of the advanced details than we were
able to present here.

Readers interested in phonology should consult (Goldsmith, 1995) as a
reference on phonological theory in general and Archangeliand Langendoen
(1997) on Optimality Theory.

Two classic text-to-speech synthesis systems are described in Allen
et al. (1987) (theMITalk system) and Sproat (1998b) (the Bell Labs sys-
tem). The pronunciation problem in text-to-speech synthesis is an ongoing
research area; much of the current research focuses on prosody. Interested
readers should consult the proceedings of the main speech engineering con-
ferences:ICSLP (the International Conference on Spoken Language Pro-
cessing),IEEE ICASSP(the International Conference on Acoustics, Speech,
and Signal Processing), andEUROSPEECH.

Students with further interest in transcription and articulatory phonet-
ics should consult an introductory phonetics textbook suchas Ladefoged
(1993). Pullum and Ladusaw (1996) is a comprehensive guide to each of the
symbols and diacritics of the IPA. Many phonetics papers of computational
interest are to be found in theJournal of the Acoustical Society of America
(JASA), Computer Speech and Language, and andSpeech Communication.

EXERCISES

4.1 Find the mistakes in the IPA transcriptions of the followingwords:

a. “three” [Dri]
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b. “sing” [sIng]
c. “eyes” [aIs]
d. “study” [stUdi]
e. “though” [ToU]
f. “planning” [plAnIN]
g. “slight” [slit]

4.2 Translate the pronunciations of the following color words from the IPA
into the ARPAbet (and make a note if you think you pronounce them differ-
ently than this!)

a. [rEd]
b. [blu]
c. [grin]
d. ["jEloU]
e. [blæk]
f. [waIt]
g. ["OrIndZ]
h. ["pÇpl"]
i. [pjus]
j . [toUp]

4.3 Transcribe Ira Gershwin’s two pronunciations of ‘either’ in IPA and in
the ARPAbet.

4.4 Transcribe the following words in both the ARPAbet and the IPA.

a. dark

b. suit

c. greasy

d. wash

e. water

4.5 Write an FST which correctly pronounces strings of dollar amounts
like $45, $320, and$4100. If there are multiple ways to pronounce a number
you may pick your favorite way.

4.6 Write an FST which correctly pronounces 7-digit phone numbers like
555-1212, 555-1300, and so on. You should use a combination of thepaired
andtrailing unit methods of pronunciation for the last four digits.
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4.7 Build an automaton for rule (4.5).

4.8 One difference between one dialect of Canadian English and most di-
alects of American English is calledCanadian raising. (Bromberger andCANADIAN

RAISING

Halle, 1989) note that some Canadian dialects of English raise/aI/ to [2I]
and/aU/ to [22] before a voiceless consonant. A simplified version of the
rule dealing only with/aI/ can be stated as:/aI/! [2I] /

�
C�voice

�
(4.12)

This rule has an interesting interaction with the flapping rule. In some
Canadian dialects the wordrider andwriter are pronounced differently:rider
is pronounced[raIRÄ] while writer is pronounced[r2IRÄ]. Write a two-level
rule and an automaton for both the raising rule and the flapping rule which
correctly models this distinction. You may make simplifying assumptions as
needed.

4.9 Write the lexical entry for the pronunciation of the Englishpast tense
(preterite) suffix-d, and the two level-rules that express the difference in its
pronunciation depending on the previous context. Don’t worry about the
spelling rules. (Hint: make sure you correctly handle the pronunciation of
the past tenses of the wordsadd, pat, bake, andbag.)

4.10 Write two-level rules for the Yawelmani Yokuts phenomena ofHar-
mony, Shortening, and Lowering introduced on page 110. Makesure your
rules are capable of running in parallel.

4.11 Find 10 stress-neutral name suffixes (look in a phone book) and sketch
an FST which would model the pronunciation of names with or without suf-
fixes.



5
PROBABILISTIC MODELS
OF PRONUNCIATION
AND SPELLING

ALGERNON: But my own sweet Cecily, I have never written you
any letters.
CECILY: You need hardly remind me of that, Ernest. I remember
only too well that I was forced to write your letters for you. I
wrote always three times a week, and sometimes oftener.
ALGERNON: Oh, do let me read them, Cecily?
CECILY: Oh, I couldn’t possibly. They would make you far too
conceited. The three you wrote me after I had broken off the en-
gagement are so beautiful, and so badly spelled, that even now I
can hardly read them without crying a little.

Oscar Wilde,The Importance of being Ernest

Like Oscar Wilde’s Cecily, the characters in Gilbert and Sullivan’s op-
erettas also seem somewhat anxious about spelling.The Gondoliers’ Giu-
seppe worries that his private secretary is ‘shaky in his spelling’ while Iolan-
the’s Phyllis can ‘spell every word that she uses’. While an investigation into
the role of proper spelling in class identification at the turn-of-the-century
would take us too far afield (although see Veblen (1889)), we can certainly
agree that many more of us are like Cecily than like Phyllis. Estimates for
the frequency of spelling errors in human typed text vary from 0.05% of the
words in carefully edited newswire text to 38% in difficult applications like
telephone directory lookup (Kukich, 1992).

In this chapter we discuss the problem of detecting and correcting
spelling errors and the very related problem of modeling pronunciation vari-
ation for automatic speech recognition and text-to-speechsystems. On the
surface, the problems of finding spelling errors in text and modeling the vari-
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able pronunciation of words in spoken language don’t seem tohave much
in common. But the problems turn out to be isomorphic in an important
way: they can both be viewed as problems ofprobabilistic transduction. For
speech recognition, given a string of symbols representingthe pronunciation
of a word in context, we need to figure out the string of symbolsrepresent-
ing the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. But any given surface pronunciation is ambiguous; it might corre-
spond to different possible words. For example the ARPAbet pronunciation[er] could correspond to reduced forms of the wordsher, were, are, their,
or your. This ambiguity problem is heightened bypronunciation varia-
tion; for example the wordthe is sometimes pronounced THEE and some-
times THUH; the wordbecausesometimes appears asbecause, sometimes
as’cause. Some aspects of this variation are systematic; Section 5.7will sur-
vey the important kinds of variation in pronunciation that are important for
speech recognition and text-to-speech, and present some preliminary rules
describing this variation. High-quality speech synthesisalgorithms need to
know when to use particular pronunciation variants. Solving both speech
tasks requires extending the transduction between surfacephones and lexi-
cal phones discussed in Chapter 4 with probabilistic variation.

Similarly, given the sequence of letters corresponding to amis-spelled
word, we need to produce an ordered list of possible correct words. For
example the sequenceacressmight be a mis-spelling ofactress, or of cress,
or of acres. We transduce from the ‘surface’ formacressto the various
possible ‘lexical’ forms, assigning each with a probability; we then select
the most probable correct word.

In this chapter we first introduce the problems of detecting and correct-
ing spelling errors, and also summarize typical human spelling error patterns.
We then introduce the essential probabilistic architecture that we will use to
solve both spelling and pronunciation problems: theBayes Ruleand the
noisy channel model. The Bayes rule and its application to the noisy chan-
nel model will play a role in many problems throughout the book, particu-
larly in speech recognition (Chapter 7), part-of-speech tagging (Chapter 8),
and probabilistic parsing (Chapter 12).

The Bayes Rule and the noisy channel model provide the probabilistic
framework for these problems. But actually solving them requires an algo-
rithm. This chapter introduces an essential algorithm called thedynamic
programming algorithm, and various instantiations including theViterbi
algorithm, theminimum edit distance algorithm, and theforward algo-
rithm. We will also see the use of a probabilistic version of the finite-state
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automaton called theweighted automaton.

5.1 DEALING WITH SPELLING ERRORS

The detection and correction of spelling errors is an integral part of modern
word-processors. The very same algorithms are also important in applica-
tions in which even the individual letters aren’t guaranteed to be accurately
identified: optical character recognition (OCR) andon-line handwriting OCR

recognition. Optical character recognition is the term used for automatic
recognition of machine or hand-printed characters. An optical scanner con-
verts a machine or hand-printed page into a bitmap which is then passed to
an OCR algorithm.

On-line handwriting recognition is the recognition of human printed
or cursive handwriting as the user is writing. Unlike OCR analysis of hand-
writing, algorithms for on-line handwriting recognition can take advantage
of dynamic information about the input such as the number andorder of
the strokes, and the speed and direction of each stroke. On-line handwrit-
ing recognition is important where keyboards are inappropriate, such as in
small computing environments (palm-pilot applications, etc) or in scripts
like Chinese that have large numbers of written symbols, making keyboards
cumbersome.

In this chapter we will focus on detection and correction of spelling
errors, mainly in typed text, but the algorithms will apply also to OCR and
handwriting applications. OCR systems have even higher error rates than
human typists, although they tend to make different errors than typists. For
example OCR systems often misread ‘D’ as ‘O’ or ‘ri’ as ‘n’, producing
‘mis-spelled’ words likedensionfor derision, or POQ Bachfor PDQ Bach.
The reader with further interest in handwriting recognition should consult
sources such as Tappertet al. (1990), Huet al. (1996), and Casey and Leco-
linet (1996).

Kukich (1992), in her survey article on spelling correction, breaks the
field down into three increasingly broader problems:

1. non-word error detection: detecting spelling errors which result in
non-words (likegraffe for giraffe).

2. isolated-word error correction: correcting spelling errors which re-
sult in non-words, for example correctinggraffe to giraffe, but looking
only at the word in isolation.
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3. context-dependent error detection and correction:Using the con-
text to help detect and correct spelling errors even if they acciden-
tally result in an actual word of English (real-word errors ). ThisREAL­WORD

ERRORS

can happen from typographical errors (insertion, deletion, transposi-
tion) which accidently produce a real word (e.g.there for three), or
because the writer substituted the wrong spelling of a homophone or
near-homophone (e.g.dessertfor desert, or piecefor peace).

The next section will discuss the kinds of spelling-error patterns that
occur in typed text and OCR and handwriting-recognition input.

5.2 SPELLING ERRORPATTERNS

The number and nature of spelling errors in human typed text differs from
those caused by pattern-recognition devices like OCR and handwriting rec-
ognizers. Grudin (1983) found spelling error rates of between 1% and 3%
in human typewritten text (this includes both non-word errors and real-word
errors). This error rate goes down significantly for copy-edited text. The
rate of spelling errors in handwritten text itself is similar; word error rates of
between 1.5% and 2.5% have been reported (Kukich, 1992).

The errors of OCR and on-line hand-writing systems vary. Yaegeret al.
(1998) propose, based on studies that they warn are inconclusive, that the
online printed character recognition on Apple Computer’sNEWTON MES-
SAGEPADhas a word accuracy rate of 97%–98%, i.e. an error rate of 2%-3%,
but with a high variance (depending on the training of the writer, etc). OCR
error rates also vary widely depending on the quality of the input; (Lopresti
and Zhou, 1997) suggest that OCR letter-error rates typically range from
0.2% for clean, first-generation copy to 20% or worse for multigeneration
photocopies and faxes.

In an early study, Damerau (1964) found that 80% of all misspelled
words (non-word errors) in a sample of human keypunched textwere caused
by single-error misspellings: a single one of the following errors:1� insertion: mistypingtheastherINSERTION � deletion: mistypingtheasthDELETION � substitution: mistypingtheasthwSUBSTITU­

TION

1 In another corpus, Peterson (1986) found that single-errormisspellings accounted for an
even higher percentage of all misspelled words (93%–95%). The difference between the 80%
and the higher figure may be due to the fact that Damerau’s textincluded errors caused in
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TION

Because of this study, much following research has focused on the
correction of single-error misspellings. Indeed, the firstalgorithm we will
present later in this chapter relies on the large proportionof single-error mis-
spellings.

Kukich (1992) breaks down human typing errors into two classes.Ty-
pographic errors (for example misspellingspell as speel), are generally
related to the keyboard.Cognitive errors (for example misspellingsepa-
rate asseperate) are caused by writers who not not know how to spell the
word. Grudin (1983) found that the keyboard was the strongest influence on
the errors produced; typographic errors constituted the majority of all error
types. For example consider substitution errors, which were the most com-
mon error type for novice typists, and the second most commonerror type
for expert typists. Grudin found that immediately adjacentkeys in the same
row accounted for 59% of the novice substitutions and 31% of the error sub-
stitutions (e.g.smsll for small). Adding in errors in the same column and
homologouserrors (hitting the corresponding key on the opposite side of
the keyboard with the other hand), a total of 83% of the novicesubstitutions
and 51% of the expert substitutions could be considered keyboard-based er-
rors. Cognitive errors included phonetic errors (substituting a phonetically
equivalent sequence of letters (seperatefor separate) and homonym errors
(substitutingpiecefor peace). Homonym errors will be discussed in Chap-
ter 7 when we discuss real-word error correction.

While typing errors are usually characterized as substitutions, inser-
tions, deletions, or transpositions, OCR errors are usually grouped into five
classes: substitutions, multisubstitutions, space deletions or insertions, and
failures. Lopresti and Zhou (1997) give the following example of common
OCR errors:

Correct:
The quick brown fox jumps over the lazy dog.
Recognized:
’lhe q˜ ick brown foxjurnps ovcr tb l azy dog.

Substitutions (e! c) are generally caused by visual similarity (rather
than keyboard distance), as are multisubstitutions (T ! ’l , m! rn, he!
b). Multisubstitutions are also often calledframing errors . Failures (repre-

transcription to punched card forms, errors in keypunching, and errors caused by paper tape
equipment (!) in addition to purely human misspellings.
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sented by the tilde character ‘˜ ’:u! ˜ ) are cases where the OCR algorithm
does not select any letter with sufficient accuracy.

5.3 DETECTING NON-WORD ERRORS

Detecting non-word errors in text, whether typed by humans or scanned, is
most commonly done by the use of a dictionary. For example, the word
foxjurnpsin the OCR example above would not occur in a dictionary. Some
early research (Peterson, 1986) had suggested that such spelling dictionar-
ies would need to be kept small, because large dictionaries contain very rare
words that resemble misspellings of other words. For example wont is a
legitimate but rare word but is a common misspelling ofwon’t. Similarly,
veery(a kind of thrush) might also be a misspelling ofvery. Based on a sim-
ple model of single-error misspellings, Peterson showed that it was possible
that 10% of such misspellings might be ‘hidden’ by real wordsin a 50,000
word dictionary, but that 15% of single-error misspellingsmight be ‘hidden’
in a 350,000 word dictionary. In practice, Damerau and Mays (1989) found
that this was not the case; while some misspellings were hidden by real
words in a larger dictionary, in practice the larger dictionary proved more
help than harm.

Because of the need to represent productive inflection (the-s anded
suffixes) and derivation, dictionaries for spelling error detection usually in-
clude models of morphology, just as the dictionaries for text-to-speech we
saw in Chapter 3 and Chapter 4. Early spelling error detectors simply al-
lowed any word to have any suffix – thus UnixSPELL accepts bizarre pre-
fixed words likemisclamandantiundogginglyand suffixed words based on
the like thehoodand theness. Modern spelling error detectors use more
linguistically-motivated morphological representations (see Chapter 3).

5.4 PROBABILISTIC MODELS

This section introduces probabilistic models of pronunciation and spelling
variation. These models, particularly theBayesian inferenceor noisy chan-
nel model, will be applied throughout this book to many different problems.

We claimed earlier that the problem of ASR pronunciation modeling,
and the problem of spelling correction for typing or for OCR,can be modeled
as problems of mapping from one string of symbols to another.For speech
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recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure out the string of symbols representing
the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled
word, we need to figure out the correct sequence of letters in the correctly-
spelled word.

NOISY CHANNEL

word
noisy
wordSOURCE

DECODER
guess at
original
word

Figure 5.1 The noisy channel model

The intuition of thenoisy channelmodel (see Figure 5.1) is to treatNOISY
CHANNEL

the surface form (the ‘reduced’ pronunciation or misspelled word) as an in-
stance of the lexical form (the ‘lexical’ pronunciation or correctly-spelled
word) which has been passed through a noisy communication channel. This
channel introduces ‘noise’ which makes it hard to recognizethe ‘true’ word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this ‘true’ word and hence recover it. For the complete speech
recognition tasks, there are many sources of ‘noise’; variation in pronun-
ciation, variation in the realization of phones, acoustic variation due to the
channel (microphones, telephone networks, etc). Since this chapter focuses
on pronunciation, what we mean by ‘noise’ here is the variation in pronun-
ciation that masks the lexical or ‘canonical’ pronunciation; the other sources
of noise in a speech recognition system will be discussed in Chapter 7. For
spelling error detection, what we mean by noise is the spelling errors which
mask the correct spelling of the word. The metaphor of the noisy channel
comes from the application of the model to speech recognition in the IBM
labs in the 70’s (Jelinek, 1976). But the algorithm itself isa special case of
Bayesian inferenceand as such has been known since the work of BayesBAYESIAN

(1763). Bayesian inference or Bayesian classification was applied success-
fully to language problems as early as the late 1950’s, including the OCR
work of Bledsoe in 1959, and the seminal work of Mosteller andWallace
(1964) on applying Bayesian inference to determine the authorship of the
Federalist papers.

In Bayesian classification, as in any classification task, weare given
some observation and our job is to determine which of a set of classes it
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belongs to. For speech recognition, imagine for the moment that the ob-
servation is the string of phones which make up a word as we hear it. For
spelling error detection, the observation might be the string of letters that
constitute a possibly-misspelled word. In both cases, we want to classify
the observations into words; thus in the speech case, no matter which of the
many possible ways the wordabout is pronounced (see Chapter 4) we want
to classify it asabout. In the spelling case, no matter how the wordseparate
is misspelled, we’d like to recognize it asseparate.

Let’s begin with the pronunciation example. We are given a string of
phones (say[ni]). We want to know which word corresponds to this string
of phones. The Bayesian interpretation of this task starts by considering all
possible classes — in this case, all possible words. Out of this universe of
words, we want to chose the word which is most probable given the ob-
servation we have ([ni]). In other words, we want, out of all words in the
vocabularyV the single word such thatP(wordjobservation) is highest. WeV
useŵ to mean ‘our estimate of the correct w’, and we’ll useO to mean ‘theŴ

O observation sequence[ni]’ (we call it a sequence because we think of each
letter as an individual observation). Then the equation forpicking the best
word given is:

ŵ= argmax
w2V

P(wjO) (5.1)

The function argmaxx f (x) means ‘thex such thatf (x) is maximized’.
While (5.1) is guaranteed to give us the optimal wordw, it is not clear how
to make the equation operational; that is, for a given wordw and observation
sequenceO we don’t know how to directly computeP(wjO). The intuition of
Bayesian classification is to use Bayes’ rule to transform (5.1) into a product
of two probabilities, each of which turns out to be easier to compute than
P(wjO). Bayes’ rule is presented in (5.2); it gives us a way to break down
P(xjO) into three other probabilities:

P(xjy) = P(yjx)P(x)
P(y) (5.2)

We can see this by substituting (5.2) into (5.1) to get (5.3):

ŵ= argmax
w2V

P(Ojw)P(w)
P(O) (5.3)

The probabilities on the right hand side of (5.3) are for the most part
easier to compute than the probabilityP(wjO) which we were originally try-
ing to maximize in (5.1). For example,P(w), the probability of the word
itself, we can estimate by the frequency of the word. And we will see below
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thatP(Ojw) turns out to be easy to estimate as well. ButP(O), the probabil-
ity of the observation sequence, turns out to be harder to estimate. Luckily,
we can ignoreP(O). Why? Since we are maximizing over all words, we will
be computingP(Ojw)P(w)

P(O) for each word. ButP(O) doesn’t change for each
word; we are always asking about the most likely word string for the same
observationO, which must have the same probabilityP(O). Thus:

ŵ= argmax
w2V

P(Ojw)P(w)
P(O) = argmax

w2V
P(Ojw)P(w) (5.4)

To summarize, the most probable wordw given some observationO
can be computing by taking the product of two probabilities for each word,
and choosing the word for which this product is greatest. These two terms
have names;P(w) is called thePrior probability , andP(Ojw) is called the PRIOR

likelihood. LIKELIHOOD

Key Concept #3. ŵ= argmax
w2V

likelihoodz }| {
P(Ojw) priorz}|{

P(w) (5.5)

In the next sections we will show how to compute these two probabili-
ties for the probabilities of pronunciation and spelling.

5.5 APPLYING THE BAYESIAN METHOD TO SPELLING

There are many algorithms for spelling correction; we will focus on the
Bayesian (or noisy channel) algorithm because of its generality. Chapter 6
will show how this algorithm can be extended to model real-word spelling
errors; this section will focus on non-word spelling errors. The noisy chan-
nel approach to spelling correction was first suggested by Kernighanet al.
(1990); their program,correct, takes words rejected by the Unixspell pro-
gram, generates a list of potential correct words, rank themaccording to
Equation (3), and picks the highest-ranked one.

Let’s walk through the algorithm as it applies to Kernighanet al.’s
(1990) example misspellingacress. The algorithm has two stages:proposing
candidate correctionsandscoring the candidates.

In order to propose candidate corrections Kernighanet al. make the
simplifying assumption that the correct word will differ from the misspelling
by a single insertion, deletion, substitution, or transposition. As Damerau’s
(1964) results show, even though this assumption causes thealgorithm to
miss some corrections, it should handle most spelling errors in human typed
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text. The list of candidate words is generated from the typo by applying any
single transformation which results in a word in a large on-line dictionary.
Applying all possible transformations toacressyields the list of candidate
words in Figure 5.2.

Transformation
Correct Error Position

Error Correction Letter Letter (Letter #) Type
acress actress t – 2 deletion
acress cress – a 0 insertion
acress caress ca ac 0 transposition
acress access c r 2 substitution
acress across o e 3 substitution
acress acres – 2 5 insertion
acress acres – 2 4 insertion

Figure 5.2 Candidate corrections for the misspellingacress, together with
the transformations that would have produced the error, after Kernighanet al.
(1990). ‘–’ represents a null letter.

The second stage of the algorithm scores each correction by Equa-
tion 5.4. Lett represent the typo (the misspelled word), and letc range over
the setC of candidate corrections. The most likely correction is then:

ĉ= argmax
c2C

likelihoodz }| {
P(tjc) priorz}|{

P(c) (5.6)

As in Equation 5.4 we have omitted the denominator in Equation 5.6
since the typot, and hence its probabilityP(t), is constant for allc. The
prior probability of each correctionP(c) can be estimated by counting how
often the wordc occurs in some corpus, and thennormalizing these countsNORMALIZING

by the total count of all words.2 So the probability of a particular correction
word c is computed by dividing the count ofc by the numberN of words
in the corpus. Zero counts can cause problems, and so we will add .5 to all
the counts. This is called ‘smoothing’, and will be discussed in Chapter 6;
note that in Equation 5.7 we can’t just divide by the total number of words
N since we added .5 to the counts of all the words, so we add .5 for each of

2 Normalizing means dividing by some total count so that the resulting probabilities fall
legally between 0 and 1.
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theV words in the vocabulary).

P(c) = C(c)+0:5
N+0:5V

(5.7)

Chapter 6 will talk more about the role of corpora in computing prior
probabilities; for now let’s use the corpus of Kernighanet al. (1990), which
is the 1988 AP newswire corpus of 44 million words. Thus N is 44million.
Since in this corpus, the wordactressoccurs 1343 times, the wordacres
2879 times, and so on, the resulting prior probabilities areas follows:

c freq(c) p(c)
actress 1343 .0000315
cress 0 .000000014
caress 4 .0000001
access 2280 .000058
across 8436 .00019
acres 2879 .000065

Computing the likelihood termp(tjc) exactly is an unsolved (unsolve-
able?) research problem; the exact probability that a word will be mistyped
depends on who the typist was, how familiar they were with thekeyboard
they were using, whether one hand happened to be more tired than the other,
etc. Luckily, while p(tjc) cannot be computed exactly, it can beestimated
pretty well, because the most important factors predictingan insertion, dele-
tion, transposition are simple local factors like the identity of the correct
letter itself, how the letter was misspelled, and the surrounding context. For
example, the lettersmandn are often substituted for each other; this is partly
a fact about their identity (these two letters are pronounced similarly and
they are next to each other on the keyboard), and partly a factabout context
(because they are pronounced similarly, they occur in similar contexts).

One simple way to estimate these probabilities is the one that Kernighan
et al. (1990) used. They ignored most of the possible influences on the prob-
ability of an error and just estimated e.g.p(acressjacross) using the number
of times thate was substituted foro in some large corpus of errors. This is
represented by aconfusion matrix, a square 26�26 table which representsCONFUSION

MATRIX

the number of times one letter was incorrectly used instead of another. For
example, the cell labeled[o;e] in a substitution confusion matrix would give
the count of times thate was substituted foro. The cell labeled[t;s] in an
insertion confusion matrix would give the count of times that t was inserted
after s. A confusion matrix can be computed by hand-coding a collection
of spelling errors with the correct spelling and then counting the number
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of times different errors occurred (this has been done by Grudin (1983)).
Kernighanet al. (1990) used four confusion matrices, one for each type of
single-error:� del[x;y] contains the number of times in the training set that the char-

actersxy in the correct word were typed asx.� ins[x;y] contains the number of times in the training set that the char-
acterx in the correct word was typed asxy.� sub[x;y] the number of times thatx was typed asy� trans[x;y] the number of times thatxy was typed asyx.

Note that they chose to condition their insertion and deletion proba-
bilities on the previous character; they could also have chosen to condition
on the following character. Using these matrices, they estimatedp(tjc) as
follows (wherecp is thepth character of the wordc):

P(tjc) =8>>>>>>>><>>>>>>>>:
del[cp�1;cp]

count[cp�1cp] ; if deletion

ins[cp�1;tp]
count[cp�1] ; if insertion

sub[tp;cp]
count[cp] ; if substitution

trans[cp;cp+1]
count[cpcp+1] ; if transposition

(5.8)

Figure 5.3 shows the final probabilities for each of the potential correc-
tions; the prior (from Equation 5.7) is multiplied by the likelihood (computed
using Equation 5.8 and the confusion matrices). The final column shows the
‘normalized percentage’.

c freq(c) p(c) p(tjc) p(tjc)p(c) %

actress 1343 .0000315 .000117 3:69�10�9 37%
cress 0 .000000014 .00000144 2:02�10�14 0%
caress 4 .0000001 .00000164 1:64�10�13 0%
access 2280 .000058 .000000209 1:21�10�11 0%
across 8436 .00019 .0000093 1:77�10�9 18%
acres 2879 .000065 .0000321 2:09�10�9 21%
acres 2879 .000065 .0000342 2:22�10�9 23%

Figure 5.3 Computation of the ranking for each candidate correction. Note
that the highest ranked word is notactressbutacres(the two lines at the bottom
of the table), sinceacrescan be generated in two ways. Thedel[] , ins[] , sub[],
andtrans[] confusion matrices are given in full in Kernighanet al. (1990).
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This implementation of the Bayesian algorithm predictsacresas the
correct word (at a total normalized percentage of 45%), andactressas the
second most likely word. Unfortunately, the algorithm was wrong here: the
writer’s intention becomes clear from the context:. . . was called a “stellar
and versatileacresswhose combination of sass and glamour has defined
her. . .”. The surrounding words make it clear thatactressand notacreswas
the intended word; Chapter 6 will show how to augment the computation of
the prior probability to use the surrounding words.

The algorithm as we have described it requires hand-annotated data to
train the confusion matrices. An alternative approach usedby Kernighan
et al.(1990) is to compute the matrices by iteratively using this very spelling
error correction algorithm itself. The iterative algorithm first initializes the
matrices with equal values; thus any character is equally likely to be deleted,
equally likely to be substituted for any other character, etc. Next the spelling
error correction algorithm is run on a set of spelling errors. Given the set
of typos paired with their corrections, the confusion matrices can now be
recomputed, the spelling algorithm run again, and so on. This clever method
turns out to be an instance of the importantEM algorithm (Dempsteret al.,
1977) that we will discuss in Chapter 7 and Appendix D. Kernighanet al.
(1990)’s algorithm was evaluated by taking some spelling errors that had
two potential corrections, and asking three human judges topick the best
correction. Their program agreed with the majority vote of the human judges
87% of the time.

5.6 MINIMUM EDIT DISTANCE

The previous section showed that the Bayesian algorithm, asimplemented
with confusion matrices, was able to rank candidate corrections. But Kernighan
et al. (1990) relied on the simplifying assumption that each word had only a
single spelling error. Suppose we wanted a more powerful algorithm which
could handle the case of multiple errors? We could think of such an algo-
rithm as a general solution to the problem ofstring distance. The ‘string DISTANCE

distance’ is some metric of how alike two strings are to each other. The
Bayesian method can be viewed as a way of applying such an algorithm to
the spelling error correction problem; we pick the candidate word which is
‘closest’ to the error in the sense of having the highest probability given the
error.

One of the most popular classes of algorithms for finding string dis-



152 Chapter 5. Probabilistic Models of Pronunciation and Spelling

tance are those that use some version of theminimum edit distance algo-MINIMUM EDIT
DISTANCE

rithm, named by Wagner and Fischer (1974) but independentlydiscovered
by many people; see the History section. The minimum edit distance be-
tween two strings is the minimum number of editing operations (insertion,
deletion, substitution) needed to transform one string into another. For ex-
ample the gap between intention and execution is 5 operations, which can be
represented in three ways; as atrace, analignment, or aoperation list asALIGNMENT

show in Figure 5.4.

  e x e c u t i o n

Trace

Alignment

i n t e n t i o n

e x e c u t i o n

i n t e n t i o n

e x e c u t i o n

n t e n t i o n

e t e n t i o n

e x e n t i o n

e x e n u t i o n

i n t e n   t i o n

Operation
delete i

substitute n by e

substitute t by x

insert u

substitute n by c

List

ε
ε

Figure 5.4 Three methods for representing differences between sequences
(after Kruskal (1983))

We can also assign a particular cost or weight to each of theseoper-
ations. TheLevenshtein distance between two sequences is the simplest
weighting factor in which each of the three operations has a cost of 1 (Lev-
enshtein, 1966). Thus the Levenshtein distance betweenintentionandexe-
cution is 5. Levenshtein also proposed an alternate version of his metric in
which each insertion or deletion has a cost of one, and substitutions are not
allowed (equivalent to allowing substitution, but giving each substitution a
cost of 2, since any substitution can be represented by 1 insertion and 1 dele-
tion). Using this version, the Levenshtein distance between intention and
executionis 8. We can also weight operations by more complex functions,
for example by using the confusion matrices discussed aboveto assign a
probability to each operation. In this case instead of talking about the ‘mini-
mum edit distance’ between two strings, we are talking aboutthe ‘maximum
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probability alignment’ of one string with another. If we do this, an aug-
mented minimum edit distance algorithm which multiplies the probabilities
of each transformation can be used to estimate the Bayesian likelihood of a
multiple-error typo given a candidate correction.

The minimum edit distance is computed bydynamic programming. DYNAMIC
PROGRAM­
MING

Dynamic programming is the name for a class of algorithms, first introduced
by Bellman (1957), that apply a table-driven method to solveproblems by
combining solutions to subproblems. This class of algorithms includes the
most commonly-used algorithms in speech and language processing, among
them theminimum edit distancealgorithm for spelling error correction the
Viterbi algorithm and theforward algorithm which are used both in speech
recognition and in machine translation, and theCYK andEarley algorithm
used in parsing. We will introduce the minimum-edit-distance, Viterbi, and
forward algorithms in this chapter and Chapter 7, the Earleyalgorithm in
Chapter 10, and the CYK algorithm in Chapter 12.

The intuition of a dynamic programming problem is that a large prob-
lem can be solved by properly combining the solutions to various subprob-
lems. For example, consider the sequence or ‘path’ of transformed words
that comprise the minimum edit distance between the stringsintentionand
execution. Imagine some string (perhaps it isexention) that is in this opti-
mal path (whatever it is). The intuition of dynamic programming is that if
exentionis in the optimal operation-list, then the optimal sequencemust also
include the optimal path fromintention to exention. Why? If there were a
shorter path fromintentionto exentionthen we could use it instead, resulting
in a shorter overall path, and the optimal sequence wouldn’tbe optimal, thus
leading to a contradiction.

Dynamic programming algorithms for sequence comparison work by
creating a distance matrix with one column for each symbol inthe target se-
quence and one row for each symbol in the source sequence (i.e. target along
the bottom, source along the side). For minimum edit distance, this matrix
is theedit-distancematrix. Each celledit-distance[i,j]contains the distance
between the firsti characters of the target and the firstj characters of the
source. Each cell can be computed as a simple function of the surrounding
cells; thus starting from the beginning of the matrix it is possible to fill in
every entry. The value in each cell is computing by taking theminimum of
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the three possible paths through the matrix which arrive there:

P(tjc)=min

8<: distance[i�1; j]+ ins-cost(targetj)
distance[i�1; j�1]+subst-cost(sourcej ; targeti)
distance[i; j�1]+ ins-cost(sourcej)) (5.9)

The algorithm itself is summarized in Figure 5.5, while Figure 5.6
shows the results of applying the algorithm to the distance betweeninten-
tion andexecutionassuming the version of Levenshtein distance in which
insertions and deletions each have a cost of 1 and substitutions have a cost
of 2.

function M IN-EDIT-DISTANCE(target, source) returns min-distance

n LENGTH(target)
m LENGTH(source)
Create a distance matrixdistance[n+1,m+1]
distance[0,0] 0
for each columni from 0 to n do

for each rowj from 0 to m do
distance[i, j] M IN( distance[i�1,j] + ins-cost(targetj),

distance[i�1,j�1] + subst-cost(sourcej , targeti),
distance[i, j�1] + ins-cost(sourcej))

Figure 5.5 The minimum edit distance algorithm, an example of the class
of dynamic programming algorithms.

5.7 ENGLISH PRONUNCIATION VARIATION

. . . when any of the fugitives of Ephraim said: ‘Let me go over,’ the
men of Gilead said unto him: ‘Art thou an Ephraimite?’ If he said:
‘Nay’; then said they unto him: ‘Say now Shibboleth’; and he said
‘Sibboleth’; for he could not frame to pronounce it right; then they laid
hold on him, and slew him at the fords of the Jordan;

Judges 12:5-6

This passage from Judges is a rather gory reminder of the political
importance of pronunciation variation. Even in our (hopefully less politi-
cal) computational applications of pronunciation, it is important to correctly
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n 9 10 11 10 11 12 11 10 9 8
o 8 9 10 9 10 11 10 9 8 9
i 7 8 9 8 9 10 9 8 9 10
t 6 7 8 7 8 9 8 9 10 11
n 5 6 7 6 7 8 9 10 11 12
e 4 5 6 5 6 7 8 9 10 11
t 3 4 5 6 7 8 9 10 11 12
n 2 3 4 5 6 7 8 8 10 11
i 1 2 3 4 5 6 7 8 9 10
# 0 1 2 3 4 5 6 7 8 9

# e x e c u t i o n

Figure 5.6 Computation of minimum edit distance betweenintentionand
executionvia algorithm of Figure 5.5, using Levenshtein distance with cost of
1 for insertions or deletions, 2 for substitutions. Substitution of a character for
itself has a cost of 0.

model how pronunciations can vary. We have already seen thata phoneme
can be realized as different allophones in different phonetic environments.
We have also shown how to write rules and transducers to modelthese
changes for speech synthesis. Unfortunately, these modelssignificantly sim-
plified the nature of pronunciation variation. In particular, pronunciation
variation is caused by many factors in addition to the phonetic environment.
This section summarizes some of these kinds of variation; the following sec-
tion will introduce the probabilistic tools for modeling it.

Pronunciation variation is extremely widespread. Figure 5.7 shows
the most common pronunciations of the wordsbecauseandaboutfrom the
hand-transcribed Switchboard corpus of American English telephone con-
versations. Note the wide variation in pronunciation for these two words
when spoken as part of a continuous stream of speech.

What causes this variation? There are two broad classes of pronunci-
ation variation: lexical variation andallophonic variation. We can think LEXICAL

VARIATION

ALLOPHONIC
VARIATIONof lexical variation as a difference in what segments are used to represent

the word in the lexicon, while allophonic variation is a difference in how the
individual segments change their value in different contexts. In Figure 5.7,
most of the variation in pronunciation is allophonic; i.e. due to the influ-
ence of the surrounding sounds, syllable structure, etc. But the fact that the
wordbecausecan be pronounced either as monosyllabic’causeor bisyllabic
becauseis probably a lexical fact, having to do perhaps with the level of
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because about
IPA ARPAbet % IPA ARPAbet %[bik2z] [b iy k ah z] 27% [@baU] [ax b aw] 32%[b1k2z] [b ix k ah z] 14% [@baUt] [ax b aw t] 16%[k2z] [k ah z] 7% [baU] [b aw] 9%[k@z] [k ax z] 5% [2baU] [ix b aw] 8%[b1k@z] [b ix k ax z] 4% [1baUt] [ix b aw t] 5%[bIk2z] [b ih k ah z] 3% [1bæ] [ix b ae] 4%[b@k2z] [b ax k ah z] 3% [@bæR] [ax b ae dx] 3%[kUz] [k uh z] 2% [baUR] [b aw dx] 3%[ks] [k s] 2% [bæ] [b ae] 3%[k1z] [k ix z] 2% [baUt] [b aw t] 3%[kIz] [k ih z] 2% [@baUR] [ax b aw dx] 3%[bik2Z] [b iy k ah zh] 2% [@bæ] [ax b ae] 3%[bik2s] [b iy k ah s] 2% [bA] [b aa] 3%[bik2] [b iy k ah] 2% [bæR] [b ae dx] 3%[bikAz] [b iy k aa z] 2% [1baUR] [ix b aw dx] 2%[@z] [ax z] 2% [1bAt] [ix b aa t] 2%

Figure 5.7 The 16 most common pronunciations ofbecauseand about
from the hand-transcribed Switchboard corpus of American English conver-
sational telephone speech (Godfreyet al., 1992; Greenberget al., 1996)

informality of speech.
An important source of lexical variation (although it can also affect al-

lophonic variation) issociolinguistic variation. Sociolinguistic variation isSOCIOLIN­
GUISTIC

due to extralinguistic factors such as the social identity or background of the
speaker. One kind of sociolinguistic variation isdialect variation. Speak-DIALECT

VARIATION

ers of some deep-southern dialects of American English use amonophthong
or near-monophthong[a] or [aE] instead of a diphthong in some words with
the vowel[aI]. In these dialectsrice is pronounced[ra:s]. African-American
Vernacular English (AAVE) has many of the same vowel differences from
General American as does Southern American English, and also has indi-
vidual words with specific pronunciations such as[bIdnIs] for businessand[æks] for ask. For older speakers or those not from the American West or
Midwest, the wordscaughtand cot have different vowels ([kOt] and [kAt]
respectively). Young American speakers or those from the West pronounce
the two wordscot andcaughtthe same; the vowels[O] and [A] are usually
not distinguished in these dialects. For some speakers fromNew York City



Section 5.7. English Pronunciation Variation 157

like the first author’s parents, the wordsMary, ([meIri]) marry, ([mæri]) and
merry ([mEri]) are all pronounced differently, while other New York City
speakers like the second author pronounceMary, andmerry identically, but
differently thanmarry. Most American speakers pronounce all three of these
words identically as ([mEri]). Students who are interested in dialects of En-
glish should consult Wells (1982), the most comprehensive study of dialects
of English around the world.

Other sociolinguistic differences are due toregister or style rather than REGISTER

STYLEdialect. In a pronunciation difference that is due to style,the same speaker
might pronounce the same word differently depending on who they were
talking to or what the social situation is; this is probably the case when
choosing betweenbecauseand ’causeabove. One of the most well-studied
examples of style-variation is the suffix-ing (as insomething), which can be
pronounced[IN] or /In/ (this is often writtensomethin’). Most speakers use
both forms; as Labov (1966) shows, they use[IN] when they are being more
formal, and[In] when more casual. In fact whether a speaker will use[IN]
or [In] in a given situation varies markedly according to the socialcontext,
the gender of the speaker, the gender of the other speaker, etc. Wald and
Shopen (1981) found that men are more likely to use the non-standard form[In] than women, that both men and women are more likely to use moreof
the standard form[IN] when the addressee is a women, and that men (but not
women) tend to switch to[In] when they are talking with friends.

Where lexical variation happens at the lexical level, allophonic varia-
tion happens at the surface form and reflects phonetic and articulatory fac-
tors.3 For example, most of the variation in the wordabout in Figure 5.7
was caused by changes in one of the two vowels or by changes to the final
[t]. Some of this variation is due to the allophonic rules we have already
discussed for the realization of the phoneme/t/. For example the pronun-
ciation of aboutas [@baUR]/[ax b aw dx]) has a flap at the end because the
next word was the wordit, which begins with a vowel; the sequenceabout
it was pronounced[@baUR1]/[ax b aw dx ix]). Similarly note that final[t] is
often deleted; (aboutas[baU]/[b aw]). Considering these cases as ‘deleted’
is actually a simplification; many of these ‘deleted’ cases of [t] are actually
realized as a slight change to the vowel quality calledglottalization which
are not represented in these transcriptions.

3 Many linguists distinguish between allophonic variation and what are called ‘optional
phonological rules’; for the purposes of this textbook we will lump these both together as
‘allophonic variation’.
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When we discussed these rules earlier, we implied that they were de-
terministic; given an environment, a rule always applies. This is by no means
the case. Each of these allophonic rules is dependent on a complicated set of
factors that must be interpreted probabilistically. In therest of this section
we summarize more of these rules and talk about the influencing factors.
Many of these rules modelcoarticulation, which is a change in a segmentCOARTICULA­

TION

due to the movement of the articulators in neighboring segments. Most al-
lophonic rules relating English phoneme to their allophones can be grouped
into a small number of types: assimilation, dissimilation,deletion, flapping,
vowel reduction, and epenthesis.

Assimilation is the change in a segment to make it more like a neigh-ASSIMILATION

boring segment. The dentalization of[t] to ([t�]) before the dental consonant[T] is an example of assimilation. Another common type of assimilation
in English and cross-linguistically ispalatalization. Palatalization occursPALATALIZA­

TION

when the constriction for a segment occurs closer to the palate than it nor-
mally would, because the following segment is palatal or alveolo-palatal.
In the most common cases, /s/ becomes[S], /z/ becomes[Z], /t/ becomes[tS
and /d/ becomesdZ]. We saw one case of palatalization in Figure 5.7 in the
pronunciation ofbecauseas [bik2Z] (ARPAbet [b iy k ah zh]). Here the
final segment ofbecause, a lexical /z/, is realized as[Z], because the fol-
lowing word wasyou’ve. So the sequencebecause you’vewas pronounced[bik2Zuv]. A simple version of a palatalization rule might be expressed as
follows; Figure 5.8 shows examples from the Switchboard corpus.8>><>>: [s][z][t][d] 9>>=>>;)8>><>>: [S][Z][tS][dZ] 9>>=>>; = �

y
	

(5.10)

Note in Figure 5.8 that whether a[t] is palatalized depends on lexical
factors like word frequency ([t] is more likely to be palatalized in frequent
words and phrases).

Deletion is quite common in English speech. We saw examples ofDELETION

deletion of final /t/ above, in the wordsaboutand it. /t/ and/d/ are often
deleted before consonants, or when they are part of a sequence of two or
three consonants; Figure 5.9 shows some examples.�

t
d

�) /0 / V C (5.11)

The many factors that influence the deletion of/t/ and/d/ have been
extensively studied. For example/d/ is more likely to be deleted than/t/.
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IPA IPA ARPAbet
Phrase Lexical Reduced Reduced

set your [sEtjOr] [sEtSÄ] [s eh ch er]
not yet [nAtjEt] [nAtSEt] [n aa ch eh t]
last year [læstjir] [læstSir] [l ae s ch iy r]
what you [w2tju] [w@tSu] [w ax ch uw]
this year [DIsjir] [DISir] [dh ih sh iy r]
because you’ve [bik2zjuv] [bik2Zuv] [b iy k ah zh uw v]
did you [dIdju] [dIdZy2] [d ih jh y ah]

Figure 5.8 Examples of palatalization from the Switchboard corpus; the
lemmayou (includingyour, you’ve, andyou’d) was by far the most common
cause of palatalization, followed byyear(s)(especially in the phrasesthis year
andlast year).

IPA IPA ARPAbet
Phrase Lexical Reduced Reduced

find him [faIndhIm] [faIn1m] [f ay n ix m]
around this [@raUndDIs] [1raUnIs] [ix r aw n ih s]
mind boggling [maInbOgl"IN] [maInbOgl"IN] [m ay n b ao g el ih ng]
most places [moUstpleIs1z] [moUspleIs1z] [m ow s p l ey s ix z]
draft the [dræftDi] [dræfDi] [d r ae f dh iy]
left me [lEftmi] [lEfmi] [l eh f m iy]

Figure 5.9 Examples of /t/ and /d/ deletion from Switchboard. Some of
these examples may have glottalization instead of being completely deleted.

Both are more likely to be deleted before a consonant (Labov,1972). The
final /t/ and /d/ in the wordsandandjust are particularly likely to be deleted
(Labov, 1975; Neu, 1980). Wolfram (1969) found that deletion is more
likely in faster or more casual speech, and that younger people and males
are more likely to delete. Deletion is more likely when the two words sur-
rounding the segment act as a sort of phrasal unit, either occurring together
frequently (Bybee, 1996), having a highmutual information or trigram
predictability (Gregoryet al., 1999), or being tightly connected for other
reasons (Zwicky, 1972). Fasold (1972), Labov (1972), and many others have
shown that deletion is less likely if the word-final/t/ or /d/ is the past tense
ending. For example in Switchboard, deletion is more likelyin the word
around(73%/d/-deletion) than in the wordturned(30%/d/-deletion) even
though the two words have similar frequencies.
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Theflapping rule is significantly more complicated than we suggested
in Chapter 4, as a number of scholars have pointed out (see especially Rhodes
(1992)). The preceding vowel is highly likely to be stressed, although this is
not necessary (for example there is commonly a flap in the wordthermome-
ter [TÄ"mAm1RÄ]). The following vowel is highly likely to be unstressed, al-
though again this is not necessary./t/ is much more likely to flap than/d/. There are complicated interactions with syllable, foot, and word bound-
aries. Flapping is more likely to happen when the speaker is speaking more
quickly, and is more likely to happen at the end of a word when it forms
a collocation (high mutual information) with the followingword (Gregory
et al., 1999). Flapping is less likely to happen when a speakerhyperar-
ticulates, i.e. uses a particularly clear form of speech, which often happensHYPERARTIC­

ULATES

when users are talking to computer speech recognition systems (Oviattet al.,
1998). There is a nasal flap[�R] whose tongue movements resemble the oral
flap but in which the velum is lowered. Finally, flapping doesn’t always hap-
pen, even when the environment is appropriate; thus the flapping rule, or
transducer, needs to be probabilistic, as we will see below.

We have saved for last one of the most important phonologicalpro-
cesses:vowel reduction, in which many vowels in unstressed syllables are
realized asreduced vowels, the most common of which isschwa ([@]).REDUCED

VOWELS

SCHWA Stressed syllables are those in which more air is pushed out of the lungs;
stressed syllables are longer, louder, and usually higher in pitch than un-
stressed syllables. Vowels in unstressed syllables in English often don’t have
their full form; the articulatory gesture isn’t as completeas for a full vowel.
As a result the shape of the mouth is somewhat neutral; the tongue is nei-
ther particularly high nor particularly low. For example the second vowels
in parakeetis schwa:[pær@kit].

While schwa is the most common reduced vowel, it is not the only
one, at least not in some dialects. Bolinger (1981) proposedthree reduced
vowels: a reduced mid vowel[@], a reduced front vowel[1], and a reduced
rounded vowel[8]. But the majority of computational pronunciation lexi-
cons or computational models of phonology systems limit themselves to one
reduced vowel ([@]) (for example PRONLEX and CELEX) or at most two
([@] =ARPABET [ax] and[1] = ARPAbet [ix]). Miller (1998) was able to
train a neural net to automatically categorize a vowel as[@] or [1] based only
on the phonetic context, which suggests that for speech recognition and text-
to-speech purposes, one reduced vowel is probably adequate. Indeed Wells
(1982) (167-168) notes that[@] and[1] are falling together in many dialects of
English including General American and Irish, among others, a phenomenon
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he callsweak vowel merger.
A final note: not all unstressed vowels are reduced; any vowel, and

diphthongs in particular can retain their full quality evenin unstressed po-
sition. For example the vowel[eI] (ARPAbet [ey]) can appear in stressed
position as in the wordeight) ["eIt] or unstressed position as in the wordal-
ways["O.weIz]. Whether a vowel is reduced depends on many factors. For
example the wordthe can be pronounced with a full vowelDi or reduced
vowel D@. It is more likely to be pronounced with the reduced vowelD@ in
fast speech, in more casual situations, and when the following word begins
with a consonant. It is more likely to be pronounced with the full vowel Di
when the following word begins with a vowel or when the speaker is having
‘planning problems’; speakers are more likely to use a full vowel than a re-
duced one if they don’t know what they are going to say next (Fox Tree and
Clark, 1997). See Keatinget al. (1994) and Jurafskyet al. (1998) for more
details on factors effecting vowel reduction in the TIMIT and Switchboard
corpora. Other factors influencing reduction include the frequency of the
word, whether this is the final vowel in a phrase, and even the idiosyncracies
of individual speakers.

5.8 THE BAYESIAN METHOD FOR PRONUNCIATION

HEAD KNIGHT OF NI: Ni!
KNIGHTS OF NI: Ni! Ni! Ni! Ni! Ni!
ARTHUR: Who are you?
HEAD KNIGHT: We are the Knights Who Say... ‘Ni’!
RANDOM: Ni!
ARTHUR: No! Not the Knights Who Say ’Ni’!
HEAD KNIGHT: The same!
BEDEVERE: Who are they?
HEAD KNIGHT: We are the keepers of the sacred words: ‘Ni’, ‘Peng’,

and ‘Neee–wom’!
Graham Chapman, John Cleese, Eric Idle, Terry Gilliam, Terry Jones,
and Michael Palin,Monty Python and the Holy Grail1975.

The Bayesian algorithm that we used to pick the optimal correction for
a spelling error can be used to solve what is often called thepronunciation
subproblem in speech recognition. In this task, we are givena series of
phones and our job is to compute the most probable word which generated
them. For this chapter, we will simplify the problem in an important way
by assuming the correct string of phones. A real speech recognizer relies on
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probabilistic estimators for each phone, so it is never sureabout the identity
of any phone. We will relax this assumption in Chapter 7; for now, let’s look
at the simpler problem.

We’ll also begin with another simplification by assuming that we al-
ready know where the word boundaries are. Later in the chapter, we’ll show
that we can simultaneously find word boundaries (‘segment’)and model pro-
nunciation variation.

Consider the particular problem of interpreting the sequence of phones[ni], when it occurs after the wordI at the beginning of a sentence. Stop and
see if you can think of any words which are likely to have been pronounced[ni] before you read on. The word “Ni” is not allowed.

You probably thought of the wordknee. This word is in fact pro-
nounced [ni]. But an investigation of the Switchboard corpus produces a
total of 7 words which can be pronounced[ni]! The seven words arethe,
neat, need, new, knee, to, andyou.

How can the wordthe be pronounced [ni]? The explanation for this
pronunciation (and all the others except the one forknee) lies in the contextually-
induced pronunciation variation we discussed in Chapter 4.For example, we
saw that [t] and [d] were often deleted word finally, especially before coro-
nals; thus the pronunciation ofneatas [ni] happened before the wordlittle
(neat little! [nil@l"]). The pronunciation oftheas [ni] is caused by the re-
gressive assimilation process also discussed in Chapter 4.Recall that in nasal
assimilation, phones before or after nasals take on nasal manner of articula-
tion. Thus[T] can be realized as[n]. The many cases ofthe pronounced
as [ni] in Switchboard occurred after words likein, on, andbeen(so in the! [Inni]). The pronunciation ofnewas [ni] occurred most frequently in the
word New York; the vowel[u] has fronted to[i] before a[y].

The pronunciation ofto as [ni] occurred after the worktalking (talking
to you! [tOkIniyu]); here the[u] is palatalized by the following[y] and the
[n] is functioning jointly as the final sound oftalking and the initial sound
of to. Because this phone is part of two separate words we will not try to
model this particular mapping; for the rest of this section let’s consider only
the following five words as candidate lexical forms for[ni]: knee, the, neat,
need, new.

We saw in the previous section that the Bayesian spelling error cor-
rection algorithm had two components: candidate generation, and candidate
scoring. Speech recognizers often use an alternative architecture, trading
off speech for storage. In this architecture, each pronunciation is expanded
in advance with all possible variants, which are then pre-stored with their
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scores. Thus there is no need for candidate generation; the word [ni] is
simply stored with the list of words that can generate it. Let’s assume this
method and see how the prior and likelihood are computed for each word.

We will be choosing the word whose product of prior and likelihood is
the highest, according to Equation 5.12, wherey represents the sequence of
phones (in this case[ni] andw represents the candidate word (the, new, etc)).
The most likely word is then:

ŵ= argmax
w2W

likelihoodz }| {
P(yjw) priorz}|{

P(w) (5.12)

We could choose to generate the likelihoodsp(yjw) by using a set of
confusion matrices as we did for spelling error correction.But it turns out
that confusion matrices don’t do as well for pronunciation as for spelling.
While misspelling tends to change the form of a word only slightly, the
changes in pronunciation between a lexical and surface formare much greater.
Confusion matrices only work well for single-errors, which, as we saw above,
are common in misspelling. Furthermore, recall from Chapter 4 that pro-
nunciation variation is strongly affected by the surrounding phones, lexical
frequency, and stress and other prosodic factors. Thus probabilistic models
of pronunciation variation include a lot more factors than asimple confusion
matrix can include.

One simple way to generate pronunciation likelihoods is viaproba-
bilistic rules. Probabilistic rules were first proposed for pronunciationby

PROBABILIS­
TIC
RULES

(Labov, 1969) (who called themvariable rules). The idea is to take the
rules of pronunciation variation we saw in Chapter 4 and associate them
with probabilities. We can then run these probabilistic rules over the lexicon
and generate different possible surface forms each with itsown probability.
For example, consider a simple version of a nasal assimilation rule which
explains whythecan be pronounced[ni]; a word-initial [D] becomes[n] if the
preceding word ended in[n] or sometimes[m]:[:15] D) n = [+nasal] # (5.13)

The [.15] to the left of the rule is the probability; this can be com-
puted from a large-enough labeled corpus such as the transcribed portion of
Switchboard. Letncountbe the number of times lexical[D] is realized word-
initially by surface[n] when the previous word ends in a nasal (91 in the
Switchboard corpus). Letenvcountbe the total number of times lexical[D]
occurs (whatever its surface realization) when the previous word ends in a
nasal (617 in the Switchboard corpus). The resulting probability is:
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P(D! n = [+nasal] # ) = ncount
envcount= 91
617= :15

We can build similar probabilistic versions of the assimilation and dele-
tion rules which account for the[ni] pronunciation of the other words. Fig-
ure 5.10 shows sample rules and the probabilities trained onthe Switchboard
pronunciation database.

Word Rule Name Rule P

the nasal assimilation D) n = [+nasal] # [.15]
neat final t deletion t ) /0 =V # [.52]
need final d deletion d) /0 =V # [.11]
new u fronting u) i = # [y] [.36]

Figure 5.10 Simple rules of pronunciation variation due to context in con-
tinuous speech accounting for the pronunciation of each of these words as[ni].

We now need to compute the prior probabilityP(w) for each word.
For spelling correction we did this by using the relative frequency of the
word in a large corpus; a word which occurred 44,000 times in 44 million
words receives the probability estimate44;000

44;000;000 or :001. For the pronuncia-
tion problem, let’s take our prior probabilities from a collection of a written
and a spoken corpus. The Brown Corpus is a 1 million word collection
of samples from 500 written texts from different genres (newspaper, nov-
els, non-fiction, academic, etc.) which was assembled at Brown University
in 1963–64 (Kučera and Francis, 1967; Francis, 1979; Francis and Kučera,
1982). The Switchboard Treebank corpus is a 1.4 million wordcollection
of telephone conversations. Together they let us sample from both the writ-
ten and spoken genres. The table below shows the probabilities for our five
words; each probability is computed from the raw frequencies by normaliz-
ing by the number of words in the combined corpus (plus .5 * thenumber of
word types; so the total denominator is 2,486,075 + 30,836):
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w freq(w) p(w)
knee 61 .000024
the 114,834 .046
neat 338 .00013
need 1417 .00056
new 2625 .001

Now we are almost ready to answer our original question: whatis
the most likely word given the pronunciation[ni] and given that the previous
word wasI at the beginning of a sentence. Let’s start by multiplying together
our estimates forp(w) and p(yjw) to get an estimate; we show them sorted
from most probable to least probable (the has a probability of 0 since the
previous phone was not[n], and hence there is no other rule allowing[D] to
be realized as[n]):

Word p(y jw) p(w) p(yjw)p(w)
new .36 .001 .00036
neat .52 .00013 .000068
need .11 .00056 .000062
knee 1.00 .000024 .000024
the 0 .046 0

Our algorithm suggests thatnew is the most likely underlying word.
But this is the wrong answer; the string[ni] following the wordI came in
fact from the wordneedin the Switchboard corpus. One way that people
are able to correctly solve this task is word-level knowledge; people know
that the word stringI need . . . is much more likely than the word stringI new
. . .. We don’t need to abandon our Bayesian model to handle this fact; we
just need to modify it so that our model also knows thatI needis more likely
thanI new. In Chapter 6 we will see that we can do this by using a slightly
more intelligent estimate ofp(w) called abigram estimate; essentially we
consider the probability ofneedfollowing I instead of just the individual
probability ofneed.

This Bayesian algorithm is in fact part of all modern speech recog-
nizers. Where the algorithms differ strongly is how they detect individual
phones in the acoustic signal, and on which search algorithmthey use to
efficiently compute the Bayesian probabilities to find the proper string of
words in connected speech (as we will see in Chapter 7).
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Decision Tree Models of Pronunciation Variation

In the previous section we saw how hand-written rules could be augmented
with probabilities to model pronunciation variation. Riley (1991) and With-
gott and Chen (1993) suggested an alternative to writing rules by hand,
which has proved quite useful: automatically inducing lexical-to-surface
pronunciations mappings from a labeled corpus with adecision tree, partic-DECISION

TREE

ularly with the kind of decision tree called aClassification and Regression
Tree (CART ) (Breimanet al., 1984). A decision tree takes a situation de-CART

scribed by a set of features and classifies it into a category and an associated
probability. For pronunciation, a decision tree can be trained to take a lexical
phone and various contextual features (surrounding phones, stress and sylla-
ble structure information, perhaps lexical identity) and select an appropriate
surface phone to realize it. We can think of the confusion matrices we used
in spelling error correction above as degenerate decision trees; thus the sub-
stitution matrix takes a lexical phone and outputs a probability distribution
over potential surface phones to be substituted. The advantage of decision
trees is that they can be automatically induced from a labeled corpus, and
that they are concise: decision trees pick out only the relevant features and
thus suffer less from sparseness than a matrix which has to condition on
every neighboring phone.

Next−dictionary_phone

Next−dictionary_phonePrevious−dictionary_phone

g k t n y

Previous−dictionary_phone

k p

k m p ix uw ae eh
ih ay ey 

m ix uw ae eh
ih ay ey 

Position in syllable

Initial Coda

dh hh th b d f g k l
m n p s t w y

Vowel Consonant

iy iw axr aa ao 
    er aw ax el en ng 
           d f n l r  g t v z

tcl_t  
dx  

.55

.16
.33
.27
.26

t 
tcl_t 
k
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tcl_t
NULL

tcl_t
NULL
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.58

.16
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NULL
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.64

.13

.11
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tcl_t
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.32
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Figure 5.11 Hand-pruned decision tree for the phoneme/t/ induced from the Switch-
board corpus (courtesy of Eric Fosler-Lussier). This particular decision tree doesn’t model
flapping since flaps were already listed in the dictionary. The tree automatically induced the
categoriesVowel andConsonant. We have only shown the most likely realizations at each
leaf node.
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For example, Figure 5.11 shows a decision tree for the pronunciation
of the phoneme/t/ induced from the Switchboard corpus. While this tree
doesn’t including flapping (there is a separate tree for flapping) it does model
the fact that/t/ is more likely to be deleted before a consonant than before
a vowel. Note, in fact, that the tree automatically induced the classesVowel
andConsonant. Furthermore note that if/t/ is not deleted before a conso-
nant, it is likely to be unreleased. Finally, notice that/t/ is very unlikely to
be deleted in syllable onset position.

Readers with interest in decision tree modeling of pronunciation should
consult Riley (1991), Withgott and Chen (1993), and a textbook with an in-
troduction to decision trees such as Russell and Norvig (1995).

5.9 WEIGHTED AUTOMATA

We said earlier that for purposes of efficiency a lexicon is often stored with
the most likely kinds of pronunciation variation pre-compiled. The two most
common representation for such a lexicon are thetrie and theweighted WEIGHTED

finite state automaton/transducer (or probabilistic FSA/FST) (Pereira
et al., 1994). We will leave the discussion of the trie to Chapter 7,and
concentrate here on the weighted automaton.

The weighted automaton is a simple augmentation of the finiteautoma-
ton in which each arc is associated with a probability, indicating how likely
that path is to be taken. The probability on all the arcs leaving a node must
sum to 1. Figure 5.12 shows two weighted automata for the wordtomato,
adapted from Russell and Norvig (1995). The top automaton shows two pos-
sible pronunciations, representing the dialect difference in the second vowel.
The bottom one shows more pronunciations (how many?) representing op-
tional reduction or deletion of the first vowel and optional flapping of the
final [t].

A Markov chain is a special case of a weighted automaton in whichMARKOV
CHAIN

the input sequence uniquely determines which states the automaton will go
through. Because they can’t represent ambiguous problems,a Markov chain
is only useful for assigning problems to unambiguous sequences, and hence
isn’t often used in speech or language processing. In fact the weighted au-
tomata used in speech and language processing can be shown tobe equiva-
lent toHidden Markov Models (HMM s). Why do we introduce weighted
automata in this chapter and HMMs in Chapter 7? The two modelsoffer
a different metaphor; it is sometimes easier to think about certain problems
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t

ax

ow

m

ey

aa

0.95

0.05 t
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ow

.35
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aa t ow

.95

.05

.05 .95

.05

.8

.2

Word model with dialect variation:

Word model with coarticulation and dialect variation:

Figure 5.12 You say [t ow m ey t ow] and I say [t ow m aa t ow]. Two
pronunciation networks for the wordtomato, adapted from Russell and Norvig
(1995). The top one models sociolinguistic variation (someBritish or eastern
American dialects); the bottom one adds in coarticulatory effects. Note the
correlation between allophonic and sociolinguistic variation; the dialect with
the vowel [ey] is more likely to flap than the other dialect.

as weighted-automata than as HMMs. The weighted automaton metaphor is
often applied when the input alphabet maps relatively neatly to the under-
lying alphabet. For example, in the problem of correcting spelling errors in
typewritten input, the input sequence consists of letters and the states of the
automaton can correspond to letters. Thus it is natural to think of the problem
as transducing from a set of symbols to the same set of symbolswith some
modifications, and hence weighted automata are naturally used for spelling
error correction. In the problem of correcting errors in hand-written input,
the input sequence is visual, and the input alphabet is an alphabet of lines and
angles and curves. Here instead of transducing from an alphabet to itself, we
need to do classification on some input sequence before considering it as
a sequence of states. Hidden Markov Models provide a more appropriate
metaphor, since they naturally handle separate alphabets for input sequences
and state sequences. But since any probabilistic automatonin which the in-
put sequence does not uniquely specify the state sequence can be modeled as
an HMM, the difference is one of metaphor rather than explanatory power.

Weighted automata can be created in many ways. One way, first pro-
posed by Cohen (1989) is to start with on-line pronunciationdictionaries and
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use hand-written rules of the kind we saw above to create different potential
surface forms. The probabilities can then be assigned either by counting
the number of times each pronunciation occurs in a corpus, orif the cor-
pus is too sparse, by learning probabilities for each rule and multiplying
out the rule probabilities for each surface form (Tajchmanet al., 1995). Fi-
nally these weighted rules, or alternatively the decision trees we discussed
in the last section, can be automatically compiled into a weighted finite-state
transducer (Sproat and Riley, 1996). Alternatively, for very common words,
we can simply find enough examples of the pronunciation in a transcribed
corpus to build the model by just combining all the pronunciations into a
network (Wooters and Stolcke, 1994).

The networks fortomatoabove were shown merely as illustration and
are not from any real system; Figure 5.13 shows an automaton for the word
aboutwhich is trained on actual pronunciations from the Switchboard corpus
(we discussed these pronunciations in Chapter 4).

t

dx

start end

ax

ix.12

.68

.20 b

aw

ae

0.85

0.15 .16

.30
.54

.37

.63

Figure 5.13 A pronunciation network for the wordabout, from the actual
pronunciations in the Switchboard corpus.

Computing Likelihoods from Weighted Automata: The Forward Algorithm

One advantage of an automaton-based lexicon is that there are efficient al-
gorithms for generating the probabilities that are needed to implement the
Bayesian method of correct-word-identification of Section5.8. These algo-
rithms apply to weighted automata and also to theHidden Markov Models
that we will discuss in Chapter 7. Recall that in our example the Bayesian
method is given as input a series of phones[n iy], and must choose between
the wordsthe, neat, need, new, andknee. This was done by computing two
probabilities: the prior probability of each word, and the likelihood of the
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phone string[n iy] given each word. When we discussed this example ear-
lier, we said that for example the likelihood of[n iy] given the wordneedwas
.11, since we computed a probability of .11 for thefinal-d-deletionrule from
our Switchboard corpus. This probability is transparent for needsince there
were only two possible pronunciations ([n iy] and [n iy d]). But for words
like about, visualizing the different probabilities is more complex.Using a
precompiled weighted automata can make it simpler to see allthe different
probabilities of different paths through the automaton.

There is a very simple algorithm for computing the likelihood of a
string of phones given the weighted automaton for a word. This algorithm,
the forward algorithm, is an essential part of ASR systems, although in thisFORWARD

chapter we will only be working with a simple usage of the algorithm. This is
because the forward algorithm is particularly useful when there are multiple
paths through an automaton which can account for the input; this is not the
case in the weighted automata in this chapter, but will be true for the HMMS
of Chapter 7. The forward algorithm is also an important stepin defining the
Viterbi algorithm which we will see later in this chapter.

Let’s begin by giving a formal definition of a weighted automaton and
of the input and output to the likelihood computation problem. A weighted
automaton consists of

1. a sequence of statesq= (q0q1q2 : : :qn), each corresponding to a phone,

2. a set of transition probabilities between states,a01;a12;a13, encoding
the probability of one phone following another.

We represent the states as nodes, and the transition probabilities as
edges between nodes; an edge exists between two nodes if there is a non-zero
transition probability between the two nodes.4 The sequences of symbols
that are input to the model (if we are thinking of it as recognizer) or which are
produced by the model (if we are thinking of it as a generator)are generally
called theobservation sequence, referred to asO= (o1o2o3 : : :ot). (Upper-OBSERVATION

SEQUENCE

case letters are used for a sequence and lower-case letters for an individual

4 We have used two ‘special’ states (often callednon-emitting states) as the start and end
state; it is also possible to avoid the use of these states. Inthat case, an automaton must
specify two more things:

1. π, an initial probability distribution over states, such that πi is the probability that the
automaton will start in statei. Of course some statesj may haveπ j = 0, meaning that
they cannot be initial states.

2. a set of legal accepting states.
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element of a sequence). We will use this terminology when talking about
weighted automata and later when talking about HMMs.

Figure 5.14 shows an automaton for the wordneedwith a sample ob-
servation sequence.

10 2 3 4

a12 a23

o1 o2 o3

a01
start endn iy d

n iy d ......

Word Model

a24 = .11

a34= .89

Observation 
Sequence
(phone symbols)

Figure 5.14 A simple weighted automaton or Markov chain pronunciation
network for the wordneed, showing the transition probabilities, and a sample
observation sequence. The transition probabilitiesaxy between two statesx
andy are 1.0 unless otherwise specified.

This task of determining which underlying word might have produced
an observation sequence is called thedecodingproblem. Recall that in orderDECODING

to find which of the candidate words was most probable given the observa-
tion sequence[n iy], we need to compute the productP(Ojw)P(w) for each
candidate word (the, need, neat, knee, new), i.e. the likelihood of the ob-
servation sequenceO given the wordw times the prior probability of the
word.

The forward algorithm can be run to perform this computationfor each
word; we give it an observation sequence and the pronunciation automaton
for a word and it will returnP(Ojw)P(w). Thus one way to solve the de-
coding problem is to run the forward algorithm separately oneach word and
choose the word with the highest value. As we saw earlier, theBayesian
method produces the wrong result for pronunciation[n iy] as part of the
word sequenceI need(its first choice is the wordnew, and the second choice
is neat; needis only the third choice). Since the forward algorithm is just
a way of implementing the Bayesian approach, it will return the exact same
rankings. (We will see in Chapter 6 how to augment the algorithm with bi-
gram probabilities which will enable it to make use of the knowledge that
the previous word wasI).

The forward algorithm takes as input a pronunciation network for each
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candidate word. Because the wordtheonly has the pronunciation[n iy] after
nasals, and since we are assuming the actual context of this word was after
the wordI (no nasal), we will skip that word and look only atnew, neat,
need, andknee. Note in Figure 5.15 that we have augmented each network
with the probability of each word, computed from the frequency that we saw
on page 165.

start endn iy

Word model for "knee"

start endn iy d

Word model for "need"

.89

.11

endstart n
uw

iy

Word model for "new"

.36

.64

.000024.00056

.001
start endn iy t

Word model for "neat"

.52

.48.00013

Figure 5.15 Pronunciation networks for the wordsneed, neat, new, and
knee. All networks are simplified from the actual pronunciationsin the Switch-
board corpus. Each network has been augmented by the unigramprobability
of the word (i.e. its normalized frequency from the Switchboard+Brown cor-
pus). Word probabilities are not usually included as part ofthe pronunciation
network for a word; they are added here to simplify the exposition of the for-
ward algorithm.

The forward algorithm is anotherdynamic programming algorithm,
and can be thought of as a slight generalization of the minimum edit dis-
tance algorithm. Like the minimum edit distance algorithm,it uses a table
to store intermediate values as it builds up the probabilityof the observa-
tion sequence. Unlike the minimum edit distance algorithm,the rows are
labeled not just by states which always occur in linear order, but implicitly
by astate-graphwhich has many ways of getting from one state to another.
In the minimum edit distance algorithm, we filled in the matrix by just com-
puting the value of each cell from the 3 cells around it. With the forward
algorithm, on the other hand, a state might be entered by any other state,
and so the recurrence relation is somewhat more complicated. Furthermore,
the forward algorithm computes thesumof the probabilities of all possible
paths which could generate the observation sequence, wherethe minimum
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edit distance computed theminimumsuch probability.5 Each cell of the for-
ward algorithm matrix,forward[t; j] represents the probability of being in
state j after seeing the firstt observations, given the automatonλ. Since
we have augmented our graphs with the word probabilityp(w), our exam-
ple of the forward algorithm here is actually computing thislikelihood times
p(w). The value of each cellforward[t; j] is computed by summing over the
probabilities of every path that could lead us to this cell. Formally, each cell
expresses the following probability:

forward[t; j] = P(o1;o2 : : :ot ;qt = jjλ) P(w) (5.14)

Hereqt = j means ‘the probability that thet’th state in the sequence
of states is statej ’. We compute this probability by summing over the ex-
tensions of all the paths that lead to the current cell. An extension of a path
from a statei at timet�1 is computed by multiplying the following three
factors:

1. theprevious path probability from the previous cell forward[t�1; i].
2. thetransition probability ai j from previous statei to current statej.

3. theobservation likelihoodb jt that current statej matches observation
symbolt. For the weighted automata that we consider here,b jt is 1 if
the observation symbol matches the state, and 0 otherwise. Chapter 7
will consider more complex observation likelihoods.

The algorithm is described in Figure 5.16.
Figure 5.17 shows the forward algorithm applied to the wordneed. The

algorithm applies similarly to the other words which can produce the string[n iy], resulting in the probabilities on page 165. In order to compute the
most probable underlying word, we run the forward algorithmseparately on
each of the candidate words, and choose the one with the highest probabil-
ity. Chapter 7 will give further details of the mathematics of the forward
algorithm and introduce the related forward-backward algorithm.

5 The forward algorithm computes thesumbecause there may be multiple paths through
the network which explain a given observation sequence. Chapter 7 will take up this point in
more detail.
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function FORWARD(observations,state-graph) returns forward-probability

num-states NUM-OF-STATES(state-graph)
num-obs length(observations)
Create probability matrixforward[num-states+ 2, num-obs+ 2]
forward[0,0] 1.0
for each time stept from 0 to num-obsdo

for each states from 0 to num-statesdo
for each transitions0 from sspecified bystate-graph

forward[s0,t+1] forward[s,t] * a[s, s0] * b[s0, ot ]
return the sum of the probabilities in the final column offorward

Figure 5.16 The forward algorithm for computing likelihood of observa-
tion sequence given a word model.a[s;s0] is the transition probability from
current states to next states0 andb[s0;ot ] is the observation likelihood ofs’
givenot . For the weighted automata that we consider here,b[s0;ot ] is 1 if the
observation symbol matches the state, and 0 otherwise.

#

start 1.0

n

iy

d

need

end

n iy #

.00056 * 1.0 = .00056

.00056 * 1.0 = .00056

.00056* .11 = .00062

Figure 5.17 The forward algorithm applied to the wordneed, computing
the probabilityP(Ojw)P(w). While this example doesn’t require the full power
of the forward algorithm, we will see its use on more complex examples in
Chapter 7.

Decoding: The Viterbi Algorithm

The forward algorithm as we presented it seems a bit of an overkill. Since
only one path through the pronunciation networks will matchthe input string,
why use such a big matrix and consider so many possible paths?Further-
more, as a decoding method, it seems rather inefficient to runthe forward
algorithm once for each word (imagine how inefficient this would be if we
were computing likelihoods for all possible sentences rather than all possible
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words!) Part of the reason that the forward algorithm seems like overkill is
that we have immensely simplified the pronunciation problemby assuming
that our input consists of sequences of unambiguous symbols. We will see in
Chapter 7 that when the observation sequence is a set of noisyacoustic val-
ues, there are many possibly paths through the automaton, and the forward
algorithm will play an important role in summing these paths.

But it is true that having to run it separately on each word makes the
forward algorithm a very inefficient decoding method. Luckily, there is a
simple variation on the forward algorithm called theViterbi algorithm which VITERBI

allows us to consider all the words simultaneously and stillcompute the most
likely path. The termViterbi is common in speech and language process-
ing, but like the forward algorithm this is really a standardapplication of
the classicdynamic programming algorithm, and again looks a lot like the
minimum edit distance algorithm. The Viterbi algorithm was first applied
to speech recognition by Vintsyuk (1968), but has what Kruskal (1983) calls
a ‘remarkable history of multiple independent discovery and publication’;
see the History section at the end of the chapter for more details. The name
Viterbi is the one which is most commonly used in speech recognition, al-
though the termsDP alignment (for Dynamic Programming alignment),
dynamic time warping andone-pass decodingare also commonly used.DYNAMIC

TIME
WARPING

The term is applied to the decoding algorithm for weighted automata and
Hidden Markov Models on a single word and also to its more complex ap-
plication to continuous speech, as we will see in Chapter 7. In this chapter
we will show how the algorithm is used to find the best path through a net-
work composed of single words, as a result choosing the word which is most
probable given the observation sequence string of words.

The version of the Viterbi algorithm that we will present takes as input
a single weighted automaton and a set of observed phoneso= (o1o2o3 : : :ot)
and returns the most probable state sequenceq = (q1q2q3 : : :qt), together
with its probability. We can create a single weighted automaton by combin-
ing the pronunciation networks for the four words in parallel with a single
start and a single end state. Figure 5.18 shows the combined network.

Figure 5.19 shows pseudocode for the Viterbi algorithm. Like the min-
imum edit distance and forward algorithm, the Viterbi algorithm sets up a
probability matrix, with one column for each time indext and one row for
each state in the state graph. Also like the forward algorithm, each column
has a cell for each stateqi in the single combined automaton for the four
words. In fact, the code for the Viterbi algorithm should look exactly like
the code for the forward algorithm with two modifications. First, where the
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Figure 5.18 The pronunciation networks for the wordsneed, neat, new, and
kneecombined into a single weighted automaton. Again, word probabilities
are not usually considered part of the pronunciation network for a word; they
are added here to simplify the exposition of the Viterbi algorithm.

forward algorithm places thesumof all previous paths into the current cell,
the Viterbi algorithm puts themaxof the previous paths into the current cell.

The algorithm first createsN+2 or four state columns. The first col-
umn is an initial pseudo-observation, the second corresponds to the first
observation phone [n], the third to [iy] and the fourth to a final pseudo-
observation. We begin in the first column by setting the probability of the
start state to 1.0, and the other probabilities to 0; the reader should find this
in Figure 5.20. Cells with probability 0 are simply left blank for readability.

Then we move to the next state; as with the forward algorithm,for
every state in column 0, we compute the probability of movinginto each
state in column 1. The valueviterbi[t; j] is computed by taking the maximum
over the extensions of all the paths that lead to the current cell. An extension
of a path from a statei at timet�1 is computed by multiplying the same
three factors we used for the forward algorithm:

1. theprevious path probability from the previous cellforward[t�1; i].
2. thetransition probability ai j from previous statei to current statej.
3. theobservation likelihoodb jt that current statej matches observation

symbolt. For the weighted automata that we consider here,b jt is 1 if
the observation symbol matches the state, and 0 otherwise. Chapter 7
will consider more complex observation likelihoods.
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function V ITERBI(observationsof len T,state-graph) returns best-path

num-states NUM-OF-STATES(state-graph)
Create a path probability matrixviterbi[num-states+2,T+2]
viterbi[0,0] 1.0
for each time stept from 0 to T do

for each states from 0 to num-statesdo
for each transitions0 from sspecified bystate-graph

new-score viterbi[s, t] * a[s,s0] * bs0(ot)
if ((viterbi[s0,t+1] = 0) jj (new-score> viterbi[s0, t+1]))

then
viterbi[s0, t+1] new-score
back-pointer[s0, t+1] s

Backtrace from highest probability state in the final columnof viterbi[] and
return path

Figure 5.19 Viterbi algorithm for finding optimal sequence of states in con-
tinuous speech recognition, simplified by using phones as inputs. Given an
observation sequence of phones and a weighted automaton (state graph), the
algorithm returns the path through the automaton which has maximum proba-
bility and accepts the observation sequence.a[s;s0] is the transition probability
from current states to next states0 andb[s0;ot ] is the observation likelihood of
s’ givenot . For the weighted automata that we consider here,b[s0;ot ] is 1 if
the observation symbol matches the state, and 0 otherwise.

In Figure 5.20, in the column for the inputn, each word starts with[n],
and so each has a non-zero probability in the cell for the state n. Other cells
in that column have zero entries, since their states don’t match n. When we
proceed to the next column, each cell that matchesiy gets updated with the
contents of the previous cell times the transition probability to that cell. Thus
the value ofviterbi[2,iynew] for the iy state of the wordnewis the product of
the ‘word’ probability ofnewtimes the probability ofnewbeing pronounced
with the voweliy. Notice that if we look only at thisiy column, that the word
needis currently the ‘most-probable’ word. But when we move to the final
column, the wordnewwill win out, sinceneedhas a smaller transition prob-
ability to end(.11) thannewdoes (1.0). We can now follow the backpointers
and backtrace to find the path that gave us this final probability of :00036.



178 Chapter 5. Probabilistic Models of Pronunciation and Spelling

n

iy

iy

n

#

start 1.0

n

iy
knee

n

iy

uw

d

t

neat

need

new

1.0 * .000024
= .000024

n iy #

1.0 *.001
= .001

1.0 *.00056
= .00056

1.0 *.00013
= .00013

.000024 * 1.0
= .000024

.001 * .36
= .00036

.00013 * 1.0 
= .00013

.00056 * 1.0
= .00056

end ..00036 * 1.0
= .00036

Figure 5.20 The entries in the individual state columns for the Viterbi al-
gorithm. Each cell keeps the probability of the best path so far and a pointer
to the previous cell along that path. Backtracing from theendstate, we can
reconstruct the state sequencennew iynew, arriving at the best wordnew.

Weighted Automata and Segmentation

Weighted automata and the Viterbi algorithm play an important in various
algorithm forsegmentation. Segmentation is the process of taking an undif-SEGMENTA­

TION

ferentiated sequence of symbols and ‘segmenting’ it into chunks. For exam-
ple sentence segmentationis the problem of automatically finding the sen-
tence boundaries in a corpus. Similarlyword segmentationis the problem
of finding word-boundaries in a corpus. In written English there is no dif-
ficulty in segmenting words from each other because there areorthographic
spaces between words. This is not the case in languages like Chinese and
Japanese that use a Chinese-derived writing system. Written Chinese does
not mark word boundaries. Instead, each Chinese character is written one
after the other without spaces. Since each character approximately repre-
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sents a single morpheme, and since words can be composed of one or more
characters, it is often difficult to know where words should be segmented.
Proper word-segmentation is necessary for many applications, particularly
including parsing and text-to-speech (how a sentence is broken up into words
influences its pronunciation in a number of ways).

Consider the following example sentence from Sproatet al. (1996):

(5.15) ÕÄÂãõáµ ?
“How do you say ‘octopus’ in Japanese?”

This sentence has two potential segmentations, only one of which is
correct. In the plausible segmentation, the first two characters are combined
to make the word for ‘Japanese language’ (ÕÄ rı̀-wén) (the accents indicate
the tone of each syllable), and the next two are combined to make the word
for ‘octopus’ (Âã zh āng-yú).

(5.16) ÕÄ
rı̀-wén
Japanese

Âã
zh āng-yú
octopus

õá
zěn-me
how

µ
shu ō
say

?

‘How do you say octopus in Japanese?’

(5.17) Õ
rı̀
Japan

ÄÂ
wén-zh āng
essay

ã
yú
fish

õá
zěn-me
how

µ
shu ō
say

?

‘How do you say Japan essay fish?’

Sproatet al. (1996) give a very simple algorithm which selects the
correct segmentation by choosing the one which contains themost-frequent
words. In other words, the algorithm multiplies together the probabilities of
each word in a potential segmentation and chooses whicheversegmentation
results in a higher product probability.

The implementation of their algorithm combines a weighted-finite-
state transducer representation of a Chinese lexicon with the Viterbi algo-
rithm. This lexicon is a slight augmentation of the FST lexicons we saw
in Chapter 4; each word is represented as a series of arcs representing each
character in the word, followed by a weighted arc representing the proba-
bility of the word. As is commonly true with probabilistic algorithms, they
actually use the negative log probability of the word (� log(P(w)). The log
probability is mainly useful because the product of many probabilities gets
very small, and so using the log probability can help avoid underflow. Using
log probabilities also means that we areadding costsrather thanmultiplying
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probabilities, and that we are looking for theminimum costsolution rather
than themaximum probabilitysolution.

Consider the example in Figure 5.21. This sample lexicon Figure 5.21(a)
consists of only 5 potential words:

Word Pronunciation Meaning Cost (�logp(w))
rı̀-wén ‘Japanese’ 10.63
rı̀ ‘Japan’ 6.51
zh āng- yú ‘octopus’ 13.18
wén-zh āng ‘essay’ 9.51
yú ‘fish’ 10.28

The system represents the input sentence as the unweighted FSA in
Figure 5.21(b). In order to compose this input with the lexicon, it needs to
be converted into an FST. The algorithm uses a functionId which takes an
FSA A and returns the FST which maps all and only the strings accepted
by A to themselves. LetD� represent the transitive closure of D, i.e. the
automaton created by adding a loop from the end of the lexiconback to
the beginning. The set of all possible segmentations isId(I) ÆD�, i.e. the
input transducerId(I) composed with the transitive closure of the dictionary
D, shown in Figure 5.21(c). Then the best segmentation is the lowest-cost
segmentation inId(I)ÆD�, shown in Figure 5.21(d).

Finding the best path shown in Figure 5.21(d) can be done easily with
the Viterbi algorithm and is left as an exercise for the reader.

This segmentation algorithm, like the spelling error correction algo-
rithm we saw earlier, can also be extended to incorporate thecross-word
probabilities (N-gram probabilities) that will be introduced in Chapter 6.

5.10 PRONUNCIATION IN HUMANS

Section 5.7 discussed many factors which influence pronunciation variation
in humans. In this section we very briefly summarize a computational model
of the retrieval of words from the mental lexicon as part of human lexical
production. The model is due to Gary Dell and his colleagues;for brevity
we combine and simplify features of multiple models (Dell, 1986, 1988;
Dell et al., 1997) in this single overview. First consider some data. As
we suggested in Chapter 3, production errors such as slips ofthe tongue
(darn boreinsteadbarn door) often provide important insights into lexical
production. Dell (1986) summarizes a number of previous results about such
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Dictionary D(a)

Input I(b)

4

ri wen zhang yu
0 1 2 3

:   /10.63ε ε: ri/0.000
: wen/0.000

: wen/0.000

: zhang/0.000
: yu/0.000

: yu/0.000

ε:   /6.51ε

εε:   /9.51

ε ε:   /13.18

ε ε:   /10.28

: zhang/0.0000

1 2

3

4 5

6 7

8

9

: ri/0.000

(c) Id(D) o D*

:   /10.63ε ε

: wen/0.000

: yu/0.000

εε:   /9.51

ε ε:   /13.18

ε ε:   /10.28
: zhang/0.000

3 5

7

: zhang/0.000

ε:   /6.51ε

0 1

4: ri/0.000 2

: yu/0.000

6

: wen/0.000 8 9 10

BestPath(Id(D) o D*)(d)

:   /10.63ε ε : yu/0.000 ε ε:   /13.18

7 9

: zhang/0.000

0 1

: ri/0.000 : wen/0.000

8 9 10

11

Figure 5.21 The Sproatet al. (1996) algorithm applied to four input words
(after Sproatet al. (1996))

slips. Thelexical biaseffect is that slips are more likely to create words than
non-words; thus slips likedean bad! bean dadare three times more likely
than slips likedeal back! beal dack. The repeated-phoneme biasis that
two phones in two words are likely to participate in an error if there is an
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identical phone in both words. Thusdeal beackis more likely to slip tobeal
thandeal backis.

The model which Dell (1986, 1988) proposes is a network with 3lev-
els: semantics, word (lemma), and phonemes.6 The semantics level has
nodes for concepts, the lemma level has one node for each words, and the
phoneme level has separate nodes for each phone, separated into onsets,
vowels, and codas. Each lemma node is connected to the phoneme units
which comprise the word, and the semantic units which represent the con-
cept. Connections are used to pass activation from node to node, and are
bidirectional and excitatory. Lexical production happensin two stages. In
the first stage, activation passes from the semantic concepts to words. Ac-
tivation will cascade down into the phonogical units and then back up into
other word units. At some point the most highely activated word is selected.
In the second stage, this selected is given a large jolt of activation. Again
this activation passes to the phonological level. Now the most highly active
phoneme nodes are selected and accessed in order.

Figure 5.22 shows Dell’s model. Errors occur because too much acti-
vation reaches the wrong phonological node. Lexical bias, for example, is
modeled by activation spreading up from the phones of the intended word to
neighboring words, which then activated their own phones. Thus incorrect
phones get ‘extra’ activation if they are present in actual words.

The two-step network model also explains other facts about lexical
production.Aphasic speakers have various troubles in language productionAPHASIC

and comprehension, often caused by strokes or accidents. Dell et al. (1997)
show that weakening various connections in a network model like the one
above can also account for the speech errors in aphasics. This supports the
continuity hypothesis, which suggests that some part of aphasia is merely an
extension of normal difficulties in word retrieval, and alsoprovides further
evidence for the network model. Readers interested in details of the model
should see the above references and related computational models such as
Roelofs (1997), which extends the network model to deal withsyllabifica-
tion, phonetic encoding, and more complex sequential structure, and Levelt
et al. (1999).

6 Dell (1988) also has a fourth level for syllable structure which we will ignore here.
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d b i ae l n d k
Onsets Vowels Codas

deal dean dad back bean bad

Semantics

Words
(Lemmas)

Figure 5.22 The network model of Dell (1986, 1988), showing the mech-
anism for lexical bias (modified from Dell (1988, p. 134)). The boldfaced
nodes indicate nodes with lots of activation. The intended word deanhas a
greater chance of slipping tobeanbecause of the existence of thebeannode.
The boldfaced lines show the connections which account for the possible slip.

5.11 SUMMARY

This chapter has introduced some essential metaphors and algorithms that
will be useful throughout speech and language processing. The main points
are as follows:� We can represent many language problems as if a clean string of sym-

bols had been corrupted by passing through anoisy channeland it is
our job to recover the original symbol string. One powerful way to
recover the original symbol string is to consider all possible original
strings, and rank them by theirconditional probability .� The conditional probability is usually easiest to compute using the
Bayes Rule, which breaks down the probability into aprior and a
likelihood. For spelling error correction or pronunciation-modeling,
the prior is computed by taking word frequencies or word bigram fre-
quencies. The likelihood is computed by training a simple probabilistic
model (like a confusion matrix, a decision tree, or a hand-written rule)
on a database.



184 Chapter 5. Probabilistic Models of Pronunciation and Spelling� The task of computing the distance between two strings comesup
in spelling error correction and other problems. Theminimum edit
distance algorithm is an application of thedynamic programming
paradigm to solving this problem, and can be used to produce the dis-
tance between two strings or analignment of the two strings.� The pronunciation of words is very variable. Pronunciationvariation
is caused by two classes of factors:lexical variation andallophonic
variation . Lexical variation includessociolinguistic factors likedi-
alect andregister or style.� The single most important factor affecting allophonic variation is the
identity of the surrounding phones. Other important factors include
syllable structure, stress patterns, and the identity and frequency of the
word.� The decoding task is the problem of finding determining the correct
‘underlying’ sequence of symbols that generated the ‘noisy’ sequence
of observation symbols.� The forward algorithm is an efficient way of computing the likeli-
hood of an observation sequence given a weighted automata. Like the
minimum edit distancealgorithm, it is a variant of dynamic program-
ming. It will prove particularly in Chapter 7 when we consider Hidden
Markov Models, since it will allow us to sum multiple paths that each
account for the same observation sequence.� The Viterbi algorithm, another variant of dynamic programming, is
an efficient way of solving the decoding problem by considering all
possible strings and using the Bayes Rule to compute their probabilities
of generating the observed ‘noisy’ sequence.� Word segmentation in languages without word-boundary markers,
like Chinese and Japanese, is another kind of optimization task which
can be solved by the Viterbi algorithm.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Algorithms for spelling error detection and correction have existing since
at least Blair (1960). Most early algorithm were based on similarity keys
like the Soundex algorithm discussed in the exercises on page 89 (Odell and
Russell, 1922; Knuth, 1973). Damerau (1964) gave a dictionary-based al-
gorithm for error detection; most error-detection algorithms since then have
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been based on dictionaries. Damerau also gave a correction algorithm that
worked for single errors. Most algorithms since then have relied on dynamic
programming, beginning with Wagner and Fischer (1974) (seebelow). Ku-
kich (1992) is the definitive survey article on spelling error detection and
correction. Only much later did probabilistic algorithms come into vogue
for non-OCR spelling-error correction (for example Kashyap and Oommen
(1983) and Kernighanet al. (1990)).

By contrast, the field of optical character recognition developed prob-
abilistic algorithms quite early; Bledsoe and Browning (1959) developed a
probabilistic approach to OCR spelling error correction that used a large dic-
tionary and computed the likelihood of each observed lettersequence given
each word in the dictionary by multiplying the likelihoods for each letter.
In this sense Bledsoe and Browning also prefigured the modernBayesian
approaches to speech recognition. (Shinghal and Toussaint, 1979) and (Hull
and Srihari, 1982) applied bigram letter-transition probabilities and the Viterbi
algorithm to choose the most likely correct form for a misspelled OCR input.

The application of dynamic programming to the problem of sequence
comparison has what Kruskal (1983) calls a ‘remarkable history of multiple
independent discovery and publication’. Kruskal and others give at least the
following independently-discovered variants of the algorithm published in
four separate fields:

Citation Field
Viterbi (1967) information theory
Vintsyuk (1968) speech processing
Needleman and Wunsch (1970) molecular biology
Sakoe and Chiba (1971) speech processing
Sankoff (1972) molecular biology
Reichertet al. (1973) molecular biology
Wagner and Fischer (1974) computer science

To the extent that there is any standard to terminology in speech and
language processing, it is the use of the termViterbi for the application of
dynamic programming to any kind of probabilistic maximization problem.
For non-probabilistic problems, the plain termdynamic programming is
often used. The history of the forward algorithm, which derives from Hid-
den Markov Models, will be summarized in Chapter 7. Sankoff and Kruskal
(1983) is a collection exploring the theory and use of sequence comparison
in different fields. Forney (1973) is an early survey paper which explores the
origin of the Viterbi algorithm in the context of information and communi-
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cations theory.
The weighted finite-state automata was first described by (Pereiraet al.,

1994), drawing from a combination of work in finite-state transducers and
work in probabilistic languages (Booth and Thompson, 1973).
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EXERCISES

5.1 Computing minimum edit distances by hand, figure out whetherdrive
is closer tobrief or todivers, and what the edit distance is. You may use any
version ofdistancethat you like.

5.2 Now implement a minimum edit distance algorithm and use yourhand-
computed results to check your code.

5.3 The Viterbi algorithm can be used to extend a simplified version of
the Kernighanet al. (1990) spelling error correction algorithm. Recall that
the Kernighanet al. (1990) algorithm only allowed a single spelling error
for each potential correction. Let’s simplify by assuming that we only have
three confusion matrices instead of four (del, ins andsub; no trans). Now
show how the Viterbi algorithm can be used to extend the Kernighanet al.
(1990) algorithm to handle multiple spelling errors per word.

5.4 To attune your ears to pronunciation reduction, listen for the pronun-
ciation of the wordthe, a, or to in the spoken language around you. Try to
notice when it is reduced, and mark down whatever facts aboutthe speaker
or speech situation that you can. What are your observations?

5.5 Find a speaker of a different dialect of English than your own(even
someone from a slightly different region of your native dialect) and tran-
scribe (using the ARPAbet or IPA) 10 words that they pronounce differently
than you. Can you spot any generalizations?

5.6 Implement the Forward algorithm.

5.7 Write a modified version of the Viterbi algorithm which solves the seg-
mentation problem from Sproatet al. (1996).

5.8 Now imagine a version of English that was written without spaces.
Apply your segmentation program to this ‘compressed English’. You will
need other programs to compute word bigrams or trigrams.

5.9 Two words areconfusableif they have phonetically similar pronunci-CONFUSABLE

ations. Use one of your dynamic programming implementations to take two
words and output a simple measure of how confusable they are.You will
need to use an on-line pronunciation dictionary. You will also need a metric
for how close together two phones are. Use your favorite set of phonetic
feature vectors for this. You may assume some small constantprobability of
phone insertion and deletion.
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But it must be recognized that the notion ‘probability of a sen-
tence’ is an entirely useless one, under any known interpretation
of this term.

Noam Chomsky (1969, p. 57)

Anytime a linguist leaves the group the recognition rate goes up.
Fred Jelinek (then of the IBM speech group) (1988)1

Imagine listening to someone as they speak and trying to guess the next
word that they are going to say. For example what word is likely to follow
this sentence fragment?:

I’d like to make a collect. . .

Probably the most likely word iscall, although it’s possible the next
word could betelephone, or person-to-personor international. (Think of
some others). Guessing the next word (orword prediction ) is an essen- WORD

PREDICTION

tial subtask of speech recognition, hand-writing recognition, augmentative
communication for the disabled, and spelling error detection. In such tasks,
word-identification is difficult because the input is very noisy and ambigu-
ous. Thus looking at previous words can give us an important cue about
what the next ones are going to be. Russell and Norvig (1995) give an exam-
ple fromTake the Money and Run, in which a bank teller interprets Woody
Allen’s sloppily written hold-up note as saying “I have a gub”. A speech
1 In an address to the first Workshop on the Evaluation of Natural Language Processing
Systems, December 7, 1988. While this workshop is describedin Palmer and Finin (1990),
the quote was not written down; some participants remember amore snappy version:Every
time I fire a linguist the performance of the recognizer improves.
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recognition system (and a person) can avoid this problem by their knowl-
edge of word sequences (“a gub” isn’t an English word sequence) and of
their probabilities (especially in the context of a hold-up, “I have a gun” will
have a much higher probability than “I have a gub” or even “I have a gull”).

This ability to predict the next word is important foraugmentative
communication systems (Newellet al., 1998). These are computer sys-

AUGMENTA­
TIVE
COMMUNICA­
TION tems that help the disabled in communication. For example, people who

are unable to use speech or sign-language to communicate, like the physi-
cist Steven Hawkings, use systems that speak for them, letting them choose
words with simple hand movements, either by spelling them out, or by se-
lecting from a menu of possible words. But spelling is very slow, and a menu
of words obviously can’t have all possible English words on one screen.
Thus it is important to be able to know which words the speakeris likely to
want to use next, so as to put those on the menu.

Finally, consider the problem of detecting real-word spelling errors.
These are spelling errors that result in real words of English (although not
the ones the writer intended) and so detecting them is difficult (we can’t find
them by just looking for words that aren’t in the dictionary). Figure 6.1 gives
some examples.

They are leaving in about fifteenminuetsto go to her house.
The study was conducted mainlybeJohn Black.
The designanconstruction of the system will take more than a year.
Hopefully, allwith continue smoothly in my absence.
Can theylavehim my messages?
I need tonotifiedthe bank of [this problem.]
He is trying tofineout.

Figure 6.1 Some attested real-word spelling errors from Kukich (1992).

These errors can be detected by algorithms which examine, among
other features, the words surrounding the errors. For example, while the
phrasein about fifteen minuetsis perfectly grammatical English, it is a very
unlikely combination of words. Spellcheckers can look for low probability
combinations like this. In the examples above the probability of three word
combinations (they lave him, to fine out, to notified the) is very low. Of
course sentences with no spelling errors may also have low probability word
sequences, which makes the task challenging. We will see in Section 6.6 that
there are a number of different machine learning algorithmswhich make use
of the surrounding words and other features to docontext-sensitive spelling
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error correction .
Guessing the next word turns out to be closely related to another prob-

lem: computing the probability of a sequence of words. For example the
following sequence of words has a non-zero probability of being encoun-
tered in a text written in English:

. . . all of a sudden I notice three guys standing on the sidewalk
taking a very good long gander at me.

while this same set of words in a different order probably hasa very low
probability:

good all I of notice a taking sidewalk the me long three at sudden
guys gander on standing a a the very

Algorithms that assign a probability to a sentence can also be used to
assign a probability to the next word in an incomplete sentence, and vice
versa. We will see in later chapters that knowing the probability of whole
sentences or strings of words is useful in part-of-speech-tagging (Chapter 8),
word-sense disambiguation, and probabilistic parsing Chapter 12.

In speech recognition, it is traditional to use the termlanguage model LANGUAGE
MODEL

or LM for a statistical model of word sequences. In the rest of thischapter LM

we will be using bothlanguage modeland grammar, depending on the
context.

6.1 COUNTING WORDS IN CORPORA

[upon being asked if there weren’t enough words in the English language for him]:

“Yes, there are enough, but they aren’t the right ones.”
James Joyce, reported in Bates (1997)

Probabilities are based on counting things. Before we talk about prob-
abilities, we need to decide what we are going to count and where we are
going to find the things to count.

As we saw in Chapter 5, statistical processing of natural language is
based oncorpora (singularcorpus), on-line collections of text and speech.CORPORA

CORPUSFor computing word probabilities, we will be counting wordsin a training
corpus. Let’s look at part of the Brown Corpus, a 1 million word collection
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of samples from 500 written texts from different genres (newspaper, nov-
els, non-fiction, academic, etc.), which was assembled at Brown University
in 1963-64 (Kučera and Francis, 1967; Francis, 1979; Francis and Kučera,
1982). It contains sentence (6.1); how many words are in thissentence?

(6.1) He stepped out into the hall, was delighted to encounter a water
brother.

Example 6.1 has 13 words if we don’t count punctuation-marksas
words, 15 if we count punctuation. Whether we treat period (‘.’), comma
(‘ ,’), and so on as words depends on the task. There are tasks suchas
grammar-checking, spelling error detection, or author-identification, for which
the location of the punctuation is important (for checking for proper capital-
ization at the beginning of sentences, or looking for interesting patterns of
punctuation usage that uniquely identify an author). In natural language pro-
cessing applications, question-marks are an important cuethat someone has
asked a question. Punctuation is a useful cue for part-of-speech tagging.
These applications, then, often count punctuation as words.

Unlike text corpora, corpora of spoken language usually don’t have
punctuation, but speech corpora do have other phenomena that we might or
might not want to treat as words. One speech corpus, the Switchboard corpus
of telephone conversations between strangers, was collected in the early
1990’s and contains 2430 conversations averaging 6 minuteseach, for a total
of 240 hours of speech and 3 million words (Godfreyet al., 1992). Here’s
a sample utterance of Switchboard (since the units of spokenlanguage are
different than written language, we will use the wordutterance rather thanUTTERANCE

‘sentence’ when we are referring to spoken language):

(6.2) I do uh main- mainly business data processing

This utterance, like many or most utterances in spoken language, has
fragments, words that are broken off in the middle, like the first instanceFRAGMENTS

of the wordmainly, represented here asmain-. It also hasfilled pauseslikeFILLED
PAUSES

uh, which doesn’t occur in written English. Should we considerthese to be
words? Again, it depends on the application. If we are building an automatic
dictation system based on automatic speech recognition, wemight want to
strip out the fragments. But theuhs andums are in fact much more like
words. For example, Smith and Clark (1993) and Clark (1994) have shown
that um has a slightly different meaning thanuh (generally speakingum is
used when speakers are having major planning problems in producing an
utterance, whileuh is used when they know what they want to say, but are
searching for the exact words to express it). Stolcke and Shriberg (1996b)
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also found thatuhcan be a useful cue in predicting the next word (why might
this be?), and so most speech recognition systems treatuh as a word.

Are capitalized tokens likeTheyand uncapitalized tokens liketheythe
same word? For most statistical applications these are lumped together,
although sometimes (for example for spelling error correction or part-of-
speech-tagging) the capitalization is retained as a separate feature. For the
rest of this chapter we will assume our models are not case-sensitive.

How should we deal with inflected forms likecatsversuscat? Again,
this depends on the application. Most currentN-gram based systems are
based on thewordform , which is the inflected form as it appears in theWORDFORM

corpus. Thus these are treated as two separate words. This isnot a good
simplification for many domains, which might want to treatcatsandcat as
instances of a single abstract word, orlemma. A lemma is a set of lexical LEMMA

forms having the same stem, the same major part of speech, andthe same
word-sense. We will return to the distinction between wordforms (which
distinguishcat andcats) and lemmas (which lumpcat andcatstogether) in
Chapter 16.

How many words are there in English? One way to answer this ques-
tion is to count in a corpus. We usetypes to mean the number of distinctTYPES

words in a corpus, i.e. the size of the vocabulary, andtokens to mean the TOKENS

total number of running words. Thus the following sentence from the Brown
corpus has 16 word tokens and 14 word types (not counting punctuation):

(6.3) They picnicked by the pool, then lay back on the grass and looked at
the stars.

The Switchboard corpus has 2.4 million wordform tokens and ap-
proximately 20,000 wordform types. This includes proper nouns. Spoken
language is less rich in its vocabulary than written language: Kučera (1992)
gives a count for Shakespeare’s complete works at 884,647 wordform tokens
from 29,066 wordform types. Thus each of the 884,647 wordform tokens is
a repetition of one of the 29,066 wordform types. The 1 million wordform
tokens of the Brown corpus contain 61,805 wordform types that belong to
37,851 lemma types. All these corpora are quite small. Brownet al. (1992)
amassed a corpus of 583 million wordform tokens of English that included
293,181 different wordform types.

Dictionaries are another way to get an estimate of the numberof words,
although since dictionaries generally do not include inflected forms they are
better at measuring lemmas than wordforms. The American Heritage 3rd
edition dictionary has 200,000 “boldface forms”; this is somewhat higher
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than the true number of lemmas, since there can be one or more boldface
form per lemma (and since the boldface forms includes multiword phrases).

The rest of this chapter will continue to distinguish between types and
tokens. ‘Types’ will mean wordform types and not lemma types, and punc-
tuation marks will generally be counted as words.

6.2 SIMPLE (UNSMOOTHED) N-GRAMS

The models of word sequences we will consider in this chapterare proba-
bilistic models; ways to assign probabilities to strings ofwords, whether for
computing the probability of an entire sentence or for giving a probabilistic
prediction of what the next word will be in a sequence. As we did in Chap-
ter 5, we will assume that the reader has a basic knowledge of probability
theory.

The simplest possible model of word sequences would simply let any
word of the language follow any other word. In the probabilistic version of
this theory, then, every word would have an equal probability of following
every other word. If English had 100,000 words, the probability of any word
following any other word would be 1

100;000 or :00001.
In a slightly more complex model of word sequences, any word could

follow any other word, but the following word would appear with its nor-
mal frequency of occurrence. For example, the wordthehas a high relative
frequency, it occurs 69,971 times in the Brown corpus of 1,000,000 words
(i.e. 7% of the words in this particular corpus arethe). By contrast the word
rabbit occurs only 11 times in the Brown corpus.

We can use these relative frequencies to assign a probability distribu-
tion across following words. So if we’ve just seen the stringAnyhow,we can
use the probability .07 fortheand .00001 forrabbit to guess the next word.
But suppose we’ve just seen the following string:

Just then, the white

In this contextrabbit seems like a more reasonable word to follow
white than the does. This suggests that instead of just looking at the in-
dividual relative frequencies of words, we should look at the conditional
probability of a word given the previous words. That is, the probability
of seeingrabbit given that we just sawwhite (which we will represent as
P(rabbitjwhite)) is higher than the probability ofrabbit otherwise.

Given this intuition, let’s look at how to compute the probability of a
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complete string of words (which we can represent either asw1 : : :wn or wn
1).

If we consider each word occurring in its correct location asan independent
event, we might represent this probability as follows:

P(w1;w2 : : : ;wn�1;wn) (6.4)

We can use the chain rule of probability to decompose this probability:

P(wn
1) = P(w1)P(w2jw1)P(w3jw2

1) : : :P(wnjwn�1
1 )= n

∏
k=1

P(wkjwk�1
1 ) (6.5)

But how can we compute probabilities likeP(wnjwn�1
1 )? We don’t

know any easy way to compute the probability of a word given a long se-
quence of preceding words. (For example, we can’t just countthe number of
times every word occurs following every long string; we would need far too
large a corpus).

We solve this problem by making a useful simplification: weapproxi-
matethe probability of a word given all the previous words. The approxima-
tion we will use is very simple: the probability of the word given the single
previous word! Thebigram model approximates the probability of a wordBIGRAM

given all the previous wordsP(wnjwn�1
1 ) by the conditional probability of

the preceding wordP(wnjwn�1). In other words, instead of computing the
probability

P(rabbitjJust the other I day I saw a) (6.6)

we approximate it with the probability

P(rabbitja) (6.7)

This assumption that the probability of a word depends only on the
previous word is called aMarkov assumption. Markov models are the classMARKOV

of probabilistic models that assume that we can predict the probability of
some future model without looking too far into the past. We saw this use of
the wordMarkov in introducing theMarkov chain in Chapter 5. Recall that
a Markov chain is a kind of weighted finite-state automaton; the intuition of
the term Markov in Markov chain is that the next state of a weighted FSA is
always dependent on a finite history (since the number of states in a finite-
state automaton is finite). The simple bigram model can be viewed as a
simple kind of Markov chain which has one state for each word.

We can generalize the bigram (which looks one word into the past) to
the trigram (which looks two words into the past) and thus to the N-gram N­GRAM
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(which looksN�1 words into the past). A bigram is called afirst-order FIRST­ORDER

Markov model (because it looks one token into the past), a trigram is a
second-orderMarkov model, and in general anN-gram is aN� 1th or-SECOND­

ORDER

der Markov model. Markov models of words were common in engineering,
psychology, and linguistics until Chomsky’s influential review of Skinner’s
Verbal Behaviorin 1958 (see the History section at the back of the chapter),
but went out of vogue until the success ofN-gram models in the IBM speech
recognition laboratory at the Thomas J. Watson Research Center. brought
them back to the attention of the community.

The general equation for thisN-gram approximation to the conditional
probability of the next word in a sequence is:

P(wnjwn�1
1 )� P(wnjwn�1

n�N+1) (6.8)

Equation 6.8 shows that the probability of a wordwn given all the pre-
vious words can be approximated by the probability given only the previous
N words.

For a bigram grammar, then, we compute the probability of a complete
string by substituting equation 6.8 into equation 6.5. The result:

P(wn
1)� n

∏
k=1

P(wkjwk�1) (6.9)

Let’s look at an example from a speech-understanding system. The
Berkeley Restaurant Project is a speech-based restaurant consultant; users
ask questions about restaurants in Berkeley, California, and the system dis-
plays appropriate information from a database of local restaurants (Jurafsky
et al., 1994). Here are some sample user queries:

I’m looking for Cantonese food.
I’d like to eat dinner someplace nearby.
Tell me about Chez Panisse.
Can you give me a listing of the kinds of food that are available?
I’m looking for a good place to eat breakfast.
I definitely do not want to have cheap Chinese food.
When is Caffe Venezia open during the day?
I don’t wanna walk more than ten minutes.

Table 6.2 shows a sample of the bigram probabilities for someof the
words that can follow the wordeat, taken from actual sentences spoken by
users (putting off just for now the algorithm for training bigram probabil-
ities). Note that these probabilities encode some facts that we think of as
strictly syntactic in nature (like the fact that what comes after eat is usually
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something that begins a noun phrase, i.e. an adjective, quantifier or noun),
as well as facts that we think of as more culturally based (like the low prob-
ability of anyone asking for advice on finding British food).

eat on .16 eat Thai .03
eat some .06 eat breakfast .03
eat lunch .06 eat in .02
eat dinner .05 eat Chinese .02
eat at .04 eat Mexican .02
eat a .04 eat tomorrow .01
eat Indian .04 eat dessert .007
eat today .03 eat British .001

Figure 6.2 A fragment of a bigram grammar from the Berkeley Restaurant
Project showing the most likely words to followeat.

Assume that in addition to the probabilities in Table 6.2, our grammar
also includes the bigram probabilities in Table 6.3 (<s> is a special word
meaning ‘Start of sentence’).<s> I .25 I want .32 want to .65 to eat .26 British food .60<s> I’d .06 I would .29 want a .05 to have .14 British restaurant .15<s> Tell .04 I don’t .08 want some .04 to spend .09 British cuisine .01<s> I’m .02 I have .04 want thai .01 to be .02 British lunch .01

Figure 6.3 More fragments from the bigram grammar from the Berkeley
Restaurant Project.

Now we can compute the probability of sentences likeI want to eat
British foodor I want to eat Chinese foodby simply multiplying the appro-
priate bigram probabilities together, as follows:

P(I want to eat British food) = P(Ij<s>)P(wantjI)P(tojwant)P(eatjto)
P(Britishjeat)P(foodjBritish)= :25� :32� :65� :26� :002� :60= :000016

As we can see, since probabilities are all less than 1 (by definition), the
product of many probabilities gets smaller the more probabilities we multi-
ply. This causes a practical problem: the risk of numerical underflow. If we
are computing the probability of a very long string (like a paragraph or an
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entire document) it is more customary to do the computation in log space; we
take the log of each probability (thelogprob), add all the logs (since addingLOGPROB

in log space is equivalent to multiplying in linear space) and then take the
anti-log of the result. For this reason many standard programs for computing
N-grams actually store and calculate all probabilities as logprobs. In this text
we will always report logs in base 2 (i.e. we will use log to mean log2).

A trigram model looks just the same as a bigram model, except thatTRIGRAM

we condition on the two previous words (e.g. we useP(foodjeat British)
instead ofP(foodjBritish)). To compute trigram probabilities at the very
beginning of sentence, we can use two pseudo-words for the first trigram
(i.e. P(I j< start1>< start2>)).

N-gram models can be trained by counting andnormalizing (for prob-NORMALIZING

abilistic models, normalizing means dividing by some totalcount so that the
resulting probabilities fall legally between 0 and 1). We take some training
corpus, and from this corpus take the count of a particular bigram, and divide
this count by the sum of all the bigrams that share the same first word:

P(wnjwn�1) = C(wn�1wn)
∑wC(wn�1w) (6.10)

We can simplify this equation, since the sum of all bigram counts that
start with a given wordwn�1 must be equal to the unigram count for that
word wn�1. (The reader should take a moment to be convinced of this):

P(wnjwn�1) = C(wn�1wn)
C(wn�1) (6.11)

For the general case ofN-gram parameter estimation:

P(wnjwn�1
n�N+1) = C(wn�1

n�N+1wn)
C(wn�1

n�N+1) (6.12)

Equation 6.12 estimates theN-gram probability by dividing the ob-
served frequency of a particular sequence by the observed frequency of a
prefix. This ratio is called arelative frequency; the use of relative fre-RELATIVE

FREQUENCY

quencies as a way to estimate probabilities is one example ofthe technique
known asMaximum Likelihood Estimation or MLE , because the resulting

MAXIMUM
LIKELIHOOD
ESTIMATION

MLE parameter set is one in which the likelihood of the training set T given the
modelM (i.e. P(TjM)) is maximized. For example, suppose the wordChi-
neseoccurs 400 times in a corpus of a million words like the Brown corpus.
What is the probability that it will occur in some other text of way a million
words? The MLE estimate of its probability is400

1000000or :0004. Now:0004
is not the best possible estimate of the probability ofChineseoccurring in all
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situations; but it is the probability that makes itmost likelythat Chinese will
occur 400 times in a million-word corpus.

There are better methods of estimatingN-gram probabilities than using
relative frequencies (we will consider a class of importantalgorithms in Sec-
tion 6.3), but even the more sophisticated algorithms make use in some way
of this idea of relative frequency. Figure 6.4 shows the bigram counts from a
piece of a bigram grammar from the Berkeley Restaurant Project. Note that
the majority of the values are zero. In fact we have chosen thesample words
to cohere with each other; a matrix selected from a random setof 7 words
would be even more sparse.

I want to eat Chinese food lunch

I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

Figure 6.4 Bigram counts for 7 of the words (out of 1616 total word types)
in the Berkeley Restaurant Project corpus of ˜10,000 sentences.

Figure 6.5 shows the bigram probabilities after normalization (dividing
each row by the following appropriate unigram counts:

I 3437
want 1215
to 3256
eat 938
Chinese 213
food 1506
lunch 459

More on N-grams and their sensitivity to the training corpus

In this section we look at a few examples of differentN-gram models to
get an intuition for two important facts about their behavior. The first is the
increasing accuracy ofN-gram models as we increase the value ofN. The
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I want to eat Chinese food lunch

I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 .0049
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .56 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Figure 6.5 Bigram probabilities for 7 of the words (out of 1616 total word
types) in the Berkeley Restaurant Project corpus of ˜10,000sentences.

second is their very strong dependency on their training corpus (in particular
its genre and its size in words).

We do this by borrowing a visualization technique proposed by Shan-
non (1951) and also used by Miller and Selfridge (1950). The idea is to train
variousN-grams and then use each to generate random sentences. It’s sim-
plest to visualize how this works for the unigram case. Imagine all the words
of English covering the probability space between 0 and 1. Wechoose a ran-
dom number between 0 and 1, and print out the word that covers the real
value we have chosen. The same technique can be used to generate higher
orderN-grams by first generating a random bigram that starts with<s> (ac-
cording to its bigram probability), then choosing a random bigram to follow
it (again, where the likelihood of following a particular bigram is propor-
tional to its conditional probability), and so on.

To give an intuition for the increasing power of higher-order N-grams,
we trained a unigram, bigram, trigram, and a quadrigram model on the com-
plete corpus of Shakespeare’s works. We then used these fourgrammars to
generate random sentences. In the following examples we treated each punc-
tuation mark as if it were a word in its own right, and we trained the gram-
mars on a version of the corpus with all capital letters changed to lowercase.
After generated the sentences we corrected the output for capitalization just
to improve readability. Some of the resulting sentences:

1. Unigram approximation to Shakespeare

(a) To him swallowed confess hear both. Which. Of save on trail for are ay
device and rote life have

(b) Every enter now severally so, let

(c) Hill he late speaks; or! a more to leg less first you enter
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(d) Will rash been and by I the me loves gentle me not slavish page, the and
hour; ill let

(e) Are where exeunt and sighs have rise excellency took of..Sleep knave
we. near; vile like

2. Bigram approximation to Shakespeare

(a) What means, sir. I confess she? then all sorts, he is trim,captain.
(b) Why dost stand forth thy canopy, forsooth; he is this palpable hit the

King Henry. Live king. Follow.
(c) What we, hath got so she that I rest and sent to scold and nature bankrupt,

nor the first gentleman?
(d) Enter Menenius, if it so many good direction found’st thou art a strong

upon command of fear not a liberal largess given away, Falstaff! Exeunt
(e) Thou whoreson chops. Consumption catch your dearest friend, well,

and I know where many mouths upon my undoing all but be, how soon,
then; we’ll execute upon my love’s bonds and we do you will?

(f) The world shall- my lord!

3. Trigram approximation to Shakespeare

(a) Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.
(b) This shall forbid it should be branded, if renown made it empty.
(c) What is’t that cried?
(d) Indeed the duke; and had a very good friend.
(e) Fly, and will rid me these news of price. Therefore the sadness of part-

ing, as they say, ’tis done.
(f) The sweet! How many then shall posthumus end his miseries.

4. Quadrigram approximation to Shakespeare

(a) King Henry. What! I will go seek the traitor Gloucester. Exeunt some
of the watch. A great banquet serv’d in;

(b) Will you not tell me who I am?
(c) It cannot be but so.
(d) Indeed the short and the long. Marry, ’tis a noble Lepidus.
(e) They say all lovers swear more performance than they are wont to keep

obliged faith unforfeited!
(f) Enter Leonato’s brother Antonio, and the rest, but seek the weary beds

of people sick.

The longer the context on which we train the model, the more coher-
ent the sentences. In the unigram sentences, there is no coherent relation
between words, and in fact none of the sentences end in a period or other
sentence-final punctuation. The bigram sentences can be seen to have very
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METHODOLOGY BOX: TRAINING SETS AND TEST SETS

The probabilities in a statistical model like anN-gram come from
the corpus it is trained on. Thistraining corpus needs to be care-
fully designed. If the training corpus is too specific to the task or
domain, the probabilities may be too narrow and not generalize well
to new sentences. If the training corpus is too general, the probabil-
ities may not do a sufficient job of reflecting the task or domain.

Furthermore, suppose we are trying to compute the probabil-
ity of a particular ‘test’ sentence. If our ‘test’ sentence is part of
the training corpus, it will have an artificially high probability. The
training corpus must not be biased by including this sentence. Thus
when using a statistical model of language given some corpusof rel-
evant data, we start by dividing the data into atraining set and atest
set. We train the statistical parameters of the model on the training
set, and then use them to compute probabilities on the test set.

This training-and-testing paradigm can also be used toevaluate
differentN-gram architectures. For example to compare the different
smoothingalgorithms we will introduce in Section 6.3, we can take
a large corpus and divide it into a training set and a test set.Then
we train the two differentN-gram models on the training set and
see which one better models the test set. But what does it meanto
‘model the test set’? There is a useful metric for how well a given
statistical model matches a test corpus, calledperplexity. Perplexity
is a variant ofentropy, and will be introduced on page 221.

In some cases we need more than one test set. For example,
suppose we have a few different possible language models andwe
want first to pick the best one and then to see how it does on a fair
test set, i.e. one we’ve never looked at before. We first use adevel-
opment test set(also called adevtestset) to pick the best language
model, and perhaps tune some parameters. Then once we come up
with what we think is the best model, we run it on the true test set.

When comparing models it is important to use statistical tests
(introduced in any statistics class or textbook for the social sciences)
to determine if the difference between two models is significant. Co-
hen (1995) is a useful reference which focuses on statistical research
methods for artificial intelligence. Dietterich (1998) focuses on sta-
tistical tests for comparing classifiers.
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local word-to-word coherence (especially if we consider that punctuation
counts as a word). The trigram and quadrigram sentences are beginning to
look a lot like Shakespeare. Indeed a careful investigationof the quadri-
gram sentences shows that they look a little too much like Shakespeare. The
words It cannot be but soare directly fromKing John. This is because
the Shakespeare oeuvre, while large by many standards, is somewhat less
than a million words. Recall that Kučera (1992) gives a count for Shake-
speare’s complete works at 884,647 words (tokens) from 29,066 wordform
types (including proper nouns). That means that even the bigram model is
very sparse; with 29;066 types, there are 29;0662, or more than 844 million
possible bigrams, so a 1 million word training set is clearlyvastly insufficient
to estimate the frequency of the rarer ones; indeed somewhatunder 300,000
different bigram types actually occur in Shakespeare. Thisis far too small to
train quadrigrams; thus once the generator has chosen the first quadrigram
(It cannot be but), there are only 5 possible continuations (that, I, he, thou,
andso); indeed for many quadrigrams there is only one continuation.

To get an idea of the dependence of a grammar on its training set,
let’s look at anN-gram grammar trained on a completely different corpus:
the Wall Street Journal (WSJ). A native speaker of English iscapable of
reading both Shakespeare and the Wall Street Journal; both are subsets of
English. Thus it seems intuitive that ourN-grams for Shakespeare should
have some overlap withN-grams from the Wall Street Journal. In order to
check whether this is true, here are three sentences generated by unigram,
bigram, and trigram grammars trained on 40 million words of articles from
the daily Wall Street Journal (these grammars are Katz backoff grammars
with Good-Turing smoothing; we will learn in the next section how these are
constructed). Again, we have corrected the output by hand with the proper
English capitalization for readability.

1. (unigram) Months the my and issue of year foreign new exchange’s
september were recession exchange new endorsed a acquire tosix ex-
ecutives

2. (bigram) Last December through the way to preserve the Hudson cor-
poration N. B. E. C. Taylor would seem to complete the major central
planners one point five percent of U. S. E. has already old M. X.corpo-
ration of living on information such as more frequently fishing to keep
her

3. (trigram) They also point to ninety nine point six billion dollars from
two hundred four oh six three percent of the rates of intereststores as
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Mexico and Brazil on market conditions

Compare these examples to the pseudo-Shakespeare on the previous
page; while superficially they both seem to model ‘English-like sentences’
there is obviously no overlap whatsoever in possible sentences, and very lit-
tle if any overlap even in small phrases. The difference between the Shake-
speare and WSJ corpora tell us that a good statistical approximation to En-
glish will have to involve a very large corpus with a very large cross-section
of different genres. Even then a simple statistical model like anN-gram
would be incapable of modeling the consistency of style across genres (we
would only want to expect Shakespearean sentences when we are reading
Shakespeare, not in the middle of a Wall Street Journal article).

6.3 SMOOTHING

Never do I ever want to hear another word!
There isn’t one,
I haven’t heard!

Eliza Doolittle in Alan Jay Lerner’sMy Fair Ladylyrics

words people
never use —
could be
only I
know them

Ishikawa Takuboku 1885–1912

One major problem with standardN-gram models is that they must
be trained from some corpus, and because any particular training corpus is
finite, some perfectly acceptable EnglishN-grams are bound to be missing
from it. That is, the bigram matrix for any given training corpus issparse;SPARSE

it is bound to have a very large number of cases of putative ‘zero probability
bigrams’ that should really have some non-zero probability. Furthermore,
the MLE method also produces poor estimates when the counts are non-zero
but still small.

Some part of this problem is endemic toN-grams; since they can’t
use long-distance context, they always tend to underestimate the probability
of strings that happen not to have occurred nearby in their training corpus.



Section 6.3. Smoothing 205

But there are some techniques we can use to assign a non-zero probability
to these ‘zero probability bigrams’. This task of reevaluating some of the
zero-probability and low-probabilityN-grams, and assigning them non-zero
values, is calledsmoothing. In the next few sections we will introduce someSMOOTHING

smoothing algorithms and show how they modify the Berkeley Restaurant
bigram probabilities in Figure 6.5.

Add-One Smoothing

One simple way to do smoothing might be just to take our matrixof bigram
counts, before we normalize them into probabilities, and add one to all the
counts. This algorithm is calledadd-onesmoothing. Although this algo- ADD­ONE

rithm does not perform well and is not commonly used, it introduces many
of the concepts that we will see in other smoothing algorithms, and also gives
us a useful baseline.

Let’s first consider the application of add-one smoothing tounigram
probabilities, since that will be simpler. The unsmoothed maximum likeli-
hood estimate of the unigram probability can be computed by dividing the
count of the word by the total number of word tokensN:

P(wx) = c(wx)
∑i c(wi)= c(wx)

N
The various smoothing estimates will rely on an adjusted count c�. The

count adjustment for add-one smoothing can then be defined byadding one
to the count and then multiplying by a normalization factor,N

N+V , whereV
is the total number of word types in the language, i.e. thevocabulary size. VOCABULARY

SIZE

Since we are adding 1 to the count for each word type, the totalnumber of
tokens must be increased by the number of types. The adjustedcount for
add-one smoothing is then defined as:

c�i = (ci +1) N
N+V

(6.13)

and the counts can be turned into probabilitiesp�i by normalizing byN.
An alternative way to view a smoothing algorithm is asdiscounting DISCOUNTING

(lowering) some non-zero counts in order to get the probability mass that
will be assigned to the zero counts. Thus instead of referring to the dis-
counted countsc�, many papers also define smoothing algorithms in terms
of a discountdc, the ratio of the discounted counts to the original counts:DISCOUNT
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dc = c�
c

Alternatively we can compute the probabilityp�i directly from the counts
as follows:

p�i = ci +1
N+V

Now that we have the intuition for the unigram case, let’s smooth
our Berkeley Restaurant Project bigram. Figure 6.6 shows the add-one-
smoothed counts for the bigram in Figure 6.4.

I want to eat Chinese food lunch

I 9 1088 1 14 1 1 1
want 4 1 787 1 7 9 7
to 4 1 11 861 4 1 13
eat 1 1 3 1 20 3 53
Chinese 3 1 1 1 1 121 2
food 20 1 18 1 1 1 1
lunch 5 1 1 1 1 2 1

Figure 6.6 Add-one Smoothed Bigram counts for 7 of the words (out of
1616 total word types) in the Berkeley Restaurant Project corpus of ˜10,000
sentences.

Figure 6.7 shows the add-one-smoothed probabilities for the bigram in
Figure 6.5. Recall that normal bigram probabilities are computed by nor-
malizing each row of counts by the unigram count:

P(wnjwn�1) = C(wn�1wn)
C(wn�1) (6.14)

For add-one-smoothed bigram counts we need to first augment the un-
igram count by the number of total word types in the vocabulary V:

p�(wnjwn�1) = C(wn�1wn)+1
C(wn�1)+V

(6.15)

We need to addV (= 1616) to each of the unigram counts:
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I 3437+1616 = 5053
want 1215+1616 = 2931
to 3256+1616 = 4872
eat 938+1616 = 2554
Chinese 213+1616 = 1829
food 1506+1616 = 3122
lunch 459+1616 = 2075

The result is the smoothed bigram probabilities in Figure 6.7.

I want to eat Chinese food lunch

I .0018 .22 .00020 .0028 .00020 .00020 .00020
want .0014 .00035 .28 .00035 .0025 .0032 .0025
to .00082 .00021 .0023 .18 .00082 .00021 .0027
eat .00039 .00039 .0012 .00039 .0078 .0012 .021
Chinese .0016 .00055 .00055 .00055 .00055 .066 .0011
food .0064 .00032 .0058 .00032 .00032 .00032 .00032
lunch .0024 .00048 .00048 .00048 .00048 .00096 .00048

Figure 6.7 Add-one smoothed bigram probabilities for 7 of the words (out
of 1616 total word types) in the Berkeley Restaurant Projectcorpus of ˜10,000
sentences.

It is often convenient to reconstruct the count matrix so we can see
how much a smoothing algorithm has changed the original counts. These
adjusted counts can be computed by Equation 6.13. Figure 6.8shows the
reconstructed counts.

I want to eat Chinese food lunch

I 6 740 .68 10 .68 .68 .68
want 2 .42 331 .42 3 4 3
to 3 .69 8 594 3 .69 9
eat .37 .37 1 .37 7.4 1 20
Chinese .36 .12 .12 .12 .12 15 .24
food 10 .48 9 .48 .48 .48 .48
lunch 1.1 .22 .22 .22 .22 .44 .22

Figure 6.8 Add-one smoothed bigram counts for 7 of the words (out of
1616 total word types) in the Berkeley Restaurant Project Corpus of ˜10,000
sentences.
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Note that add-one smoothing has made a very big change to the counts.
C(want to) changed from 786 to 331! We can see this in probability space
as well:P(tojwant) decreases from .65 in the unsmoothed case to .28 in the
smoothed case.

Looking at the discountd (the ratio between new and old counts) shows
us how strikingly the counts for each prefix-word have been reduced; the
bigrams starting withChinesewere discounted by a factor of 8!

I .68
want .42
to .69
eat .37
Chinese .12
food .48
lunch .22

The sharp change in counts and probabilities occurs becausetoo much
probability mass is moved to all the zeros. The problem is that we arbitrarily
picked the value “1” to add to each count. We could avoid this problem by
adding smaller values to the counts (‘add-one-half’ ‘add-one-thousandth’),
but we would need to retrain this parameter for each situation.

In general add-one smoothing is a poor method of smoothing. Gale and
Church (1994) summarize a number of additional problems with the add-one
method; the main problem is that add-one is much worse at predicting the
actual probability for bigrams with zero counts than other methods like the
Good-Turing method we will describe below. Furthermore, they show that
variances of the counts produced by the add-one method are actually worse
than those from the unsmoothed MLE method.

Witten-Bell Discounting

A much better smoothing algorithm that is only slightly morecomplex than
Add-One smoothing we will refer to asWitten-Bell discounting (it is in-WITTEN­BELL

DISCOUNTING

troduced as Method C in Witten and Bell (1991)). Witten-Belldiscounting
is based on a simple but clever intuition about zero-frequency events. Let’s
think of a zero-frequency word orN-gram as one that just hasn’t happened
yet. When it does happen, it will be the first time we see this new N-gram.
So the probability of seeing a zero-frequencyN-gram can be modeled by the
probability of seeing anN-gram for the first time. This is a recurring concept
in statistical language processing:
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Key Concept #4. Things Seen Once:Use the count of things you’ve
seen once to help estimate the count of things you’ve never seen.

The idea that we can estimate the probability of ‘things we never saw’
with help from the count of ‘things we saw once’ will return when we dis-
cuss Good-Turing smoothing later in this chapter, and then once again when
we discuss methods for tagging an unknown word with a part-of-speech in
Chapter 8.

How can we compute the probability of seeing anN-gram for the first
time? By counting the number of times we sawN-grams for the first time in
our training corpus. This is very simple to produce since thecount of ‘first-
time’ N-grams is just the number ofN-gramtypeswe saw in the data (since
we had to see each type for the first time exactly once).

So we estimate thetotal probability mass of all the zeroN-grams with
the number of types divided by the number of tokens plus observed types:

∑
i:ci=0

p�i = T
N+T

(6.16)

Why do we normalize by the number of tokens plus types? We can
think of our training corpus as a series of events; one event for each token
and one event for each new type. So Equation 6.16 gives the Maximum
Likelihood Estimate of the probability of a new type event occurring. Note
that the number of observed typesT is different than the ‘total types’ or
‘vocabulary sizeV ’ that we used in add-one smoothing:T is the types we
have already seen, whileV is the total number of possible types we might
ever see.

Equation 6.16 gives the total ‘probability of unseenN-grams’. We
need to divide this up among all the zeroN-grams. We could just choose
to divide it equally. LetZ be the total number ofN-grams with count zero
(types; there aren’t any tokens). Each formerly-zero unigram now gets its
equal share of the redistributed probability mass: Z

Z = ∑
i:ci=0

1 (6.17)

p�i = T
Z(N+T) (6.18)

If the total probability of zeroN-grams is computed from Equation 6.16,
the extra probability mass must come from somewhere; we get it by dis-
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counting the probability of all the seenN-grams as follows:

p�i = ci

N+T
if (ci > 0) (6.19)

Alternatively, we can represent the smoothed counts directly as:

c�i =( T
Z

N
N+T ; if ci = 0

ci
N

N+T ; if ci > 0
(6.20)

Witten-Bell discounting looks a lot like add-one smoothingfor uni-
grams. But if we extend the equation to bigrams we will see a big difference.
This is because now our type-counts are conditioned on some history. In or-
der to compute the probability of a bigramwn�1wn�2 we haven’t seen, we
use ‘the probability of seeing a new bigram starting withwn�1’. This lets our
estimate of ‘first-time bigrams’ be specific to a word history. Words that tend
to occur in a smaller number of bigrams will supply a lower ‘unseen-bigram’
estimate than words that are more promiscuous.

We represent this fact by conditioningT, the number of bigram types,
andN, the number of bigram tokens, on the previous wordwx , as follows:

∑
i:c(wxwi)=0

p�(wijwx) = T(wx)
N(wx)+T(wx) (6.21)

Again, we will need to distribute this probability mass among all the
unseen bigrams. LetZ again be the total number of bigrams with a given first
word that have count zero (types; there aren’t any tokens). Each formerly-
zero bigram now gets its equal share of the redistributed probability mass:Z(WX

Z(wx) = ∑
i:c(wxwi )=0

1 (6.22)

p�(wijwi�1) = T(wi�1)
Z(wi�1)(N+T(wi�1)) if (cwi�1wi = 0) (6.23)

As for the non-zero bigrams, we discount them in the same manner, by
parameterizingT on the history:

∑
i:c(wxwi)>0

p�(wijwx) = c(wxwi)
c(wx)+T(wx) (6.24)

To use Equation 6.24 to smooth the restaurant bigram from Figure 6.5,
we will need the number of bigram typesT(w) for each of the first words.
Here are those values:
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I 95
want 76
to 130
eat 124
Chinese 20
food 82
lunch 45

In addition we will need theZ values for each of these words. Since
we know how many words we have in the vocabulary (V = 1,616), there are
exactlyV possible bigrams that begin with a given wordw, so the number of
unseen bigram types with a given prefix isV minus the number of observed
types:

Z(w) =V�T(w) (6.25)

Here are thoseZ values:

I 1,521
want 1,540
to 1,486
eat 1,492
Chinese 1,596
food 1,534
lunch 1,571

Figure 6.9 shows the discounted restaurant bigram counts.

I want to eat Chinese food lunch

I 8 1060 .062 13 .062 .062 .062
want 3 .046 740 .046 6 8 6
to 3 .085 10 827 3 .085 12
eat .075 .075 2 .075 17 2 46
Chinese 2 .012 .012 .012 .012 109 1
food 18 .059 16 .059 .059 .059 .059
lunch 4 .026 .026 .026 .026 1 .026

Figure 6.9 Witten-Bell smoothed bigram counts for 7 of the words (out of
1616 total word types) in the Berkeley Restaurant Project corpus of ˜10,000
sentences.

The discount values for the Witten-Bell algorithm are much more rea-
sonable than for add-one smoothing:
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I .97
want .94
to .96
eat .88
Chinese .91
food .94
lunch .91

It is also possible to use Witten-Bell (or other) discounting in a differ-
ent way. In Equation (6.21), we conditioned the smoothed bigram proba-
bilities on the previous word. That is, we conditioned the number of types
T(wx) and tokensN(wx) on the previous wordwx. But we could choose
instead to treat a bigram as if it were a single event, ignoring the fact that
it is composed of two words. ThenT would be the number of types ofall
bigrams, andN would be the number of tokens ofall bigrams that occurred.
Treating the bigrams as a unit in this way, we are essentiallydiscounting, not
the conditional probabilityP(wijwx), but thejoint probability P(wxwi). InJOINT

PROBABILITY

this way the probabilityP(wxwi) is treated just like a unigram probability.
This kind of discounting is less commonly used than the ‘conditional’ dis-
counting we walked through above starting with equation 6.21. (Although it
is often used for the Good-Turing discounting algorithm described below).

In Section 6.4 we show that discounting also plays a role in more so-
phisticated language models. Witten-Bell discounting is commonly used in
speech recognition systems such as Placewayet al. (1993).

Good-Turing Discounting

This section introduces a slightly more complex form of discounting than the
Witten-Bell algorithm calledGood-Turing smoothing. This section may beGOOD­

TURING

skipped by readers who are not focusing on discounting algorithms.
The Good-Turing algorithm was first described by Good (1953), who

credits Turing with the original idea; a complete proof is presented in Church
et al. (1991). The basic insight of Good-Turing smoothing is to re-estimate
the amount of probability mass to assign toN-grams with zero or low counts
by looking at the number ofN-grams with higher counts. In other words,
we examineNc, the number ofN-grams that occurc times. We refer to the
number ofN-grams that occurc times as the frequency of frequencyc. So
applying the idea to smoothing the joint probability of bigrams,N0 is the
number of bigramsb of count 0,N1 the number of bigrams with count 1, and
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so on:

Nc = ∑
b:c(b)=c

1 (6.26)

The Good-Turing estimate gives a smoothed countc� based on the set
of Nc for all c, as follows:

c� = (c+1)Nc+1

Nc
(6.27)

For example, the revised count for the bigrams that never occurred (c0)
is estimating by dividing the number of bigrams that occurred once (thesin-
gleton or ‘hapax legomenon’ bigramsN1) by the number of bigrams thatSINGLETON

never occurred (N0). Using the count of things we’ve seen once to estimate
the count of things we’ve never seen should remind you of the Witten-Bell
discounting algorithm we saw earlier in this chapter. The Good-Turing al-
gorithm was first applied to the smoothing ofN-gram grammars by Katz,
as cited in Nádas (1984). Figure 6.10 gives an example of theapplica-
tion of Good-Turing discounting to a bigram grammar computed by Church
and Gale (1991) from 22 million words from the Associated Press (AP)
newswire. The first column shows the countc, i.e. the number of observed
instances of a bigram. The second column shows the number of bigrams that
had this count. Thus 449,721 bigrams has a count of 2. The third column
showsc�, the Good-Turing re-estimation of the count.

c (MLE) Nc c� (GT)
0 74,671,100,000 0.0000270
1 2,018,046 0.446
2 449,721 1.26
3 188,933 2.24
4 105,668 3.24
5 68,379 4.22
6 48,190 5.19
7 35,709 6.21
8 27,710 7.24
9 22,280 8.25

Figure 6.10 Bigram ‘frequencies of frequencies’ from 22 million AP bi-
grams, and Good-Turing re-estimations after Church and Gale (1991)

Churchet al. (1991) show that the Good-Turing estimate relies on the
assumption that the distribution of each bigram is binomial. The estimate
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also assumes we knowN0, the number of bigrams we haven’t seen. We
know this because given a vocabulary size ofV, the total number of bigrams
isV2. (N0 isV2 minus all the bigrams we have seen).

In practice, this discounted estimatec� is not used for all countsc.
Large counts (wherec> k for some thresholdk) are assumed to be reliable.
Katz (1987) suggests settingk at 5. Thus we define

c� = c for c> k (6.28)

The correct equation forc� when somek is introduced (from Katz
(1987)) is:

c� = (c+1)Nc+1
Nc

�c(k+1)Nk+1
N1

1� (k+1)Nk+1
N1

; for 1� c� k: (6.29)

With Good-Turing discounting as with any other, it is usual to treat
N-grams with low counts (especially counts of 1) as if the count was 0.

6.4 BACKOFF

The discounting we have been discussing so far can help solvethe problem of
zero frequencyn-grams. But there is an additional source of knowledge we
can draw on. If we have no examples of a particular trigramwn�2wn�1wn to
help us computeP(wnjwn�1wn�2), we can estimate its probability by using
the bigram probabilityP(wnjwn�1). Similarly, if we don’t have counts to
computeP(wnjwn�1), we can look to the unigramP(wn).

There are two ways to rely on thisN-gram ‘hierarchy’,deleted inter-
polation andbackoff. We will focus on backoff, although we give a quickDELETED IN­

TERPOLATION

BACKOFF overview of deleted interpolation after this section. Backoff N-gram model-
ing is a nonlinear method introduced by Katz (1987). In the backoff model,
like the deleted interpolation model, we build anN-gram model based on an
(N-1)-gram model. The difference is that in backoff, if we have non-zero
trigram counts, we rely solely on the trigram counts and don’t interpolate
the bigram and unigram counts at all. We only ‘back off’ to a lower-order
N-gram if we have zero evidence for a higher-orderN-gram.

The trigram version of backoff might be represented as follows:

P̂(wijwi�2wi�1)=8>>>><>>>>: P(wi jwi�2wi�1); if C(wi�2wi�1wi)> 0

α1P(wijwi�1); if C(wi�2wi�1wi) = 0

andC(wi�1wi)> 0

α2P(wi); otherwise.

(6.30)
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Let’s ignore theα values for a moment; we’ll discuss the need for
these weighting factors below. Here’s a first pass at the (recursive) equation
for representing the general case of this form of backoff.

P̂(wnjwn�1
n�N+1) = P̃(wnjwn�1

n�N+1)+θ(P(wnjwn�1
n�N+1))αP̂(wnjwn�1

n�N+2) (6.31)

Again, ignore theα and theP̃ for the moment. Following Katz, we’ve
usedθ to indicate the binary function that selects a lower-ordered model only
if the higher-order model gives a zero probability:

θ(x) =� 1; if x= 0
0; otherwise.

(6.32)

and eachP(�) is a MLE (i.e. computed directly by dividing counts). The
next section will work through these equations in more detail. In order to do
that, we’ll need to understand the role of theα values and how to compute
them.

Combining Backoff with Discounting

Our previous discussions of discounting showed how to use a discounting
algorithm to assign probability mass to unseen events. For simplicity, we
assumed that these unseen events were all equally probable,and so the prob-
ability mass got distributed evenly among all unseen events. Now we can
combine discounting with the backoff algorithm we have justseen to be a
little more clever in assigning probability to unseen events. We will use the
discounting algorithm to tells us how much total probability mass to set aside
for all the events we haven’t seen, and the backoff algorithmto tell us how
to distribute this probability in a clever way.

First, the reader should stop and answer the following question (don’t
look ahead): Why did we need theα values in Equation 6.30 (or Equa-
tion 6.31)? Why couldn’t we just have three sets of probabilities without
weights?

The answer: withoutα values, the result of the equation would not be
a true probability! This is because the originalP(wnjwn�1

n�N+1) we got from
relative frequencies were true probabilities, i.e. if we sum the probability of
a givenwn over allN-gram contexts, we should get 1:

∑
i; j P(wnjwiw j) = 1 (6.33)
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But if that is the case, if we back off to a lower order model when the
probability is zero, we are adding extra probability mass into the equation,
and the total probability of a word will be greater than 1!

Thus any backoff language model must also be discounted. This ex-
plains theαs andP̃ in Equation 6.31. ThẽP comes from our need to discountP̃
the MLE probabilities to save some probability mass for the lower-orderN-
grams. We will usẽP to mean discounted probabilities, and saveP for plain
old relative frequencies computed directly from counts. The α is used to en-
sure that the probability mass from all the lower orderN-grams sums up to
exactly the amount that we saved by discounting the higher-order N-grams.
Here’s the correct final equation:

P̂(wnjwn�1
n�N+1) = P̃(wnjwn�1

n�N+1)+θ(P(wnjwn�1
n�N+1))�α(wn�1

n�N+1)P̂(wnjwn�1
n�N+2) (6.34)

Now let’s see the formal definition of each of these components of the
equation. We definẽPas the discounted (c�) MLE estimate of the conditional
probability of anN-gram, as follows:

P̃(wnjwn�1
n�N+1) = c�(wn

n�N+1)
c(wn�N+1

1 ) (6.35)

This probabilityP̃ will be slightly less than the MLE estimate
c(wn

n�N+1)
c(wn�1

n�N+1)
(i.e. on average thec� will be less thanc). This will leave some probability
mass for the lower orderN-grams. Now we need to build theα weighting
we’ll need for passing this mass to the lower-orderN-grams. Let’s represent
the total amount of left-over probability mass by the functionβ, a function of
theN�1-gram context. For a givenN�1-gram context, the total left-over
probability mass can be computed by subtracting from 1 the total discounted
probability mass for allN-grams starting with that context:

β(wn�1
n�N+1) = 1� ∑

wn:c(wn
n�N+1)>0

P̃(wnjwn�1
n�N+1) (6.36)

This gives us the total probability mass that we are ready to distribute
to all N�1-gram (e.g. bigrams if our original model was a trigram). Each
individual N�1-gram (bigram) will only get a fraction of this mass, so we
need to normalizeβ by the total probability of all theN�1-grams (bigrams)
that begin someN-gram (trigram). The final equation for computing how
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much probability mass to distribute from anN-gram to anN� 1-gram is
represented by the functionα:

α(wn�1
n�N+1) = 1�∑wn:c(wn

n�N+1)>0 P̃(wnjwn�1
n�N+1)

1�∑wn:c(wn
n�N+1)>0 P̃(wnjwn�1

n�N+2) (6.37)

Note thatα is a function of the preceding word string, i.e. ofwn�1
n�N+1;

thus the amount by which we discount each trigram (d), and the mass that
gets reassigned to lower-orderN-grams (α) are recomputed for everyN-
gram (more accurately for everyN�1-gram that occurs in anyN-gram).

We only need to specify what to do when the counts of anN�1-gram
context are 0, (i.e. whenc(wm�1

n�N+1) = 0) and our definition is complete:

P(wnjwn�N+1
n�N+1) = P(wnjwn�N+2

n�N+1) (6.38)

and

P̃(wnjwn�1
n�N+1) = 0 (6.39)

and

β̃(wn�1
n�N+1) = 1 (6.40)

In Equation 6.35, the discounted probabilityP̃ can be computed with
the discounted countsc� from the Witten-Bell discounting (Equation 6.20)
or with the Good-Turing discounting discussed below.

Here is the backoff model expressed in a slightly clearer format in its
trigram version:

P̂(wijwi�2wi�1) =8>>>><>>>>: P̃(wi jwi�2wi�1); if C(wi�2wi�1wi)> 0

α(wn�1
n�2)P̃(wijwi�1); if C(wi�2wi�1wi) = 0

andC(wi�1wi)> 0

α(wn�1)P̃(wi); otherwise.
In practice, when discounting, we usually ignore counts of 1, i.e. we

treatN-grams with a count of 1 as if they never occurred.
Guptaet al.(1992) present a variant backoff method of assigning prob-

abilities to zero trigrams.

6.5 DELETED INTERPOLATION

The deleted interpolation algorithm, due to Jelinek and Mercer (1980), com-
bines differentN-gram orders by linearly interpolating all three models when-
ever we are computing any trigram. That is, we estimate the probability
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P(wnjwn�1wn�2) by mixing together the unigram, bigram, and trigram prob-
abilities. Each of these is weighted by a linear weightλ:

P̂(wnjwn�1wn�2) = λ1P(wnjwn�1wn�2)+λ2P(wnjwn�1)+λ3P(wn) (6.41)

such that theλs sum to 1:

∑
i

λi = 1 (6.42)

In practice, in thisdeleted interpolation algorithm we don’t train justDELETED IN­
TERPOLATION

threeλs for a trigram grammar. Instead, we make eachλ a function of the
context. This way if we have particularly accurate counts for a particular
bigram, we assume that the counts of the trigrams based on this bigram will
be more trustworthy, and so we can make the lambdas for those trigrams
higher and thus give that trigram more weight in the interpolation. So a
more detailed version of the interpolation formula would be:

P̂(wnjwn�2wn�1) = λ1(wn�1
n�2)P(wnjwn�2wn�1)+λ2(wn�1

n�2)P(wnjwn�1)+λ3(wn�1
n�2)P(wn) (6.43)

Given theP(w:::) values, theλ values are trained so as to maximize the
likelihood of aheld-outcorpus separate from the main training corpus, using
a version of theEM algorithm defined in Chapter 7 (Baum, 1972; Dempster
et al., 1977; Jelinek and Mercer, 1980). Further details of the algorithm are
described in Bahlet al. (1983).

6.6 N-GRAMS FORSPELLING AND PRONUNCIATION

In Chapter 5 we saw the use of the Bayesian/noisy-channel algorithm for
correcting spelling errors and for picking a word given a surface pronunci-
ation. We saw that both these algorithms failed, returning the wrong word,
because they had no way to model the probability of multiple-word strings.
Now that ourn-grams give us such a model, we return to these two problems.
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Context-Sensitive Spelling Error Correction

Chapter 5 introduced the idea of detecting spelling errors by looking for
words that are not in a dictionary, are not generated by some finite-state
model of English word-formation, or have low probability orthotactics. But
none of these techniques is sufficient to detect and correctreal-word spelling
errors. real-word error detection. This is the class of errors that resultREAL­WORD

ERROR
DETECTION

in an actual word of English. This can happen from typographical errors
(insertion, deletion, transposition) that accidently produce a real word (e.g.
there for three), or because the writer substituted the wrong spelling of a
homophone or near-homophone (e.g.dessertfor desert, or piecefor peace).
The task of correcting these errors is calledcontext-sensitive spelling error
correction.

How important are these errors? By an a priori analysis of single typo-
graphical errors (single insertions, deletions, substitutions, or transpositions)
Peterson (1986) estimates that 15% of such spelling errors produce valid En-
glish words (given a very large list of 350,000 words). Kukich (1992) sum-
marizes a number of other analyses based on empirical studies of corpora,
which give figures between of 25% and 40% for the percentage oferrors
that are valid English words. Figure 6.11 gives some examples from Kukich
(1992), broken down intolocal andglobal errors. Local errors are those that
are probably detectable from the immediate surrounding words, while global
errors are ones in which error detection requires examination of a large con-
text.

One method for context-sensitive spelling error correction is based on
N-grams.

The wordN-gram approach to spelling error detection and correction
was proposed by Mayset al. (1991). The idea is to generate every possible
misspelling of each word in a sentence either just by typographical modifica-
tions (letter insertion, deletion, substitution), or by including homophones as
well, (and presumably including the correct spelling), andthen choosing the
spelling that gives the sentence the highest prior probability. That is, given
a sentenceW = fw1;w2; : : : ;wk; : : : ;wng, wherewk has alternative spelling
w0

k, w00
k , etc, we choose the spelling among these possible spellingsthat max-

imizesP(W), using theN-gram grammar to computeP(W). A class-based
N-gram can be used instead, which can find unlikely part-of-speech combi-
nations, although it may not do as well at to finding unlikely word combina-
tions.

There are many other statistical approaches to context-sensitive spelling
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Local Errors
The study was conducted mainlybeJohn Black.
They are leaving in about fifteenminuetsto go to her house.
The designanconstruction of the system will take more than a year.
Hopefully, allwith continue smoothly in my absence.
Can theylavehim my messages?
I need tonotifiedthe bank of [this problem.]
Heneedto go there rightno w.
He is trying tofineout.

Global Errors
Won’t theyheave ifnext Monday at that time?
This thesis is supported by the fact that since 1989 the system

has been operatingsystemwith all four units on-line, but . . .

Figure 6.11 Some attested real-word spelling errors from Kukich (1992),
broken down intolocal andglobal errors.

error correction, some proposed directly for spelling, other for more general
types of lexical disambiguation (such as word-sense disambiguation or ac-
cent restoration). Beside the trigram approach we have justdescribed, these
include Bayesian classifiers, alone or combined with trigrams (Galeet al.,
1993; Golding, 1997; Golding and Schabes, 1996), decision lists (Yarowsky,
1994), transformation based learning (Mangu and Brill, 1997), latent se-
mantic analysis (Jones and Martin, 1997), and Winnow (Golding and Roth,
1999). In a comparison of these, Golding and Roth (1999) found the Win-
now algorithm gave the best performance. In general, however, these algo-
rithms are very similar in many ways; they are all based on features like
word and part-of-speechN-grams, and Roth (1998, 1999) shows that many
of them make their predictions using a family of linear predictors calledLin-
ear Statistical Queries (LSQ) hypotheses. Chapter 17 will define all these
algorithms and discuss these issues further in the context of word-sense dis-
ambiguation.

N-grams for Pronunciation Modeling

TheN-gram model can also be used to get better performance on the words-
from-pronunciation task that we studied in Chapter 5. Recall that the input
was the pronunciation[n iy] following the wordI. We said that the five words
that could be pronounced[n iy] wereneed, new, neat, the, andknee. The
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algorithm in Chapter 5 was based on the product of the unigramprobability
of each word and the pronunciation likelihood, and incorrectly chose the
word new, based mainly on its high unigram probability.

Adding a simple bigram probability, even without proper smoothing, is
enough to solve this problem correctly. In the following table we fix the table
on page 165 by using a bigram rather than unigram word probability p(w)
for each of the five candidate words (given that the wordI occurs 64,736
times in the combined Brown and Switchboard corpora):

Word C(‘I’ w) C(‘I’ w)+0.5 p(w j’I’)
need 153 153.5 .0016
new 0 0.5 .000005
knee 0 0.5 .000005
the 17 17.5 .00018
neat 0 0.5 .000005

Incorporating this new word probability into combined model, it now
predicts the correct wordneed, as the table below shows:

Word p(y jw) p(w) p(yjw)p(w)
need .11 .0016 .00018
knee 1.00 .000005 .000005
neat .52 .000005 .0000026
new .36 .000005 .0000018
the 0 .00018 0

6.7 ENTROPY

I got the horse right here
Frank Loesser, Guys and Dolls

Entropy andperplexity are the most common metrics used to evaluate
N-gram systems. The next sections summarize a few necessary fundamental
facts aboutinformation theory and then introduce the entropy and perplex-
ity metrics. We strongly suggest that the interested readerconsult a good
information theory textbook; Cover and Thomas (1991) is oneexcellent ex-
ample.

Entropy is a measure of information, and is invaluable in natural lan- ENTROPY

guage processing, speech recognition, and computational linguistics. It can
be used as a metric for how much information there is in a particular gram-
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mar, for how well a given grammar matches a given language, for how pre-
dictive a givenN-gram grammar is about what the next word could be. Given
two grammars and a corpus, we can use entropy to tell us which grammar
better matches the corpus. We can also use entropy to comparehow diffi-
cult two speech recognition tasks are, and also to measure how well a given
probabilistic grammar matches human grammars.

Computing entropy requires that we establish a random variableX that
ranges over whatever we are predicting (words, letters, parts of speech, the
set of which we’ll callχ), and that has a particular probability function, call
it p(x). The entropy of this random variableX is then

H(X) =�∑
x2χ

p(x) log2 p(x) (6.44)

The log can in principle be computed in any base; recall that we use log
base 2 in all calculations in this book. The result of this is that the entropy is
measured inbits.

The most intuitive way to define entropy for computer scientists is to
think of the entropy as a lower bound on the number of bits it would take
to encode a certain decision or piece of information in the optimal coding
scheme.

Cover and Thomas (1991) suggest the following example. Imagine
that we want to place a bet on a horse race but it is too far to go all the way
to Yonkers Racetrack, and we’d like to send a short message tothe bookie
to tell him which horse to bet on. Suppose there are eight horses in this
particular race.

One way to encode this message is just to use the binary representation
of the horse’s number as the code; thus horse 1 would be001 , horse 2010 ,
horse 3011 , and so on, with horse 8 coded as000 . If we spend the whole
day betting, and each horse is coded with 3 bits, on the average we would be
sending 3 bits per race.

Can we do better? Suppose that the spread is the actual distribution of
the bets placed, and that we represent it as the prior probability of each horse
as follows:

Horse 1 1
2 Horse 5 1

64
Horse 2 1

4 Horse 6 1
64

Horse 3 1
8 Horse 7 1

64
Horse 4 1

16 Horse 8 1
64

The entropy of the random variableX that ranges over horses gives us
a lower bound on the number of bits, and is:
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H(X) = � i=8

∑
i=1

p(i) log p(i)= � 1
2 log 1

2� 1
4 log 1

4� 1
8 log 1

8� 1
16 log 1

16�4( 1
64 log 1

64)= 2 bits (6.45)

A code that averages 2 bits per race can be built by using shorten-
codings for more probable horses, and longer encodings for less probable
horses. For example, we could encode the most likely horse with the code
0, and the remaining horses as10 , then110 , 1110 , 111100 , 111101 ,
111110 , and111111 .

What if the horses are equally likely? We saw above that if we use an
equal-length binary code for the horse numbers, each horse took 3 bits to
code, and so the average was 3. Is the entropy the same? In thiscase each
horse would have a probability of1

8. The entropy of the choice of horses is
then:

H(X) =� i=8

∑
i=1

1
8

log
1
8
=� log

1
8
= 3 bits (6.46)

The value 2H is called theperplexity (Jelineket al., 1977; Bahlet al., PERPLEXITY

1983). Perplexity can be intuitively thought of as the weighted average num-
ber of choices a random variable has to make. Thus choosing between 8
equally likely horses (whereH = 3 bits), the perplexity is 23 or 8. Choosing
between the biased horses in the table above (whereH = 2 bits), the perplex-
ity is 22 or 4.

Until now we have been computing the entropy of a single variable.
But most of what we will use entropy for involvessequences; for a grammar,
for example, we will be computing the entropy of some sequence of words
W = f: : :w0;w1;w2; : : : ;wng. One way to do this is to have a variable that
ranges over sequences of words. For example we can compute the entropy
of a random variable that ranges over all finite sequences of words of length
b in some languageL as follows:

H(w1;w2; : : : ;wn) =� ∑
Wn

12L

p(Wn
1 ) log p(Wn

1 ) (6.47)

We could define theentropy rate (we could also think of this as theENTROPY
RATE

per-word entropy) as the entropy of this sequence divided by the number
of words:

1
n

H(Wn
1 ) =�1

n ∑
Wn

12L

p(Wn
1 ) log p(Wn

1 ) (6.48)
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But to measure the true entropy of a language, we need to consider
sequences of infinite length. If we think of a language as a stochastic process
L that produces a sequence of words, its entropy rateH(L) is defined as:

H(L) = lim
n!∞

1
n

H(w1;w2; : : : ;wn)= lim
n!∞

1
n ∑

W2L

p(w1; : : : ;wn) log p(w1; : : : ;wn) (6.49)

The Shannon-McMillan-Breiman theorem (Algoet and Cover, 1988;
Cover and Thomas, 1991) states that if the language is regular in certain
ways (to be exact, if it is both stationary and ergodic),

H(L) = lim
n!∞

�1
n

logp(w1w2 : : :wn) (6.50)

That is, we can take a single sequence that is long enough instead
of summing over all possible sequences. The intuition of theShannon-
McMillan-Breiman theorem is that a long enough sequence of words will
contain in it many other shorter sequences, and that each of these shorter se-
quences will reoccur in the longer sequence according to their probabilities.

A stochastic process is said to bestationary if the probabilities it as-STATIONARY

signs to a sequence are invariant with respect to shifts in the time index. In
other words, the probability distribution for words at timet is the same as the
probability distribution at timet +1. Markov models, and henceN-grams,
are stationary. For example, in a bigram,Pi is dependent only onPi�1. So if
we shift our time index byx, Pi+x is still dependent onPi+x�1. But natural
language is not stationary, since as we will see in Chapter 9,the probability
of upcoming words can be dependent on events that were arbitrarily distant
and time dependent. Thus our statistical models only give anapproximation
to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying
assumptions, we can compute the entropy of some stochastic process by tak-
ing a very long sample of the output, and computing its average log probabil-
ity. In the next section we talk about the why and how;whywe would want to
do this (i.e. for what kinds of problems would the entropy tell us something
useful), andhow to compute the probability of a very long sequence.

Cross Entropy for Comparing Models

In this section we introduce thecross entropy, and discuss its usefulness inCROSS
ENTROPY

comparing different probabilistic models. The cross entropy is useful when
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we don’t know the actual probability distributionp that generated some data.
It allows us to use somem, which is a model ofp (i.e. an approximation to
p. The cross-entropy ofm on p is defined by:

H(p;m) = lim
n!∞

1
n ∑

W2L
p(w1; : : : ;wn) logm(w1; : : : ;wn) (6.51)

That is we draw sequences according to the probability distribution p,
but sum the log of their probability according tom.

Again, following the Shannon-McMillan-Breiman theorem, for a sta-
tionary ergodic process:

H(p;m) = lim
n!∞

�1
n

logm(w1w2 : : :wn) (6.52)

What makes the cross entropy useful is that the cross entropyH(p;m)
is an upper bound on the entropyH(p). For any modelm:

H(p)� H(p;m) (6.53)

This means that we can use some simplified modelm to help estimate
the true entropy of a sequence of symbols drawn according to probability
p. The more accuratem is, the closer the cross entropyH(p;m) will be to
the true entropyH(p). Thus the difference betweenH(p;m) andH(p) is
a measure of how accurate a model is. Between two modelsm1 and m2,
the more accurate model will be the one with the lower cross-entropy. (The
cross-entropy can never be lower than the true entropy, so a model cannot
err by underestimating the true entropy).

The Entropy of English

As we suggested in the previous section, the cross-entropy of some model
m can be used as an upper bound on the true entropy of some process. We
can use this method to get an estimate of the true entropy of English. Why
should we care about the entropy of English?

One reason is that the true entropy of English would give us a solid
lower bound for all of our future experiments on probabilistic grammars.
Another is that we can use the entropy values for English to help under-
stand what parts of a language provide the most information (for example,
is the predictability of English mainly based on word order,on semantics,
on morphology, on constituency, or on pragmatic cues?) Thiscan help us
immensely in knowing where to focus our language-modeling efforts.

There are two common methods for computing the entropy of English.
The first was employed by Shannon (1951), as part of his groundbreaking
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METHODOLOGY BOX: PERPLEXITY

The methodology box on page 202 mentioned the idea of com-
puting theperplexity of a test setas a way of comparing two prob-
abilistic models. (Despite the risk of ambiguity, we will follow the
speech and language processing literature in using the term‘perplex-
ity’ rather than the more technically correct term ‘cross-perplexity’.)
Here’s an example of perplexity computation as part of a ‘business
news dictation system’. We trained unigram, bigram, and trigram
Katz-style backoff grammars with Good-Turing discountingon 38
million words (including start-of-sentence tokens) from the Wall
Street Journal (from the WSJ0 corpus (LDC, 1993)). We used a
vocabulary of 19,979 words (i.e. the rest of the words types were
mapped to the unknown word token<UNK> in both training and
testing). We then computed the perplexity of each of these models
on a test set of 1.5 million words (where the perplexity is defined as
2H(p;m)). The table below shows the perplexity of a 1.5 million word
WSJ test set according to each of these grammars.

N-gram order Perplexity
Unigram 962
Bigram 170
Trigram 109

In computing perplexities the modelm must be constructed
without any knowledge of the test sett. Any kind of knowledge
of the test set can cause the perplexity to be artificially low. For
example, sometimes instead of mapping all unknown words to the<UNK> token, we use aclosed-vocabularytest set in which we
know in advance what the set of words is. This can greatly reduce
the perplexity. As long as this knowledge is provided equally to each
of the models we are comparing, the closed-vocabulary perplexity is
still a useful metric for comparing models. But this cross-perplexity
is no longer guaranteed to be greater than the true perplexity of the
test set, and so great care must be taken in interpreting the results. In
general, the perplexity of two language models is only comparable
if they use the same vocabulary.
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work in defining the field of information theory. His idea was to use human
subjects, and to construct a psychological experiment thatrequires them to
guess strings of letters; by looking at how many guesses it takes them to
guess letters correctly we can estimate the probability of the letters, and
hence the entropy of the sequence.

The actual experiment is designed as follows: we present a subject
with some English text and ask the subject to guess the next letter. The
subjects will use their knowledge of the language to guess the most proba-
ble letter first, the next most probable next, etc. We record the number of
guesses it takes for the subject to guess correctly. Shannon’s insight was that
the entropy of the number-of-guesses sequence is the same asthe entropy
of English. (The intuition is that given the number-of-guesses sequence, we
could reconstruct the original text by choosing the “nth most probable” letter
whenever the subject tookn guesses). This methodology requires the use of
letter guesses rather than word guesses (since the subject sometimes has to
do an exhaustive search of all the possible letters!), and soShannon com-
puted theper-letter entropy of English rather than the per-word entropy.
He reported an entropy of 1.3 bits (for 27 characters (26 letters plus space)).
Shannon’s estimate is likely to be too low, since it is based on a single text
(Jefferson the Virginianby Dumas Malone). Shannon notes that his subjects
had worse guesses (hence higher entropies) on other texts (newspaper writ-
ing, scientific work, and poetry). More recently variationson the Shannon
experiments include the use of a gambling paradigm where thesubjects get
to bet on the next letter (Cover and King, 1978; Cover and Thomas, 1991).

The second method for computing the entropy of English helpsavoid
the single-text problem that confounds Shannon’s results.This method is to
take a very good stochastic model, train it on a very large corpus, and use
it to assign a log-probability to a very long sequence of English, using the
Shannon-McMillan-Breiman theorem:

H(English)� lim
n!∞

�1
n

logm(w1w2 : : :wn) (6.54)

For example, Brownet al. (1992) trained a trigram language model
on 583 million words of English, (293,181 different types) and used it to
compute the probability of the entire Brown corpus (1,014,312 tokens). The
training data include newspapers, encyclopedias, novels,office correspon-
dence, proceedings of the Canadian parliament, and other miscellaneous
sources.

They then computed the character-entropy of the Brown corpus, by us-
ing their word-trigram grammar to assign probabilities to the Brown corpus,
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considered as a sequence of individual letters. They obtained an entropy
of 1:75 bits per character (where the set of characters included all the 95
printable ASCII characters).

The average length of English written words (including space) has been
reported at 5.5 letters (Nádas, 1984). If this is correct, it means that the Shan-
non estimate of 1.3 bits per letter corresponds to a per-wordperplexity of 142
for general English. The numbers we report above for the WSJ experiments
are significantly lower since the training and test set came from same sub-
sample of English. That is, those experiments underestimate the complexity
of English since the Wall Street Journal looks very little like Shakespeare.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The underlying mathematics of theN-gram was first proposed by Markov
(1913), who used what are now calledsimple Markov chains or bigrams
to model sequences of 20,000 vowels and consonants in Pushkin’s Eugene
Onegin. Markov classified each letter as V or C and computed the prob-
ability of occurrence of sequences such as VVV, VCV, CVC, etc. Shan-
non (1948) appliedN-grams to compute approximations to English word
sequences. Based on Shannon’s work, Markov models were commonly used
in modeling word sequences by the 1950’s. In a series of extremely influ-
ential papers starting with Chomsky (1956) and including Chomsky (1957)
and Miller and Chomsky (1963), Noam Chomsky argued that ‘finite-state
Markov processes’, while a possibly useful engineering heuristic, were in-
capable of being a complete cognitive model of human grammatical knowl-
edge. These arguments led many linguists and computationallinguists away
from statistical models altogether.

The resurgence ofN-gram models came from Jelinek, Mercer, Bahl,
and colleagues at the IBM Thomas J. Watson Research Center, influenced
by Shannon, and Baker at CMU, influenced by the work of Baum andcol-
leagues. These two labs independently successfully usedN-grams in their
speech recognition systems (Jelinek, 1976; Baker, 1975; Bahl et al., 1983).
The Good-Turing algorithm was first applied to the smoothingof N-gram
grammars at IBM by Katz, as cited in Nádas (1984). Jelinek (1990) summa-
rizes this and many other early language model innovations used in the IBM
language models.

While smoothing had been applied as an engineering solutionto the
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zero-frequency problem at least as early as Jeffreys (1948)(add-one smooth-
ing), it is only relatively recently that smoothing received serious atten-
tion. Church and Gale (1991) gives a good description of the Good-Turing
method, as well as the proof, and also gives a good description of the Deleted
Interpolation method and a new smoothing method. Sampson (1996) also
has a useful discussion of Good-Turing. Problems with the Add-one algo-
rithm are summarized in Gale and Church (1994). Method C in Witten and
Bell (1991) describes what we called Witten-Bell discounting. Chen and
Goodman (1996) give an empirical comparison of different smoothing algo-
rithms, including two new methods,average-countandone-count, as well as
Church and Gale’s. Iyer and Ostendorf (1997) discuss a way ofsmoothing
by adding in data from additional corpora.

Much recent work on language modeling has focused on ways to build
more sophisticatedN-grams. These approaches include giving extra weight
to N-grams which have already occurred recently (thecache LM of Kuhn CACHE LM

and de Mori (1990)), choosing long-distancetriggers instead of just local TRIGGERS

N-grams (Rosenfeld, 1996; Niesler and Woodland, 1999; Zhou and Lua,
1998), and usingvariable-length N-grams (Neyet al., 1994; Kneser, 1996;

VARIABLE­
LENGTH

N­GRAMS
Niesler and Woodland, 1996). Another class of approaches use semantic in-
formation to enrich theN-gram, including semantic word associations based
on thelatent semantic indexingdescribed in Chapter 15 (Coccaro and Ju-LATENT

SEMANTIC
INDEXING

rafsky, 1998; Bellegarda, 1999)), and from on-line dictionaries or thesauri
(Demetriouet al., 1997).Class-basedN-grams, based on word classes suchCLASS­BASED

as parts-of-speech, are described in Chapter 8. Language models based on
more structured linguistic knowledge (such as probabilistic parsers) are de-
scribed in Chapter 12. Finally, a number of augmentations toN-grams are
based on discourse knowledge, such as using knowledge of thecurrent topic
(Chenet al., 1998; Seymore and Rosenfeld, 1997; Seymoreet al., 1998; Flo-
rian and Yarowsky, 1999; Khudanpur and Wu, 1999) or the current speech
act in dialog (see Chapter 19).

6.8 SUMMARY

This chapter introduced theN-gram, one of the oldest and most broadly use-
ful practical tools in language processing.� An N-gram probability is the conditional probability of a word given

the previousN�1 words. N-gram probabilities can be computed by
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simply counting in a corpus and normalizing (theMaximum Likeli-
hood Estimate) or they can be computed by more sophisticated algo-
rithms. The advantage ofN-grams is that they take advantage of lots
of rich lexical knowledge. A disadvantage for some purposesis that
they are very dependent on the corpus they were trained on.� Smoothing algorithms provide a better way of estimating the proba-
bility of N-grams which never occur. Commonly-used smoothing al-
gorithms includebackoff or deleted interpolation, with Witten-Bell
or Good-Turing discounting.� Corpus-basedlanguage modelslike N-grams are evaluated by sepa-
rating the corpus into atraining set and atest set, training the model
on the training set, and evaluating on the test set. Theentropy H, or
more commonly theperplexity 2H (more properlycross-entropyand
cross-perplexity) of a test set are used to compare language models.

EXERCISES

6.1 Write out the equation for trigram probability estimation (modifying
Equation 6.11)

6.2 Write out the equation for the discountd = c�
c for add-one smoothing.

Do the same for Witten-Bell smoothing. How do they differ?

6.3 Write a program (Perl is sufficient) to compute unsmoothed unigrams
and bigrams.

6.4 Run your N-gram program on two different small corpora of your
choice (you might use email text or newsgroups). Now comparethe statistics
of the two corpora. What are the differences in the most common unigrams
between the two? How about interesting differences in bigrams?

6.5 Add an option to your program to generate random sentences.

6.6 Add an option to your program to do Witten-Bell discounting.

6.7 Add an option to your program to compute the entropy (or perplexity)
of a test set.
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6.8 Suppose someone took all the words in a sentence and reordered them
randomly. Write a program which take as input such abag of words and BAG OF

WORDS

produces as output a guess at the original order. Use the Viterbi algorithm
and anN-gram grammar produced by yourN-gram program (on some cor-
pus).

6.9 The field ofauthorship attribution is concerned with discovering theAUTHORSHIP
ATTRIBUTION

author of a particular text. Authorship attribution is important in many fields,
including history, literature, and forensic linguistics.For example Mosteller
and Wallace (1964) applied authorship identification techniques to discover
who wroteThe Federalistpapers. The Federalist papers were written in
1787-1788 by Alexander Hamilton, John Jay and James Madisonto per-
suade New York to ratify the United States Constitution. They were pub-
lished anonymously, and as a result, although some of the 85 essays were
clearly attributable to one author or another, the authorship of 12 were in
dispute between Hamilton and Madison. Foster (1989) applied authorship
identification techniques to suggest that W.S.’sFuneral Elegyfor William
Peter was probably written by William Shakespeare, and thatthe anonymous
author ofPrimary Colorsthe roman à clef about the Clinton campaign for
the American presidency, was journalist Joe Klein (Foster,1996).

A standard technique for authorship attribution, first usedby Mosteller
and Wallace, is a Bayesian approach. For example, they trained a proba-
bilistic model of the writing of Hamilton, and another modelof the writings
of Madison, and computed the maximum-likelihood author foreach of the
disputed essays. There are many complex factors that go intothese models,
including vocabulary use, word-length, syllable structure, rhyme, grammar;
see (Holmes, 1994) for a summary. This approach can also be used for iden-
tifying which genre a a text comes from.

One factor in many models is the use of rare words. As a simple ap-
proximation to this one factor, apply the Bayesian method tothe attribution
of any particular text. You will need 3 things: (1) a text to test, (2) two po-
tential authors or genres, with a large on-line text sample of each. One of
them should be the correct author. Train a unigram language model on each
of the candidate authors. You are only going to use thesingletonunigrams
in each language model. You will computeP(TjA1), the probability of the
text given author or genreA1, by (1) taking the language model fromA1,
(2) by multiplying together the the probabilities of all theunigrams that only
occur once in the ‘unknown’ text and (3) taking the geometricmean of these
(i.e. thenth root, wheren is the number of probabilities you multiplied).
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Do the same forA2. Choose whichever is higher. Did it produce the correct
candidate?



7
HMMS AND SPEECH
RECOGNITION

When Frederic was a little lad he proved so brave and daring,
His father thought he’d ’prentice him to some career seafaring.
I was, alas! his nurs’rymaid, and so it fell to my lot
To take and bind the promising boy apprentice to apilot –
A life not bad for a hardy lad, though surely not a high lot,
Though I’m a nurse, you might do worse than make your boy a pilot.
I was a stupid nurs’rymaid, on breakers always steering,
And I did not catch the word aright, through being hard of hearing;
Mistaking my instructions, which within my brain did gyrate,
I took and bound this promising boy apprentice to apirate.

The Pirates of Penzance, Gilbert and Sullivan, 1877

Alas, this mistake by nurserymaid Ruth led to Frederic’s long indenture as a
pirate and, due to a slight complication involving twenty-first birthdays and
leap years, nearly led to 63 extra years of apprenticeship. The mistake was
quite natural, in a Gilbert-and-Sullivan sort of way; as Ruth later noted, “The
two words were so much alike!”. True, true; spoken language understanding
is a difficult task, and it is remarkable that humans do as wellat it as we do.
The goal of automatic speech recognition (ASR) research is to address this
problem computationally by building systems which map froman acoustic
signal to a string of words. Automatic speech understanding(ASU) extends
this goal to producing some sort of understanding of the sentence, rather than
just the words.

The general problem of automatic transcription of speech byany speaker
in any environment is still far from solved. But recent yearshave seen ASR
technology mature to the point where it is viable in certain limited domains.
One major application area is in human-computer interaction. While many
tasks are better solved with visual or pointing interfaces,speech has the po-
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tential to be a better interface than the keyboard for tasks where full natural
language communication is useful, or for which keyboards are not appro-
priate. This includes hands-busy or eyes-busy applications, such as where
the user has objects to manipulate or equipment to control. Another impor-
tant application area is telephony, where speech recognition is already used
for example for entering digits, recognizing ”yes” to accept collect calls, or
call-routing (“Accounting, please”, “Prof. Landauer, please”). Finally, ASR
is being applied to dictation, i.e. transcription of extended monologue by
a single specific speaker. Dictation is common in fields such as law and is
also important as part of augmentative communication (interaction between
computers and humans with some disability resulting in the inability to type,
or the inability to speak). The blind Milton famously dictatedParadise Lost
to his daughters, and Henry James dictated his later novels after a repetitive
stress injury.

Different applications of speech technology necessarily place different
constraints on the problem and lead to different algorithms. We chose to fo-
cus this chapter on the fundamentals of one crucial area:Large-Vocabulary
Continuous Speech Recognition(LVCSR), with a small section on acous-LVCSR

tic issues in speech synthesis. Large-vocabulary generally means that the
systems have a vocabulary of roughly 5,000 to 60,000 words. The termcon-
tinuous means that the words are run together naturally; it contrasts withCONTINUOUS

isolated-word speech recognition, in which each word must be precededISOLATED­
WORD

and followed by a pause. Furthermore, the algorithms we willdiscuss are
generallyspeaker-independent; that is, they are able to recognize speechSPEAKER­

INDEPENDENT

from people whose speech the system has never been exposed tobefore.
The chapter begins with an overview of speech recognition architec-

ture, and then proceeds to introduce the HMM, the use of the Viterbi and
A� algorithms for decoding, speech acoustics and features, and the use of
Gaussians and MLPs to compute acoustic probabilities. Evenrelying on the
previous three chapters, summarizing this much of the field in this chapter
requires us to omit many crucial areas; the reader is encouraged to see the
suggested readings at the end of the chapter for useful textbooks and articles.
This chapter also includes a short section on the acoustic component of the
speech synthesis algorithms discussed in Chapter 4.
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7.1 SPEECHRECOGNITION ARCHITECTURE

Previous chapters have introduced many of the core algorithms used in speech
recognition. Chapter 4 introduced the notions ofphoneandsyllable. Chap-
ter 5 introduced thenoisy channel model, the use of theBayes rule, and
the probabilistic automaton. Chapter 6 introduced theN-gram language
model and theperplexity metric. In this chapter we introduce the remaining
components of a modern speech recognizer: theHidden Markov Model
(HMM ), the idea ofspectral features, the forward-backward algorithm
for HMM training, and theViterbi andstack decoding(also calledA� de-
coding algorithms for solving thedecodingproblem: mapping from stringsA

�
DECODING

of phone probability vectors to strings of words.
Let’s begin by revisiting the noisy channel model that we sawin Chap-

ter 5. Speech recognition systems treat the acoustic input as if it were a
‘noisy’ version of the source sentence. In order to ‘decode’this noisy sen-
tence, we consider all possible sentences, and for each one we compute
the probability of it generating the noisy sentence. We thenchose the sen-
tence with the maximum probability. Figure 7.1 shows this noisy-channel
metaphor.

NOISY CHANNEL

noisy
sentence

guess at
original
sentence

If music be the 
    food of love... If music be the 

    food of love...

DECODER

?Every happy family...

...

source
sentence

?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

Figure 7.1 The noisy channel model applied to entire sentences (Figure5.1
showed its application to individual words). Modern speechrecognizers work
by searching through a huge space of potential ‘source’ sentences and choos-
ing the one which has the highest probability of generating the ‘noisy’ sen-
tence. To do this they must have models that express the probability of
sentences being realized as certain strings of words (N-grams), models that
express the probability of words being realized as certain strings of phones
(HMMs) and models that express the probability of phones being realized as
acoustic or spectral features (Gaussians/MLPs).

Implementing the noisy-channel model as we have expressed it in Fig-
ure 7.1 requires solutions to two problems. First, in order to pick the sentence
that best matches the noisy input we will need a complete metric for a “best
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match”. Because speech is so variable, an acoustic input sentence will never
exactly match any model we have for this sentence. As we have suggested
in previous chapters, we will use probability as our metric,and will show
how to combine the various probabilistic estimators to get acomplete esti-
mate for the probability of a noisy observation-sequence given a candidate
sentence. Second, since the set of all English sentences is huge, we need
an efficient algorithm that will not search through all possible sentences, but
only ones that have a good chance of matching the input. This is thedecod-
ing or searchproblem, and we will summarize two approaches: theViterbi
or dynamic programming decoder, and thestack or A� decoder.

In the rest of this introduction we will introduce the probabilistic or
Bayesian model for speech recognition (or more accurately re-introduce it,
since we first used the model in our discussions of spelling and pronunciation
in Chapter 5); we leave discussion of decoding/search for pages 242–249.

The goal of the probabilistic noisy channel architecture for speech
recognition can be summarized as follows:

“What is the most likely sentence out of all sentences in the lan-
guageL given some acoustic input O?”

We can treat the acoustic inputO as a sequence of individual ‘symbols’
or ‘observations’ (for example by slicing up the input every10 milliseconds,
and representing each slice by floating-point values of the energy or fre-
quencies of that slice). Each index then represents some time interval, and
successiveoi indicate temporally consecutive slices of the input (note that
capital letters will stand for sequences of symbols and lower-case letters for
individual symbols):

O= o1;o2;o3; : : : ;ot (7.1)

Similarly, we will treat a sentence as if it were composed simply of a
string of words:

W = w1;w2;w3; : : : ;wn (7.2)

Both of these are simplifying assumptions; for example dividing sen-
tences into words is sometimes too fine a division (we’d like to model facts
about groups of words rather than individual words) and sometimes too gross
a division (we’d like to talk about morphology). Usually in speech recogni-
tion a word is defined by orthography (after mapping every word to lower-
case):oakis treated as a different word thanoaks, but the auxiliarycan(“can
you tell me. . . ”) is treated as the same word as the nouncan (“i need a can
of. . . ” ). Recent ASR research has begun to focus on building more so-
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phisticated models of ASR words incorporating the morphological insights
of Chapter 3 and the part-of-speech information that we willstudy in Chap-
ter 8.

The probabilistic implementation of our intuition above, then, can be
expressed as follows:

Ŵ = argmax
W2L

P(WjO) (7.3)

Recall that the function argmaxx f (x) means ‘the x such that f(x) is
largest’. Equation (7.3) is guaranteed to give us the optimal sentenceW; we
now need to make the equation operational. That is, for a given sentenceW
and acoustic sequenceO we need to computeP(WjO). Recall that given any
probabilityP(xjy), we can use Bayes’ rule to break it down as follows:

P(xjy) = P(yjx)P(x)
P(y) (7.4)

We saw in Chapter 5 that we can substitute (7.4) into (7.3) as follows:

Ŵ = argmax
W2L

P(OjW)P(W)
P(O) (7.5)

The probabilities on the right hand of (7.5) are for the most part easier
to compute thanP(WjO). For example,P(W), the prior probability of the
word string itself is exactly what is estimated by then-gram language mod-
els of Chapter 6. And we will see below thatP(OjW) turns out to be easy
to estimate as well. ButP(O), the probability of the acoustic observation
sequence, turns out to be harder to estimate. Luckily, we canignoreP(O)
just as we saw in Chapter 5. Why? Since we are maximizing over all pos-
sible sentences, we will be computingP(OjW)P(W)

P(O) for each sentence in the
language. ButP(O) doesn’t change for each sentence! For each potential
sentence we are still examining the same observationsO, which must have
the same probabilityP(O). Thus:

Ŵ = argmax
W2L

P(OjW)P(W)
P(O) = argmax

W2L

P(OjW)P(W) (7.6)

To summarize, the most probable sentenceW given some observation
sequenceO can be computing by taking the product of two probabilities for
each sentence, and choosing the sentence for which this product is greatest.
These two terms have names;P(W), theprior probability , is called thelan-
guage model. P(OjW), theobservation likelihood, is called theacoustic LANGUAGE

MODEL

model. ACOUSTIC
MODEL
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Key Concept #5. Ŵ = argmax
W2L

likelihoodz }| {
P(OjW) priorz }| {

P(W) (7.7)

We have already seen in Chapter 6 how to compute the language model
prior P(W) by usingN-gram grammars. The rest of this chapter will show
how to compute the acoustic modelP(OjW), in two steps. First we will
make the simplifying assumption that the input sequence is asequence of
phonesF rather than a sequence of acoustic observations. Recall that we
introduced theforward algorithm in Chapter 5, which was given ‘obser-
vations’ that were strings of phones, and produced the probability of these
phone observations given a single word. We will show that these probabilis-
tic phone automata are really a special case of theHidden Markov Model ,
and we will show how to extend these models to give the probability of a
phone sequence given an entire sentence.

One problem with the forward algorithm as we presented it wasthat
in order to know which word was the most-likely word (the ‘decoding prob-
lem’), we had to run the forward algorithm again for each word. This is
clearly intractable for sentences; we can’t possibly run the forward algo-
rithm separately for each possible sentence of English. We will thus intro-
duce two different algorithms whichsimultaneouslycompute the likelihood
of an observation sequence given each sentence,andgive us the most-likely
sentence. These are theViterbi and theA� decoding algorithms.

Once we have solved the likelihood-computation and decoding prob-
lems for a simplified input consisting of strings of phones, we will show
how the same algorithms can be applied to true acoustic inputrather than
pre-defined phones. This will involve a quick introduction to acoustic input
and feature extraction, the process of deriving meaningful features from
the input soundwave. Then we will introduce the two standardmodels for
computing phone-probabilities from these features:Gaussianmodels, and
neural net (multi-layer perceptrons) models.

Finally, we will introduce the standard algorithm for training the Hid-
den Markov Models and the phone-probability estimators, the forward-
backward or Baum-Welch algorithm) (Baum, 1972), a special case of the
theExpectation-Maximization or EM algorithm (Dempsteret al., 1977).

As a preview of the chapter, Figure 7.2 shows an outline of thecompo-
nents of a speech recognition system. The figure shows a speech recognition
system broken down into three stages. In thesignal processingor feature
extraction stage, the acoustic waveform is sliced up intoframes (usually
of 10, 15, or 20 milliseconds) which are transformed intospectral features
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which give information about how much energy in the signal isat different
frequencies. In thesubword or phone recognitionstage, we use statistical
techniques like neural networks or Gaussian models to tentatively recognize
individual speech sounds likep or b. For a neural network, the output of
this stage is a vector of probabilities over phones for each frame (i.e. ‘for
this frame the probability of [p] is .8, the probability of [b] is .1, the proba-
bility of [f] is .02, etc’); for a Gaussian model the probabilities are slightly
different. Finally, in thedecodingstage, we take a dictionary of word pro-
nunciations and a language model (probabilistic grammar) and use a Viterbi
or A* decoderto find the sequence of words which has the highest proba-DECODER

bility given the acoustic events.
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  (Signal Processing)
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Vectors

Phone Likelihood
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or Neural Networks)
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Figure 7.2 Schematic architecture for a (simplified) speech recognizer

7.2 OVERVIEW OF HIDDEN MARKOV MODELS

In Chapter 5 we usedweighted finite-state automataor Markov chains to
model the pronunciation of words. The automata consisted ofa sequence
of statesq = (q0q1q2 : : :qn), each corresponding to a phone, and a set of
transition probabilities between states,a01;a12;a13, encoding the probability
of one phone following another. We represented the states asnodes, and
the transition probabilities as edges between nodes; an edge existed between
two nodes if there was a non-zero transition probability between the two
nodes. We also saw that we could use theforward algorithm to compute the
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likelihood of a sequence of observed phoneso = (o1o2o3 : : :ot ). Figure 7.3
shows an automaton for the wordneedwith sample observation sequence of
the kind we saw in Chapter 5.

10 2 3 4

a12 a23

o1 o2 o3

a01
start endn iy d

n iy d ......

Word Model

a24 = .11

a34= .89

Observation 
Sequence
(phone symbols)

Figure 7.3 A simple weighted automaton or Markov chain pronunciation
network for the wordneed, showing the transition probabilities, and a sample
observation sequence. The transition probabilitiesaxy between two statesx
andy are 1.0 unless otherwise specified.

While we will see that these models figure importantly in speech recog-
nition, they simplify the problem in two ways. First, they assume that the
input consists of a sequence of symbols! Obviously this is not true in the
real world, where speech input consists essentially of small movements of
air particles. In speech recognition, the input is an ambiguous, real-valued
representation of the sliced-up input signal, calledfeaturesor spectral fea-
tures. We will study the details of some of these features beginning on
page 258; acoustic features represent such information as how much energy
there is at different frequencies. The second simplifying assumption of the
weighted automata of Chapter 5 was that the input symbols correspond ex-
actly to the states of the machine. Thus when seeing an input symbol [b],
we knew that we could move into a state labeled[b]. In a Hidden Markov
Model, by contrast, we can’t look at the input symbols and know which stateHIDDEN

MARKOV
MODEL

to move to. The input symbols don’t uniquely determine the next state.1

Recall that a weighted automaton or simple Markov model is specified
by the set ofstatesQ , the set oftransition probabilities A, a definedstart
stateandend state(s), and a set ofobservation likelihoodsB. For weighted
1 Actually, as we mentioned in passing, by this second criterion some of the automata we
saw in Chapter 5 were technically HMMs as well. This is because the first symbol in the
input string[n iy] was compatible with the[n] states in the wordsneedor an. Seeing the
symbols[n], we didn’t know which underlying state it was generated by,need-nor an-n.
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automata, we defined the probabilitiesbi(ot) as 1.0 if the statei matched the
observationot and 0 if they didn’t match. An HMM formally differs from a
Markov model by adding two more requirements. First, it has aseparate set
of observation symbols O, which is not drawn from the same alphabet as the
state setQ. Second, the observation likelihood functionB is not limited to
the values 1.0 and 0; in an HMM the probabilitybi(ot) can take on any value
from 0 to 1.0.

start endiy d

......

Word Model n10 2 3 4

a11 a22 a33

a12

a24

aa23 34

Observation 
Sequence
(spectral feature
 vectors)

o1 o2 o3 o4 o5 o6

1b (o1) b (o )3 6

a01

1b (o )2
b (o )2 3 b (o )2 5

Figure 7.4 An HMM pronunciation network for the wordneed, showing
the transition probabilities, and a sample observation sequence. Note the ad-
dition of the output probabilitiesB. HMMs used in speech recognition usually
use self-loops on the states to model variable phone durations.

Figure 7.4 shows an HMM for the wordneedand a sample observa-
tion sequence. Note the differences from Figure 7.3. First,the observation
sequences are now vectors of spectral features representing the speech sig-
nal. Next, note that we’ve also allowed one state to generatemultiple copies
of the same observation, by having a loop on the state. This loops allows
HMMs to model the variable duration of phones; longer phonesrequire more
loops through the HMM.

In summary, here are the parameters we need to define an HMM:� states:A set of statesQ= q1q2 : : :qN.� transition probabilities: A set of probabilitiesA=a01a02: : :an1 : : :ann.
Eachai j represents the probability of transitioning from statei to state
j. The set of these is thetransition probability matrix ¿� observation likelihoods: A set of observation likelihoodsB= bi(ot),
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each expressing the probability of an observationot being generated
from a statei.

In our examples so far we have used two ‘special’ states (non-emitting
states) as the start and end state; as we saw in Chapter 5 it is also possible to
avoid the use of these states by specifying two more things:� initial distribution: An initial probability distribution over states,π,

such thatπi is the probability that the HMM will start in statei. Of
course some statesj may haveπ j = 0, meaning that they cannot be
initial states.� accepting states:A set of legal accepting states.

As was true for the weighted automata, the sequences of symbols that
are input to the model (if we are thinking of it as recognizer)or which are
produced by the model (if we are thinking of it as a generator)are generally
called theobservation sequence, referred to asO= (o1o2o3 : : :oT).

7.3 THE V ITERBI ALGORITHM REVISITED

Chapter 5 showed how the forward algorithm could be used to compute the
probability of an observation sequence given an automaton,and how the
Viterbi algorithm can be used to find the most-likely path through the au-
tomaton, as well as the probability of the observation sequence given this
most-likely path. In Chapter 5 the observation sequences consisted of a
single word. But in continuous speech, the input consists ofsequences of
words, and we are not given the location of the word boundaries. Knowing
where the word boundaries are massively simplifies the problem of pronun-
ciation; in Chapter 5 since we were sure that the pronunciation [ni] came
from one word, we only had 7 candidates to compare. But in actual speech
we don’t know where the word boundaries are. For example, tryto decode
the following sentence from Switchboard (don’t peek ahead!):

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih s en l ih]

The answer is in the footnote.2 The task is hard partly because of coar-
ticulation and fast speech (e.g.[d] for the first phone ofjust!). But mainly
it’s the lack of spaces indicating word boundaries that makethe task difficult.
The task of finding word boundaries in connected speech is called segmen-
tation and we will solve it by using the Viterbi algorithm just as we did for
2 I just heard something about moving recently.
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Chinese word-segmentation in Chapter 5; Recall that the algorithm for Chi-
nese word-segmentation relied on choosing the segmentation that resulted
in the sequence of words with the highest frequency. For speech segmenta-
tion we use the more sophisticatedN-gram language models introduced in
Chapter 6. In the rest of this section we show how the Viterbi algorithm can
be applied to the task of decoding and segmentation of a simple string of
observations phones, using ann-gram language model. We will show how
the algorithm is used to segment a very simple string of words. Here’s the
input and output we will work with:

Input Output
[aa n iy dh ax] I need the

Figure 7.5 shows word models forI, need, the, and also, just to make
things difficult, the wordon.

start end

dh ax

iy.08

.92

.88

.23

.77

.12
n

Word model for "the"

start endn iy d
.88

.12

Word model for "need"

start

aa

ay

Word model for "I"

end

start endaa n

Word model for "on"

.80

.20

Figure 7.5 Pronunciation networks for the wordsI, on, need, andthe. All
networks (especiallythe) are significantly simplified.

Recall that the goal of the Viterbi algorithm is to find the best state se-
quenceq=(q1q2q3 : : :qt) given the set of observed phoneso=(o1o2o3 : : :ot).
A graphic illustration of the output of the dynamic programming algorithm is
shown in Figure 7.6. Along they-axis are all the words in the lexicon; inside
each word are its states. Thex-axis is ordered by time, with one observed
phone per time unit.3 Each cell in the matrix will contain the probability of
3 This x-axis component of the model is simplified in two major ways that we will show
how to fix in the next section. First, the observations will not be phones but extracted spectral
features, and second, each phone consists of not time unit observation but many observations
(since phones can last for more than one phone). They-axis is also simplified in this example,
since as we will see most ASR system use multiple ‘subphone’ units for each phone.
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the most-likely sequence ending at that state. We can find themost-likely
state sequence for the entire observation string by lookingat the cell in the
right-most column that has the highest-probability, and tracing back the se-
quence that produced it.

aa
ay

n
iy
d

I

need

the

ax
iy
n

dh

n i dh ax

...

...

on aa
n

aa

Figure 7.6 An illustration of the results of the Viterbi algorithm usedto
find the most-likely phone sequence (and hence estimate the most-likely word
sequence).

More formally, we are searching for the best state sequenceq�=(q1q2 : : :qT),
given an observation sequenceo= (o1o2 : : :oT) and a model (a weighted au-
tomaton or ‘state graph’)λ. Each cellviterbi[i, t] of the matrix contains the
probability of the best path which accounts for the firstt observations and
ends in statei of the HMM. This is the most-probable path out of all possible
sequences of states of lengtht�1:

viterbi[t; i] = max
q1;q2;:::;qt�1

P(q1q2 : : :qt�1;qt = i;o1;o2 : : :ot jλ) (7.8)

In order to computeviterbi[t,i] , the Viterbi algorithm assumes thedy-
namic programming invariant . This is the simplifying (but incorrect) as-

DYNAMIC
PROGRAM­
MING
INVARIANT sumption that if the ultimate best path for the entire observation sequence

happens to go through a stateqi , that this best path must include the best
path up to and including stateqi . This doesn’t mean that the best path at any
time t is the best path for the whole sequence. A path can look bad at the
beginning but turn out to be the best path. As we will see later, the Viterbi
assumption breaks down for certain kinds of grammars (including trigram
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grammars) and so some recognizers have moved to another kindof decoder,
the stack or A� decoder; more on that later. As we saw in our discussion
of the minimum-edit-distance algorithm in Chapter 5, the reason for making
the Viterbi assumption is that it allows us to break down the computation of
the optimal path probability in a simple way; each of the bestpaths at timet
is the best extension of each of the paths ending at timet�1. In other words,
the recurrence relation for the best path at timet ending in statej, viterbi[t,j] ,
is the maximum of the possible extensions of every possible previous path
from timet�1 to timet:

viterbi[t; j] = max
i
(viterbi[t�1; i]ai j )b j(ot) (7.9)

The algorithm as we describe it in Figure 7.9 takes a sequenceof ob-
servations, and a single probabilistic automaton, and returns the optimal path
through the automaton. Since the algorithm requires a single automaton, we
will need to combine the different probabilistic phone networks for the, I,
need, anda into one automaton. In order to build this new automaton we
will need to add arcs with probabilities between any two words: bigram
probabilities. Figure 7.7 shows simple bigram probabilities computed from
the combined Brown and Switchboard corpus.

I need 0.0016 need need 0.000047 # Need 0.000018
I the 0.00018 need the 0.012 # The 0.016
I on 0.000047 need on 0.000047 # On 0.00077
I I 0.039 need I 0.000016 # I 0.079
the need 0.00051 on need 0.000055
the the 0.0099 on the 0.094
the on 0.00022 on on 0.0031
the I 0.00051 on I 0.00085

Figure 7.7 Bigram probabilities for the wordsthe, on, need, andI following
each other, and starting a sentence (i.e. following #). Computed from the
combined Brown and Switchboard corpora with add-0.5 smoothing.

Figure 7.8 shows the combined pronunciation networks for the 4 words
together with a few of the new arcs with the bigram probabilities. For read-
ability of the diagram, most of the arcs aren’t shown; the reader should imag-
ine that each probability in Figure 7.7 is inserted as an arc between every two
words.

The algorithm is given in Figure 5.19 in Chapter 5, and is repeated
here for convenience as Figure 7.9. We see in Figure 7.9 that the Viterbi
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Figure 7.8 Single automaton made from the wordsI, need, on, andthe. The
arcs between words have probabilities computed from Figure7.7. For lack of
space the figure only shows a few of the between-word arcs.

algorithm sets up a probability matrix, with one column for each time index
t and one row for each state in the state graph. The algorithm first creates
T +2 columns; Figure 7.9 shows the first 6 columns. The first column is
an initial pseudo-observation, the next corresponds to thefirst observation
phone [aa], and so on. We begin in the first column by setting the probability
of the start state to 1.0, and the other probabilities to 0; the reader should
find this in Figure 7.10. Cells with probability 0 are simply left blank for
readability. For each column of the matrix, i.e. for each time indext, each
cell viterbi[t,j] , will contain the probability of the most likely path to end in
that cell. We will calculate this probability recursively,by maximizing over
the probability of coming from all possible preceding states. Then we move
to the next state; for each of thei statesviterbi[0,i] in column 0, we compute
the probability of moving into each of thej statesviterbi[1,j] in column 1,
according to the recurrence relation in (7.9). In the columnfor the inputaa,
only two cells have non-zero entries, sinceb1(aa) is zero for every other
state except the two states labeledaa. The value ofviterbi(1,aa)of the word
I is the product of the transition probability from# to I and the probability of
I being pronounced with the vowelaa.

Notice that if we look at the column for the observationn, that the word
on is currently the ‘most-probable’ word. But since there is noword or set of
words in this lexicon which is pronouncedi dh ax, the path starting withon
is a dead end, i.e. this hypothesis can never be extended to cover the whole
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function V ITERBI(observationsof len T,state-graph) returns best-path

num-states NUM-OF-STATES(state-graph)
Create a path probability matrixviterbi[num-states+2,T+2]
viterbi[0,0] 1.0
for each time stept from 0 to T do

for each states from 0 to num-statesdo
for each transitions0 from sspecified bystate-graph

new-score viterbi[s, t] * a[s,s0] * bs0(ot)
if ((viterbi[s0,t+1] = 0) jj (new-score> viterbi[s0, t+1]))

then
viterbi[s0, t+1] new-score
back-pointer[s0, t+1] s

Backtrace from highest probability state in the final columnof viterbi[] and
return path

Figure 7.9 Viterbi algorithm for finding optimal sequence of states in con-
tinuous speech recognition, simplified by using phones as inputs (duplicate of
Figure 5.19). Given an observation sequence of phones and a weighted au-
tomaton (state graph), the algorithm returns the path through the automaton
which has minimum probability and accepts the observation sequence.a[s;s0]
is the transition probability from current states to next states0 andbs0(ot) is
the observation likelihood ofs’ givenot .

utterance.
By the time we see the observationiy, there are two competing paths:

I needandI the; I needis currently more likely. When we get to the obser-
vationdh, we could have arrived from either theiy of needor the iy of the.
The probability of themaxof these two paths, in this case the path throughI
need, will go into the cell fordh.

Finally, the probability for the best path will appear in thefinal ax
column. In this example, only one cell is non-zero in this column; theax
state of the wordthe (a real example wouldn’t be this simple; many other
cells would be non-zero).

If the sentence had actually ended here, we would now need to back-
trace to find the path that gave us this probability. We can’t just pick the
highest probability state for each state column. Why not? Because the most
likely path early on is not necessarily the most likely path for the whole sen-
tence. Recall that the most likely path after seeingn was the wordon. But
the most likely path for the whole sentence isI need the. Thus we had to
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Figure 7.10 The entries in the individual state columns for the Viterbi al-
gorithm. Each cell keeps the probability of the best path so far and a pointer
to the previous cell along that path. Backtracing from the successful last word
(the), we can reconstruct the word sequenceI need the.

rely in Figure 7.10 on the ‘Hansel and Gretel’ method (or the ‘Jason and
the Minotaur’ method if you like your metaphors more classical): whenever
we moved into a cell, we kept pointers back to the cell we came from. The
reader should convince themselves that the Viterbi algorithm has simultane-
ously solved the segmentation and decoding problems.

The presentation of the Viterbi algorithm in this section has been sim-
plified; actual implementations of Viterbi decoding are more complex in
three key ways that we have mentioned already. First, in an actual HMM
for speech recognition, the input would not be phones. Instead, the input
is a feature vector of spectral and acoustic features. Thus theobservation
likelihood probabilities bi(t) of an observationot given a statei will not
simply take on the values 0 or 1, but will be more fine-grained probability
estimates, computed via mixtures of Gaussian probability estimators or neu-
ral nets. The next section will show how these probabilitiesare computed.

Second, the HMM states in most speech recognition systems are not
simple phones but rathersubphones. In these systems each phone is divided
into 3 states: the beginning, middle and final portions of thephone. Dividing



Section 7.3. The Viterbi Algorithm Revisited 249

up a phone in this way captures the intuition that the significant changes in
the acoustic input happen at a finer granularity than the phone; for exam-
ple the closure and release of a stop consonant. Furthermore, many systems
use a separate instance of each of these subphones for eachtriphone con- TRIPHONE

text (Schwartzet al., 1985; Denget al., 1990). Thus instead of around 60
phone units, there could be as many as 603 context-dependent triphones. In
practice, many possible sequences of phones never occur or are very rare,
so systems create a much smaller number of triphones models by clustering
the possible triphones (Young and Woodland, 1994). Figure 7.11 shows an
example of the complete phone model for the triphone b(ax,aw).

b(ax,aw)b(ax,aw) b(ax,aw)
left middle right

Figure 7.11 An example of the context-dependent triphone b(ax,aw) (the
phone [b] preceded by a [ax] and followed by a [aw], as in the beginning of
about, showing its left, middle, and right subphones.

Finally, in practice in large-vocabulary recognition it istoo expensive
to consider all possible words when the algorithm is extending paths from
one state-column to the next. Instead, low-probability paths are pruned at
each time step and not extended to the next state column. Thisis usually im-
plemented viabeam search: for each state column (time step), the algorithmBEAM

SEARCH

maintains a short list of high-probability words whose pathprobabilities are
within some percentage (beam width) of the most probable word path. OnlyBEAM WIDTH

transitions from these words are extended when moving to thenext time step.
Since the words are ranked by the probability of the path so far, which words
are within the beam (active) will change from time step to time step. Making
this beam search approximation allows a significant speed-up at the cost of
a degradation to the decoding performance. This beam searchstrategy was
first implemented by Lowerre (1968). Because in practice most implemen-
tations of Viterbi use beam search, some of the literature uses the termbeam
searchor time-synchronous beam searchinstead of Viterbi.



250 Chapter 7. HMMs and Speech Recognition

7.4 ADVANCED METHODS FORDECODING

There are two main limitations of the Viterbi decoder. First, the Viterbi
decoder does not actually compute the sequence of words which is most
probable given the input acoustics. Instead, it computes anapproximation to
this: the sequence ofstates(i.e. phonesor subphones) which is most proba-
ble given the input. This difference may not always be important; the most
probable sequence of phones may very well correspond exactly to the most
probable sequence of words. But sometimes the most probablesequence
of phones does not correspond to the most probable word sequence. For
example consider a speech recognition system whose lexiconhas multiple
pronunciations for each word. Suppose the correct word sequence includes
a word with very many pronunciations. Since the probabilities leaving the
start arc of each word must sum to 1.0, each of these pronunciation-paths
through this multiple-pronunciation HMM word model will have a smaller
probability than the path through a word with only a single pronunciation
path. Thus because the Viterbi decoder can only follow one ofthese pronun-
ciation paths, it may ignore this word in favor of an incorrect word with only
one pronunciation path.

A second problem with the Viterbi decoder is that it cannot beused
with all possible language models. In fact, the Viterbi algorithm as we have
defined it cannot take complete advantage of any language model more com-
plex than a bigram grammar. This is because of the fact mentioned early that
a trigram grammar, for example, violates thedynamic programming in-
variant that makes dynamic programming algorithms possible. Recall that
this invariant is the simplifying (but incorrect) assumption that if the ultimate
best path for the entire observation sequence happens to go through a state
qi , that this best path must include the best path up to and including state
qi . Since a trigram grammar allows the probability of a word to be based on
the two previous words, it is possible that the best trigram-probability path
for the sentence may go through a word but not include the bestpath to that
word. Such a situation could occur if a particular wordwx has a high tri-
gram probability givenwy;wz, but that conversely the best path towy didn’t
includewz (i.e. P(wyjwq;wz) was low for allq).

There are two classes of solutions to these problems with Viterbi de-
coding. One class involves modifying the Viterbi decoder toreturn mul-
tiple potential utterances and then using other high-levellanguage model
or pronunciation-modeling algorithms to re-rank these multiple outputs. In
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general this kind ofmultiple-pass decodingallows a computationally effi-
cient, but perhaps unsophisticated, language model like a bigram to perform
a rough first decoding pass, allowing more sophisticated butslower decoding
algorithms to run on a reduced search space.

For example, Schwartz and Chow (1990) give a Viterbi-like algorithm
which returns theN-bestsentences (word sequences) for a given speech in-N­BEST

put. Suppose for example a bigram grammar is used with thisN-best-Viterbi
to return the 10,000 most highly-probable sentences, each with their likeli-
hood score. A trigram-grammar can then be used to assign a newlanguage-
model prior probability to each of these sentences. These priors can be com-
bined with the acoustic likelihood of each sentence to generate a posterior
probability for each sentence. Sentences can then berescored using this RESCORED

more sophisticated probability.Figure 7.12 shows an intuition for this algo-
rithm.

If music be the 
    food of love...

If music be the 
    food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple 
Knowledge
Source

speech
input Rescoring

Figure 7.12 The use ofN-best decoding as part of a two-stage decoding
model. Efficient but unsophisticated knowledge sources areused to return the
N-best utterances. This significantly reduces the search space for the second
pass models, which are thus free to be very sophisticated butslow.

An augmentation ofN-best, still part of this first class of extensions to
Viterbi, is to return, not a list of sentences, but aword lattice. A word lattice WORD

LATTICE

is a directed graph of words and links between them which can compactly
encode a large number of possible sentences. Each word in thelattice is aug-
mented with its observation likelihood, so that any particular path through
the lattice can then be combined with the prior probability derived from a
more sophisticated language model. For example Murveitet al. (1993) de-
scribe an algorithm used in the SRI recognizer Decipher which uses a bigram
grammar in a rough first pass, producing a word lattice which is then refined
by a more sophisticated language model.

The second solution to the problems with Viterbi decoding isto employ
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a completely different decoding algorithm. The most commonalternative
algorithm is thestack decoder, also called theA� decoder (Jelinek, 1969;STACK

DECODER

A
� Jelineket al., 1975). We will describe the algorithm in terms of theA�

searchused in the artificial intelligence literature, although the developmentA
�

SEARCH

of stack decoding actually came from the communications theory literature
and the link with AI best-first search was noticed only later (Jelinek, 1976).

A� Decoding

To see how the A� decoding method works, we need to revisit the Viterbi al-
gorithm. Recall that the Viterbi algorithm computed an approximation of the
forward algorithm. Viterbi computes the observation likelihood of the single
best (MAX) path through the HMM, while the forward algorithmcomputes
the observation likelihood of the total (SUM) of all the paths through the
HMM. But we accepted this approximation because Viterbi computed this
likelihood andsearched for the optimal path simultaneously. The A� decod-
ing algorithm, on the other hand, will rely on the complete forward algorithm
rather than an approximation. This will ensure that we compute the correct
observation likelihood. Furthermore, the A� decoding algorithm allows us
to use any arbitrary language model.

The A� decoding algorithm is a kind of best-first search of the lattice or
tree which implicitly defines the sequence of allowable words in a language.
Consider the tree in Figure 7.13, rooted in the START node on the left. Each
leaf of this tree defines one sentence of the language; the oneformed by
concatenating all the words along the path from START to the leaf. We
don’t represent this tree explicitly, but the stack decoding algorithm uses the
tree implicitly as a way to structure the decoding search.

The algorithm performs a search from the root of the tree toward the
leaves, looking for the highest probability path, and hencethe highest prob-
ability sentence. As we proceed from root toward the leaves,each branch
leaving a given word node represent a word which may follow the current
word. Each of these branches has a probability, which expresses the condi-
tional probability of this next word given the part of the sentence we’ve seen
so far. In addition, we will use the forward algorithm to assign each word a
likelihood of producing some part of the observed acoustic data. The A� de-
coder must thus find the path (word sequence) from the root to aleaf which
has the highest probability, where a path probability is defined as the prod-
uct of its language model probability (prior) and its acoustic match to the
data (likelihood). It does this by keeping apriority queue of partial pathsPRIORITY

QUEUE



Section 7.4. Advanced Methods for Decoding 253

the

is

of

are

dogs

do

want

can’t

underwriter

typically

I

START

bequeath

intention

mice

exceptional

my

to

not

believe

lives

Figure 7.13 A visual representation of the implicit lattice of allowable
word sequences which defines a language. The set of sentencesof a language
is far too large to represent explicitly, but the lattice gives a metaphor for ex-
ploring substrings of these sentences.

(i.e. prefixes of sentences, each annotated with a score). Ina priority queue
each element has a score, and thepop operation returns the element with
the highest score. The A� decoding algorithm iteratively chooses the best
prefix-so-far, computes all the possible next words for thatprefix, and adds
these extended sentences to the queue. The Figure 7.14 showsthe complete
algorithm.

Let’s consider a stylized example of a A� decoder working on a wave-
form for which the correct transcription isIf music be the food of love. Fig-
ure 7.15 shows the search space after the decoder has examined paths of
length one from the root. Afast match is used to select the likely nextFAST MATCH

words. A fast match is one of a class of heuristics designed toefficiently
winnow down the number of possible following words, often bycomput-
ing some approximation to the forward probability (see below for further
discussion of fast matching).

At this point in our example, we’ve done the fast match, selected a sub-
set of the possible next words, and assigned each of them a score. The word
Alice has the highest score. We haven’t yet said exactly how the scoring
works, although it will involve as a component the probability of the hypoth-
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function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentencesoff the queue.
If (s is marked end-of-sentence (EOS) ) outputsand terminate.
Get list of candidate next words by doing fast matches.
For each candidate next wordw:

Create a new candidate sentences+w.
Use forward algorithm to compute acoustic likelihoodL of s+w
Compute language model probabilityP of extended sentences+w
Compute ‘score’ fors+w (a function ofL, P, and ???)
if (end-of-sentence) set EOS flag fors+w.
Inserts+w into the queue together with its score and EOS flag

Figure 7.14 The A� decoding algorithm (modified from Paul (1991) and
Jelinek (1997)). The evaluation function that is used to compute the score for
a sentence is not completely defined here; possibly evaluation functions are
discussed below.

esized sentence given the acoustic inputP(WjA), which itself is composed
of the language model probabilityP(W) and the acoustic likelihoodP(AjW).

Figure 7.16 show the next stage in the search. We have expanded the
Alicenode. This means that theAlicenode is no longer on the queue, but its
children are. Note that now the node labeledif actually has a higher score
than any of the children ofAlice.

Figure 7.17 shows the state of the search after expanding theif node,
removing it, and addingif music, if muscle, andif messyon to the queue.

We’ve implied that the scoring criterion for a hypothesis isrelated to its
probability. Indeed it might seem that the score for a stringof wordswi

1 given
an acoustic stringy j

1 should be the product of the prior and the likelihood:

P(y j
1jwi

1)P(wi
1)

Alas, the score cannot be this probability because the probability will
be much smaller for a longer path than a shorter one. This is due to a simple
fact about probabilities and substrings; any prefix of a string must have a
higher probability than the string itself (e.g. P(START the. . . ) will be greater
than P(START the book)). Thus if we used probability as the score, the A�
decoding algorithm would get stuck on the single-word hypotheses.

Instead, we use what is called the A� evaluation function (Nilsson,
1980; Pearl, 1984) calledf �(p), given a partial pathp:
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(none)
1

Alice

Every

In

30

25

4

P(in|START)

40

If
P( "if" | START )

P(acoustic | "if" ) =
   forward probability

Figure 7.15 The beginning of the search for the sentenceIf music be the
food of love. At this early stageAlice is the most likely hypothesis (it has a
higher score than the other hypotheses).

(none)
1

Alice

Every

In

30

25

4

40

was

wants

walls
2

29

24

P(acoustics| "if" ) =
   forward probability

P( "if" |START)

if

Figure 7.16 The next step of the search for the sentenceIf music be the
food of love. We’ve now expanded theAlice node, and added three extensions
which have a relatively high score (was, wants, andwalls). Note that now the
node with the highest score isSTART if, which is not along theSTART Alice
path at all!

f �(p) = g(p)+h�(p)
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(none)
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40
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2
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29
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24
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25

P(acoustic | whether) =
   forward probability

P(music | if

if
P("if" | START)

music
P(acoustic | music) =
   forward probability

muscle

messy

Figure 7.17 We’ve now expanded theif node. The hypothesisSTART if
musiccurrently has the highest score.

f �(p) is theestimatedscore of the best complete path (complete sen-
tence) which starts with the partial pathp. In other words, it is an estimate of
how well this path would do if we let it continue through the sentence. The
A� algorithm builds this estimate from two components:� g(p) is the score from the beginning of utterance to the end of the par-

tial pathp. Thisg function can be nicely estimated by the probability
of p given the acoustics so far (i.e. asP(AjW)P(W) for the word string
W constitutingp).� h�(p) is an estimate of the best scoring extension of the partial path to
the end of the utterance.

Coming up with a good estimate ofh� is an unsolved and interesting
problem. One approach is to choose ash� an estimate which correlates with
the number of words remaining in the sentence (Paul, 1991); see Jelinek
(1997) for further discussion.

We mentioned above that both the A� and various other two-stage de-
coding algorithms require the use of afast match for quickly finding which
words in the lexicon are likely candidates for matching someportion of the
acoustic input. Many fast match algorithms are based on the use of atree-
structured lexicon, which stores the pronunciations of all the words in suchTREE­

STRUCTURED
LEXICON

a way that the computation of the forward probability can be shared for
words which start with the same sequence of phones. The tree-structured
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lexicon was first suggested by Klovstad and Mondshein (1975); fast match
algorithms which make use of it include Guptaet al. (1988), Bahlet al.
(1992) in the context of A� decoding, and Neyet al. (1992) and Nguyen and
Schwartz (1999) in the context of Viterbi decoding. Figure 7.18 shows an
example of a tree-structured lexicon from the Sphinx-II recognizer (Ravis-
hankar, 1996). Each tree root represents the first phone of all words begin-
ning with that context dependent phone (phone context may ormay not be
preserved across word boundaries), and each leaf is associated with a word.

AX(#,B)

B(#,EY)

B(AX,AW)

B(AX,AH)

EY(B,K)

EY(B,KD)

AW(B,N)

AW(B,TD)

AH(B,V)

KD(EY,#)

KD(EY,TD)

K(EY,IX)

K(EY,IX)

N(AW,DD)

TD(AW,X)

V(AH,X)

BAKE

TD(KD,#)

IX(K,NG)

AXR(K,#)

AXR(K,IY)

DD(N,#)

NG(IX,#)

IY(AXR,#)

ABOVE

ABOUT

ABOUND

BAKED

BAKER

BAKERY

BAKING

Figure 7.18 A tree-structured lexicon from the Sphinx-II recognizer (af-
ter Ravishankar (1996)). Each node corresponds to a particular triphone in a
slightly modified version of the ARPAbet; thus EY(B,KD) means the phone
EY preceded by a B and followed by the closure of a K.

There are many other kinds of multiple-stage search, such astheforward-
backward search algorithm (not to be confused with theforward-backward FORWARD­

BACKWARD

algorithm) (Austinet al., 1991) which performs a simple forward search fol-
lowed by a detailed backward (i.e. time-reversed) search.
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7.5 ACOUSTICPROCESSING OFSPEECH

This section presents a very brief overview of the kind of acoustic processing
commonly calledfeature extraction or signal analysisin the speech recog-FEATURE

EXTRACTION

SIGNAL
ANALYSIS nition literature. The termfeatures refers to the vector of numbers which

represent one time-slice of a speech signal. A number of kinds of features
are commonly used, such asLPC features andPLP features. All of these areLPC

PLP spectral features, which means that they represent the waveform in terms of
SPECTRAL
FEATURES the distribution of differentfrequencieswhich make up the waveform; such

a distribution of frequencies is called aspectrum. We will begin with a brief
introduction to the acoustic waveform and how it is digitized, summarize the
idea of frequency analysis and spectra, and then sketch out different kinds of
extracted features. This will be an extremely brief overview; the interested
reader should refer to other books on the linguistics aspects of acoustic pho-
netics (Johnson, 1997; Ladefoged, 1996) or on the engineering aspects of
digital signal processing of speech (Rabiner and Juang, 1993).

Sound Waves

The input to a speech recognizer, like the input to the human ear, is a complex
series of changes in air pressure. These changes in air pressure obviously
originate with the speaker, and are caused by the specific waythat air passes
through the glottis and out the oral or nasal cavities. We represent sound
waves by plotting the change in air pressure over time. One metaphor which
sometimes helps in understanding these graphs is to imaginea vertical plate
which is blocking the air pressure waves (perhaps in a microphone in front of
a speaker’s mouth, or the eardrum in a hearer’s ear). The graph measures the
amount ofcompressionor rarefaction (uncompression) of the air molecules
at this plate. Figure 7.19 shows the waveform taken from the Switchboard
corpus of telephone speech of someone saying “she just had a baby”.

Two important characteristics of a wave are itsfrequency andampli-FREQUENCY

tude. The frequency is the number of times a second that a wave repeatsAMPLITUDE

itself, orcycles. Note in Figure 7.19 that there are 28 repetitions of the wave
in the .11 seconds we have captured. Thus the frequency of this segment of
the wave is 28/.11 or 255cycles per second. Cycles per second are usuallyCYCLES PER

SECOND

calledHertz (shortened toHz), so the frequency in Figure 7.19 would beHERTZ

described as 255 Hz.
The vertical axis in Figure 7.19 measures the amount of air pressure

variation. A high value on the vertical axis (a highamplitude) indicatesAMPLITUDE
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0.470 0.480 0.490 0.500 0.510 0.520 0.530 0.540 0.550 0.560

Figure 7.19 A waveform of the vowel[iy] from the utterance shown in
Figure 7.20. The y-axis shows the changes in air pressure above and below
normal atmospheric pressure. The x-axis shows time. Noticethat the wave
repeats regularly.

that there is more air pressure at that point in time, a zero value means there
is normal (atmospheric) air pressure, while a negative value means there is
lower than normal air pressure (rarefaction).

Two important perceptual properties are related to frequency and am-
plitude. Thepitch of a sound is the perceptual correlate of frequency; inPITCH

general if a sound has a higher-frequency we perceive it as having a higher
pitch, although the relationship is not linear, since humanhearing has differ-
ent acuities for different frequencies. Similarly, theloudnessof a sound is
the perceptual correlate of thepower, which is related to the square of the
amplitude. So sounds with higher amplitudes are perceived as louder, but
again the relationship is not linear.

How to Interpret a Waveform

Since humans (and to some extent machines) can transcribe and understand
speech just given the sound wave, the waveform must contain enough infor-
mation to make the task possible. In most cases this information is hard to
unlock just by looking at the waveform, but such visual inspection is still
sufficient to learn some things. For example, the differencebetween vowels
and most consonants is relatively clear on a waveform. Recall that vowels
are voiced, tend to be long, and are relatively loud. Length in time manifests
itself directly as length in space on a waveform plot. Loudness manifests
itself as high amplitude. How do we recognize voicing? Recall that voicing
is caused by regular openings and closing of the vocal folds.When the vocal
folds are vibrating, we can see regular peaks in amplitude ofthe kind we saw
in Figure 7.19. During a stop consonant, for example the closure of a[p], [t],
or [k], we should expect no peaks at all; in fact we expect silence.

Notice in Figure 7.20 the places where there are regular amplitude
peaks indicating voicing; from second .46 to .58 (the vowel[iy]), from sec-
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ond .65 to .74 (the vowel[ax]) and so on. The places where there is no
amplitude indicate the silence of a stop closure; for example from second
1.06 to second 1.08 (the closure for the first[b], or from second 1.26 to 1.28
(the closure for the second[b]).

sh iy j ax s hh ae

dx

ax b ey b

−2000

0

2000

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Figure 7.20 A waveform of the sentence “She just had a baby” from the
Switchboard corpus (conversation 4325). The speaker is female, was 20 years
old in 1991 which is approximately when the recording was made, and speaks
the South Midlands dialect of American English. The phone labels show
where each phone ends.

Fricatives like[sh] can also be recognized in a waveform; they produce
an intense irregular pattern; the[sh] from second .33 to .46 is a good example
of a fricative.

Spectra

While some broad phonetic features (presence of voicing, stop closures,
fricatives) can be interpreted from a waveform, more detailed classification
(which vowel? which fricative?) requires a different representation of the
input in terms ofspectral features. Spectral features are based on the in-SPECTRAL

sight of Fourier that every complex wave can be represented as a sum of
many simple waves of different frequencies. A musical analogy for this is
the chord; just as a chord is composed of multiple notes, any waveform is
composed of the waves corresponding to its individual “notes”.

Consider Figure 7.21, which shows part of the waveform for the vowel[æ] of the wordhadat second 0.9 of the sentence. Note that there is a com-
plex wave which repeats about nine times in the figure; but there is also a
smaller repeated wave which repeats four times for every larger pattern (no-
tice the four small peaks inside each repeated wave). The complex wave has
a frequency of about 250 Hz (we can figure this out since it repeats roughly
9 times in .036 seconds, and 9 cycles/.036 seconds = 250 Hz). The smaller
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−2000
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0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940

Figure 7.21 The waveform of part of the vowel[æ] from the wordhadcut
out from the waveform shown in Figure 7.20.

wave then should have a frequency of roughly 4 times the frequency of the
larger wave, or roughly 1000 Hz. Then if you look carefully you can see
two little waves on the peak of many of the 1000 Hz waves. The frequency
of this tiniest wave must be roughly twice that of the 1000 Hz wave, hence
2000 Hz.

A spectrum is a representation of these different frequency compo-SPECTRUM

nents of a wave. It can be computed by aFourier transform , a mathematical FOURIER
TRANSFORM

procedure which separates out each of the frequency components of a wave.
Rather than using the Fourier transform spectrum directly,most speech ap-
plications use a smoothed version of the spectrum called theLPC spectrum LPC

(Atal and Hanauer, 1971; Itakura, 1975).
Figure 7.22 shows an LPC spectrum for the waveform in Figure 7.21.

LPC (Linear Predictive Coding) is a way of coding the spectrum which
makes it easier to see where thespectral peaksare. SPECTRAL

PEAKS
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Figure 7.22 An LPC spectrum for the vowel[æ] waveform ofShe just had
a babyat the point in time shown in Figure 7.21. LPC makes it easy to see
formants.
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The x-axis of a spectrum shows frequency while the y-axis shows some
measure of the magnitude of each frequency component (in decibels (dB),
a logarithmic measure of amplitude). Thus Figure 7.22 showsthat there are
important frequency components at 930 Hz, 1860 Hz, and 3020 Hz, along
with many other lower-magnitude frequency components. These important
components at roughly 1000 Hz and 2000 Hz are just what we predicted by
looking at the wave in Figure 7.21!

Why is a spectrum useful? It turns out that these spectral peaks that
are easily visible in a spectrum are very characteristic of different sounds;
phones have characteristic spectral ‘signatures’. For example different chem-
ical elements give off different wavelengths of light when they burn, allow-
ing us to detect elements in stars light-years away by looking at the spectrum
of the light. Similarly, by looking at the spectrum of a waveform, we can de-
tect the characteristic signature of the different phones that are present. This
use of spectral information is essential to both human and machine speech
recognition. In human audition, the function of thecochleaor inner ear isCOCHLEA

INNER EAR to compute a spectrum of the incoming waveform. Similarly, the features
used as input to the HMMs in speech recognition are all representations of
spectra, usually variants of LPC spectra, as we will see.

While a spectrum shows the frequency components of a wave at one
point in time, aspectrogram is a way of envisioning how the different fre-SPECTRO­

GRAM

quencies which make up a waveform change over time. The x-axis shows
time, as it did for the waveform, but the y-axis now shows frequencies in Hz.
The darkness of a point on a spectrogram corresponding to theamplitude of
the frequency component. For example, look in Figure 7.23 around second
0.9, and notice the dark bar at around 1000 Hz. This means thatthe [iy]
of the wordshehas an important component around 1000 Hz (1000 Hz is
just between the notes B and C). The dark horizontal bars on a spectrogram,
representing spectral peaks, usually of vowels, are calledformants.FORMANTS

What specific clues can spectral representations give for phone identi-
fication? First, different vowels have their formants at characteristic places.
We’ve seen that[æ] in the sample waveform had formants at 930 Hz, 1860
Hz, and 3020 Hz. Consider the vowel[iy], at the beginning of the utterance
in Figure 7.20. The spectrum for this vowel is shown in Figure7.24. The first
formant of[iy] is 540 Hz; much lower than the first formant for[æ], while the
second formant (2581 Hz) is much higher than the second formant for [æ].
If you look carefully you can see these formants as dark bars in Figure 7.23
just around 0.5 seconds.

The location of the first two formants (called F1 and F2) playsa large
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Figure 7.23 A spectrogram of the sentence “She just had a baby” whose
waveform was shown in Figure 7.20. One way to think of a spectrogram is as
a collection of spectra (time-slices) like Figure 7.22 placed end to end.
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Figure 7.24 A smoothed (LPC) spectrum for the vowel[iy] at the start of
She just had a baby. Note that the first formant (540 Hz) is much lower than
the first formant for[æ] shown in Figure 7.22, while the second formant (2581
Hz) is much higher than the second formant for[æ].

role in determining vowel identity, although the formants still differ from
speaker to speaker. Formants also can be used to identify thenasal phones[n], [m], and[N], the lateral phone[l], and[r]. Why do different vowels have
different spectral signatures? The formants are caused by the resonant cav-
ities of the mouth. The oral cavity can be thought of as a filterwhich se-
lectively passes through some of the harmonics of the vocal cord vibrations.
Moving the tongue creates spaces of different size inside the mouth which
selectively amplify waves of the appropriate wavelength, hence amplifying
different frequency bands.
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Feature Extraction

Our survey of the features of waveforms and spectra was necessarily brief,
but the reader should have the basic idea of the importance ofspectral fea-
tures and their relation to the original waveform. Let’s nowsummarize the
process of extraction of spectral features, beginning withthe sound wave
itself and ending with afeature vector.4 An input soundwave is firstdig-
itized. This process ofanalog-to-digital conversionhas two steps:sam-
pling and quantization. A signal is sampled by measuring its amplitudeSAMPLING

QUANTIZA­
TION at a particular time; thesampling rate is the number of samples taken per
SAMPLING
RATE second. Common sampling rates are 8,000 Hz and 16,000 Hz. In order to

accurately measure a wave, it is necessary to have at least two samples in
each cycle: one measuring the positive part of the wave and one measuring
the negative part. More than two samples per cycle increasesthe amplitude
accuracy, but less than two samples will cause the frequencyof the wave to
be completely missed. Thus the maximum frequency wave that can be mea-
sured is one whose frequency is half the sample rate (since every cycle needs
2 samples). This maximum frequency for a given sampling rateis called the
Nyquist frequency. Most information in human speech is in frequencies be-NYQUIST

FREQUENCY

low 10,000 Hz; thus a 20,000 Hz sampling rate would be necessary for com-
plete accuracy. But telephone speech is filtered by the switching network,
and only frequencies less than 4,000 Hz are transmitted by telephones. Thus
an 8,000 Hz sampling rate is sufficient for telephone-bandwidth speech like
the Switchboard corpus.

Even an 8,000 Hz sampling rate requires 8000 amplitude measure-
ments for each second of speech, and so it is important to store the amplitude
measurement efficiently. They are usually stored as integers, either 8-bit
(values from -128 – 127) or 16 bit (values from -32768 – 32767). This pro-
cess of representing a real-valued number as a integer is calledquantizationQUANTIZA­

TION

because there is a minimum granularity (the quantum size) and all values
which are closer together than this quantum size are represented identically.

Once a waveform has been digitized, it is converted to some set of
spectral features. An LPC spectrum is represented by a vector of features;
each formant is represented by two features, plus two additional features to
represent spectral tilt. Thus 5 formants can be representedby 12 (5x2+2)
features. It is possible to use LPC features directly as the observation sym-

4 The reader might want to bear in mind Picone’s (1993) reminder that the use of the word
extraction should not be thought of as encouraging the metaphor of features as something
‘in the signal’ waiting to be extracted.
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bols of an HMM. However, further processing is often done to the features.
One popular feature set iscepstral coefficients, which are computed from CEPSTRAL

COEFFI­
CIENTS

the LPC coefficients by taking the Fourier transform of the spectrum. An-
other feature set,PLP (Perceptual Linear Predictiveanalysis (Hermansky, PLP

1990)), takes the LPC features and modifies them in ways consistent with
human hearing. For example, the spectral resolution of human hearing is
worse at high frequencies, and the perceived loudness of a sound is related
to the cube rate of its intensity. So PLP applies various filters to the LPC
spectrum and takes the cube root of the features.

7.6 COMPUTING ACOUSTIC PROBABILITIES

The last section showed how the speech input can be passed through signal
processing transformations and turned into a series of vectors of features,
each vector representing one time-slice of the input signal. How are these
feature vectors turned into probabilities?

One way to compute probabilities on feature vectors is to first cluster CLUSTER

them into discrete symbols that we can count; we can then compute the
probability of a given cluster just by counting the number oftimes it occurs in
some training set. This method is usually calledvector quantization. Vector VECTOR

QUANTIZA­
TION

quantization was quite common in early speech recognition algorithms but
has mainly been replaced by a more direct but compute-intensive approach:
computing observation probabilities on a real-valued (‘continuous’) input
vector. This method thus computes aprobability density function or pdf PROBABILITY

DENSITY
FUNCTION

over a continuous space.
There are two popular versions of the continuous approach. The most

widespread of the two is the use ofGaussian pdfs, in the simplest ver- GAUSSIAN

sion of which each state has a single Gaussian function whichmaps the
observation vectorot to a probability. An alternative approach is the use
of neural networks or multi-layer perceptrons which can also be trainedNEURAL

NETWORKS
MULTI­LAYER
PERCEP­
TRONS

to assign a probability to a real-valued feature vector. HMMs with Gaus-
sian observation-probability-estimators are trained by asimple extension to
the forward-backward algorithm (discussed in Appendix D).HMMs with
neural-net observation-probability-estimators are trained by a completely
different algorithm known aserror back-propagation. ERROR BACK­

PROPAGATION

In the simplest use of Gaussians, we assume that the possiblevalues
of the observation feature vectorot are normally distributed, and so we rep-
resent the observation probability functionb j(ot ) as a Gaussian curve with
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mean vectorµj and covariance matrix∑ j ; (prime denotes vector transpose).
We present the equation here for completeness, although we will not cover
the details of the mathematics:

b j(ot) = 1p(2π)j∑ jje[(ot�µj )0Σ�1
j (ot�µj )] (7.10)

Usually we make the simplifying assumption that the covariance ma-
trix Σ j is diagonal, i.e. that it contains the simple variance of cepstral feature
1, the simple variance of cepstral feature 2, and so on, without worrying
about the effect of cepstral feature 1 on the variance of cepstral feature 2.
This means that in practice we are keeping only a single separate mean and
variance for each feature in the feature vector.

Most recognizers do something even more complicated; they keep
multiple Gaussians for each state, so that the probability of each feature of
the observation vector is computed by adding together a variety of Gaussian
curves. This technique is calledGaussian mixtures. In addition, many ASRGAUSSIAN

MIXTURES

systems share Gaussians between states in a technique knownasparameter
tying (or tied mixtures) (Huang and Jack, 1989). For example acousticallyTIED

MIXTURES

similar phone states might share (i.e. use the same) Gaussians for some fea-
tures.

How are the mean and covariance of the Gaussians estimated? It is
helpful again to consider the simpler case of a non-hidden Markov Model,
with only one statei. The vector of feature meansµ and the vector of covari-
ancesΣ could then be estimated by averaging:

µ̂i = 1
T

T

∑
t=1

ot (7.11)

Σ̂i = 1
T

T

∑
t=1

[(ot �µj)0(ot �µj)] (7.12)

But since there are multiple hidden states, we don’t know which obser-
vation vectorot was produced by which state. Appendix D will show how
the forward-backward algorithm can be modified to assign each observation
vectorot to every possible statei, prorated by the probability that the HMM
was in statei at timet.

An alternative way to model continuous-valued features is the use of a
neural network, multilayer perceptron (MLP ) or Artificial Neural Net-NEURAL

NETWORK

MULTILAYER
PERCEPTRON

MLP

works (ANNs). Neural networks are far too complex for us to introduce in
a page or two here; thus we will just give the intuition of how they are used
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in probability estimation as an alternative to Gaussian estimators. The inter-
ested reader should consult basic neural network textbooks(Anderson, 1995;
Hertz et al., 1991) as well as references specifically focusing on neural-
network speech recognition (Bourlard and Morgan, 1994).

A neural network is a set of small computation units connected by
weighted links. The network is given a vector of input valuesand computes
a vector of output values. The computation proceeds by each computational
unit computing some non-linear function of its input units and passing the
resulting value on to its output units.

The use of neural networks we will describe here is often called ahy-
brid HMM-MLP approach, since it uses some elements of the HMM (such HYBRID

as the state-graph representation of the pronunciation of aword) but the
observation-probability computation is done by an MLP instead of a mix-
ture of Gaussians. The input to these MLPs is a representation of the signal
at a timet and some surrounding window; for example this might mean a
vector of spectral features for a timet and 8 additional vectors for times
t + 10ms, t + 20ms, t + 30ms, t + 40ms, t � 10ms, etc. Thus the input to
the network is a set of nine vectors, each vector having the complete set of
real-valued spectral features for one time slice. The network has one output
unit for each phone; by constraining the values of all the output units to sum
to 1, the net can be used to compute the probability of a statej given an
observation vectorot , or P( jjot). Figure 7.25 shows a sample of such a net.

This MLP computes the probability of the HMM statej given an ob-
servationot , or P(q j jot). But the observation likelihood we need for the
HMM, b j(ot), is P(ot jq j). The Bayes rule can help us see how to compute
one from the other. The net is computing:

p(q j jot) = P(ot jq j)p(q j )
p(ot ) (7.13)

We can rearrange the terms as follows:

p(ot jq j)
p(ot) = P(q j jot)

p(q j ) (7.14)

The two terms on the right-hand side of (7.14) can be directlycom-
puted from the MLP; the numerator is the output of the MLP, andthe denom-
inator is the total probability of a given state, summing over all observations
(i.e. the sum over allt of σ j(t)). Thus although we cannot directly compute

P(ot jq j), wecanuse (7.14) to computep(ot jqj )
p(ot ) , which is known as ascaled

likelihood (the likelihood divided by the probability of the observation) . SCALED
LIKELIHOOD

In fact, the scaled likelihood is just as good as the regular likelihood, since
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...

...

Current Frame
Left Context Right Context

161−1− 21−

bv m r z

10ms−10ms−20ms−30ms−40ms 20ms 30ms 40ms

Hidden Layer:
500−4000 Fully 
Connected Units

Output Layer
54−61 Phones

Input Layer:
9 Frames of 20 RASTA or PLP
features,  total of 180 units

Figure 7.25 A neural net used to estimate phone state probabilities. Such
a net can be used in an HMM model as an alternative to the Gaussian models.
This particular net is from the MLP systems described in Bourlard and Morgan
(1994); it is given a vector of features for a frame and for thefour frames
on either side, and estimatesp(q j jot). This probability is then converted to
an estimate of the observation likelihoodb = p(ot jq j) using the Bayes rule.
These nets are trained using the error-back-propagation algorithm as part of
the sameembedded trainingalgorithm that is used for Gaussians.

the probability of the observationp(ot ) is a constant during recognition and
doesn’t hurt us to have in the equation.

The error-back-propagation algorithm for training an MLP requires
that we know the correct phone labelq j for each observationot . Given a
large training set of observations and correct labels, the algorithm iteratively
adjusts the weights in the MLP to minimize the error with thistraining set.
In the next section we will see where this labeled training set comes from,
and how this training fits in with theembedded training algorithm used
for HMMs. Neural nets seem to achieve roughly the same performance as
a Gaussian model but have the advantage of using less parameters and the
disadvantage of taking somewhat longer to train.
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METHODOLOGY BOX: WORD ERROR RATE

The standard evaluation metric for speech recognition systems
is theword error rate. The word error rate is based on how much
the word string returned by the recognizer (often called thehypoth-
esizedword string) differs from a correct orreferencetranscription.
Given such a correct transcription, the first step in computing word
error is to compute theminimum edit distance in words between
the hypothesized and correct strings. The result of this computation
will be the minimum number of wordsubstitutions, word inser-
tions, and worddeletionsnecessary to map between the correct and
hypothesized strings. The word error rate is then defined as follows
(note that because the equation includes insertions, the error rate can
be great than 100%):

Word Error Rate= 100
Insertions+Substitutions+Deletions

Total Words in Correct Transcript

Here is an example ofalignments between a reference and a
hypothesized utterance from the CALLHOME corpus, showing the
counts used to compute the word error rate:

REF: i *** ** UM the PHONE IS i LEFT THE portable
HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable
Eval: I I S D S S S

REF: **** PHONE UPSTAIRS last night so the battery ran out
HYP: FORM OF STORES last night so the battery ran out
Eval: I S S

This utterance has 6 substitutions, 3 insertions, and 1 deletion:

Word Error Rate= 100
6+3+1

18
= 56%

As of the time of this writing, state-of-the-art speech recognition
systems were achieving around 20% word error rate on natural-
speech tasks like the National Institute of Standards and Technology
(NIST)’s Hub4 test set from the Broadcast News corpus (Chenet al.,
1999), and around 40% word error rate on NIST’s Hub5 test set from
the combined Switchboard, Switchboard-II, and CALLHOME cor-
pora (Hainet al., 1999).
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7.7 TRAINING A SPEECHRECOGNIZER

We have now introduced all the algorithms which make up the standard
speech recognition system that was sketched in Figure 7.2 onpage 239.
We’ve seen how to build a Viterbi decoder, and how it takes 3 inputs (the
observation likelihoods (via Gaussian or MLP estimation from the spectral
features), the HMM lexicon, and theN-gram language model) and produces
the most probable string of words. But we have not seen how allthe proba-
bilistic models that make up a recognizer get trained.

In this section we give a brief sketch of theembedded trainingproce-EMBEDDED
TRAINING

dure that is used by most ASR systems, whether based on Gaussians, MLPs,
or even vector quantization. Some of the details of the algorithm (like the
forward-backward algorithm for training HMM probabilities) have been re-
moved to Appendix D.

Let’s begin by summarizing the four probabilistic models weneed to
train in a basic speech recognition system:� language model probabilities:P(wijwi�1wi�2)� observation likelihoods: b j(ot)� transition probabilities: ai j� pronunciation lexicon: HMM state graph structure

In order to train these components we usually have� a training corpus of speech wavefiles, together with a word-transcription.� a much larger corpus of text for training the language model,includ-
ing the word-transcriptions from the speech corpus together with many
other similar texts.� often a smaller training corpus of speech which is phonetically labeled
(i.e. frames of the acoustic signal are hand-annotated withphonemes).

Let’s begin with theN-gram language model. This is trained in the
way we described in Chapter 6; by countingN-gram occurrences in a large
corpus, then smoothing and normalizing the counts. The corpus used for
training the language model is usually much larger than the corpus used to
train the HMMa andb parameters. This is because the larger the training
corpus the more accurate the models. SinceN-gram models are much faster
to train than HMM observation probabilities, and since textjust takes less
space than speech, it turns out to be feasible to train language models on
huge corpora of as much as half a billion words of text. Generally the corpus
used for training the HMM parameters is included as part of the language
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model training data; it is important that the acoustic and language model
training be consistent.

The HMM lexicon structure is built by hand, by taking an off-the-shelf
pronunciation dictionary such as the PRONLEX dictionary (LDC, 1995) or
the CMUdict dictionary, both described in Chapter 4. In somesystems, each
phone in the dictionary maps into a state in the HMM. So the word catwould
have 3 states corresponding to[k], [ae], and[t]. Many systems, however, use
the more complexsubphonestructure described on page 249, in which each
phone is divided into 3 states: the beginning, middle and final portions of
the phone, and in which furthermore there are separate instances of each of
these subphones for eachtriphone context.

The details of the embedded training of the HMM parameters varies;
we’ll present a simplified version. First, we need some initial estimate of
the transition and observation probabilitiesai j and b j(ot ). For the transi-
tion probabilities, we start by assuming that for any state all the possible
following states are all equiprobable. The observation probabilities can be
bootstrapped from a small hand-labeled training corpus. For example, the
TIMIT or Switchboard corpora contain approximately 4 hourseach of pho-
netically labeled speech. They supply a ‘correct’ phone state labelq for each
frame of speech. These can be fed to an MLP or averaged to give initial
Gaussian means and variances. For MLPs this initial estimate is important,
and so a hand-labeled bootstrap is the norm. For Gaussian models the initial
value of the parameters seems to be less important and so the initial mean
and variances for Gaussians often are just set identically for all states by
using the mean and variances of the entire training set.

Now we have initial estimates for thea andb probabilities. The next
stage of the algorithm differs for Gaussian and MLP systems.For MLP sys-
tems we apply what is called aforced Viterbi alignment. A forced Viterbi FORCED

VITERBI

alignment takes as input the correct words in an utterance, along with the
spectral feature vectors. It produces the best sequence of HMM states, with
each state aligned with the feature vectors. A forced Viterbi is thus a simpli-
fication of the regular Viterbi decoding algorithm, since itonly has to figure
out the correct phone sequence, but doesn’t have to discoverthe word se-
quence. It is calledforced because we constrain the algorithm by requiring
the best path to go through a particular sequence of words. Itstill requires
the Viterbi algorithm since words have multiple pronunciations, and since
the duration of each phone is not fixed. The result of the forced Viterbi is a
set of features vectors with ‘correct’ phone labels, which can then be used to
retrain the neural network. The counts of the transitions which are taken in
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the forced alignments can be used to estimate the HMM transition probabil-
ities.

For the Gaussian HMMs, instead of using forced Viterbi, we use the
forward-backward algorithm described in Appendix D. We compute the for-
ward and backward probabilities for each sentence given theinitial a and
b probabilities, and use them to re-estimate thea andb probabilities. Just
as for the MLP situation, the forward-backward algorithm needs to be con-
strained by our knowledge of the correct words. The forward-backward al-
gorithm computes its probabilities given a modelλ. We use the ‘known’
words sequence in a transcribed sentence to tell us which word models to
string together to get the modelλ that we use to compute the forward and
backward probabilities for each sentence.

7.8 WAVEFORM GENERATION FORSPEECHSYNTHESIS

Now that we have covered acoustic processing we can return tothe acoustic
component of a text-to-speech (TTS) system. Recall from Chapter 4 that the
output of the linguistic processing component of a TTS system is a sequence
of phones, each with a duration, and a F0 contour which specifies the pitch.
This specification is often called thetarget, as it is this that we want theTARGET

synthesizer to produce.
The most commonly used type of algorithm works bywaveform con-

catenation. Suchconcatenative synthesisis based on a database of speech
WAVEFORM
CONCATENA­
TION

that has been recorded by a single speaker. This database is then segmented
into a number of short units, which can be phones, diphones, syllables, words
or other units. The simplest sort of synthesizer would have phone units and
the database would have a single unit for each phone in the phone inventory.
By selecting units appropriately, we can generate a series of units which
match the phone sequence in the input. By using signal processing to smooth
joins at the unit edges, we can simply concatenate the waveforms for each of
these units to form a single synthetic speech waveform.

Experience has shown that single phone concatenative systems don’t
produce good quality speech. Just as in speech recognition,the context of
the phone plays an important role in its acoustic pattern andhence a /t/ before
a /a/ sounds very different from a /t/ before an /s/.

The triphone models described in Figure 7.11 on page 249 are apop-
ular choice of unit in speech recognition, because they cover both the left
and right contexts of a phone. Unfortunately, a language typically has a
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very large number of triphones (tens of thousands) and it is currently pro-
hibitive to collect so many units for speech synthesis. Hence diphonesare DIPHONES

often used in speech synthesis as they provide a reasonable balance between
context-dependency and size (typically 1000–2000 in a language). In speech
synthesis, diphone units normally start half-way through the first phone and
end half-way through the second. This is because it is known that phones are
more stable in the middle than at the edges, so that the middles of most /a/
phones in a diphone are reasonably similar, even if the acoustic patterns start
to differ substantially after that. If diphones are concatenated in the middles
of phones, the discontinuities between adjacent units are often negligible.

Pitch and Duration Modification

The diphone synthesizer as just described will produce a reasonable qual-
ity speech waveform corresponding to the requested phone sequence. But
the pitch and duration (i.e. the prosody) of each phone in theconcatenated
waveform will be the same as when the diphones were recorded and will not
correspond to the pitch and durations requested in the input. The next stage
of the synthesis process therefore is to use signal processing techniques to
change the prosody of the concatenated waveform.

The linear prediction (LPC) model described earlier can be used for
prosody modification as it explicitly separates the pitch ofa signal from its
spectral envelope If the concatenated waveform is represented by a sequence
of linear prediction coefficients, a set of pulses can be generated correspond-
ing to the desired pitch and used to re-excite the coefficients to produce a
speech waveform again. By contracting and expanding framesof coeffi-
cients, the duration can be changed. While linear prediction produces the
correct F0 and durations it produces a somewhat “buzzy” speech signal.

Another technique for achieving the same goal is the time-domain
pitch-synchronous overlap and add (TD-PSOLA) technique. TD-PSOLA TD­PSOLA

works pitch-synchronously in that each frame is centered around apitch-
mark in the speech, rather than at regular intervals as in normal speech sig-
nal processing. The concatenated waveform is split into a number of frames,
each centered around a pitchmark and extending a pitch period either side.
Prosody is changed by recombining these frames at a new set ofpitchmarks
determined by the requested pitch and duration of the input.The synthetic
waveform is created by simply overlapping and adding the frames. Pitch is
increased by making the new pitchmarks closer together (shorter pitch peri-
ods implies higher frequency pitch), and decreased by making them further
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apart. Speech is made longer by duplication frames and shorter by leav-
ing frames out. The operation of TD-PSOLA can be compared to that of a
tape recorder with variable speed – if you play back a tape faster than it was
recorded, the pitch periods will come closer together and hence the pitch
will increase. But speeding up a tape recording effectivelyincreases the fre-
quency ofall the components of the speech (including the formants which
characterize the vowels) and will give the impression of a “squeaky”, unnat-
ural voice. TD-PSOLA differs because it separates each frame first and then
decreases the distance between the frames. Because the internals of each
frame aren’t changed, the frequency of the non-pitch components is hardly
altered, and the resultant speech sounds the same as the original except with
a different pitch.

Unit Selection

While signal processing and diphone concatenation can produce reasonable
quality speech, the result is not ideal. There are a number ofreasons for this,
but they all boil down to the fact that having a single exampleof each diphone
is not enough. First of all, signal processing inevitably incurs distortion,
and the quality of the speech gets worse when the signal processing has to
stretch the pitch and duration by large amounts. Furthermore, there are many
other subtle effects which are outside the scope of most signal processing
algorithms. For instance, the amount of vocal effort decreases over time as
the utterance is spoken, producing weaker speech at the end of the utterance.
If diphones are taken from near the start of an utterance, they will sound
unnatural in phrase-final positions.

Unit-selection synthesis is an attempt to address this problem by col-
lecting several examples of each unit at different pitches and durations and
linguistic situations, so that the unit is close to the target in the first place
and hence the signal processing needs to do less work. One technique for
unit-selection (Hunt and Black, 1996) works as follows:

The input to the algorithm is the same as other concatenativesynthe-
sizers, with the addition that the F0 contour is now specifiedas three F0
values per phone, rather than as a contour. The technique uses phones as
its units, indexing phones in a large database of naturally occurring speech
Each phone in the database is also marked with a duration and three pitch
values. The algorithm works in two stages. First, for each phone in the target
word, a set of candidate units which match closely in terms ofphone identity,
duration and F0 is selected from the database. These candidates are ranked
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using atarget cost function, which specifies just how close each unit actu-
ally is to the target. The second part of the algorithm works by measuring
how well each candidate for each unit joins with its neighbor’s candidates.
Various locations for the joins are assessed, which allows the potential for
units to be joined in the middle, as with diphones. These potential joins are
ranked using aconcatenation costfunction. The final step is to pick the best
set of units which minimize the overall target and concatenation cost for the
whole sentence. This step is performed using the Viterbi algorithm in a sim-
ilar way to HMM speech recognition: here the target cost is the observation
probability and the concatenation cost is the transition probability.

By using a much larger database which contains many examplesof
each unit, unit-selection synthesis often produces more natural speech than
straight diphone synthesis. Some systems then use signal processing to make
sure the prosody matches the target, while others simply concatenate the
units following the idea that a utterance which only roughlymatches the
target is better than one that exactly matches it but also hassome signal
processing distortion.

7.9 HUMAN SPEECHRECOGNITION

Speech recognition in humans shares some features with the automatic speech
recognition models we have presented. We mentioned above that signal pro-
cessing algorithms like PLP analysis (Hermansky, 1990) were in fact in-
spired by properties of the human auditory system. In addition, four proper-
ties of humanlexical access(the process of retrieving a word from the men-LEXICAL

ACCESS

tal lexicon) are also true of ASR models:frequency, parallelism, neigh-
borhood effects, andcue-based processing. For example, as in ASR with
its N-gram language models, human lexical access is sensitive toword fre-
quency, High-frequency spoken words are accessed faster or with less in-
formation than low-frequency words. They are successfullyrecognized in
noisier environments than low frequency words, or when onlyparts of the
words are presented (Howes, 1957; Grosjean, 1980; Tyler, 1984, inter alia).
Like ASR models, human lexical access isparallel: multiple words are ac-
tive at the same time (Marslen-Wilson and Welsh, 1978; Salasoo and Pisoni,
1985, inter alia). Human lexical access exhibitsneighborhood effects(the
neighborhood of a word is the set of words which closely resemble it).
Words with large frequency-weighted neighborhoods are accessed slower
than words with less neighbors (Luceet al., 1990). Jurafsky (1996) shows
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that the effect of neighborhood on access can be explained bythe Bayesian
models used in ASR.

Finally, human speech perception iscue-based: speech input is inter-
preted by integrating cues at many different levels. For example, there is
evidence that human perception of individual phones is based on the inte-
gration of multiple cues, including acoustic cues, such as formant structure
or the exact timing of voicing, (Oden and Massaro, 1978; Miller, 1994), vi-
sual cues, such as lip movement (Massaro and Cohen, 1983; Massaro, 1998),
and lexical cues such as the identity of the word in which the phone is placed
(Warren, 1970; Samuel, 1981; Connine and Clifton, 1987; Connine, 1990).
For example, in what is often called thephoneme restoration effect, Warren
(1970) took a speech sample and replaced one phone (e.g. the[s] in legisla-
ture) with a cough. Warren found that subjects listening to the resulting tape
typically heard the entire wordlegislature including the[s], and perceived
the cough as background. Other cues in human speech perception include
semanticword association(words are accessed more quickly if a semanti-WORD

ASSOCIATION

cally related word has been heard recently) andrepetition priming (wordsREPETITION
PRIMING

are accessed more quickly if they themselves have just been heard). The
intuitions of both of these results are incorporated into recent language mod-
els discussed in Chapter 6, such as the cache model of Kuhn andde Mori
(1990), which models repetition priming, or the trigger model of Rosenfeld
(1996) and the LSA models of Coccaro and Jurafsky (1998) and Bellegarda
(1999), which model word association. In a fascinating reminder that good
ideas are never discovered only once, Cole and Rudnicky (1983) point out
that many of these insights about context effects on word andphone pro-
cessing were actually discovered by William Bagley (Bagley, 1901). Bagley
achieved his results, including an early version of the phoneme restoration
effect, by recording speech on Edison phonograph cylinders, modifying it,
and presenting it to subjects. Bagley’s results were forgotten and only redis-
covered much later.

One difference between current ASR models and human speech recog-
nition is the time-course of the model. It is important for the performance of
the ASR algorithm that the the decoding search optimizes over the entire ut-
terance. This means that the best sentence hypothesis returned by a decoder
at the end of the sentence may be very different than the current-best hy-
pothesis, half way into the sentence. By contrast, there is extensive evidence
that human processing ison-line: people incrementally segment and utter-ON­LINE

ance into words and assign it an interpretation as they hear it. For example,
Marslen-Wilson (1973) studiedclose shadowers: people who are able to



Section 7.10. Summary 277

shadow (repeat back) a passage as they hear it with lags as short as 250 ms.
Marslen-Wilson found that when these shadowers made errors, they were
syntactically and semantically appropriate with the context, indicating that
word segmentation, parsing, and interpretation took placewithin these 250
ms. Cole (1973) and Cole and Jakimik (1980) found similar effects in their
work on the detection of mispronunciations. These results have led psy-
chological models of human speech perception (such as the Cohort model
(Marslen-Wilson and Welsh, 1978) and the computational TRACE model
(McClelland and Elman, 1986)) to focus on the time-course ofword selec-
tion and segmentation. The TRACE model, for example, is aconnectionist CONNEC­

TIONIST

or neural network interactive-activation model, based on independent com-NEURAL
NETWORK

putational units organized into three levels: feature, phoneme, and word.
Each unit represents a hypothesis about its presence in the input. Units are
activated in parallel by the input, and activation flows between units; con-
nections between units on different levels are excitatory,while connections
between units on single level are inhibitatory. Thus the activation of a word
slightly inhibits all other words.

We have focused on the similarities between human and machine speech
recognition; there are also many differences. In particular, many other cues
have been been shown to play a role in human speech recognition but have
yet to be successfully integrated into ASR. The most important class of these
missing cues is prosody. To give only one example, Cutler andNorris (1988),
Cutler and Carter (1987) note that most multisyllabic English word tokens
have stress on the initial syllable, suggesting in their metrical segmentation
strategy (MSS) that stress should be used as a cue for word segmentation.

7.10 SUMMARY

Together with chapters 4, 5, and 6, this chapter introduced the fundamental
algorithms for addressing the problem ofLarge Vocabulary Continuous
Speech RecognitionandText-To-Speech synthesis.� The input to a speech recognizer is a series of acoustic waves. The

waveform, spectrogram and spectrum are among the visualization
tools used to understand the information in the signal.� In the first step in speech recognition, wound waves aresampled,
quantized, and converted to some sort ofspectral representation; A
commonly used spectral representation is theLPC cepstrum, which
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provides a vector of features for each time-slice of the input.� Thesefeature vectorsare used to estimate thephonetic likelihoods
(also calledobservation likelihoods) either by a mixture ofGaussian
estimators or by aneural net.� Decodingor search is the process of finding the optimal sequence of
model states which matches a sequence of input observations. (The
fact that are two terms for this process is a hint that speech recogni-
tion is inherently inter-disciplinary, and draws its metaphors from more
than one field;decodingcomes from information theory, andsearch
from artificial intelligence).� We introduced two decoding algorithms: time-synchronousViterbi
decoding (which is usually implemented with pruning and canthen be
calledbeam search) andstack or A� decoding. Both algorithms take
as input a series of feature vectors, and 2 ancillary algorithms: one for
assigning likelihoods (e.g. Gaussians or MLP) and one for assigning
priors (e.g. anN-gram language model). Both give as output a string
of words.� The embedded training paradigm is the normal method for training
speech recognizers. Given an initial lexicon with hand-built pronunci-
ation structures, it will train the HMM transition probabilities and the
HMM observation probabilities. This HMM observation probability
estimation can be done via a Gaussian or an MLP.� One way to implement the acoustic component of a TTS system iswith
concatenative synthesis, in which an utterance is built by concatenat-
ing and then smoothing diphones taken from a large database of speech
recorded by a single speaker.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The first machine which recognized speech was probably a commercial toy
named “Radio Rex” which was sold in the 1920’s. Rex was a celluloid dog
which moved (via a spring) when the spring was released by 500Hz acoustic
energy. Since 500 Hz is roughly the first formant of the vowel in “Rex”, the
dog seemed to come when he was called (David and Selfridge, 1962).

By the late 1940’s and early 1950’s, a number of machine speech
recognition systems had been built. An early Bell Labs system could rec-
ognize any of the 10 digits from a single speaker (Daviset al., 1952). This
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system had 10 speaker-dependent stored patterns, one for each digit, each of
which roughly represented the first two vowel formants in thedigit. They
achieved 97–99% accuracy by choosing the pattern which had the highest
relative correlation coefficient with the input. Fry (1959)and Denes (1959)
built a phoneme recognizer at University College, London, which recognized
four vowels and nine consonants based on a similar pattern-recognition prin-
ciple. Fry and Denes’s system was the first to use phoneme transition prob-
abilities to constrain the recognizer.

The late 1960s and early 1970’s produced a number of important para-
digm shifts. First were a number of feature-extraction algorithms, include
the efficient Fast Fourier Transform (FFT) (Cooley and Tukey, 1965), the
application of cepstral processing to speech (Oppenheimet al., 1968), and
the development of LPC for speech coding (Atal and Hanauer, 1971). Sec-
ond were a number of ways of handlingwarping; stretching or shrinking WARPING

the input signal to handle differences in speaking rate and segment length
when matching against stored patterns. The natural algorithm for solving
this problem was dynamic programming, and, as we saw in Chapter 5, the
algorithm was reinvented multiple times to address this problem. The first
application to speech processing was by Vintsyuk (1968), although his re-
sult was not picked up by other researchers, and was reinvented by Velichko
and Zagoruyko (1970) and Sakoe and Chiba (1971) (and (1984)). Soon af-
terwards, Itakura (1975) combined this dynamic programming idea with the
LPC coefficients that had previously been used only for speech coding. The
resulting system extracted LPC features for incoming wordsand used dy-
namic programming to match them against stored LPC templates.

The third innovation of this period was the rise of the HMM. Hid-
den Markov Models seem to have been applied to speech independently
at two laboratories around 1972. One application arose fromthe work of
statisticians, in particular Baum and colleagues at the Institute for Defense
Analyses in Princeton on HMMs and their application to various predic-
tion problems (Baum and Petrie, 1966; Baum and Eagon, 1967).James
Baker learned of this work and applied the algorithm to speech process-
ing (Baker, 1975) during his graduate work at CMU. Independently, Freder-
ick Jelinek, Robert Mercer, and Lalit Bahl (drawing from their research in
information-theoretical models influenced by the work of Shannon (1948))
applied HMMs to speech at the IBM Thomas J. Watson Research Center
(Jelineket al., 1975). IBM’s and Baker’s systems were very similar, par-
ticularly in their use of the Bayesian framework described in this chapter.
One early difference was the decoding algorithm; Baker’s DRAGON system
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used Viterbi (dynamic programming) decoding, while the IBMsystem ap-
plied Jelinek’s stack decoding algorithm (Jelinek, 1969).Baker then joined
the IBM group for a brief time before founding the speech-recognition com-
pany Dragon Systems. The HMM approach to speech recognitionwould
turn out to completely dominate the field by the end of the century; indeed
the IBM lab was the driving force in extending statistical models to natural
language processing as well, including the development of class-basedN-
grams, HMM-based part-of-speech tagging, statistical machine translation,
and the use of entropy/perplexity as an evaluation metric.

The use of the HMM slowly spread through the speech community.
One cause was a number of research and development programs sponsored
by the Advanced Research Projects Agency of the U.S. Department of De-
fense (ARPA). The first five-year program starting in 1971, and is reviewed
in Klatt (1977). The goal of this first program was to build speech under-
standing systems based on a few speakers, a constrained grammar and lexi-
con (1000 words), and less than 10% semantic error rate. Foursystems were
funded and compared against each other: the System Development Corpo-
ration (SDC) system, Bolt, Beranek & Newman (BBN)’s HWIM system,
Carnegie-Mellon University’s Hearsay-II system, and Carnegie-Mellon’s Harpy
system (Lowerre, 1968). The Harpy system used a simplified version of
Baker’s HMM-based DRAGON system and was the best of the tested sys-
tems, and according to Klatt the only one to meet the originalgoals of the
ARPA project (with a semantic error rate of 94% on a simple task).

Beginning in the mid-80’s, ARPA funded a number of new speech
research programs. The first was the “Resource Management” (RM) task
(Price et al., 1988), which like the earlier ARPA task involved transcrip-
tion (recognition) of read-speech (speakers reading sentences constructed
from a 1000-word vocabulary) but which now included a component that
involved speaker-independent recognition. Later tasks included recognition
of sentences read from the Wall Street Journal (WSJ) beginning with limited
systems of 5,000 words, and finally with systems of unlimitedvocabulary
(in practice most systems use approximately 60,000 words).Later speech-
recognition tasks moved away from read-speech to more natural domains;
the Broadcast News (also called Hub-4) domain (LDC, 1998; Graff, 1997)
(transcription of actual news broadcasts, including quitedifficult passages
such as on-the-street interviews) and the CALLHOME and CALLFRIEND
domain (LDC, 1999) (natural telephone conversations between friends), part
of what was also called Hub-5. The Air Traffic Information System (ATIS)
task (Hemphillet al., 1990) was a speech understanding task whose goal
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was to simulate helping a user book a flight, by answering questions about
potential airlines, times, dates, etc.

Each of the ARPA tasks involved an approximately annualbake-off at BAKE­OFF

which all ARPA-funded systems, and many other ‘volunteer’ systems from
North American and Europe, were evaluated against each other in terms of
word error rate or semantic error rate. In the early evaluations, for-profit cor-
porations did not generally compete, but eventually many (especially IBM
and ATT) competed regularly. The ARPA competitions resulted in widescale
borrowing of techniques among labs, since it was easy to see which ideas
had provided an error-reduction the previous year, and wereprobably an im-
portant factor in the eventual spread of the HMM paradigm to virtual every
major speech recognition lab. The ARPA program also resulted in a number
of useful databases, originally designed for training and testing systems for
each evaluation (TIMIT, RM, WSJ, ATIS, BN, CALLHOME, Switchboard)
but then made available for general research use.

There are a number of textbooks on speech recognition that are good
choices for readers who seek a more in-depth understanding of the material
in this chapter: Jelinek (1997), Gold and Morgan (1999), andRabiner and
Juang (1993) are the most comprehensive. The last two textbooks also have
comprehensive discussions of the history of the field, and together with the
survey paper of Levinson (1995) have influenced our short history discussion
in this chapter. Our description of the forward-backward algorithm was mod-
eled after Rabiner (1989). Another useful tutorial paper isKnill and Young
(1997). Research in the speech recognition field often appears in the pro-
ceedings of the biennial EUROSPEECH Conference and the International
Conference on Spoken Language Processing (ICSLP), held in alternating
years, as well as the annual IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). Journals include Speech Com-
munication, Computer Speech and Language, IEEE Transactions on Pattern
Analysis and Machine Intelligence, and IEEE Transactions on Acoustics,
Speech, and Signal Processing.

EXERCISES

7.1 Analyze each of the errors in the incorrectly recognized transcription
of “um the phone is I left the. . . ” on page 269. For each one, give your best
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guess as to whether you think it is caused by a problem in signal process-
ing, pronunciation modeling, lexicon size, language model, or pruning in the
decoding search.

7.2 In practice, speech recognizers do all their probability computation us-
ing the log probability (or logprob) rather than actual probabilities. ThisLOGPROB

helps avoid underflow for very small probabilities, but alsomakes the Viterbi
algorithm very efficient, since all probability multiplications can be imple-
mented by adding log probabilities. Rewrite the pseudocodefor the Viterbi
algorithm in Figure 7.9 on page 247 to make use of logprobs instead of prob-
abilities.

7.3 Now modify the Viterbi algorithm in Figure 7.9 on page 247 to im-
plement the beam search described on page 249. Hint: You willprobably
need to add in code to check whether a given state is at the end of a word or
not.

7.4 Finally, modify the Viterbi algorithm in Figure 7.9 on page 247 with
more detailed pseudocode implementing the array of backtrace pointers.

7.5 Implement the Stack decoding algorithm of Figure 7.14 on 254. Pick
a very simpleh� function like an estimate of the number of words remaining
in the sentence.

7.6 Modify the forward algorithm of Figure 5.16 to use the tree-structured
lexicon of Figure 7.18 on page 257.



Part II
SYNTAX

If words are the foundation of speech and language processing, syn-
tax is the skeleton. Syntax is the study of formal relationships be-
tween words. These six chapters study how words are clustered into
classes called parts-of-speech, how they group with their neighbors
into phrases, and the way words depends on other words in a sentence.
The section explores computational models of all of these kinds of
knowledge, including context-free grammars, lexicalizedgrammars,
feature structures, and metatheoretical issues like the Chomsky hi-
erarchy. It introduces fundamental algorithms for dealingwith this
knowledge, like the Earley and CYK algorithms for parsing and the
unification algorithm for feature combination. It also includes proba-
bilistic models of this syntactic knowledge, including HMMpart-of-
speech taggers, and probabilistic context-free grammars.Finally, this
section will explore psychological models of human syntactic pro-
cessing.





8
WORD CLASSES AND
PART-OF-SPEECH
TAGGING

Conjunction Junction, what’s your function?
Bob Dorough,Schoolhouse Rock, 1973

There are ten parts of speech, and they are all troublesome.
Mark Twain,The Awful German Language

The definitions [of the parts of speech] are very far from having
attained the degree of exactitude found in Euclidean geometry.

Otto Jespersen,The Philosophy of Grammar, 1924

Words are traditionally grouped into equivalence classes called parts of
speech(POS; Latin pars orationis), word classes, morphological classes, PARTS OF

SPEECH

POS

WORD
CLASSES

or lexical tags. In traditional grammars there were generally only a few parts
of speech (noun, verb, adjective, preposition, adverb, conjunction, etc.).
More recent models have much larger numbers of word classes (45 for the
Penn Treebank (Marcuset al., 1993), 87 for the Brown corpus (Francis,
1979; Francis and Kučera, 1982), and 146 for the C7 tagset (Garsideet al.,
1997)).

The part of speech for a word gives a significant amount of information
about the word and its neighbors. This is clearly true for major categories,
(verb versusnoun), but is also true for the many finer distinctions. For ex-
ample these tagsets distinguish between possessive pronouns (my, your, his,
her, its) and personal pronouns (I, you, he, me). Knowing whether a word is
a possessive pronoun or a personal pronoun can tell us what words are likely
to occur in its vicinity (possessive pronouns are likely to be followed by a
noun, personal pronouns by a verb). This can be useful in a language model
for speech recognition.
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A word’s part-of-speech can tell us something about how the word is
pronounced. As Chapter 4 discussed, the wordcontent, for example, can be
a noun or an adjective. They are pronounced differently (thenoun is pro-
nouncedCONtentand the adjectiveconTENT). Thus knowing the part of
speech can produce more natural pronunciations in a speech synthesis sys-
tem and more accuracy in a speech recognition system. (Otherpairs like this
includeOBject(noun) andobJECT(verb),DIScount(noun) anddisCOUNT
(verb); see Cutler (1986)).

Parts of speech can also be used in stemming for informational retrieval
(IR), since knowing a word’s part of speech can help tell us which morpho-
logical affixes it can take, as we saw in Chapter 3. They can also help an
IR application by helping select out nouns or other important words from a
document. Automatic part-of-speech taggers can help in building automatic
word-sense disambiguating algorithms, and POS taggers arealso used in ad-
vanced ASR language models such asclass-based N-grams, discussed in
Section 8.7. Parts of speech are very often used for ‘partialparsing’ texts,
for example for quickly finding names or other phrases for theinformation
extraction applications discussed in Chapter 15. Finally,corpora that have
been marked for part-of-speech are very useful for linguistic research, for
example to help find instances or frequencies of particular constructions in
large corpora.

The remainder of this chapter begins in Section 8.1 with a summary of
English word classes, followed by a description in Section 8.2 of different
tagsets for formally coding these classes. The next three sections then in-
troduces three tagging algorithms:rule-based tagging, stochastic tagging,
andtransformation-based tagging.

8.1 (MOSTLY) ENGLISH WORD CLASSES

Well, every person you can know,
And every place that you can go,
And anything that you can show,
You know they’re nouns.

Lynn Ahrens,Schoolhouse Rock, 1973

Until now we have been using part-of-speech terms likenoun andverb
rather freely. In this section we give a more complete definition of these
and other classes. Traditionally the definition of parts of speech has been
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based on morphological and syntactic function; words that function simi-
larly with respect to the affixes they take (their morphological properties) or
with respect to what can occur nearby (their ‘distributional properties’) are
grouped into classes. While word classes do have tendenciestoward seman-
tic coherence (nouns do in fact often describe ‘people, places or things’, and
adjectives often describe properties), this is not necessarily the case, and in
general we don’t use semantic coherence as a definitional criterion for parts
of speech.

Parts of speech can be divided into two broad supercategories: closed
classtypes andopen classtypes. Closed classes are those that have relativelyCLOSED

CLASS

OPEN CLASSfixed membership. For example, prepositions are a closed class because
there is a fixed set of them in English; new prepositions are rarely coined. By
contrast nouns and verbs are open classes because new nouns and verbs are
continually coined or borrowed from other languages (e.g. the new verbto
faxor the borrowed nounfuton). It is likely that any given speaker or corpus
will have different open class words, but all speakers of a language, and
corpora that are large enough, will likely share the set of closed class words.
Closed class words are generally alsofunction words; function words are FUNCTION

WORDS

grammatical words likeof, it, and, or you, which tend to be very short, occur
frequently, and play an important role in grammar.

There are four major open classes that occur in the languagesof the
world: nouns, verbs, adjectives, andadverbs. It turns out that English hasNOUNS

VERBS

ADJECTIVES

ADVERBS

all four of these, although not every language does. Many languages have no
adjectives. In the native American language Lakhota, for example, and also
possibly in Chinese, the words corresponding to English adjectives act as a
subclass of verbs.

Every known human language has at least the two categoriesnoun and
verb (although in some languages, for example Nootka, the distinction is
subtle). Noun is the name given to the lexical class in which the words for
most people, places, or things occur. But since lexical classes likenoun are
defined functionally (morphological and syntactically) rather than seman-
tically, some words for people, places, and things may not benouns, and
conversely some nouns may not be words for people, places, orthings. Thus
nouns include concrete terms likeship and chair, abstractions likeband-
width andrelationship, and verb-like terms likepacingin His pacing to and
fro became quite annoying). What defines a noun in English, then, are things
like its ability to occur with determiners (a goat, its bandwidth, Plato’s Re-
public), to take possessives (IBM’s annual revenue), and for most but not all
nouns, to occur in the plural form (goats, abaci).



288 Chapter 8. Word Classes and Part-of-Speech Tagging

Nouns are traditionally grouped intoproper nounsandcommon nouns.PROPER
NOUNS

COMMON
NOUNS Proper nouns, likeRegina, Colorado, andIBM, are names of specific persons

or entities. In English, they generally aren’t preceded by articles (e.g. the
book is upstairs, but Regina is upstairs). In written English, proper nouns
are usually capitalized.

In many languages, including English, common nouns are divided into
count nouns and mass nouns. Count nouns are those that allow gram-COUNT

NOUNS

MASS NOUNS matical enumeration; that is, they can occur in both the singular and plural
(goat/goats, relationship/relationships) and they can be counted (one goat,
two goats). Mass nouns are used when something is conceptualized as a ho-
mogeneous group. So words likesnow, salt, andcommunismare not counted
(i.e. *two snowsor *two communisms). Mass nouns can also appear without
articles where singular count nouns cannot (Snow is whitebut not*Goat is
white).

The verb class includes most of the words referring to actions and pro-
cesses, including main verbs likedraw, provide, differ, andgo. As we saw
in Chapter 3, English verbs have a number of morphological forms (non-
3rd-person-sg (eat), 3d-person-sg (eats), progressive (eating), past partici-
ple eaten). A subclass of English verbs calledauxiliaries will be discussedAUXILIARIES

when we turn to closed class forms.
The third open class English form is adjectives; semantically this class

includes many terms that describe properties or qualities.Most languages
have adjectives for the concepts of color (white, black), age (old, young),
and value (good, bad), but there are languages without adjectives. As we
discussed above, many linguists argue that the Chinese family of languages
uses verbs to describe such English-adjectival notions as color and age.

The final open class form, adverbs, is rather a hodge-podge, both se-
mantically and formally. For example Schachter (1985) points out that in a
sentence like the following, all the italicized words are adverbs:

Unfortunately, John walkedhome extremely slowly yesterday

What coherence the class has semantically may be solely thateach of
these words can be viewed as modifying something (often verbs, hence the
name ‘adverb’, but also other adverbs and entire verb phrases). Directional
adverbs or locative adverbs(home, here, downhill) specify the directionLOCATIVE

or location of some action;degree adverbs(extremely, very, somewhat)DEGREE

specify the extent of some action, process, or property;manner adverbsMANNER

(slowly, slinkily, delicately) describe the manner of some action or process;
andtemporal adverbsdescribe the time that some action or event took placeTEMPORAL
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(yesterday, Monday). Because of the heterogeneous nature of this class,
some adverbs (for example temporal adverbs likeMonday) are tagged in
some tagging schemes as nouns.

The closed classes differ more from language to language than do the
open classes. Here’s a quick overview of some of the more important closed
classes in English, with a few examples of each:� prepositions: on, under, over, near, by, at, from, to, with� determiners: a, an, the� pronouns: she, who, I, others� conjunctions: and, but, or, as, if, when� auxiliary verbs: can, may, should, are� particles: up, down, on, off, in, out, at, by,� numerals: one, two, three, first, second, third

Prepositions occur before noun phrases; semantically they are rela-PREPOSI­
TIONS

tional, often indicating spatial or temporal relations, whether literal (on it,
before then, by the house) or metaphorical (on time, with gusto, beside her-
self). But they often indicate other relations as well (Hamlet was written by
Shakespeare, and (from Shakespeare)“And I did laugh sansintermission an
hour byhis dial” ). Figure 8.1 shows the prepositions of English according
to the CELEX on-line dictionary (Celex, 1993), sorted by their frequency in
the COBUILD 16 million word corpus of English (?). Note that this should
not be considered a definitive list. Different dictionariesand different tag
sets may label word classes differently. This list combinesprepositions and
particles; see below for more on particles.

A particle is a word that resembles a preposition or an adverb, and thatPARTICLE

often combines with a verb to form a larger unit called aphrasal verb, as in PHRASAL
VERB

the following examples from Thoreau:

So Iwent onfor some days cutting and hewing timber. . .
Moral reform is the effort tothrow offsleep. . .

We can see that these are particles rather than prepositions, for in the
first example,on is followed, not by a noun phrase, but by a true preposition
phrase. With transitive phrasal verbs, as in the second example, we can tell
thatoff is a particle and not a preposition because particles may appear after
their objects (throw sleep offas well asthrow off sleep). This is not possible
for prepositions (The horse went off its track, but *The horse went its track
off).



290 Chapter 8. Word Classes and Part-of-Speech Tagging

of 540,085 through 14,964 worth 1,563 pace 12
in 331,235 after 13,670 toward 1,390 nigh 9
for 142,421 between 13,275 plus 750 re 4
to 125,691 under 9,525 till 686 mid 3
with 124,965 per 6,515 amongst 525 o’er 2
on 109,129 among 5,090 via 351 but 0
at 100,169 within 5,030 amid 222 ere 0
by 77,794 towards 4,700 underneath 164 less 0
from 74,843 above 3,056 versus 113 midst 0
about 38,428 near 2,026 amidst 67 o’ 0
than 20,210 off 1,695 sans 20 thru 0
over 18,071 past 1,575 circa 14 vice 0

Figure 8.1 Prepositions (and particles) of English from the CELEX on-line
dictionary. Frequency counts are from the COBUILD 16 million word corpus.

Quirk et al. (1985a) gives the following list of single-word particles.
Since it is extremely hard to automatically distinguish particles from prepo-
sitions, some tag sets (like the one used for CELEX) do not distinguish them,
and even in corpora that do (like the Penn Treebank) the distinction is very
difficult to make reliably in an automatic process, so we do not give counts.

aboard aside besides forward(s) opposite through
about astray between home out throughout
above away beyond in outside together
across back by inside over under
ahead before close instead overhead underneath
alongside behind down near past up
apart below east, etc off round within
around beneath eastward(s),etc on since without

Figure 8.2 English single-word particles from Quirket al. (1985a)

A particularly small closed class is thearticles: English has three:a,ARTICLES

an, andthe (althoughthis (as inthis chapter) andthat (as inthat page) are
often included as well). Articles often begin a noun phrase.A andanmark a
noun phrase as indefinite, whilethecan mark it as definite. We will discuss
definiteness in Chapter 18. Articles are quite frequent in English; indeed
the is the most frequent word in most English corpora. Here are COBUILD
statistics, again out of 16 million words:
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the 1,071,676
a 413,887
an 59,359

Conjunctions are used to join two phrases, clauses, or sentences. Co-CONJUNC­
TIONS

ordinating conjunctions likeand, or, or but, join two elements of equal sta-
tus. Subordinating conjunctions are used when one of the elements is of
some sort of embedded status. For examplethat in ‘I thought that you might
like some milk’is a subordinating conjunction that links the main clauseI
thoughtwith the subordinate clauseyou might like some milk. This clause
is called subordinate because this entire clause is the ‘content’ of the main
verb thought. Subordinating conjunctions likethat which link a verb to its
argument in this way are also calledcomplementizers. Chapter 9 and Chap-COMPLEMEN­

TIZERS

ter 11 will discuss complementation in more detail. Table 8.3 lists English
conjunctions.

and 514,946 yet 5,040 considering 174 forasmuch as 0
that 134,773 since 4,843 lest 131 however 0
but 96,889 where 3,952 albeit 104 immediately 0
or 76,563 nor 3,078 providing 96 in as far as 0
as 54,608 once 2,826 whereupon 85 in so far as 0
if 53,917 unless 2,205 seeing 63 inasmuch as 0
when 37,975 why 1,333 directly 26 insomuch as 0
because 23,626 now 1,290 ere 12 insomuch that 0
so 12,933 neither 1,120 notwithstanding 3 like 0
before 10,720 whenever 913 according as 0 neither nor 0
though 10,329 whereas 867 as if 0 now that 0
than 9,511 except 864 as long as 0 only 0
while 8,144 till 686 as though 0 provided that 0
after 7,042 provided 594 both and 0 providing that 0
whether 5,978 whilst 351 but that 0 seeing as 0
for 5,935 suppose 281 but then 0 seeing as how 0
although 5,424 cos 188 but then again 0 seeing that 0
until 5,072 supposing 185 either or 0 without 0

Figure 8.3 Coordinating and subordinating conjunctions of English from
the CELEX on-line dictionary. Frequency counts are from theCOBUILD 16
million word corpus.

Pronounsare forms that often act as a kind of shorthand for referringPRONOUNS

to some noun phrase or entity or event.Personal pronounsrefer to per-
sons or entities (you, she, I, it, me, etc). Possessive pronounsare forms of POSSESSIVE

personal pronouns that indicate either actual possession or more often just
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an abstract relation between the person and some object (my, your, his, her,
its, one’s, our, their). Wh-pronouns (what, who, whom, whoever) are usedWH

in certain question forms, or may also act as complementizers (Frieda, who
I met five years ago. . .). Table 8.4 shows English pronouns, again from
CELEX.

it 199,920 how 13,137 yourself 2,437 no one 106
I 198,139 another 12,551 why 2,220 wherein 58
he 158,366 where 11,857 little 2,089 double 39
you 128,688 same 11,841 none 1,992 thine 30
his 99,820 something 11,754 nobody 1,684 summat 22
they 88,416 each 11,320 further 1,666 suchlike 18
this 84,927 both 10,930 everybody 1,474 fewest 15
that 82,603 last 10,816 ourselves 1,428 thyself 14
she 73,966 every 9,788 mine 1,426 whomever 11
her 69,004 himself 9,113 somebody 1,322 whosoever 10
we 64,846 nothing 9,026 former 1,177 whomsoever 8
all 61,767 when 8,336 past 984 wherefore 6
which 61,399 one 7,423 plenty 940 whereat 5
their 51,922 much 7,237 either 848 whatsoever 4
what 50,116 anything 6,937 yours 826 whereon 2
my 46,791 next 6,047 neither 618 whoso 2
him 45,024 themselves 5,990 fewer 536 aught 1
me 43,071 most 5,115 hers 482 howsoever 1
who 42,881 itself 5,032 ours 458 thrice 1
them 42,099 myself 4,819 whoever 391 wheresoever 1
no 33,458 everything 4,662 least 386 you-all 1
some 32,863 several 4,306 twice 382 additional 0
other 29,391 less 4,278 theirs 303 anybody 0
your 28,923 herself 4,016 wherever 289 each other 0
its 27,783 whose 4,005 oneself 239 once 0
our 23,029 someone 3,755 thou 229 one another 0
these 22,697 certain 3,345 ’un 227 overmuch 0
any 22,666 anyone 3,318 ye 192 such and such 0
more 21,873 whom 3,229 thy 191 whate’er 0
many 17,343 enough 3,197 whereby 176 whenever 0
such 16,880 half 3,065 thee 166 whereof 0
those 15,819 few 2,933 yourselves 148 whereto 0
own 15,741 everyone 2,812 latter 142 whereunto 0
us 15,724 whatever 2,571 whichever 121 whichsoever 0

Figure 8.4 Pronouns of English from the CELEX on-line dictionary. Fre-
quency counts are from the COBUILD 16 million word corpus.
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A closed class subtype of English verbs are theauxiliary verbs. Cross- AUXILIARY

linguistically, auxiliaries are words (usually verbs) that mark certain seman-
tic features of a main verb, including whether an action takes place in the
present, past or future (tense), whether it is completed (aspect), whether it is
negated (polarity), and whether an action is necessary, possible, suggested,
desired, etc. (mood).

English auxiliaries include thecopula verb be, the two verbsdo and COPULA

have, along with their inflected forms, as well as a class ofmodal verbs. Be MODAL

is called a copula because it connects subjects with certainkinds of predicate
nominals and adjectives (He isa duck). The verbhaveis used for example
to mark the perfect tenses (I havegone, I hadgone), while be is used as part
of the passive (We wererobbed), or progressive (We areleaving) construc-
tions. The modals are used to mark the mood associated with the event or
action depicted by the main verb. Socan indicates ability or possibility,may
indicates permission or possibility,mustindicates necessity, etc. Figure 8.5
gives counts for the frequencies of the modals in English. Inaddition to
the copulahavementioned above, there is a modal verbhave(e.g. I have
to go), which is very common in spoken English. Neither it nor the modal
verb dare, which is very rare, have frequency counts because the CELEX
dictionary does not distinguish the main verb sense (I have three oranges,
He daredme to eat them), from the modal sense (There hasto be some mis-
take, Dare I confront him?) from the non-modal auxiliary verb sense (I have
never seen that).

can 70,930 might 5,580 shouldn’t 858
will 69,206 couldn’t 4,265 mustn’t 332
may 25,802 shall 4,118 ’ll 175
would 18,448 wouldn’t 3,548 needn’t 148
should 17,760 won’t 3,100 mightn’t 68
must 16,520 ’d 2,299 oughtn’t 44
need 9,955 ought 1,845 mayn’t 3
can’t 6,375 will 862 dare ??
have ???

Figure 8.5 English modal verbs from the CELEX on-line dictionary. Fre-
quency counts are from the COBUILD 16 million word corpus.

English also has many words of more or less unique function, includ-
ing interjections (oh, ah, hey, man, alas), negatives(no, not), politeness INTERJEC­

TIONS

NEGATIVESmarkers (please, thank you), greetings (hello, goodbye), and the existen-
POLITENESS
MARKERS

GREETINGS
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tial there (thereare two on the table) among others. Whether these classesTHERE

are assigned particular names or lumped together (as interjections or even
adverbs) depends on the purpose of the labeling.

8.2 TAGSETS FORENGLISH

The previous section gave broad descriptions of the kinds oflexical classes
that English words fall into. This section fleshes out that sketch by describ-
ing the actual tagsets used in part-of-speech tagging, in preparation for the
various tagging algorithms to be described in the followingsections.

There are a small number of popular tagsets for English, manyof which
evolved from the 87-tag tagset used for the Brown corpus (Francis, 1979;
Francis and Kučera, 1982). Three of the most commonly used are the small
45-tag Penn Treebank tagset (Marcuset al., 1993), the medium-sized 61 tag
C5 tagset used by the Lancaster UCREL project’s CLAWS (the Constituent
Likelihood Automatic Word-tagging System) tagger to tag the British Na-
tional Corpus (BNC) (Garsideet al., 1997), and the larger 146-tag C7 tagset
(Leechet al., 1994); the C5 and C7 tagsets are listed in Appendix C. (Also
see Sampson (1987) and Garsideet al. (1997) for a detailed summary of the
provenance and makeup of these and other tagsets.) This section will present
the smallest of them, the Penn Treebank set, and then discussspecific addi-
tional tags from some of the other tagsets that might be useful to incorporate
for specific projects.

The Penn Treebank tagset, shown in Figure 8.6, has been applied to
the Brown corpus and a number of other corpora. Here is an example of a
tagged sentence from the Penn Treebank version of the Brown corpus (in a
flat ASCII file, tags are often represented after each word, following a slash,
but tags can also be represented in various other ways):

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT num-
ber/NN of/IN other/JJ topics/NNS ./.

The Penn Treebank tagset was culled from the original 87-tagtagset
for the Brown corpus. This reduced set leaves out information that can be
recovered from the identity of the lexical item. For examplethe original
Brown tagset and other large tagsets like C5 include a separate tag for each
of the different forms of the verbsdo (e.g. C5 tag ‘VDD’ fordid and ‘VDG’
for doing), be, andhave. These were omitted from the Penn set.
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Tag Description Example Tag Description Example
CC Coordin. Conjunctionand, but, or SYM Symbol + ,%, &
CD Cardinal number one, two, three TO “to” to
DT Determiner a, the UH Interjection ah, oops
EX Existential‘there’ there VB Verb, base form eat
FW Foreign word mea culpa VBD Verb, past tense ate
IN Preposition/sub-conjof, in, by VBG Verb, gerund eating
JJ Adjective yellow VBN Verb, past participleeaten
JJR Adj., comparative bigger VBP Verb, non-3sg preseat
JJS Adj., superlative wildest VBZ Verb, 3sg pres eats
LS List item marker 1, 2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what, who
NN Noun, sing. or mass llama WP$ Possessive wh- whose
NNS Noun, plural llamas WRB Wh-adverb how, where
NNP Proper noun, singularIBM $ Dollar sign $
NNPSProper noun, plural Carolinas # Pound sign #
PDT Predeterminer all, both “ Left quote (‘ or “)
POS Possessive ending ’s ” Right quote (’ or ”)
PP Personal pronoun I, you, he ( Left parenthesis ( [, (, f,<)
PP$ Possessive pronoun your, one’s ) Right parenthesis ( ], ), g,>)
RB Adverb quickly, never , Comma ,
RBR Adverb, comparativefaster . Sentence-final punc(. ! ?)
RBS Adverb, superlative fastest : Mid-sentence punc(: ; ... – -)
RP Particle up, off

Figure 8.6 Penn Treebank Part-of-Speech Tags (Including Punctuation)

Certain syntactic distinctions were not marked in the Penn Treebank
tagset because Treebank sentences were parsed, not merely tagged, and so
some syntactic information is represented in the phrase structure. For ex-
ample, prepositions and subordinating conjunctions were combined into the
single tagIN, since the tree-structure of the sentence disambiguated them
(subordinating conjunctions always precede clauses, prepositions precede
noun phrases or prepositional phrases).

Most tagging situations, however, do not involve parsed corpora; for
this reason the Penn Treebank set is not specific enough for many uses. The
C7 tagset, for example, also distinguishes prepositions (II ) from subordi-
nating conjunctions (CS) , and distinguishes the prepositionto (II ) from the
infinite markerto (TO).

Which tagset to use for a particular application depends, ofcourse, on
how much information the application needs. The reader should see Ap-
pendix C for a listing of the C5 and C7 tagsets.
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8.3 PART OF SPEECHTAGGING

Part-of-speech tagging (or justtagging for short) is the process of assigningTAGGING

a part-of-speech or other lexical class marker to each word in a corpus. Tags
are also usually applied to punctuation markers; thus tagging for natural lan-
guage is the same process astokenization for computer languages, although
tags for natural languages are much more ambiguous. As we suggested at
the beginning of the chapter, taggers play an increasingly important role in
speech recognition, natural language parsing and information retrieval.

The input to a tagging algorithm is a string of words and a specified
tagsetof the kind described in the previous section. The output is asingleTAGSET

best tag for each word. For example, here are some sample sentences from
the ATIS corpus of dialogues about air-travel reservationsthat we will dis-
cuss in Chapter 9. For each we have shown a potential tagged output using
the Penn Treebank tagset defined in Figure 8.6 on page 295:

VB DT NN .
Book that flight .

VBZ DT NN VB NN ?
Does that flight serve dinner ?

Even in these simple examples, automatically assigning a tag to each
word is not trivial. For example,book is ambiguous. That is, it has moreAMBIGUOUS

than one possible usage and part of speech. It can be a verb (asin bookthat
flight or to bookthe suspect) or a noun (as inhand me that book, or a book
of matches). Similarly that can be a determiner (as inDoes thatflight serve
dinner), or a complementizer (as inI thought thatyour flight was earlier).
The problem of POS-tagging is toresolve these ambiguities, choosing theRESOLVE

proper tag for the context. Part-of-speech tagging is thus one of the many
disambiguation tasks we will see in this book.

How hard is the tagging problem? Most words in English are unam-
biguous; i.e. they have only a single tag. But many of the mostcommon
words of English are ambiguous (for examplecan can be an auxiliary (‘to
be able’), a noun (‘a metal container’), or a verb (‘to put something in such
a metal container’)). In fact DeRose (1988) reports that while only 11.5%
of English word types in the Brown Corpus are ambiguous, over40% of
Brown tokens are ambiguous. Based on Francis and Kučera (1982), he gives
the table of tag ambiguity in Figure 8.7.
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Unambiguous (1 tag) 35,340
Ambiguous (2-7 tags) 4,100

2 tags 3,760
3 tags 264
4 tags 61
5 tags 12
6 tags 2
7 tags 1 (“still”)

Figure 8.7 The number of word types in Brown corpus by degree of ambi-
guity (after DeRose (1988)).

Luckily, it turns out that many of the 40% ambiguous tokens are easy
to disambiguate. This is because the various tags associated with a word
are not equally likely. For example,a can be a determiner, or the lettera
(perhaps as part of an acronym or an initial). But the determiner sense ofa
is much more likely.

Most tagging algorithms fall into one of two classes:rule-based tag-
gers andstochastic taggers. Rule-based taggers generally involve a large
database of hand-written disambiguation rule which specify, for example,
that an ambiguous word is a noun rather than a verb if it follows a de-
terminer. The next section will describe a sample rule-based tagger,EN-
GTWOL , based on the Constraint Grammar architecture of Karlssonet al.
(1995).

Stochastic taggers generally resolve tagging ambiguitiesby using a
training corpus to compute the probability of a given word having a given
tag in a given context. Section 8.5 describes a stochastic tagger calledHMM
tagger, also called aMaximum Likelihood Tagger , or aMarkov model HMM TAGGER

tagger, based on the Hidden Markov Model presented in Chapter 7.
Finally, Section 8.6 will describe an approach to tagging called the

transformation-based taggeror theBrill tagger , after Brill (1995). The BRILL
TAGGER

Brill tagger shares features of both tagging architectures. Like the rule-based
tagger, it is based on rules which determine when an ambiguous word should
have a given tag. Like the stochastic taggers, it has a machine-learning com-
ponent: the rules are automatically induced from a previously-tagged train-
ing corpus.
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8.4 RULE-BASED PART-OF-SPEECHTAGGING

The earliest algorithms for automatically assigning part-of-speech were based
on a two-stage architecture (Harris, 1962; Klein and Simmons, 1963; Greene
and Rubin, 1971). The first stage used a dictionary to assign each word a list
of potential parts of speech. The second stage used large lists of hand-written
disambiguation rules to winnow down this list to a single part-of-speech for
each word.

TheENGTWOL tagger (Voutilainen, 1995) is based on the same two-ENGTWOL

stage architecture, although both the lexicon and the disambiguation rules
are much more sophisticated than the early algorithms. The ENGTWOL
lexicon is based on the two-level morphology described in Chapter 3, and
has about 56,000 entries for English word stems (Heikkilä,1995), counting
a word with multiple parts of speech (e.g. nominal and verbalsenses ofhit)
as separate entries, and of course not counting inflected andmany derived
forms. Each entry is annotated with a set of morphological and syntactic
features. Figure 8.8 shows some selected words, together with a slightly
simplified listing of their features.

Word POS Additional POS features
smaller ADJ COMPARATIVE
entire ADJ ABSOLUTE ATTRIBUTIVE
fast ADV SUPERLATIVE
that DET CENTRAL DEMONSTRATIVE SG
all DET PREDETERMINER SG/PL QUANTIFIER
dog’s N GENITIVE SG
furniture N NOMINATIVE SG NOINDEFDETERMINER
one-third NUM SG
she PRON PERSONAL FEMININE NOMINATIVE SG3
show V IMPERATIVE VFIN
show V PRESENT -SG3 VFIN
show N NOMINATIVE SG
shown PCP2 SVOO SVO SV
occurred PCP2 SV
occurred V PAST VFIN SV

Figure 8.8 Sample lexical entries from the ENGTWOL lexicon described
in Voutilainen (1995) and Heikkilä (1995).

Most of the features in Figure 8.8 are relatively self-explanatory; SG
for singular, -SG3 for other than third-person-singular. ABSOLUTE means
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non-comparative and non-superlative for an adjective, NOMINATIVE just
means non-genitive, and PCP2 means past participle. PRE, CENTRAL,
and POST are ordering slots for determiners (predeterminers (all) come be-
fore determiners (the): all the president’s men). NOINDEFDETERMINER
means that words likefurniture do not appear with the indefinite determiner
a. SV, SVO, and SVOO specify thesubcategorizationor complementa- SUBCATEGO­

RIZATION

tion pattern for the verb. Subcategorization will be discussed in Chapter 9 COMPLEMEN­
TATION

and Chapter 11, but briefly SV means the verb appears solely with a subject
(nothing occurred); SVO with a subject and an object (I showed the film);
SVOO with a subject and two complements:She showed her the ball.

In the first stage of the tagger, each word is run through the two-level
lexicon transducer and the entries for all possible parts ofspeech are re-
turned. For example the phrasePavlov had shown that salivation. . .would
return the following list (one line per possible tag, with the correct tag shown
in boldface):

Pavlov PAVLOV N NOM SG PROPER
had HAVE V PAST VFIN SVO

HAVE PCP2 SVO
shown SHOW PCP2 SVOO SVO SV
that ADV

PRON DEM SG
DET CENTRAL DEM SG
CS

salivation N NOM SG
. . .

A set of about 1,100 constraints are then applied to the inputsentence
to rule out incorrect parts of speech; the boldfaced entriesin the table above
show the desired result, in which the preterite (not participle) tag is applied
to had, and the complementizer (CS) tag is applied thethat. The constraints
are used in a negative way, to eliminate tags that are inconsistent with the
context. For example one constraint eliminates all readings of that except
the ADV (adverbial intensifier) sense (this is the sense in the sentenceit isn’t
that odd). Here’s a simplified version of the constraint:
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ADVERBIAL -THAT RULE

Given input: ”that”
if

(+1 A/ADV/QUANT); /* if next word is adj, adverb, or quantifier*/
(+2 SENT-LIM); /* and following which is a sentence boundary,*/
(NOT -1 SVOC/A);/* and the previous word is not a verb like*/

/* ’consider’ which allows adjs as object complements*/
then eliminate non-ADV tags
elseeliminate ADV tag

The first two clauses of this rule check to see that thethat directly
precedes a sentence-final adjective, adverb, or quantifier.In all other cases
the adverb reading is eliminated. The last clause eliminates cases preceded
by verbs likeconsideror believewhich can take a noun and an adjective; this
is to avoid tagging the following instance ofthat as an adverb:

I consider that odd.

Another rule is used to express the constraint that the complementizer
sense ofthat is most likely to be used if the previous word is a verb which ex-
pects a complement (likebelieve, think, or show), and if thethat is followed
by the beginning of a noun phrase, and a finite verb.

This description oversimplifies the ENGTWOL architecture;the sys-
tem also includes probabilistic constraints, and also makes use of other syn-
tactic information we haven’t discussed. The interested reader should con-
sult Karlssonet al. (1995).

8.5 STOCHASTIC PART-OF-SPEECHTAGGING

The use of probabilities in tags is quite old; probabilitiesin tagging were
first used by (Stolzet al., 1965), a complete probabilistic tagger with Viterbi
decoding was sketched by Bahl and Mercer (1976), and variousstochastic
taggers were built in the 1980’s (Marshall, 1983; Garside, 1987; Church,
1988; DeRose, 1988). This section describes a particular stochastic tagging
algorithm generally known as the Hidden Markov Model or HMM tagger.
The intuition behind all stochastic taggers is a simple generalization of the
‘pick the most-likely tag for this word’ approach that we discussed above,
based on the Bayesian framework we saw in Chapter 5.

For a given sentence or word sequence, HMM taggers choose thetag
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sequence that maximizes the following formula:

P(wordjtag)�P(tagjprevious n tags) (8.1)

The rest of this section will explain and motivate this particular equa-
tion. HMM taggers generally choose a tag sequence for a wholesentence
rather than for a single word, but for pedagogical purposes,let’s first see
how an HMM tagger assigns a tag to an individual word. We first give the
basic equation, then work through an example, and, finally, give the motiva-
tion for the equation.

A bigram-HMM tagger of this kind chooses the tagti for word wi that
is most probable given the previous tagti�1 and the current wordwi:

ti = argmax
j

P(t j jti�1;wi) (8.2)

Through some simplifying Markov assumptions that we will give below, we
restate Equation 8.2 to give the basic HMM equation for a single tag as
follows:

ti = argmax
j

P(t j jti�1)P(wijt j) (8.3)

A Motivating Example

Let’s work through an example, using an HMM tagger to assign the proper
tag to the single wordracein the following examples (both shortened slightly
from the Brown corpus):

(8.4) Secretariat/NNP is/VBZ expected/VBN to/TOrace/VB
tomorrow/NN

(8.5) People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN
for/IN the/DT race/NN for/IN outer/JJ space/NN

In the first examplerace is a verb (VB), in the second a noun (NN).
For the purposes of this example, let’s pretend that some other mech-

anism has already done the best tagging job possible on the surrounding
words, leaving only the wordraceuntagged. A bigram version of the HMM
tagger makes the simplifying assumption that the tagging problem can be
solved by looking at nearby words and tags. Consider the problem of as-
signing a tag toracegiven just these subsequences:

to/TO race/???
the/DT race/???

Let’s see how this equation applies to our example withrace; Equa-
tion 8.3 says that if we are trying to choose between NN and VB for the
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sequenceto race, we choose the tag that has the greater of these two proba-
bilities:

P(VBjTO)P(racejVB) (8.6)

and

P(NNjTO)P(racejNN) (8.7)

Equation 8.3 and its instantiations Equations 8.6 and 8.7 each have
two probabilities: a tag sequence probabilityP(ti jti�1) and a word-likelihood
P(wijt j). Forrace, the tag sequence probabilitiesP(NNjTO) andP(VBjTO)
give us the answer to the question “how likely are we to expecta verb (noun)
given the previous tag?”. They can just be computed from a corpus by count-
ing and normalizing. We would expect that a verb is more likely to follow
TO than a noun is, since infinitives (to race, to run, to eat) are common in
English. While it is possible for a noun to follow TO (walk to school, related
to hunting), it is less common.

Sure enough, a look at the combined Brown and Switchboard corpora
gives us the following probabilities, showing that verbs are fifteen times as
likely as nouns after TO:

P(NNjTO) = :021

P(VBjTO) = :34

The second part of Equation 8.3 and its instantiations Equations 8.6
and 8.7 is the lexical likelihood: the likelihood of the nounracegiven each
tag,P(racejVB) andP(racejNN). Note that this likelihood term is not asking
‘which is the most likely tag for this word’. That is, the likelihood term is not
P(VBjrace). Instead we are computingP(racejVB). The probability, slightly
counterintuitively, answers the question “if we were expecting a verb, how
likely is it that this verb would berace”.

Here are the lexical likelihoods from the combined Brown andSwitch-
board corpora:

P(racejNN) = :00041

P(racejVB) = :00003

If we multiply the lexical likelihoods with the tag sequenceprobabili-
ties, we see that even the simple bigram version of the HMM tagger correctly
tagsraceas a VB despite the fact that it is the less likely sense ofrace:
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P(VBjTO)P(racejVB) = :00001

P(NNjTO)P(racejNN) = :000007

The Actual Algorithm for HMM tagging

Recall that a real HMM tagger isn’t just choosing the best tagfor a simple
word but the best sequence of tags for an entire sentence. Nowthat we’ve
seen the single-word intuition for the HMM tagger, let’s give the complete
equations. Generally, we make the Viterbi approximation and choose the
most probable tag sequence for each sentence. This approachthus assumes
that we are trying to compute for each sentence the most probable sequence
of tagsT = t1; t2; : : : tn given the sequence of words in the sentence (W):

T̂ = argmax
T2τ

P(TjW)
By Bayes Law,P(TjW) can be expressed as:

P(TjW) = P(T)P(WjT)
P(W)

Thus we are attempting to choose the sequence of tags that maximizesP(T)P(WjT)
P(W) :

T̂ = argmax
T2τ

P(T)P(WjT)
P(W)

Since we are looking for the most likely tag sequence for a sentence
given a particular word sequence, the probability of the word sequenceP(W)
will be the same for each tag sequence and we can ignore it.

T̂ = argmax
T2τ

P(T)P(WjT)
From the chain rule of probability:

P(T)P(WjT) = n

∏
i=1

P(wijw1t1 : : :wi�1ti�1ti)P(tijw1t1 : : :wi�1ti�1)
We make theN-gram assumption again, just as we did in Equation 6.9

for modeling the probability of word sequences. The trigrammodel is most
often used, so let’s define that one. First, we make the simplifying assump-
tion that the probability of a word is dependent only its tag:

P(wijw1t1 : : :wi�1ti�1ti) = p(wi jti)
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Next, we make the assumption that the tag history can be approximated
by the most recent two tags:

P(ti jw1t1 : : :wi�1ti�1) = P(tijti�2ti�1)
Thus we are choosing the tag sequence that maximizes:

P(t1)P(t2jt1) n

∏
i=3

P(tijti�2ti�1)[ n

∏
i=1

P(wijti)]
As usual, we can use maximum likelihood estimation from relative

frequencies to estimate these probabilities.

P(ti jti�2ti�1) = c(ti�2ti�1ti)
c(ti�2ti�1)

P(wijti) = c(wi ; ti)
c(ti)

This model can also be smoothed (for example by the backoff ordeleted
interpolation algorithms of Chapter 6) to avoid zero probabilities.

Finding the most probable tag sequence can be done with the Viterbi
algorithm described in Chapter 7.

Weischedelet al. (1993) and DeRose (1988) have reported accuracies
of above 96% for this algorithm.

The HMM tagger we have seen so far is trained on hand-tagged data.
Kupiec (1992), Cuttinget al.(1992a), and others show that it is also possible
to train an HMM tagger on unlabeled data, using the EM algorithm of Chap-
ter 7 and Appendix D. These taggers still start with a dictionary which lists
which tags can be assigned to which words; the EM algorithm then learns
the word likelihood function for each tag, and the tag transition probabili-
ties. An experiment by Merialdo (1994), however, indicatesthat with even a
small amount of training data, a tagger trained on hand-tagged data worked
better than one trained via EM. Thus the EM-trained ‘pure HMM’ tagger is
probably best suited in cases where no training data is available, for example
when tagging languages for which there is no previously hand-tagged data.

8.6 TRANSFORMATION-BASED TAGGING

Transformation-Based Tagging, sometimes called Brill tagging, is an in-
stance of theTransformation-Based Learning (TBL) approach to machineTRANSFORMATION­

BASED
LEARNING

learning (Brill, 1995), and draws inspiration from both therule-based and
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METHODOLOGY BOX: EVALUATING TAGGERS

Taggers are often evaluating by comparing them with a human-
labeledGold Standard test set, based onpercent correct: the per-
centage of all tags in the test set where the tagger and the Gold
standard agree. Most current tagging algorithms have an accuracy
(percent-correct) of around 96% to 97% for simple tagsets like the
Penn Treebank set; human annotators can then be used to manually
post-process the tagged corpus.

How good is 96%? Since tag sets and tasks differ, the perfor-
mance of tags can be compared against a lower-boundbaselineand
an upper-boundceiling. One way to set a ceiling is to see how well
humans do on the task. Marcuset al.(1993), for example, found that
human annotators agreed on about 96–97% of the tags in the Penn
Treebank version of the Brown Corpus. This suggests that theGold
Standard may have a 3-4% margin of error, and that it is not possi-
ble to get 100% accuracy. Two experiments by Voutilainen (1995,
p. 174), however, found that if humans were allowed to discuss the
tags, they reached consensus on 100% of the tags.

Key Concept #6. Human Ceiling: When using a human
Gold Standard to evaluate a classification algorithm, checkthe
agreement rate of humans on the standard.

The standardbaseline, suggested by Galeet al. (1992) (in
the slightly different context of word-sense disambiguation), is to
choose theunigram most-likely tag for each ambiguous word. The
most-likely tag for each word can be computed from a hand-tagged
corpus (which may be the same as the training corpus for the tagger
being evaluated).

Key Concept #7. Unigram Baseline:When designing a new
classification algorithm, always compare it against the unigram
baseline (assigning each token to the class it occurred in most
often in the training set).

Charniaket al.(1993) showed that a (slightly smoothed) version
of this baseline algorithm achieves an accuracy of 90–91%! Tagging
algorithms since Harris (1962) have incorporated this intuition about
tag-frequency.
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stochastic taggers. Like the rule-based taggers, TBL is based on rules that
specify what tags should be assigned to what words. But like the stochastic
taggers, TBL is a machine learning technique, in which rulesare automati-
cally induced from the data. Like some but not all of the HMM taggers, TBL
is a supervised learning technique; it assumes a pre-taggedtraining corpus.

Samuelet al.(1998a) offer a useful analogy for understanding the TBL
paradigm, which they credit to Terry Harvey. Imagine an artist painting a
picture of a white house with green trim against a blue sky. Suppose most of
the picture was sky, and hence most of the picture was blue. The artist might
begin by using a very broad brush and painting the entire canvas blue. Next
she might switch to a somewhat smaller white brush, and paintthe entire
house white. She would just color in the whole house, not worrying about
the brown roof, or the blue windows or the green gables. Next she takes a
smaller brown brush and colors over the roof. Now she takes upthe blue
paint on a small brush and paints in the blue windows on the barn. Finally
she takes a very fine green brush and does the trim on the gables.

The painter starts with a broad brush that covers a lot of the canvas
but colors a lot of areas that will have to be repainted. The next layer col-
ors less of the canvas, but also makes less ‘mistakes’. Each new layer uses
a finer brush that corrects less of the picture, but makes fewer mistakes.
TBL uses somewhat the same method as this painter. The TBL algorithm
has a set of tagging rules. A corpus is first tagged using the broadest rule,
i.e. the one that applies to the most cases. Then a slightly more specific
rule is chosen, which changes some of the original tags. Nextan even nar-
rower rule, which changes a smaller number of tags (some of which might
be previously-changed tags).

How TBL rules are applied

Let’s look at one of the rules used by Brill’s (1995) tagger. Before the rules
apply, the tagger labels every word with its most-likely tag. We get these
most-likely tags from a tagged corpus. For example, in the Brown corpus,
race is most likely to be a noun:

P(NNjrace) = :98

P(VBjrace) = :02

This means that the two examples ofrace that we saw above will both
be coded as NN. In the first case, this is a mistake, as NN is the incorrect
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tag:

(8.8) is/VBZ expected/VBN to/TO race/NN tomorrow/NN

In the second case thisrace is correctly tagged as an NN:

(8.9) the/DT race/NN for/IN outer/JJ space/NN

After selecting the most-likely tag, Brill’s tagger applies its transfor-
mation rules. As it happens, Brill’s tagger learned a rule that applies exactly
to this mistagging ofrace:

ChangeNN to VB when the previous tag isTO

This rule would changerace/NNto race/VBin exactly the following
situation, since it is preceded byto/TO:

(8.10) expected/VBN to/TO race/NN! expected/VBN to/TO race/VB

How TBL Rules are Learned

Brill’s TBL algorithm has three major stages. It first labelsevery word with
its most-likely tag. It then examines every possible transformation, and se-
lects the one that results in the most improved tagging. Finally, it then re-tags
the data according to this rule. These three stages are repeated until some
stopping criterion is reached, such as insufficient improvement over the pre-
vious pass. Note that stage two requires that TBL knows the correct tag of
each word; i.e., TBL is a supervised learning algorithm.

The output of the TBL process is an ordered list of transformations;
these then constitute a ‘tagging procedure’ that can be applied to a new cor-
pus. In principle the set of possible transformations is infinite, since we
could imagine transformations such as “transform NN to VB ifthe previous
word was ‘IBM’ and the word ‘the’ occurs between 17 and 158 words before
that”. But TBL needs to consider every possible transformation, in order to
pick the best one on each pass through the algorithm. Thus thealgorithm
needs a way to limit the set of transformations. This is done by designing
a small set oftemplates, abstracted transformations. Every allowable trans-TEMPLATES

formation is an instantiation of one of the templates. Brill’s set of templates
is listed in Figure 8.9. Figure 8.10 gives the details of thisalgorithm for
learning transformations.

At the heart of Figure 8.10 are the two functions GET BEST TRANS-
FORMATION and GET BEST INSTANCE. GET BEST TRANSFORMATION

is called with a list of potential templates; for each template, it calls
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The preceding (following) word is taggedz.
The word two before (after) is taggedz.
One of the two preceding (following) words is taggedz.
One of the three preceding (following) words is taggedz.
The preceding word is taggedz and the following word is taggedw.
The preceding (following) word is taggedz and the word

two before (after) is taggedw.

Figure 8.9 Brill’s (1995) templates. Each begins with‘Change taga to tag
b when:’. The variablesa, b, z, andw range over parts of speech.

GET BEST INSTANCE. GET BEST INSTANCE iteratively tests every pos-
sible instantiation of each template by filling in specific values for the tag
variablesa, b, z andw.

In practice, there are a number of ways to make the algorithm more
efficient. For example, templates and instantiated transformations can be
suggested in a data-driven manner; a transformation-instance might only be
suggested if it would improve the tagging of some specific word. The search
can also be made more efficient by pre-indexing the words in the training
corpus by potential transformation. Roche and Schabes (1997a) show how
the tagger can also be speeded up by converting each rule intoa finite-state
transducer and composing all the transducers.

Figure 8.11 shows a few of the rules learned by Brill’s original tagger.

8.7 OTHER ISSUES

Multiple tags and multiple words

Two issues that arise in tagging are tag indeterminacy and multi-part words.
Tag indeterminacy arises when a word is ambiguous between multiple tags
and it is impossible or very difficult to disambiguate. In this case, some
taggers allow the use of multiple tags. This is the case in thePenn Treebank
and in the British National Corpus. Common tag indeterminacies include ad-
jective versus preterite versus past participle (JJ/VBD/VBN), and adjective
versus noun as prenominal modifier (JJ/NN).

The second issue concerns multi-part words. The C5 and C7 tagsets,
for example, allow prepositions like ‘in terms of’ to be treated as a single
word by adding numbers to each tag:
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function TBL(corpus) returns transforms-queue
INTIALIZE -WITH-MOST-LIKELY -TAGS(corpus)
until end condition is metdo
templates GENERATE-POTENTIAL-RELEVANT-TEMPLATES

best-transform GET-BEST-TRANSFORM(corpus, templates)
APPLY-TRANSFORM(best-transform,corpus)
ENQUEUE(best-transform-rule, transforms-queue)

end
return (transforms-queue)

function GET-BEST-TRANSFORM(corpus, templates) returns transform
for each templatein templates

(instance,score) GET-BEST-INSTANCE(corpus, template)
if (score> best-transform.score) then best-transform (instance,score)

return (best-transform)

function GET-BEST-INSTANCE(corpus, template)returns transform
for from-tag from tag�1 to tag�n do
for to-tag from tag�1 to tag�n do

for pos from 1 to corpus-sizedo
if (correct-tag(pos) == to-tag&& current-tag(pos) == from-tag)

num-good-transforms(current-tag(pos�1))++
elseif(correct-tag(pos)==from-tag&& current-tag(pos)==from-tag)

num-bad-transforms(current-tag(pos�1))++
end
best-Z ARGMAX t (num-good-transforms(t) - num-bad-transforms(t))
if (num-good-transforms(best-Z) - num-bad-transforms(best-Z)> best-instance.Z) then

best-instance “Change tag fromfrom-tagto to-tag
if previous tag isbest-Z”

return (best-instance)

procedure APPLY-TRANSFORM(transform,corpus)
for pos from 1 to corpus-sizedo
if (current-tag(pos)==best-rule-from)

&& ( current-tag(pos�1)==best-rule-prev))
current-tag(pos) = best-rule-to

Figure 8.10 The TBL algorithm for learning to tag. GET BEST INSTANCE

would have to change for transformations templates other than ‘Change tag
from X to Y if previous tag is Z’. After Brill (1995).
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Change tags
# From To Condition Example
1 NN VB Previous tag is TO to/TO race/NN! VB
2 VBP VB One of the previous 3 tags is MDmight/MD vanish/VBP! VB
3 NN VB One of the previous 2 tags is MDmight/MD not reply/NN! VB
4 VB NN One of the previous 2 tags is DT
5 VBD VBN One of the previous 3 tags is VBZ

Figure 8.11 The first 20 nonlexicalized transformations from the Brill tag-
ger (Brill, 1995).

in/II31 terms/II32 of/II33

Finally, some tagged corpora split certain words; for example the Penn
Treebank and the British National Corpus splits contractions and the’s-
genitive from their stems:

would/MD n’t/RB
children/NNS ’s/POS

Unknown words

All the tagging algorithms we have discussed require a dictionary that lists
the possible parts of speech of every word. But the largest dictionary will
still not contain every possible word, as we saw in Chapter 4.Proper names
and acronyms are created very often, and even new common nouns and verbs
enter the language at a surprising rate. Therefore in order to build a complete
tagger we need some method for guessing the tag of an unknown word.

The simplest possible unknown-word algorithm is to pretendthat each
unknown word is ambiguous among all possible tags, with equal probability.
Then the tagger must rely solely on the contextual POS-trigrams to suggest
the proper tag. A slightly more complex algorithm is based onthe idea that
the probability distribution of tags over unknown words is very similar to the
distribution of tags over words that occurred only once in a training set. an
idea that was suggested by both Baayen and Sproat (1996) and Dermatas and
Kokkinakis (1995). These words that only occur once are known ashapax
legomena(singularhapax legomenon). For example, unknown words andHAPAX

LEGOMENA

hapax legomenaare similar in that they are both most likely to be nouns,
followed by verbs, but are very unlikely to be determiners orinterjections.
Thus the likelihoodP(wijti) for an unknown word is determined by the av-
erage of the distribution over all singleton words in the training set. (Recall
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METHODOLOGY BOX: ERROR ANALYSIS

In order to improve a computational model we need to analyze
and understand where it went wrong. Analyzing the error in a pattern
classifier like a part-of-speech tagger is usually done via aconfusion
matrix , also called acontingency table. A confusion matrix for an
N-way classification task is an N-by-N matrix where the cell(x;y)
contains the number of times an item with correction classification
x was classified by the model asy. For example, the following ta-
ble shows a portion of the confusion matrix from the HMM tagging
experiments of Franz (1996). The row labels indicate correct tags,
column labels indicate the tagger’s hypothesized tags, andeach cell
indicates percentage of the overall tagging error. Thus 4.4% of the
total errors were caused by mistagging a VBD as a VBN. Common
errors are boldfaced in the table.

IN JJ NN NNP RB VBD VBN
IN - .2 .7
JJ .2 - 3.3 2.1 1.7 .2 2.7
NN 8.7 - .2
NNP .2 3.3 4.1 - .2
RB 2.2 2.0 .5 -
VBD .3 .5 - 4.4
VBN 2.8 2.6 -

The confusion matrix above, and related error analyses in Franz
(1996), Kupiec (1992), and Ratnaparkhi (1996), suggest that some
major problems facing current taggers are:

1. NN versus NNP versus JJ:These are hard to distinguish
prenominally. Distinguishing proper nouns is especially im-
portant for information extraction and machine translation.

2. RP versus RB versus IN:All of these can appear in sequences
of satellites immediately following the verb.

3. VBD versus VBN versus JJ:Distinguishing these is impor-
tant for partial parsing (participles are used to find passives),
and for correctly labeling the edges of noun-phrases.



312 Chapter 8. Word Classes and Part-of-Speech Tagging

that this idea of using ‘things we’ve seen once’ as an estimator for ‘things
we’ve never seen’ proved useful as key conceptThings Seen Oncein the
Witten-Bell and Good-Turing algorithms of Chapter 6).

The most powerful unknown-word algorithms make use of information
about how the word is spelled. For example, words that end in the letter-sare
likely to be plural nouns (NNS), while words ending with-edtend to be past
participles (VBN). Words starting with capital letters arelikely to be nouns.
Weischedelet al. (1993) used four specific kinds of orthographic features: 3
inflectional endings (-ed, -s, -ing), 32 derivational endings (such as-ion, -al,
-ive, and-ly), 4 values of capitalization (capitalized initial, capitalized non-
initial, etc.), and hyphenation. They used the following equation to compute
the likelihood of an unknown word:

P(wijti) = p(unknown-wordjti)� p(capitaljti)� p(endings/hyphjti)
Other researchers, rather than relying on these hand-designed features,

have used machine learning to induce useful features. Brill(1995) used the
TBL algorithm, where the allowable templates were defined orthographi-
cally (the firstN letters of the words, the lastN letters of the word, etc).
His algorithm induced all the English inflectional features, hyphenation, and
many derivational features such as-ly, al. Franz (1996) uses a loglinear
model which includes more features, such as the length of theword and
various prefixes, and furthermore includes interaction terms among various
features.

Class-based N-grams

Now that we have a way of automatically assigning a class to each word in
a corpus, we can use this information to augment ourN-gram models. The
class-based N-gramis a variant of theN-gram that uses the frequency ofCLASS­BASED

N­GRAM

sequences of POS (or other) classes to help produce a more knowledgeable
estimate of the probability of word strings. The basic class-basedN-gram
defines the conditional probability of a wordwn based on its history as the
product of the two factors: the probability of the class given the preceding
classes (based on aN-gram-of-classes), and the probability of a particular
word given the class:

P(wnjwn�1
n�N+1) = P(wnjcn)P(cnjcn�1

n�N+1)
The maximum likelihood estimate (MLE) of the probability ofthe

word given the class and the probability of the class given the previous class
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METHODOLOGY BOX: COMPUTING AGREEMENT VIA κ

One problem with thepercent correct metric for evaluating
taggers is that it doesn’t control for how easy the tagging task is.
If 99% of the tags are, say, NN, then getting 99% correct isn’tvery
good; we could have gotten 99% correct just by guessing NN. This
means that it’s really impossible to compare taggers which are being
run on different test sets or different tasks. As the previous method-
ology box noted, one factor that can help normalize different values
of percent correct is to measure the difficulty of a given taskvia the
unigram baseline for that task.

In fact, there is an evaluation statistic calledkappa (κ) that takes
this baseline into account, inherently controlling for thecomplex-
ity of the task (Siegel and Castellan, 1988; Carletta, 1996). Kappa
can be used instead of percent correct when comparing a tagger to
a Gold Standard, or especially when comparing human labelers to
each other, when there is no one correct answer. Kappa is the ratio of
the proportion of times that 2 classifiers agree (corrected for chance
agreement) to the maximum proportion of times that the classifiers
could agree (corrected for chance agreement):

κ = P(A)�P(E)
1�P(E)

P(A) is the proportion of times that the hypothesisagreeswith the
standard; i.e., percent correct. P(E) is the proportion of times that the
hypothesis and the standard would beexpectedto agree by chance.
P(E) can be computed from some other knowledge, or it can be com-
puted from the actual confusion matrix for the labels being com-
pared. The bounds forκ are just like those for percent correct; when
there is no agreement (other than what would be expected by chance)
κ = 0. When there is complete agreement,κ = 1.

Theκ statistic is most often used when there is no ‘Gold Stan-
dard’ at all. This occurs, for example, when comparing humanlabel-
ers to each other on a difficult subjective task. In this case,κ is a very
useful evaluation metric, the ‘average pairwise agreementcorrected
for chance agreement’. Krippendorf (1980) suggests that a value of
κ > :8 can be considered good reliability.
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can be computed as follows:

P(wjc) = C(w)
C(c)

P(ci jci�1) = C(ci�1ci)
∑cC(ci�1c)

A class-basedN-gram can rely on standard tagsets like the Penn tagset
to define the classes, or on application-specific sets (for example using tags
like CITY and AIRLINE for an airline information system). The classes
can also be automatically induced by clustering words in a corpus (Brown
et al., 1992). A number of researchers have shown that class-basedN-grams
can be useful in decreasing the perplexity and word-error rate of language
models, especially if they are mixed in some way with regularword-based
N-grams (Jelinek, 1990; Kneser and Ney, 1993; Heeman, 1999; Samuelsson
and Reichl, 1999).

8.8 SUMMARY

This chapter introduced the idea ofparts-of-speechandpart-of-speech tag-
ging. The main ideas:� Languages generally have a relatively small set ofclosed classwords,

which are often highly frequent, generally act asfunction words, and
can be very ambiguous in their part-of-speech tags. Open class words
generally include various kinds ofnouns, verbs, adjectives. There
are a number of part-of-speech coding schemes, based ontagsetsof
between 40 and 200 tags.� Part-of-speech taggingis the process of assigning a part-of-speech
label to each of a sequence of words. Taggers can be characterized as
rule-basedor stochastic. Rule-based taggers use hand-written rules to
distinguish tag ambiguity. Stochastic taggers are eitherHMM-based,
choosing the tag sequence which maximizes the product of word like-
lihood and tag sequence probability, orcue-based, using decision trees
or maximum entropy models to combine probabilistic features.� Taggers are often evaluated by comparing their output from atest-set
to human labels for that test set. Error analysis can help pinpoint areas
where a tagger doesn’t perform well.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

The earliest implemented part-of-speech assignment algorithm may have
been part of the parser in Zellig Harris’s Transformations and Discourse
Analysis Project (TDAP), which was implemented between June 1958 and
July 1959 at the University of Pennsylvania (Harris, 1962).Previous nat-
ural language processing systems had used dictionaries with part-of-speech
information for words, but have not been described as performing part-of-
speech disambiguation. As part of its parsing, TDAP did partof speech
disambiguation via 14 hand-written rules, whose use of part-of-speech tag
sequences prefigures all the modern algorithms, and which were run in an
order based on the relative frequency of tags for a word. The parser/tagger
was reimplemented recently and is described by Joshi and Hopely (1999)
and Karttunen (1999), who note that the parser was essentially implemented
(ironically in a very modern way) as a cascade of finite-statetransducers.

Soon after the TDAP parser was the Computational Grammar Coder
(CGC) of Klein and Simmons (1963). The CGC had three components: a
lexicon, a morphological analyzer, and a context disambiguator. The small
1500-word lexicon included exceptional words that could not be accounted
for in the simple morphological analyzer, including function words as well as
irregular nouns, verbs, and adjectives. The morphologicalanalyzer used in-
flectional and derivational suffixes to assign part-of-speech classes. A word
was run through the lexicon and morphological analyzer to produce a can-
didate set of parts-of-speech. A set of 500 context rules were then used to
disambiguate this candidate set, by relying on surroundingislands of unam-
biguous words. For example, one rule said that between an ARTICLE and a
VERB, the only allowable sequences were ADJ-NOUN, NOUN-ADVERB,
or NOUN-NOUN. The CGC algorithm reported 90% accuracy on applying
a 30-tag tagset to articles from the Scientific American and achildren’s en-
cyclopedia.

TheTAGGIT tagger (Greene and Rubin, 1971) was based on the Klein
and Simmons (1963) system, using the same architecture but increasing the
size of the dictionary and the size of the tagset (to 87 tags).For example the
following sample rule, which states that a wordx is unlikely to be a plural
noun (NNS) before a third person singular verb (VBZ):

x VBZ ! not NNS

TAGGIT was applied to the Brown Corpus and, according to Francis
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and Kučera (1982, p. 9), “resulted in the accurate tagging of 77% of the
corpus” (the remainder of the Brown Corpus was tagged by hand).

In the 1970’s the Lancaster-Oslo/Bergen (LOB) Corpus was compiled
as a British English equivalent of the Brown Corpus. It was tagged with
the CLAWS tagger (Marshall, 1983, 1987; Garside, 1987), a probabilis-
tic algorithm which can be viewed as an approximation to the HMM tag-
ging approach. The algorithm used tag bigram probabilities, but instead
of storing the word-likelihood of each tag, tags were markedeither asrare
(P(tagjword) < :01) infrequent(P(tagjword) < :10), or normally frequent
(P(tagjword)> :10),

The probabilisticPARTS tagger of Church (1988) was very close to a
full HMM tagger. It extended the CLAWS idea to assign full lexical prob-
abilities to each word/tag combination, and used Viterbi decoding to find a
tag sequence. Like the CLAWS tagger, however, it stored the probability of
the tag given the word:

P(tagjword)�P(tagjprevious n tags) (8.11)

rather than using the probability of the word given the tag, as an HMM tagger
does:

P(wordjtag)�P(tagjprevious n tags) (8.12)

Later taggers explicitly introduced the use of the Hidden Markov Model,
often with the EM training algorithm (Kupiec, 1992; Merialdo, 1994; Wei-
schedelet al., 1993), including the use of variable length Markov models
(Schütze and Singer, 1994).

A number of recent stochastic algorithms use various statistical and
machine-learning tools to estimate the probability of a tagor tag-sequence
given a large number of relevant features such as the neighboring words and
neighboring parts of speech, as well as assorted orthographic and morpho-
logical features. These features are then combined to estimate the probability
of tag either via a decision tree (Jelineket al., 1994; Magerman, 1995), the
Maximum Entropy algorithm (Ratnaparkhi, 1996), log-linear models (Franz,
1996), or networks of linear separators (SNOW) (Roth and Zelenko, 1998).
Brill (1997) presents a unsupervised version of the TBL algorithm.
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EXERCISES

8.1 Find one tagging error in each of the following sentences that are
tagged with the Penn Treebank tagset:

a. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
b. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
c. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP
d. What/WDT flights/NNS do/VBP you/PRP have/VB from/IN Milwau-

kee/NNP to/IN Tampa/NNP
e. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

8.2 Use the Penn Treebank tagset to tag each word in the followingsen-
tences from Damon Runyon’s short stories. You may ignore punctuation.
Some of these are quite difficult; do your best.

a. It is a nice night.
b. This crap game is over a garage in Fifty-second Street. . .
c. . . . Nobody ever takes the newspapers she sells . . .
d. He is a tall, skinny guy with a long, sad, mean-looking kisser, and a

mournful voice.
e. . . . I am sitting in Mindy’s restaurant putting on the gefillte fish, which

is a dish I am very fond of, . . .
f. When a guy and a doll get to taking peeks back and forth at eachother,

why there you are indeed.

8.3 Now compare your tags from Exercise 1 with one or two friend’san-
swers. On which words did you disagree the most? Why?

8.4 Implement the Kappa algorithm of page 313, and compute the agree-
ment between you and your friends. To computeP(E) andP(E), you may
used the following equations modified from Walkeret al. (1997). These as-
sume that you have the confusion matrixM, where the correct answers label
the rows and the hypotheses label the columns (as seen in the Methodology
Box on page 311):

P(E) = n

∑
i�1

( ti
T
)2

P(A) = ∑n
i�1M(i; i)

T
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whereti is the sum of the counts in rowi of M, andT is the sum of the all
the counts inM,

8.5 Now tag the sentences in Exercise 8.2 using the more detailedC7 tagset
in Appendix C.

8.6 Implement the TBL algorithm in Figure 8.10. Create a small number
of templates and train the tagger on any POS-tagged trainingset you can
find.

8.7 Recall that the Church (1988) tagger is not an HMM tagger since it
incorporates the probability of the tag given the word:

P(tagjword)�P(tagjprevious n tags) (8.13)

rather than using the likelihood of the word given the tag, asan HMM
tagger does:

P(wordjtag)�P(tagjprevious n tags) (8.14)

As a gedanken-experiment, construct a sentence, a set of tagtransi-
tion probabilities, and a set of lexical tag probabilities that demonstrate a
way in which the HMM tagger can produce a better answer than the Church
tagger.

8.8 Build an HMM tagger. This requires (1) that you have implemented the
Viterbi algorithm from Chapter 5 or Chapter 7, (2) that you have a dictionary
with part-of-speech information and (3) that you have either (a) a part-of-
speech-tagged corpus or (b) an implementation of the Forward Backward
algorithm. If you have a labeled corpus, train the transition and observation
probabilities of an HMM tagger directly on the hand-tagged data. If you
have an unlabeled corpus, train using Forward Backward.

8.9 Now run your algorithm on a small test set that you have hand-labeled.
Find five errors and analyze them.
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CONTEXT-FREE
GRAMMARS FOR
ENGLISH

Sentence

NP VP

the man Verb NP

took the book
The first context-free grammar parse tree (Chomsky, 1956)

If on a winter’s night a travelerby Italo Calvino
Nuclear and Radiochemistryby Gerhart Friedlander et al.
The Fire Next Timeby James Baldwin
A Tad Overweight, but Violet Eyes to Die Forby G. B. Trudeau
Sometimes a Great Notionby Ken Kesey
Dancer from the Danceby Andrew Holleran

6 books in English whose titles are not constituents,
from Pullum (1991, p. 195)

In her essayThe Anatomy of a Recipe, M. F. K. Fisher (1968) wryly com-
ments that it is “modish” to refer to theanatomyof a thing or problem. The
similar use ofgrammarto describe the structures of an area of knowledge
had a vogue in the 19th century (e.g. Busby’s (1818)A Grammar of Mu-
sic and Field’s (1888)A Grammar of Colouring). In recent years the word
grammarhas made a reappearance, although usually now it isthegrammar
rather thana grammar that is being described (e.g.The Grammar of Graph-
ics, The Grammar of Conducting). Perhaps scholars are simply less modest
than they used to be? Or perhaps the wordgrammar itself has changed a
bit, from ‘a listing of principles or structures’, to ‘thoseprinciples or struc-
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tures as an field of inquiry’. Following this second reading,in this chapter
we turn to what might be calledThe Grammar of Grammar, or perhapsThe
Grammar of Syntax.

The wordsyntax comes from the Greeksýntaxis, meaning ‘settingSYNTAX

out together or arrangement’, and refers to the way words arearranged to-
gether. We have seen various syntactic notions in previous chapters. Chap-
ter 8 talked about part-of-speech categories as a kind of equivalence class for
words. Chapter 6 talked about the importance of modeling word order. This
chapter and the following ones introduce a number of more complex no-
tions of syntax and grammar. There are three main new ideas:constituency,
grammatical relations, andsubcategorization and dependencies.

The fundamental idea of constituency is that groups of wordsmay be-
have as a single unit or phrase, called aconstituent. For example we willCON­

STITUENT

see that a group of words called anoun phraseoften acts as a unit; noun
phrases include single words likesheor Michaeland phrases likethe house,
Russian Hill, anda well-weathered three-story structure. This chapter will
introduce the use ofcontext-free grammars, a formalism that will allow us
to model these constituency facts.

Grammatical relations are a formalization of ideas from traditional
grammar aboutSUBJECTSandOBJECTS. In the sentence:

(9.1) She ate a mammoth breakfast.

the noun phraseSheis theSUBJECTanda mammoth breakfastis theOBJECT.
Grammatical relations will be introduced in this chapter when we talk about
syntacticagreement, and will be expanded upon in Chapter 11.

Subcategorizationand dependency relationsrefer to certain kinds
of relations between words and phrases. For example the verbwantcan be
followed by an infinitive, as inI want to fly to Detroit, or a noun phrase, as in
I want a flight to Detroit. But the verbfindcannot be followed by an infinitive
(*I found to fly to Dallas). These are called facts about thesubcategoryof the
verb, which will be discussed starting on page 337, and againin Chapter 11.

All of these kinds of syntactic knowledge can be modeled by various
kinds of grammars that are based on context-free grammars. Context-free
grammars are thus the backbone of many models of the syntax ofnatu-
ral language (and, for that matter, of computer languages).As such they
are integral to most models of natural language understanding, of grammar
checking, and more recently of speech understanding. They are powerful
enough to express sophisticated relations among the words in a sentence, yet
computationally tractable enough that efficient algorithms exist for parsing
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sentences with them (as we will see in Chapter 10). Later in Chapter 12 we
will introduce probabilistic versions of context-free grammars, which model
many aspects of human sentence processing and which providesophisticated
language models for speech recognition.

In addition to an introduction to the grammar formalism, this chapter
also provides an overview of the grammar of English. We will be modeling
example sentences from the Air Traffic Information System (ATIS) domain
(Hemphill et al., 1990). ATIS systems are spoken language systems that
can help book airline reservations. Users try to book flightsby conversing
with the system, specifying constraints likeI’d like to fly from Atlanta to
Denver. The government funded a number of different research sitesacross
the country to build ATIS systems in the early 90’s, and so a lot of data was
collected and a significant amount of research has been done on the resulting
data. The sentences we will be modeling in this chapter are the user queries
to the system.

9.1 CONSTITUENCY

How do words group together in English? How do we know they arere-
ally grouping together? Let’s consider the standard grouping that is usually
called thenoun phraseor sometimes thenoun group. This is a sequenceNOUN

PHRASE

NOUN GROUPof words surrounding at least one noun. Here are some examples of noun
phrases (thanks to Damon Runyon):

three parties from Brooklyn
a high-class spot such as Mindy’s
the Broadway coppers
they
Harry the Horse
the reason he comes into the Hot Box

How do we know that these words group together (or ‘form a con-
stituent’)? One piece of evidence is that they can all appearin similar syn-
tactic environments, for example before a verb.

three parties from Brooklynarrive. . .
a high-class spot such as Mindy’sattracts. . .
the Broadway copperslove. . .
theysit
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But while the whole noun phrase can occur before a verb, this is not
true of each of the individual words that make up a noun phrase. The follow-
ing are not grammatical sentences of English (recall that weuse an asterisk
(*) to mark fragments that are not grammatical English sentences):

*from arrive. . .
*as attracts. . .
*the is. . .
*spot is. . .

Thus in order to correctly describe facts about the orderingof these
words in English, we must be able to say things like“Noun Phrases can
occur before verbs”.

Other kinds of evidence for constituency come from what are called
preposedor postposedconstructions. For example, the prepositional phrasePREPOSED

POSTPOSED on September seventeenthcan be placed in a number of different locations in
the following examples, including preposed at the beginning, and postposed
at the end:

On September seventeenth, I’d like to fly from Atlanta to Denver
I’d like to fly on September seventeenthfrom Atlanta to Denver
I’d like to fly from Atlanta to Denver on September seventeenth

But again, while the entire phrase can be placed differently, the indi-
vidual words making up the phrase cannot be:

*On September, I’d like to fly seventeenthfrom Atlanta to Denver
*On I’d like to fly September seventeenthfrom Atlanta to Denver
*I’d like to fly on Septemberfrom Atlanta to Denver seventeenth

Section 9.11 will give other motivations for context-free grammars
based on their ability to model recursive structures.

There are many other kinds of evidence that groups of words often
behave as a single constituent (see Radford (1988) for a goodsurvey).

9.2 CONTEXT-FREE RULES AND TREES

The most commonly used mathematical system for modeling constituent
structure in English and other natural languages is theContext-Free Gram-
mar, or CFG. Context-free grammars are also calledPhrase-StructureCFG
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Grammars, and the formalism is equivalent to what is also calledBackus-
Naur Form or BNF. The idea of basing a grammar on constituent structure
dates back to the psychologist Wilhelm Wundt (1900), but wasnot formal-
ized until Chomsky (1956), and, independently, Backus (1959).

A context-free grammar consists of a set ofrules or productions, each RULES

of which expresses the ways that symbols of the language can be grouped
and ordered together, and alexicon of words and symbols. For example,LEXICON

the following productions expresses that aNP (or noun phrase), can be NP

composed of either aProperNounor of a determiner (Det) followed by a
Nominal; aNominalcan be one or moreNouns.

NP ! Det Nominal (9.2)

NP ! ProperNoun (9.3)

Nominal ! Noun j Noun Nominal (9.4)

Context free rules can be hierarchically embedded, so we could com-
bine the previous rule with others like these which express facts about the
lexicon:

Det ! a (9.5)

Det ! the (9.6)

Noun ! flight (9.7)

The symbols that are used in a CFG are divided into two classes. The
symbols that correspond to words in the language (‘the’, ‘nightclub’) are
calledterminal symbols; the lexicon is the set of rules that introduce theseTERMINAL

terminal symbols. The symbols that express clusters or generalizations of
these are callednonterminals. In each context-free rule, the item to the rightNONTERMI­

NAL

of the arrow (!) is an ordered list of one or more terminals and nontermi-
nals, while to the left of the arrow is a single nonterminal symbol expressing
some cluster or generalization. Notice that in the lexicon,the nonterminal
associated with each word is its lexical category, or part-of-speech, which
we defined in Chapter 8.

A CFG is usually thought of in two ways: as a device for generating
sentences, or as a device for assigning a structure to a givensentence. As a
generator, we could read the! arrow as ‘rewrite the symbol on the left with
the string of symbols on the right’. So starting from the symbol

NP,
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we can use rule 9.2 to rewriteNPas

Det Nominal,

and then rule 9.4:

Det Noun,

and finally via rules 9.5 and 9.7 as

a flight,

We say the stringa flight can bederived from the nonterminalNP.DERIVED

Thus a CFG can be used to randomly generate a series of strings. This
sequence of rule expansions is called aderivation of the string of words.DERIVATION

It is common to represent a derivation by aparse tree (commonly shownPARSE TREE

inverted with the root at the top). Here is the tree representation of this
derivation:

NP

Det Nom

Noun

a flight

Figure 9.1 A parse tree for ‘a flight’.

The formal language defined by a CFG is the set of strings that are
derivable from the designatedstart symbol. Each grammar must have oneSTART

SYMBOL

designated start symbol, which is often calledS. Since context-free gram-
mars are often used to define sentences,S is usually interpreted as the ‘sen-
tence’ node, and the set of strings that are derivable fromS is the set of
sentences in some simplified version of English.

Let’s add to our sample grammar a couple of higher-level rules that
expandS, and a couple others. One will express the fact that a sentence can
consist of a noun phrase and averb phrase:VERB

PHRASE

S ! NP VP I prefer a morning flight

A verb phrase in English consists of a verb followed by assorted other
things; for example, one kind of verb phrase consists of a verb followed by
a noun phrase:
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VP ! Verb NP prefer a morning flight

Or the verb phrase may have a noun phrase and a prepositional phrase:

VP ! Verb NP PP leave Boston in the morning

Or the verb may be followed just by a preposition-phrase:

VP ! Verb PP leaving on Thursday

A prepositional phrase generally has a preposition followed by a noun
phrase. For example, a very common type of prepositional phrase in the
ATIS corpus is used to indicate location or direction:

PP ! Preposition NP from Los Angeles

The NP inside a PP need not be a location; PPs are often used with
times and dates, and with other nouns as well; they can be arbitrarily com-
plex. Here are ten examples from the ATIS corpus:

to Seattle on these flights
in Minneapolis about the ground transportation in Chicago
on Wednesday of the round trip flight on United Airlines
in the evening of the AP fifty seven flight
on the ninth of July with a stopover in Nashville

Figure 9.2 gives a sample lexicon and Figure 9.3 summarizes the gram-
mar rules we’ve seen so far, which we’ll callL0. Note that we can use the
or-symbolj to indicate that a non-terminal has alternate possible expansions.

We can use this grammar to generate sentences of this ‘ATIS-language’.
We start withS, expand it toNP VP, then choose a random expansion ofNP
(let’s say toI), and a random expansion ofVP (let’s say toVerb NP), and so
on until we generate the stringI prefer a morning flight. Figure 9.4 shows a
parse tree that represents a complete derivation ofI prefer a morning flight.

It is sometimes convenient to represent a parse tree in a morecompact
format calledbracketed notation, essentially the same as LISP tree repre-BRACKETED

NOTATION

sentation; here is the bracketed representation of the parse tree of Figure 9.4:

[S [NP [Pro I]] [ VP [V prefer] [NP [Det a] [Nom [N morning] [N flight]]]]]

A CFG like that ofL0 defines a formal language. We saw in Chapter 2
that a formal language is a set of strings. Sentences (strings of words) that
can be derived by a grammar are in the formal language defined by that
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Noun ! f lights j breezej trip j morningj : : :
Verb ! is j pre f er j like j needj want j f ly

Adjective! cheapestj non�stopj f irst j latestj other j direct j : : :
Pronoun ! mej I j youj it j : : :

Proper-Noun! Alaskaj Baltimorej Los Angelesj Chicagoj Unitedj Americanj : : :
Determiner! thej a j an j this j thesej that j : : :
Preposition! f rom j to j on j near j : : :

Conjunction ! and j or j but j : : :
Figure 9.2 The lexicon forL0.

S ! NP VP I + want a morning flight

NP ! Pronoun Ij Proper-Noun Los Angelesj Det Nominal a + flight
Nominal ! Noun Nominal morning + flightj Noun flights

VP ! Verb doj Verb NP want + a flightj Verb NP PP leave + Boston + in the morningj Verb PP leaving + on Thursday

PP ! Preposition NP from + Los Angeles

Figure 9.3 The grammar forL0, with example phrases for each rule.

grammar, and are calledgrammatical sentences. Sentences that cannot beGRAMMATI­
CAL

derived by a given formal grammar are not in the language defined by that
grammar, and are referred to asungrammatical. This hard line betweenUNGRAMMATI­

CAL

‘in’ and ‘out’ characterizes all formal languages but is only a very simplified
model of how natural languages really work. This is because determining
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S

NP VP

NP

Nom

Pro Verb Det Noun Noun

I prefer a morning flight

Figure 9.4 The parse tree for ‘I prefer a morning flight’ according to gram-
marL0

whether a given sentence is part of a given natural language (say English)
often depends on the context. In linguistics, the use of formal languages to
model natural languages is calledgenerative grammar, since the languageGENERATIVE

GRAMMAR

is defined by the set of possible sentences ‘generated’ by thegrammar.
We conclude this section by way of summary with a quick formalde-

scription of a context free grammar and the language it generates. A context-
free grammar has four parameters (technically ‘is a 4-tuple’):

1. a set of non-terminal symbols (or ‘variables’)N

2. a set of terminal symbolsΣ (disjoint fromN)

3. a set of productionsP, each of the formA! α, where A is a non-
terminal andα is a string of symbols from the infinite set of strings(Σ[N)�.

4. a designated start symbolS

A language is defined via the concept ofderivation. One stringde-
rives another one if it can be rewritten as the second one via some series of
rule applications. More formally, following Hopcroft and Ullman (1979), if
A! β is a production of P andα andγ are any strings in the set(Σ[N)�,
then we say thatαAγ directly derives αβγ, or αAγ ) αβγ. Derivation is DIRECTLY

DERIVES

then a generalization of direct derivation. Letα1; α2; : : : ; αm be strings in(Σ[N)�;m� 1, such that

α1 ) α2;α2 ) α3; : : : ;αm�1 ) αm (9.8)

We say thatα1 derivesαm, or α1
�) αm. DERIVES
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We can then formally define the languageLG generated by a grammar
G as the set of strings composed of terminal symbols which can be derived
from the designed start symbolS.

LG =Wjw is in Σ� andS
�) w (9.9)

The problem of mapping from a string of words to its parse treeis
calledparsing; we will define algorithms for parsing in Chapter 10 and inPARSING

Chapter 12.

9.3 SENTENCE-LEVEL CONSTRUCTIONS

The remainder of this chapter will introduce a few of the morecomplex as-
pects of the phrase structure of English; for consistency wewill continue
to focus on sentences from the ATIS domain. Because of space limitations,
our discussion will necessarily be limited to highlights. Readers are strongly
advised to consult Quirket al. (1985a), which is by far the best current ref-
erence grammar of English.

In the small grammarL0, we only gave a single sentence-level con-
struction for declarative sentences likeI prefer a morning flight. There are
a great number of possible overall sentence structures, but4 are particularly
common and important: declarative structure, imperative structure, yes-no-
question structure, and wh-question structure,

Sentences withdeclarative structure have a subject noun phrase fol-DECLARATIVE

lowed by a verb phrase, like ‘I prefer a morning flight’. Sentences with this
structure have a great number of different uses that we will follow up on in
Chapter 19. Here are a number of examples from the ATIS domain:

The flight should be eleven a.m tomorrow
I need a flight to Seattle leaving from Baltimore making a stopin Min-
neapolis
The return flight should leave at around seven p.m
I would like to find out the flight number for the United flight that ar-
rives in San Jose around ten p.m
I’d like to fly the coach discount class
I want a flight from Ontario to Chicago
I plan to leave on July first around six thirty in the evening

Sentences withimperative structure often begin with a verb phrase,IMPERATIVE
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and have no subject. They are called imperative because theyare almost
always used for commands and suggestions; in the ATIS domainthey are
commands to the system.

Show the lowest fare
Show me the cheapest fare that has lunch
Give me Sunday’s flights arriving in Las Vegas from Memphis and
New York City
List all flights between five and seven p.m
List all flights from Burbank to Denver
Show me all flights that depart before ten a.m and have first class fares
Show me all the flights leaving Baltimore
Show me flights arriving within thirty minutes of each other
Please list the flights from Charlotte to Long Beach arrivingafter lunch
time
Show me the last flight to leave

To model this kind of sentence structure, we can add another rule for the
expansion ofS:

S ! VP Show the lowest fare

Sentences withyes-no-questionstructure are often (though not al-YES­NO­
QUESTION

ways) used to ask questions (hence the name), and begin with aauxiliary
verb, followed by a subjectNP, followed by aVP. Here are some exam-
ples (note that the third example is not really a question buta command or
suggestion; Chapter 19 will discuss thepragmatic uses of these question
forms):

Do any of these flights have stops?
Does American’s flight eighteen twenty five serve dinner?
Can you give me the same information for United?

Here’s the rule:

S ! Aux NP VP

The most complex of the sentence-level structures we will examine
are the variouswh- structures. These are so named because one of their
constituents is awh- phrase, i.e. one that includes awh- word (who, where, WH­ PHRASE

WH­ WORD
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what, which, how, why). These may be broadly grouped into twoclasses of
sentence-level structures. Thewh-subject-questionstructure is identical to
the declarative structure, except that the first noun phrasecontains some wh-
word.

What airlines fly from Burbank to Denver?
Which flights depart Burbank after noon and arrive in Denver by six
p.m?
Which flights serve breakfast?
Which of these flights have the longest layover in Nashville?

Here is a rule. Exercise 9.10 discusses rules for the constituents that make
up theWh-NP.

S ! Wh-NP VP

In the wh-non-subject-questionstructure, the wh-phrase is not the
WH­NON­
SUBJECT­
QUESTION

subject of the sentence, and so the sentence includes another subject. In
these types of sentences the auxiliary appears before the subjectNP, just as
in the yes-no-question structures. Here is an example:

What flights do you have from Burbank to Tacoma Washington?

Here is a sample rule:

S ! Wh-NP Aux NP VP

There are other sentence-level structures we won’t try to model here,
like fronting , in which a phrase is placed at the beginning of the sentence for
various discourse purposes (for example often involving topicalization and
focus):

On Tuesday, I’d like to fly from Detroit to Saint Petersburg

9.4 THE NOUN PHRASE

We can view the noun phrase as revolving around ahead, the central nounHEAD

in the noun phrase. The syntax of English allows for both prenominal (pre-
head) modifiers and post-nominal (post-head) modifiers.
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Before the Head Noun

We have already discussed some of the parts of the noun phrase; the deter-
miner, and the use of theNominalconstituent for representing double noun
phrases. We have seen that noun phrases can begin with a determiner, as
follows:

a stop
the flights
that fare
this flight
those flights
any flights
some flights

There are certain circumstances under which determiners are optional
in English. For example, determiners may be omitted if the noun they modify
is plural:

Show meflights from San Francisco to Denver on weekdays

As we saw in Chapter 8,mass nounsdon’t require determination. Re-
call that mass nouns often (not always) involve something that is treated like
a substance (including e.g.waterandsnow), don’t take the indefinite article
‘a’, and don’t tend to pluralize. Many abstract nouns are mass nouns (music,
homework). Mass nouns in the ATIS domain includebreakfast, lunch, and
dinner:

Does this flight serve dinner?

Exercise 9.4 asks the reader to represent this fact in the CFGformalism.
Word classes that appear in the NP before the determiner are called

predeterminers. Many of these have to do with number or amount; a com-PREDETER­
MINERS

mon predeterminer isall:

all the flights
all flights

A number of different kinds of word classes can appear in the NP be-
tween the determiner and the head noun (the ‘post-determiners’). These
includecardinal numbers, ordinal numbers, andquantifiers. Examples CARDINAL

NUMBERS

ORDINAL
NUMBERS

QUANTIFIERS

of cardinal numbers:
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two friends
one stop

Ordinal numbers includefirst, second, third, etc, but also words like
next, last, past, other, andanother:

the first one
the next day
the second leg
the last flight
the other American flight
any other fares

Some quantifiers (many, (a) few, several) occur only with plural count nouns:

many fares

The quantifiersmuchanda little occur only with noncount nouns.
Adjectives occur after quantifiers but before nouns.

afirst-classfare
anonstopflight
the longestlayover
theearliestlunch flight

Adjectives can also be grouped into a phrase called anadjective phraseADJECTIVE
PHRASE

or AP. APs can have an adverb before the adjective (see Chapter 8 for defi-AP

nitions of adjectives and adverbs):

the least expensivefare

We can combine all the options for prenominal modifiers with one rule as
follows:

NP ! (Det) (Card) (Ord) (Quant) (AP) Nominal (9.10)

This simplified noun phrase rule has a flatter structure and hence is
simpler than most modern theories of grammar. We present this simplified
rule because there is no universally agreed-upon internal constituency for the
noun phrase.

Note the use of parentheses () to markoptional constituents. A rule
with one set of parentheses is really a shorthand for two rules, one with the
parentheses, one without.
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After the Noun

A head noun can be followed bypostmodifiers. Three kinds of nominal
postmodifiers are very common in English:

prepositional phrases all flightsfrom Cleveland
non-finite clauses any flightsarriving after eleven a.m.
relative clauses a flightthat serves breakfast

Prepositional phrase postmodifiers are particularly common in the ATIS
corpus, since they are used to mark the origin and destination of flights. Here
are some examples, with brackets inserted to show the boundaries of each
PP; note that more than one PP can be strung together:

any stopovers[for Delta seven fifty one]
all flights [from Cleveland] [to Newark]
arrival [in San Jose] [before seven p.m]
a reservation[on flight six oh six] [from Tampa] [to Montreal]

Here’s a newNP rule to account for one to threePPpostmodifiers:

Nominal ! Nominal PP(PP) (PP)
The three most common kinds ofnon-finite postmodifiers are the gerun-NON­FINITE

dive (-ing), -ed, and infinitive forms.
Gerundive postmodifiers are so-called because they consist of a verbGERUNDIVE

phrase that begins with the gerundive (-ing) form of the verb. In the follow-
ing examples, the verb phrases happen to all have only prepositional phrases
after the verb, but in general this verb phrase can have anything in it (any-
thing, that is, which is semantically and syntactically compatible with the
gerund verb).

any of those(leaving on Thursday)
any flights(arriving after eleven a.m)
flights (arriving within thirty minutes of each other)

We can define the NP as follows, making use of a new nonterminalGerundVP:

Nominal ! Nominal GerundVP
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We can make rules forGerundVPconstituents by duplicating all of our VP
productions, substitutingGerundVfor V.

GerundVP! GerundV NPj GerundV PPj GerundVj GerundV NP PP

GerundVcan then be defined as:

GerundV! beingj preferingj arriving j leavingj : : :
The phrases in italics below are examples of the two other common kinds of
non-finite clauses, infinitives and-ed forms:

the last flightto arrive in Boston
I need to have dinnerserved
Which is the aircraftused by this flight?

A postnominal relative clause (more correctly arestrictive relative
clause), is a clause that often begins with arelative pronoun (that andwhoRELATIVE

PRONOUN

are the most common). The relative pronoun functions as the subject of the
embedded verb in the following examples:

a flight that serves breakfast
flights that leave in the morning
the United flightthat arrives in San Jose around ten p.m.
the onethat leaves at ten thirty five

We might add rules like the following to deal with these:

Nominal ! Nominal RelClause (9.11)

RelClause! (whoj that)VP (9.12)

(9.13)

The relative pronoun may also function as the object of the embedded
verb, as in the following example; we leave as an exercise forthe reader
writing grammar rules for more complex relative clauses of this kind.
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the earliest American Airlines flight that I can get

Various postnominal modifiers can be combined, as the following examples
show:

a flight (from Phoenix to Detroit) (leaving Monday evening)
I need a flight(to Seattle) (leaving from Baltimore) (making a
stop in Minneapolis)
evening flights(from Nashville to Houston) (that serve dinner)
a friend (living in Denver) (that would like to visit me here in
Washington DC)

9.5 COORDINATION

Noun phrases and other units can beconjoined with conjunctions like and, CONJUNC­
TIONS

or, andbut. For example acoordinate noun phrase can consist of two otherCOORDINATE

noun phrases separated by a conjunction (we used brackets tomark the con-
stituents):

Please repeat [NP [NP the flights]and [NP the costs]]
I need to know [NP [NP the aircraft]and [NP flight number]]
I would like to fly from Denver stopping in [NP [NP Pittsburgh]
and [NP Atlanta]]

Here’s a new rule for this:

NP ! NP and NP (9.14)

In addition to NPs, most other kinds of phrases can be conjoined (for
example including sentences, VPs, and PPs):

What flights do you have [VP [VP leaving Denver]and [VP arriv-
ing in San Francisco]]
[S [S I’m interested in a flight from Dallas to Washington]and [S

I’m also interested in going to Baltimore]]

Similar conjunction rules can be built forVPandSconjunction:

VP ! VP and VP (9.15)

S ! S and S (9.16)
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9.6 AGREEMENT

In Chapter 3 we discussed English inflectional morphology. Recall that most
verbs in English can appear in two forms in the present tense:the form used
for third-person, singular subjects (the flight does), and the form used for all
other kinds of subjects (all the flights do, I do). The third-person-singular
(3sgform usually has a final-s where the non-3sg form does not. Here are
some examples, again using the verbdo, with various subjects:

You [VP [V said [S there were two flights that were the cheapest ]]]
Do [NP any flights] stop in Chicago?
Do [NP all of these flights] offer first class service?
Do [NP I] get dinner on this flight?
Do [NP you] have a flight from Boston to Forth Worth?
Does [NP this flight] stop in Dallas?
Does [NP that flight] serve dinner?
Does [NP Delta] fly from Atlanta to San Francisco?

Here are more examples with the verbleave:

What flightsleavein the morning?
What flight leavesfrom Pittsburgh?

This agreement phenomenon occurs whenever there is a verb that has
some noun acting as its subject. Note that sentences in whichthe subject
does not agree with the verb are ungrammatical:

*[What flight] leavein the morning?
*Does [NP you] have a flight from Boston to Forth Worth?
*Do [NP this flight] stop in Dallas?

How can we modify our grammar to handle these agreement phenom-
ena? One way is to expand our grammar with multiple sets of rules, one rule
set for3sgsubjects, and one for non-3sgsubjects. For example, the rule that
handled these yes-no-questions used to look like this:

S ! Aux NP VP

We could replace this with two rules of the following form:

S ! 3sgAux 3sgNP VP

S ! Non3sgAux Non3sgNP VP
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We could then add rules for the lexicon like these:

3sgAux! doesj hasj canj : : :
Non3sgAux! do j havej canj : : :
But we would also need to add rules for3sgNPandNon3sgNP, again

by making two copies of each rule forNP. While pronouns can be first,
second, or third person, full lexical noun phrases can only be third person,
so for them we just need to distinguish between singular and plural:

3SgNP! (Det) (Card) (Ord) (Quant) (AP) SgNominal

Non3SgNP! (Det) (Card) (Ord) (Quant) (AP) PlNominal

SgNominal! SgNounj SgNoun SgNoun

PlNominal ! PlNounj SgNoun PlNoun

SgNoun! flight j fare j dollar j reservationj : : :
PlNoun ! flightsj faresj dollars j reservationsj : : :

Dealing with the first and second person pronouns is left as anexercise for
the reader.

A problem with this method of dealing with number agreement is that
it doubles the size of the grammar. Every rule that refers to anoun or a verb
needs to have a ‘singular’ version and a ‘plural’ version. This rule prolif-
eration will also have to happen for the noun’scase; for example English CASE

pronouns havenominative (I, she, he, they) andaccusative(me, her, him, NOMINATIVE

ACCUSATIVEthem) versions. We will need new versions of everyNP andN rule for each
of these.

A more significant problem occurs in languages like German orFrench,
which not only have noun-verb agreement like English, but also havegender
agreement; the gender of a noun must agree with the gender of its modify-GENDER

AGREEMENT

ing adjective and determiner. This adds another multiplierto the rule sets of
the language.

Chapter 11 will introduce a way to deal with these agreement problems
without exploding the size of the grammar, by effectivelyparameterizing
each nonterminal of the grammar withfeature structures.

9.7 THE VERB PHRASE AND SUBCATEGORIZATION

The verb phrase consists of the verb and a number of other constituents. In
the simple rules we have built so far, these other constituents includeNP’s
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andPP’s and combinations of the two:

VP ! Verb disappear

VP ! Verb NP prefer a morning flight

VP ! Verb NP PP leave Boston in the morning

VP ! Verb PP leaving on Thursday

Verb phrases can be significantly more complicated than this. Many
other kinds of constituents can follow the verb, such as an entire embedded
sentence. These are calledsentential complements:SENTENTIAL

COMPLE­
MENTS

You [VP [V said [S there were two flights that were the cheapest ]]]
You [VP [V said [S you had a two hundred sixty six dollar fare]]
[VP [V Tell] [NP me] [S how to get from the airport in Philadelphia to
downtown]]
I [VP [V think [S I would like to take the nine thirty flight]]

Here’s a rule for these:

VP ! Verb S

Another potential constituent of the VP is another VP. This is often the
case for verbs likewant, would like, try, intend, need:

I want [VP to fly from Milwaukee to Orlando]
Hi, I want [VP to arrange three flights]
Hello, I’m trying [VP to find a flight that goes from Pittsburgh to Den-
ver after two PM

Recall from Chapter 8 that verbs can also be followed byparticles,
words that resemble a preposition but that combine with the verb to form a
phrasal verblike take off). These particles are generally considered to be
an integral part of the verb in a way that other post-verbal elements are not;
phrasal verbs are treated as individual verbs composed of two words.

While a verb phrase can have many possible kinds of constituents, not
every verb is compatible with every verb phrase. For example, the verbwant
can either be used with an NP complement (I want a flight. . .), or with an
infinitive VP complement (I want to fly to. . .). By contrast, a verb likefind
cannot take this sort of VP complement. (* I found to fly to Dallas).
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This idea that verbs are compatible with different kinds of comple-
ments is a very old one; traditional grammar distinguishes betweentran-
sitive verbs likefind, which take a direct object NP (I found a flight), and TRANSITIVE

intransitive verbs likedisappear, which do not (*I disappeared a flight). INTRANSITIVE

Where traditional grammarssubcategorizeverbs into these two cate-SUBCATEGO­
RIZE

gories (transitive and intransitive), modern grammars distinguish as many as
100 subcategories. (In fact tagsets for many suchsubcategorization frames SUBCATEGO­

RIZATION
FRAMES

exists; see (Macleodet al., 1998) for the COMLEX tagset, Sanfilippo (1993)
for the ACQUILEX tagset, and further discussion in Chapter 11). We say
that a verb likefind subcategorizes foranNP, while a verb likewantsub- SUBCATEGO­

RIZES
FOR

categorizes for either anNPor an infiniteVP. We also call these constituents
thecomplementsof the verb (hence our use of the termsentential comple- COMPLE­

MENTS

ment above). So we say thatwantcan take aVP complement. These pos-
sible sets of complements are called thesubcategorization framefor the SUBCATEGO­

RIZATION
FRAME

verb. Another way of talking about the relation between the verb and these
other constituents is to think of the verb as a predicate and the constituents
as arguments of the predicate. So we can think of such predicate-argument
relations asFIND (I, A FLIGHT), or WANT (I, TO FLY). We will talk more
about this view of verbs and arguments in Chapter 14 when we talk about
predicate calculus representations of verb semantics.

Here are some subcategorization frames and example verbs:

Frame Verb Example
/0 eat, sleep I want to eat
NP prefer, find, leave, Find the flight from Pittsburgh to Boston
NP NP show, give Show me airlines with flights from Pittsburgh
PPfrom PPto fly, travel I would like to fly, from Boston to Philadelphia
NP PPwith help, load, Can you help [NP me] [NP with a flight]
VPto prefer, want, need I would prefer [VPto to go by United airlines]
VPbrst can, would, might I can [VPbrstgo from Boston]
S mean Does this mean [S AA has a hub in Boston]?

Note that a verb can subcategorize for a particular type of verb phrase,
such as a verb phrase whose verb is an infinitive (VPto), or a verb phrase
whose verb is a bare stem (uninflected:VPbrst). Note also that a single verb
can take different subcategorization frames. The verbfind, for example, can
take anNP NPframe (find me a flight) as well as anNP frame.

How can we represent the relation between verbs and their comple-
ments in a context-free grammar? One thing we could do is to dowhat we
did with agreement features: make separate subtypes of the class Verb (Verb-
with-NP-complement Verb-with-Inf-VP-complement Verb-with-S-complement
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Verb-with-NP-plus-PP-complement, and so on):

Verb-with-NP-complement! find j leavej repeatj : : :
Verb-with-S-complement! think j believej sayj : : :

Verb-with-Inf-VP-complement! wantj try j needj : : :
Then each of ourVP rules could be modified to require the appropriate verb
subtype:

VP ! Verb-with-no-complement disappear

VP ! Verb-with-NP-comp NP prefer a morning flight

VP ! Verb-with-S-comp Ssaid there were two flights

The problem with this approach, as with the same solution to the agree-
ment feature problem, is a vast explosion in the number of rules. The stan-
dard solution to both of these problems is thefeature structure, which will
be introduced in Chapter 11. Chapter 11 will also discuss thefact that nouns,
adjectives, and prepositions can subcategorize for complements just as verbs
can.

9.8 AUXILIARIES

The subclass of verbs calledauxiliaries or helping verbs have particularAUXILIARIES

syntactic constraints which can be viewed as a kind of subcategorization.
Auxiliaries include themodal verbs can, could, may, might, must, will,MODAL

would, shall, andshould, theperfect auxiliary have, theprogressiveauxil-PERFECT

PROGRES­
SIVE iary be, and thepassiveauxiliary be. Each of these verbs places a constraint
PASSIVE on the form of the following verb, and each of these must also combine in a

particular order.
Modal verbs subcategorize for a VP whose head verb is a bare stem,

e.g. can go in the morning, will try to find a flight. The perfect verbhave
subcategorizes for a VP whose head verb is the past participle form: have
booked 3 flights. The progressive verbbe subcategorizes for a VP whose
head verb is the gerundive participle:am going from Atlanta. The passive
verbbesubcategorizes for a VP whose head verb is the past participle: was
delayed by inclement weather.
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A sentence can have multiple auxiliary verbs, but they must occur in a
particular order:

modal< perfect< progressive< passive

Here are some examples of multiple auxiliaries:

modal perfect could have been a contender
modal passive will be married
perfect progressive have been feasting
modal perfect passive might have been prevented

Auxiliaries are often treated just like verbs such aswant, seem, or in-
tend, which subcategorize for particular kinds of VP complements. Thus
canwould be listed in the lexicon as averb-with-bare-stem-VP-complement.
One way of capturing the ordering constraints among auxiliaries, commonly
used in thesystemic grammarof Halliday (1985a), is to introduce a specialSYSTEMIC

GRAMMAR

constituent called theverb group, whose subconstituents include all the aux-VERB GROUP

iliaries as well as the main verb. Some of the ordering constraints can also
be captured in a different way. Since modals, for example, donot having
a progressive or participle form, they simply will never be allow to follow
progressive or passivebe or perfecthave. Exercise 9.8 asks the reader to
write grammar rules for auxiliaries.

The passive construction has a number of properties that make it differ-
ent than other auxiliaries. One important difference is a semantic one; while
the subject of non-passive (active) sentence is often the semantic agent ofACTIVE

the event described by the verb (I prevented a catastrophe) the subject of
the passive is often the undergoer or patient of the event (a catastrophewas
prevented). This will be discussed further in Chapter 15.

9.9 SPOKEN LANGUAGE SYNTAX

The grammar of written English and the grammar of conversational spoken
English share many features, but also differ in a number of respects. This
section gives a quick sketch of a number of the characteristics of the syntax
of spoken English.

We usually use the termutterance rather thansentencefor the units UTTERANCE

of spoken language. Figure 9.5 shows some sample spoken ATISutterances
that exhibit many aspects of spoken language grammar.

This is a standard style of transcription used in transcribing speech
corpora for speech recognition. The comma ‘,’ marks a short pause, each
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the . [exhale] . . . [inhale] . . [uh] does American airlines . offer any
. one way flights . [uh] one way fares, for one hundred and sixtyone
dollars
[mm] i’d like to leave i guess between [um] . [smack] . five o’clock no,
five o’clock and [uh], seven o’clock . P M
around, four, P M
all right, [throatclear] . . i’d like to know the . give me the flight . times
. in the morning . for September twentieth . nineteen ninety one
[uh] one way
[uh] seven fifteen, please
on United airlines . . give me, the . . time . . from New York . [smack]
. to Boise-, to . I’m sorry . on United airlines . [uh] give me the flight,
numbers, the flight times from . [uh] Boston . to Dallas

Figure 9.5 Some sample spoken utterances from users interacting with the
ATIS system.

period ‘.’ marks a long pause, and the square brackets ‘[uh]’mark non-
verbal events (breaths, lipsmacks, uhs and ums).

There are a number of ways these utterances differ from written En-
glish sentences. One is in the lexical statistics; for example spoken English
is much higher in pronouns than written English; the subjectof a spoken
sentence is almost invariably a pronoun. Another is in the presence of var-
ious kinds of disfluencies (hesitations, repairs, restarts, etc) to be discussed
below. Spoken sentences often consist of short fragments orphrases (one
wayor around four PM, which are less common in written English.

Finally, these sentences were spoken with a particularprosody. ThePROSODY

prosody of an utterance includes its particularpitch contour (the rise andPITCH
CONTOUR

fall of the fundamental frequency of the soundwave), itsstress patternorSTRESS
PATTERN

rhythm (the series of stressed and unstressed syllables that make up a sen-
tence) and other similar factors like the rate (speed) of speech.

Disfluencies

Perhaps the most salient syntactic feature that distinguishes spoken and writ-
ten language is the class of phenomena known asdisfluencies. DisfluenciesDISFLUEN­

CIES

include the use ofuh andum, word repetitions, and false starts. The ATIS
sentence in Figure 9.6 shows examples of a false start and theuse ofuh. The
false start here occurs when the speaker starts by asking forone-way flights.
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and then stops and corrects herself, beginning again and asking aboutone-
way fares.

Reparandum

Interruption Point

Interregnum Repair

   Does American airlines offer any one−way flights          [uh]            one−way fares for 160 dollars?

Figure 9.6 An example of a disfluency (after Shriberg (1994)).

The segmentone-way flightsis referred to as thereparandum, and the REPARANDUM

replacing sequenceone-way faresis referred to as therepair (these terms are REPAIR

from Levelt (1983)). Theinterruption point , where the speaker breaks offINTERRUP­
TION
POINT

the original word sequence, here occurs right after the word‘flights’.
The wordsuhandum(sometimes calledfilled pauses) can be treated in FILLED

PAUSES

the lexicon like regular words, and indeed this is often how they are modeled
in speech recognition. The HMM pronunciation lexicons in speech recog-
nizers often include pronunciation models of these words, and theN-gram
grammar used by recognizers include the probabilities of these occurring
with other words.

For speech understanding, where our goal is to build a meaning for the
input sentence, it may be useful to detect these restarts in order to edit out
what the speaker probably considered the ‘corrected’ words. For example in
the sentence above, if we could detect that there was a restart, we could just
delete the reparandum, and parse the remaining parts of the sentence:

Does American airlines offer any one-way flights uhone-way fares
for 160 dollars?

How do disfluencies interact with the constituent structureof the sen-
tence? Hindle (1983) showed that the repair often has the same structure
as the constituent just before the interruption point. Thusin the example
above, the repair is a PP, as is the reparandum. This means that if it is pos-
sible to automatically find the interruption point, it is also often possible to
automatically detect the boundaries of the reparandum.

9.10 GRAMMAR EQUIVALENCE & N ORMAL FORM

A formal language is defined as a (possibly infinite) set of strings of words.
This suggests that we could ask if two grammars are equivalent by asking if
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they generate the same set of strings. In fact it is possible to have two distinct
context-free grammars generate the same language.

We usually distinguish two kinds of grammar equivalence:weak equiv-
alenceandstrong equivalence. Two grammars are strongly equivalent if
they generate the same set of stringand if they assign the same phrase struc-
ture to each sentence (allowing merely for renaming of the non-terminal
symbols). Two grammars are weakly equivalent if they generate the same
set of strings but do not assign the same phrase structure to each sentence.

It is sometimes useful to have anormal form for grammars, in whichNORMAL
FORM

each of the productions takes a particular form. For examplea context-free
grammar is inChomsky normal form (CNF) (Chomsky, 1963) if it isε-freeCHOMSKY

NORMAL
FORM

and if in addition each production is either of the formA! B C or A! a.
That is, the righthand side of each rule either has two non-terminal symbols
or one terminal symbol. Chomsky normal form grammars have binary trees
(down to the prelexical nodes), which can be useful for certain algorithms.

Any grammar can be converted into a weakly-equivalent Chomsky nor-
mal form grammar. For example a rule of the form

A ! B C D

can be converted into the following two CNF rules:

A ! B X

X ! C D

Exercise 9.11 asks the reader to formulate the complete algorithm.

9.11 FINITE STATE & CONTEXT-FREE GRAMMARS

We argued in Section 9.1 that a complex model of grammar wouldhave to
represent constituency. This is one reason that finite-state models of gram-
mar are often inadequate. Now that we have explored some of the details of
the syntax of noun phrases, we are prepared to discuss another problem with
finite-state grammars. This problem isrecursion. Recursion in a grammarRECURSION

occurs when an expansion of a non-terminal includes the non-terminal itself,
as we saw in rules likeNominal! Nominal PPin the previous section.

In order to see why this is a problem for finite-state grammars, let’s
first attempt to build a finite-state model for some of the grammar rules we
have seen so far. For example, we could model the noun phrase up to the
head with a regular expression (= FSA) as follows:
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(Det) (Card) (Ord) (Quant) (AP) Nominal

What about the postmodifiers? Let’s just try adding thePP. We could
then augment the regular expression as follows:

(Det) (Card) (Ord) (Quant) (AP) Nominal (PP)*

So to complete this regular expression we just need to expandinline
the definition ofPP, as follows:

(Det) (Card) (Ord) (Quant) (AP) Nominal (P NP)*

But wait; our definition ofNPnow presupposes anNP! We would need
to expand the rule as follows:

(Det) (Card) (Ord) (Quant) (AP) Nominal (P (Det) (Card) (Ord)
(Quant) (AP) Nominal (P NP))*

But of course theNP is back again! The problem is that NP is are-
cursive rule. There is actually a sneaky way to ‘unwind’ this particularRECURSIVE

RULE

right-recursive rule in a finite-state automaton. In general, however, recur-
sion cannot be handled in finite automata, and recursion is quite common
in a complete model of theNP (for example forRelClauseandGerundVP,
which also haveNP in their expansion):

(Det) (Card) (Ord) (Quant) (AP) Nominal (RelClausejGerundVPjPP)*

In particular, Chomsky (1959a) proved that a context-free languageL
can be generated by a finite automaton if and only if there is a context-free
grammar that generatesL that does not have anycenter-embeddedrecur-
sions (recursions of the formA! α A β).

While it thus seems at least likely that we can’t model all of English
syntax with a finite state grammar, it is possible to build an FSA that approx-
imates English (for example by expanding only a certain number ofNPs). In
fact there are algorithms for automatically generating finite-state grammars
that approximate context-free grammars (Pereira and Wright, 1997).

Chapter 10 will discuss an augmented version of the finite-state au-
tomata called therecursive transition network or RTN that adds the com-
plete power of recursion to the FSA. The resulting machine isexactly iso-
morphic to the context-free grammar, and can be a useful metaphor for
studying CFGs in certain circumstances.
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9.12 GRAMMARS & H UMAN PROCESSING

Do people use context-free grammars in their mental processing of lan-
guage? It has proved very difficult to find clear-cut evidencethat they do.
For example, some early experiments asked subjects to judgewhich words
in a sentence were more closely connected (Levelt, 1970), finding that their
intuitive group corresponded to syntactic constituents. Other experimenters
examined the role of constituents in auditory comprehension by having sub-
jects listen to sentences while also listening to short “clicks” at different
times. Fodor and Bever (1965) found that subjects often mis-heard the
clicks as if they occurred at constituent boundaries. They argued that the
constituent was thus a ‘perceptual unit’ which resisted interruption. Unfor-
tunately there were severe methodological problems with the click paradigm
(see for example Clark and Clark (1977) for a discussion).

A broader problem with all these early studies is that they donot con-
trol for the fact that constituents are often semantic unitsas well as syntactic
units. Thus, as will be discussed further in Chapter 15,a single odd blockis a
constituent (anNP) but also a semantic unit (an object of typeBLOCK which
has certain properties). Thus experiments which show that people notice the
boundaries of constituents could simply be measuring a semantic rather than
a syntactic fact.

Thus it is necessary to find evidence for a constituent which is not
a semantic unit. Furthermore, since there are many non-constituent-based
theories of grammar based on lexical dependencies, it is important to find
evidence that cannot be interpreted as alexical fact; i.e. evidence for con-
stituency that is not based on particular words.

One suggestive series of experiments arguing for constituency has come
from Kathryn Bock and her colleagues. Bock and Loebell (1990), for exam-
ple, avoided all these earlier pitfalls by studying whethera subject who uses
a particular syntactic constituent (for example a verb-phrase of a particular
type, likeV NP PP), is more likely to use the constituent in following sen-
tences. In other words, they asked whether use of a constituent primesits
use in subsequent sentences. As we saw in previous chapters,priming is a
common way to test for the existence of a mental structure. Bock and Loe-
bell relied on the Englishditransitive alternation . A ditransitive verb is one
like givewhich can take two arguments:

(9.17) The wealthy widow gave [NP the church] [NP her Mercedes].

The verbgiveallows another possible subcategorization frame, called
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a prepositional dative in which the indirect object is expressed as a prepo-
sitional phrase:

(9.18) The wealthy widow gave [NP her Mercedes] [PP to the church].

As we discussed on page 339, many verbs other thangive have such
alternations (send, sell, etc; see Levin (1993) for a summary of many dif-ALTERNA­

TIONS

ferent alternation patterns). Bock and Loebell relied on these alternations by
giving subjects a picture, and asking them to describe it in one sentence. The
picture was designed to elicit verbs likegiveor sellby showing an event such
as a boy handing an apple to a teacher. Since these verbs alternate, subjects
might, for example, sayThe boy gave the apple to the teacheror The boy
gave the teacher an apple.

Before describing the picture, subjects were asked to read an unrelated
‘priming’ sentence out loud; the priming sentences either had V NP NPor
V NP PPstructure. Crucially, while these priming sentences had the same
constituent structureas the dative alternation sentences, they did not have the
samesemantics. For example, the priming sentences might be prepositional
locatives, rather thandatives:

(9.19) IBM moved [NP a bigger computer] [PP to the Sears store].

Bock and Loebell found that subjects who had just read aV NP PP
sentence were more like to use aV NP PPstructure in describing the picture.
This suggested that the use of a particular constituentprimedthe later use of
that constituent, and hence that the constituent must be mentally represented
in order to prime and be primed.

In more recent work, Bock and her colleagues have continued to find
evidence for this kind of constituency structure.

There is a quite different disagreement about the human use of context-
free grammars. Many researchers have suggested that natural language is
unlike a formal language, and in particular that the set of possible sentences
in a language cannot be described by purely syntactic context-free grammar
productions. They argue that a complete model of syntactic structure will
prove to be impossible unless it includes knowledge from other domains
(for example like semantic, intonational, pragmatic, and social/interactional
domains). Others argue that the syntax of natural language can be repre-
sented by formal languages. This second position is calledmodularist: re- MODULARIST

searchers holding this position argue that human syntacticknowledge is a
distinct module of the human mind. The first position, in which grammatical
knowledge may incorporate semantic, pragmatic, and other constraints, is
calledanti-modularist . We will return to this debate in Chapter 15. ANTI­

MODULARIST
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9.13 SUMMARY

This chapter has introduced a number of fundamental concepts in syntax via
thecontext-free grammar.� In many languages, groups of consecutive words act as a groupor a

constituent, which can be modeled bycontext-free grammars(also
known asphrase-structure grammars.� A context-free grammar consists of a set ofrules or productions, ex-
pressed over a set ofnon-terminal symbols and a set ofterminal sym-
bols. Formally, a particularcontext-free languageis the set of strings
which can bederived from a particularcontext-free grammar.� A generative grammaris a traditional name in linguistics for a formal
language which is used to model the grammar of a natural language.� There are many sentence-level grammatical constructions in English;
declarative, imperative, yes-no-question, andwh-questionare four
very common types, which can be modeled with context-free rules.� An English noun phrase can havedeterminers, numbers, quanti-
fiers, andadjective phrasespreceding thehead noun, which can be
followed by a number ofpostmodifiers; gerundive VPs, infinitives
VPs, andpast participial VPs are common possibilities.� Subjectsin Englishagreewith the main verb in person and number.� Verbs can besubcategorizedby the types ofcomplementsthey ex-
pect. Simple subcategories aretransitive andintransitive ; most gram-
mars include many more categories than these.� The correlate ofsentencesin spoken language are generally calledut-
terances. Utterances may bedisfluent, containingfilled pauseslike
umanduh, restarts, andrepairs.� Any context-free grammar can be converted toChomsky normal form,
in which the right-hand-side of each rule has either two non-terminals
or a single terminal.� Context-free grammars are more powerful than finite-state automata,
but it is nonetheless possible toapproximate a context-free grammar
with a FSA.� There is some evidence that constituency plays a role in the human
processing of language.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

“den sprachlichen Ausdruck für die willkürliche Gliederung einer Ge-
sammtvorstellung in ihre in logische Beziehung zueinandergesetzten
Bestandteile”
“the linguistic expression for the arbitrary division of a total idea into
its constituent parts placed in logical relations to one another”

Wundt’s (1900:240) definition of the sentence; the origin of
the idea of phrasal constituency, cited in Percival (1976).

The recent historical research of Percival (1976) has made it clear
that this idea of breaking up a sentence into a hierarchy of constituents ap-
peared in theVölkerpsychologieof the groundbreaking psychologist Wil-
helm Wundt (Wundt, 1900). By contrast, traditional European grammar,
dating from the Classical period, defined relations betweenwordsrather than
constituents. Wundt’s idea of constituency was taken up into linguistics by
Leonard Bloomfield in his early bookAn Introduction to the Study of Lan-
guage(Bloomfield, 1914). By the time of his later bookLanguage(Bloom-
field, 1933), what was then called ‘immediate-constituent analysis’ was a
well-established method of syntactic study in the United States. By contrast,
European syntacticians retained an emphasis on word-basedor dependency
grammars; Chapter 12 discusses some of these issues in introducing depen-
dency grammar.

American Structuralism saw a number of specific definitions of the
immediate constituent, couched in terms of their search fora ‘discovery pro-
cedure’; a methodological algorithm for describing the syntax of a language.
In general, these attempt to capture the intuition that “Theprimary criterion
of the immediate constituent is the degree in which combinations behave as
simple units” (Bazell, 1952, p. 284). The most well-known ofthe specific
definitions is Harris’ idea of distributional similarity toindividual units, with
the substitutabilitytest. Essentially, the method proceeded by breaking up
a construction into constituents by attempting to substitute simple structures
for possible constituents — if a substitution of a simple form, sayman, was
substitutable in a construction for a more complex set (likeintense young
man), then the formintense young manwas probably a constituent. Har-
ris’s test was the beginning of the intuition that a constituent is a kind of
equivalence class.
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The first formalization of this idea of hierarchical constituency was
thephrase-structure grammar defined in Chomsky (1956), and further ex-
panded upon (and argued against) in Chomsky (1957) and Chomsky (1975).
From this time on, most generative linguistic theories werebased at least
in part on context-free grammars (such as Head-Driven Phrase Structure
Grammar (Pollard and Sag, 1994), Lexical-Functional Grammar (Bresnan,
1982), Government and Binding (Chomsky, 1981), and Construction Gram-
mar (Kay and Fillmore, 1999),inter alia); many of these theories used
schematic context-free templates known asX-bar schemata.X­BAR

SCHEMATA

Shortly after Chomsky’s initial work, the context-free grammar was re-
discovered by Backus (1959) and independently by Nauret al.(1960) in their
descriptions of the ALGOL programming language; Backus (1996) noted
that he was influenced by the productions of Emil Post and thatNaur’s work
was independent of his (Backus’) own. After this early work,a great num-
ber of computational models of natural language processingwere based on
context-free grammars because of the early development of efficient algo-
rithms to parse these grammars (see Chapter 10).

As we have already noted, grammars based on context-free rules are
not ubiquitous. One extended formalism is Tree Adjoining Grammar (TAG)
(Joshi, 1985). The primary data structure in Tree AdjoiningGrammar is the
tree, rather than the rule. Trees come in two kinds;initial trees andauxiliary
trees. Initial trees might, for example, represent simple sentential structures,
while auxiliary trees are used to add recursion into a tree. Trees are combined
by two operations calledsubstitution andadjunction. See Joshi (1985) for
more details. An extension of Tree Adjoining Grammar calledLexicalized
Tree Adjoining Grammars will be discussed in Chapter 12.

Another class of grammatical theories that are not based on context-
free grammars are instead based on the relation between words rather than
constituents. Various such theories have come to be known asdependency
grammars; representative examples include the dependency grammar of
Mel’čuk (1979), the Word Grammar of Hudson (1984), or the Constraint
Grammar of Karlssonet al. (1995). Dependency-based grammars have re-
turned to popularity in modern statistical parsers, as the field have come to
understand the crucial role of word-to-word relations; seeChapter 12 for
further discussion.

Readers interested in general references grammars of English should
waste no time in getting hold of Quirket al.(1985a). Other useful treatments
include McCawley (1998).
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There are many good introductory textbook on syntax. Sag andWasow
(1999) is an introduction toformal syntax, focusing on the use of phrase-FORMAL

SYNTAX

structure, unification, and the type-hierarchy in Head-Driven Phrase Struc-
ture Grammar. van Valin (1999) is an introduction from a lessformal, more
functional perspective, focusing on cross-linguistic data and on the func-
tional motivation for syntactic structures.

EXERCISES

9.1 Draw tree structures for the following ATIS phrases:

a. Dallas

b. from Denver

c. after five p.m.

d. arriving in Washington

e. early flights

f. all redeye flights

g. on Thursday

h. a one-way fare

i. any delays in Denver

9.2 Draw tree structures for the following ATIS sentences:

a. Does American airlines have a flight between five a.m. and sixa.m.

b. I would like to fly on American airlines.

c. Please repeat that.

d. Does American 487 have a first class section?

e. I need to fly between Philadelphia and Atlanta.

f. What is the fare from Atlanta to Denver?

g. Is there an American airlines flight from Philadelphia to Dallas?

9.3 Augment the grammar rules on page 337 to handle pronouns. Deal
properly with person and case.
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9.4 Modify the noun phrase grammar of Sections 9.4–9.6 to correctly model
mass nouns and their agreement properties

9.5 How many types of NPs would rule (9.10) on page 332 expand to ifwe
didn’t allow parentheses in our grammar formalism?

9.6 Assume a grammar that has many VPs rules for different subcatego-
rization, as expressed in Section 9.7, and differently subcategorized verb
rules likeVerb-with-NP-complement. How would the rule for post-nominal
relative clauses (9.12) need to be modified if we wanted to deal properly with
examples likethe earliest flight that you have? Recall that in such examples
the pronounthat is the object of the verbget. Your rules should allow this
noun phrase but should correctly rule out the ungrammaticalS *I get.

9.7 Does your solution to the previous problem correctly model the NPthe
earliest flight that I can get? How aboutthe earliest flight that I think my
mother wants me to book for her? Hint: this phenomenon is calledlong-
distance dependency.

9.8 Write rules expressing the verbal subcategory of English auxiliaries;
for example you might have a rulecan! verb-with-bare-stem-VP-complement.

9.9 NPs likeFortune’s officeor my uncle’s marksare calledpossessiveorPOSSESSIVE

genitive noun phrases. A possessive noun phrase can be modeled by treatedGENITIVE

the sub-NP likeFortune’sor my uncle’sas a determiner of the following head
noun. Write grammar rules for English possessives. You may treat’s as if it
were a separate word (i.e. as if there were always a space before ’s).

9.10 Page 330 discussed the need for aWh-NPconstituent. The simplest
Wh-NP is one of the wh-pronouns (who, whom, whose, which). The Wh-
words, whatandwhichcan be determiners:which four will you have?, what
credit do you have with the Duke?. Write rules for the different types of
Wh-NPs.

9.11 Write an algorithm for converting an arbitrary context-free grammar
into Chomsky normal form.



10
PARSING WITH
CONTEXT-FREE
GRAMMARS

There are and can exist but two ways of investigating and dis-
covering truth. The one hurries on rapidly from the senses and
particulars to the most general axioms, and from them. . . derives
and discovers the intermediate axioms. The other constructs its
axioms from the senses and particulars, by ascending continu-
ally and gradually, till it finally arrives at the most general ax-
ioms.

Francis Bacon,Novum OrganumBook I.19 (1620)

By the 17th century, the western philosophical tradition had begun
to distinguish two important insights about human use and acquisition of
knowledge. Theempiricist tradition, championed especially in Britain, byEMPIRICIST

Bacon and Locke, focused on the way that knowledge is inducedand rea-
soning proceeds based on data and experience from the external world. The
rationalist tradition, championed especially on the Continent by Descartes RATIONALIST

but following a tradition dating back to Plato’s Meno, focused on the way
that learning and reasoning is guided by prior knowledge andinnate ideas.

This dialectic continues today, and has played a important role in char-
acterizing algorithms forparsing. We defined parsing in Chapter 3 as a
combination of recognizing an input string and assigning some structure to
it. Syntactic parsing, then, is the task of recognizing a sentence and assigning
a syntactic structure to it. This chapter focuses on the kindof structures as-
signed by the context-free grammars of Chapter 9. Since context-free gram-
mars are a declarative formalism, they don’t specify how theparse tree for
a given sentence should be computed. This chapter will, therefore, present
some of the many possible algorithms for automatically assigning a context-
free (phrase structure) tree to an input sentence.
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Parse trees are directly useful in applications such asgrammar check-
ing in word-processing systems; a sentence which cannot be parsed may
have grammatical errors (or at least be hard to read). In addition, parsing is
an important intermediate stage of representation forsemantic analysis(as
we will see in Chapter 15), and thus plays an important role inapplications
like machine translation, question answering, and information extrac-
tion. For example, in order to answer the question

What books were written by British women authors before 1800?

we’ll want to know that the subject of the sentence waswhat booksand that
theby-adjunctwasBritish women authorsto help us figure out that the user
wants a list of books (and not just a list of authors). Syntactic parsers are also
used in lexicography applications for building on-line versions of dictionar-
ies. Finally, stochastic versions of parsing algorithms have recently begun to
be incorporated intospeech recognizers, both for language models(Ney,
1991) and for non-finite-state acoustic and phonotactic modeling (Lari and
Young, 1991).

The main parsing algorithm presented in this chapter is theEarley al-
gorithm (Earley, 1970), one of the context-free parsing algorithms based on
dynamic programming. We have already seen a number of dynamic pro-
gramming algorithms – Minimum-Edit-Distance, Viterbi, Forward. The Ear-
ley algorithm is one of three commonly-used dynamic programming parsers;
the others are the Cocke-Younger-Kasami (CYK) algorithm which we will
present in Chapter 12, and the Graham-Harrison-Ruzzo (GHR)(Graham
et al., 1980) algorithm. Before presenting the Earley algorithm,we begin by
motivating various basic parsing ideas which make up the algorithm. First,
we revisit the ‘search metaphor’ for parsing and recognition, which we in-
troduced for finite-state automata in Chapter 2, and talk about thetop-down
andbottom-up search strategies. We then introduce a ‘baseline’ top-down
backtracking parsing algorithm, to introduce the idea of simple but efficient
parsing. While this parser is perspicuous and relatively efficient, it is unable
to deal efficiently with the important problem ofambiguity: a sentence or
words which can have more than one parse. The final section of the chapter
then shows how the Earley algorithm can use insights from thetop-down
parser with bottom-up filtering to efficiently handle ambiguous inputs.
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10.1 PARSING AS SEARCH

Chapters 2 and 3 showed that finding the right path through a finite-state
automaton, or finding the right transduction for an input, can be viewed as
a search problem. For FSAs, for example, the parser is searching through
the space of all possible paths through the automaton. In syntactic parsing,
the parser can be viewed as searching through the space of allpossible parse
trees to find the correct parse tree for the sentence. Just as the search space of
possible paths was defined by the structure of the FSA, so the search space
of possible parse trees is defined by the grammar. For example, consider the
following ATIS sentence:

(10.1) Book that flight.

Using the miniature grammar and lexicon in Figure 10.2, which con-
sists of some of the CFG rules for English introduced in Chapter 9, the cor-
rect parse tree that would be would assigned to this example is shown in
Figure 10.1.

S

VP

NP

Nom

Verb Det Noun

Book that flight

Figure 10.1 The correct parse tree for the sentenceBook that flightaccord-
ing to the grammar in Figure 10.2.

How can we use the grammar in Figure 10.2 to assign the parse tree in
Figure 10.1 to Example (10.1)? (In this case there is only oneparse tree, but
it is possible for there to be more than one.) The goal of a parsing search is to
find all trees whose root is the start symbolS, which cover exactly the words
in the input. Regardless of the search algorithm we choose, there are clearly
two kinds of constraints that should help guide the search. One kind of
constraint comes from the data, i.e. the input sentence itself. Whatever else
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S ! NP VP Det ! that j this j a
S ! Aux NP VP Noun! bookj flight j mealj money
S ! VP Verb ! bookj includej prefer
NP ! Det Nominal Aux ! does
Nominal ! Noun
Nominal ! Noun Nominal Prep ! from j to j on
NP ! Proper-Noun Proper-Noun! Houstonj TWA
VP ! Verb
VP ! Verb NP Nominal ! Nominal PP

Figure 10.2 A miniature English grammar and lexicon.

is true of the final parse tree, we know that there must be threeleaves, and
they must be the wordsbook, that, andflight. The second kind of constraint
comes from the grammar. We know that whatever else is true of the final
parse tree, it must have one root, which must be the start symbol S.

These two constraints, recalling the empiricist/rationalist debate de-
scribed at the beginning of this chapter, give rise to the twosearch strategies
underlying most parsers:top-down or goal-directed searchandbottom-up
or data-directed search.

Top-Down Parsing

A top-down parser searches for a parse tree by trying to build from the rootTOP­DOWN

nodeSdown to the leaves. Let’s consider the search space that a top-down
parser explores, assuming for the moment that it builds all possible trees in
parallel. The algorithm starts by assuming the input can be derived by the
designated start symbolS. The next step is to find the tops of all trees which
can start withS, by looking for all the grammar rules withSon the left-hand
side. In the grammar in Figure 10.2, there are three rules that expandS, so
the secondply, or level, of the search space in Figure 10.3 has three partialPLY

trees.
We next expand the constituents in these three new trees, just as we

originally expandedS. The first tree tells us to expect anNP followed by a
VP, the second expects anAux followed by anNP and aVP, and the third a
VPby itself. To fit the search space on the page, we have shown in the third
ply of Figure 10.3 only the trees resulting from the expansion of the left-most
leaves of each tree. At each ply of the search space we use the right-hand-
sides of the rules to provide new sets of expectations for theparser, which
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S

S S S

NP VP AUX NP VP VP

S S S S S S

NP VP NP VP Aux NP VP Aux NP VP VP VP

Det Nom PropN Det Nom PropN V NP V

Figure 10.3 An expanding top-down search space. Each ply is created by
taking each tree from the previous ply, replacing the leftmost non-terminal
with each of its possible expansions, and collecting each ofthese trees into a
new ply.

are then used to recursively generate the rest of the trees. Trees are grown
downward until they eventually reach the part-of-speech categories at the
bottom of the tree. At this point, trees whose leaves fail to match all the
words in the input can be rejected, leaving behind those trees that represent
successful parses.

In Figure 10.3, only the 5th parse tree (the one which has expanded
the ruleVP! Verb NP) will eventually match the input sentenceBook that
flight. The reader should check this for themselves in Figure 10.1.

Bottom-Up Parsing

Bottom-up parsing is the earliest known parsing algorithm (it was firstsug- BOTTOM­UP

gested by Yngve (1955)), and is used in the shift-reduce parsers common
for computer languages (Aho and Ullman, 1972). In bottom-upparsing, the
parser starts with the words of the input, and tries to build trees from the
words up, again by applying rules from the grammar one at a time. The
parse is successful if the parser succeeds in building a treerooted in the start
symbolSthat covers all of the input. Figure 10.4 show the bottom-up search
space, beginning with the sentenceBook that flight. The parser begins by
looking up each word (book, that, andflight) in the lexicon and building
three partial trees with the part of speech for each word. Butthe wordbook
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is ambiguous; it can be a noun or a verb. Thus the parser must consider
two possible sets of trees. The first two plies in Figure 10.4 show this initial
bifurcation of the search space.

Book that flight

Noun Det Noun Verb Det Noun

Book that flight Book that flight

NOM NOM NOM

Noun Det Noun Verb Det Noun

Book that flight Book that flight

NP NP

NOM NOM VP NOM NOM

Noun Det Noun Verb Det Noun Verb Det Noun

Book that flight Book that flight Book that flight

VP

VP NP NP

NOM NOM

Verb Det Noun Verb Det Noun

Book that flight Book that flight

Figure 10.4 An expanding bottom-up search space for the sentenceBook
that flight. This figure does not show the final tier of the search with the correct
parse tree (see Figure 10.1). Make sure you understand how that final parse
tree follows from the search space in this figure.

Each of the trees in the second ply are then expanded. In the parse
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on the left (the one in whichbook is incorrectly considered a noun), the
Nominal!Nounrule is applied to both of theNouns (bookandflight). This
same rule is also applied to the soleNoun(flight) on the right, producing the
trees on the third ply.

In general, the parser extends one ply to the next by looking for places
in the parse-in-progress where the right-hand-side of somerule might fit.
This contrasts with the earlier top-down parser, which expanded trees by ap-
plying rules when their left-hand side matched an unexpanded nonterminal.
Thus in the fourth ply, in the first and third parse, the sequenceDet Nominal
is recognized as the right-hand side of theNP! Det Nominalrule.

In the fifth ply, the interpretation ofbookas a noun has been pruned
from the search space. This is because this parse cannot be continued: there
is no rule in the grammar with the right-hand sideNominal NP.

The final ply of the search space (not shown in Figure 10.4) is the
correct parse tree (see Figure 10.1). Make sure you understand which of the
two parses on the penultimate ply gave rise to this parse.

Comparing Top-down and Bottom-up Parsing

Each of these two architectures has its own advantages and disadvantages.
The top-down strategy never wastes time exploring trees that cannot result
in an S, since it begins by generating just those trees. This means it also
never explores subtrees that cannot find a place in someS-rooted tree. In the
bottom-up strategy, by contrast, trees that have no hope of leading to anS,
or fitting in with any of their neighbors, are generated with wild abandon.
For example the left branch of the search space in Figure 10.4is completely
wasted effort; it is based on interpretingbookas aNounat the beginning of
the sentence despite the fact no such tree can lead to anSgiven this grammar.

The top-down approach has its own inefficiencies. While it does not
waste time with trees that do not lead to anS, it does spend considerable
effort on S trees that are not consistent with the input. Note that the first
four of the six trees in the third ply in Figure 10.3 all have left branches that
cannot match the wordbook. None of these trees could possibly be used
in parsing this sentence. This weakness in top-down parsersarises from the
fact that they can generate trees before ever examining the input. Bottom-up
parsers, on the other hand, never suggest trees that are not at least locally
grounded in the actual input.

Neither of these approaches adequately exploits the constraints pre-
sented by the grammar and the input words. In the next section, we present
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a baseline parsing algorithm that incorporates features ofboth the top-down
and bottom-up approaches. This parser is not as efficient as the Earley or
CYK parsers we will introduce later, but it is useful for showing the basic
operations of parsing.

10.2 A BASIC TOP-DOWN PARSER

There are any number of ways of combining the best features oftop-down
and bottom-up parsing into a single algorithm. One fairly straightforward
approach is to adopt one technique as the primary control strategy used to
generate trees and then use constraints from the other technique to filter out
inappropriate parses on the fly. The parser we develop in thissection uses a
top-down control strategy augmented with a bottom-up filtering mechanism.
Our first step will be to develop a concrete implementation ofthe top-down
strategy described in the last section. The ability to filterbad parses based on
bottom-up constraints from the input will then be grafted onto this top-down
parser.

In our discussions of both top-down and bottom-up parsing, we as-
sumed that we would explore all possible parse trees inparallel. Thus eachPARALLEL

ply of the search in Figure 10.3 and Figure 10.4 showed all possible expan-
sions of the parse trees on the previous plies. Although it iscertainly possible
to implement this method directly, it typically entails theuse of an unrealistic
amount of memory to store the space of trees as they are being constructed.
This is especially true since realistic grammars have much more ambiguity
than the miniature grammar in Figure 10.2.

A more reasonable approach is to use adepth-first strategy such asDEPTH­FIRST
STRATEGY

the one used to implement the various finite state machines inChapter 2 and
Chapter 3. The depth-first approach expands the search spaceincrementally
by systematically exploring one state at a time. The state chosen for expan-
sion is the most recently generated one. When this strategy arrives at a tree
that is inconsistent with the input, the search continues byreturning to the
most recently generated, as yet unexplored, tree. The net effect of this strat-
egy is a parser that single-mindedly pursues trees until they either succeed or
fail before returning to work on trees generated earlier in the process. Figure
10.5 illustrates such a top-down, depth-first derivation using Grammar 10.2.

Note that this derivation is not fully determined by the specification of a
top-down, depth-first strategy. There are two kinds of choices that have been
left unspecified that can lead to different derivations: thechoice of which



Section 10.2. A Basic Top-down Parser 361

S ) S ) S ) S

NP VP NP VP NP VP

Det Nom Det Nom

Noun) S ) S

NP VP NP VP

Det Nom Verb NP Det Nom Verb NP

Noun Noun Det Nom) S

NP VP

Det Nom Verb NP

Noun Det Nom

Noun

Figure 10.5 A top-down depth-first derivation with the grammar in Fig-
ure 10.2.

leaf node of a tree to expand and the order in which applicablegrammar
rules are applied. In this derivation, the left-most unexpanded leaf node of
the current tree is being expanded first, and the applicable rules of the gram-
mar are being applied according to their textual order in thegrammar. The
decision to expand the left-most unexpanded node in the treeis important
since it determines the order in which the input words will beconsulted as
the tree is constructed. Specifically, it results in a relatively natural forward
incorporation of the input words into a tree. The second choice of applying
rules in their textual order has consequences that will be discussed later.

Figure 10.6 presents a parsing algorithm that instantiatesthis top-down,
depth-first, left-to-right strategy. This algorithm maintains anagendaof AGENDA
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function TOP-DOWN-PARSE(input, grammar) returns a parse tree

agenda (Initial S tree, Beginning of input)
current-search-state POP(agenda)
loop
if SUCCESSFUL-PARSE?(current-search-state) then

return TREE(current-search-state)
else

if CAT(NODE-TO-EXPAND(current-search-state)) is a POSthen
if CAT(node-to-expand)�

POS(CURRENT-INPUT(current-search-state)) then
PUSH(APPLY-LEXICAL -RULE(current-search-state),agenda)

else
return reject

else
PUSH(APPLY-RULES(current-search-state, grammar),agenda)

if agendais emptythen
return reject

else
current-search-state NEXT(agenda)

end

Figure 10.6 A top-down, depth-first left-to-right parser.

search-states. Each search-state consists of partial trees together with a
pointer to the next input word in the sentence.

The main loop of the parser takes a state from the front of the agenda
and produces a new set of states by applying all the applicable grammar rules
to the left-most unexpanded node of the tree associated withthat state. This
set of new states is then added to the front of the agenda in accordance with
the textual order of the grammar rules that were used to generate them. This
process continues until either a successful parse tree is found or the agenda
is exhausted indicating that the input can not be parsed.

Figure 10.7 shows the sequence of states examined by this algorithm
in the course of parsing the following sentence.

(10.2) Does this flight include a meal?

In this figure, the node currently being expanded is shown in abox, while
the current input word is bracketed. Words to the left of the bracketed word
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S S S S

NP VP NP VP NP VP

Det Nom PropN

[Does] [Does] [Does] [Does]

S S S

AUX NP VP AUX NP VP AUX NP VP

Det Nom

[Does] Does [this] Does [this]

S S

AUX NP VP AUX NP VP

Det Nom Det Nom

Noun

Does this [flight] Does this [flight]

S S

AUX NP VP AUX NP VP

Det Nom Det Nom Verb

Noun Noun

Does this flight [include] Does this flight [include]

Figure 10.7 A top-down, depth-first, left to right derivation.

have already been incorporated into the tree.
The parser begins with a fruitless exploration of theS ! NP VPrule,

which ultimately fails because the wordDoescannot be derived from any
of the parts-of-speech that can begin anNP. The parser thus eliminates the
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S S

Aux NP VP Aux NP VP

Det Nom Verb NP Det Nom Verb NP

Noun Noun

Does this flight [include] Does this flight include [a]

S S

Aux NP VP Aux NP VP

Det Nom Verb NP Det Nom Verb NP

Noun Det Nom Noun Det Nom

Does this flight include [a] Does this flight include a [meal]

S

Aux NP VP

Det Nom Verb NP

Noun Det Nom

Noun

Does this flight include a [meal]

Figure 10.8 A top-down, depth-first, left to right derivation continued.

S ! NP VP rule. The next search-state on the agenda corresponds to the
S ! Aux NP VPrule. Once this state is found, the search continues in a
straightforward depth-first, left to right fashion throughthe rest of the deriva-
tion.
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Adding Bottom-up Filtering

Figure 10.7 shows an important qualitative aspect of the top-down parser.
Beginning at the root of the parse tree, the parser expands non-terminal sym-
bols along the left edge of the tree, down to the word at the bottom left
edge of the tree. As soon as a word is incorporated into a tree,the input
pointer moves on, and the parser will expand the new next left-most open
non-terminal symbol down to the new left corner word.

Thus in any successful parse the current input word must serve as the
first word in the derivation of the unexpanded node that the parser is currently
processing. This leads to an important consequence which will be useful in
adding bottom-up filtering. The parser should not consider any grammar
rule if the current input cannot serve as thefirst word along the left edge of
some derivationfrom this rule. We call the first word along the left edge of
a derivation theleft-corner of the tree. LEFT­CORNER

VP VP

NP

Nom

Verb Det Noun Noun Verb Det Noun Noun

prefer a morning flight prefer a morning flight

Figure 10.9 An illustration of the left-corner notion. The nodeVerb and
the nodepreferare both left-corners ofVP.

Consider the parse tree for aVP shown in Figure 10.9. If we visualize
the parse tree for thisVP as a triangle with the words along the bottom,
the wordprefer lies at the lower left-corner of the tree. Formally, we can
say that for non-terminalsA andB, B is a left-corner ofA if the following
relation holds:

A
�) Bα

In other words,B can be a left-corner ofA if there is a derivation ofA that
begins with aB.

We return to our example sentenceDoes this flight include a meal?
The grammar in Figure 10.2 provides us with three rules that can be used to
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expand the categoryS:

S ! NP VP

S ! Aux NP VP

S ! VP

Using the left-corner notion, it is easy to see that only theS! Aux NP VP
rule is a viable candidate since the wordDoescan not serve as the left-corner
of either theNP or theVP required by the other twoS rules. Knowing this,
the parser should concentrate on theAux NP VPrule, without first construct-
ing and backtracking out of the others, as it did with the non-filtering exam-
ple shown in Figure 10.7.

The information needed to efficiently implement such a filtercan be
compiled in the form of a table that lists all the valid left-corner categories
for each non-terminal in the grammar. When a rule is considered, the table
entry for the category that starts the right hand side of the rule is consulted. If
it fails to contain any of the parts-of-speech associated with the current input
then the rule is eliminated from consideration. The following table shows
the left-corner table for Grammar 10.2.

Category Left Corners
S Det, Proper-Noun, Aux, Verb

NP Det, Proper-Noun
Nominal Noun

VP Verb

Using this left-corner table as a filter in the parsing algorithm of Figure 10.6
is left as Exercise 10.1 for the reader.

10.3 PROBLEMS WITH THE BASIC TOP-DOWN PARSER

Even augmented with bottom-up filtering, the top-down parser in Figure 10.7
has three problems that make it an insufficient solution to the general-purpose
parsing problem. These three problems areleft-recursion, ambiguity, and
inefficient reparsing of subtrees. After exploring the nature of these three
problems, we will introduce the Earley algorithm which is able to avoid all
of them.
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Left-Recursion

Depth-first search has a well-known flaw when exploring an infinite search
space: it may dive down an infinitely-deeper path and never return to visit
the unexpanded states. This problem manifests itself in top-down, depth-
first, left-to-right parsers whenleft-recursive grammarsare used. Formally, LEFT­

RECURSIVE
GRAMMARS

a grammar is left-recursive if it contains at least one non-terminal A, such
thatA

�) αAβ, for someα andβ andα �) ε. In other words, a grammar
is left-recursive if it contains a non-terminal category that has a derivation
that includes itself anywhere along its leftmost branch. The grammar of
Chapter 9 had just such a left-recursive example, in the rules for possessive
NPs like Atlanta’s airport:

NP ! Det Nominal

Det ! NP 0 s

These rules introduce left-recursion into the grammar since there is a deriva-
tion for the first element of theNP, theDet, that has anNP as its first con-
stituent.

A more obvious and common case of left-recursion in natural language
grammars involves immediatelyleft-recursive rules. These are rules of theLEFT­

RECURSIVE
RULES

form A ! A β, where the first constituent of the right hand side is identi-
cal to the left hand side. The following are some of the immediately left-
recursive rules that make frequent appearances in grammarsof English.

NP ! NP PP

VP ! VP PP

S ! S and S

A left-recursive non-terminal can lead a top-down, depth-first left-to-
right parser to recursively expand the same non-terminal over again in ex-
actly the same way, leading to an infinite expansion of trees.

Figure 10.10 shows the kind of expansion that accompanies the addi-
tion of theNP ! NP PPrule as the firstNP rule in our small grammar.

There are two reasonable methods for dealing with left-recursion in a
backtracking top-down parser: rewriting the grammar, and explicitly man-
aging the depth of the search during parsing. Recall from Chapter 9, that
it is often possible to rewrite the rules of a grammar into aweakly equiva-
lent new grammar that still accepts exactly the same language as the origi-
nal grammar. It is possible to eliminate left-recursion from certain common
classes of grammars by rewriting a left-recursive grammar into a weakly
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S ) S ) S ) S : : :
NP VP NP VP NP VP

NP PP NP PP

NP PP

Figure 10.10 The beginning of an infinite search caused by a left recursive
rule.

equivalent non-left-recursive one. The intuition is to rewrite each rule of the
form A ! A β according to the following schema, using a new symbolA’:

A ! A β j α ) A ! α A’
A’ ! β A’ j ε

This transformation changes the left-recursion to a right-recursion, and changes
the trees that result from these rules from left-branching structures to a right-
branching ones. Unfortunately, rewriting grammars in thisway has a major
disadvantage: a rewritten phrase-structure rule may no longer be the most
grammatically natural way to represent a particular syntactic structure. Fur-
thermore, as we will see in Chapter 15, this rewriting may make semantic
interpretation quite difficult.

Ambiguity

One morning I shot an elephant in my pajamas. How he got into
my pajamas I don’t know.

Groucho Marx,Animal Crackers, 1930

The second problem with the top-down parser of Figure 10.6 isthat it is
not efficient at handlingambiguity. Chapter 8 introduced the idea oflexicalAMBIGUITY

category ambiguity (words which may have more than one part of speech)
anddisambiguation (choosing the correct part of speech for a word).

In this section we introduce a new kind of ambiguity, which arises in
the syntactic structures used in parsing, calledstructural ambiguity . Struc-
tural ambiguity occurs when the grammar assigns more than one possible
parse to a sentence. Groucho Marx’s well-known line as Captain Spaulding
for the wavfile) is ambiguous because the phrasein my pajamascan be part
of theNPheaded byelephantor the verb-phrase headed byshot.
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(a) S (b) S

NP VP NP VP

NP

NP PP NP PP

NP NP

Pro V Det Noun P Poss Noun Pro V Det Noun P Poss Noun

I shot an elephant in my pajamas I shot an elephant in my pajamas

Figure 10.11 Two parse trees for an ambiguous sentence. Parse (a) corre-
sponds to the humorous reading in which the elephant is in thepajamas, parse
(b) to the reading in which Captain Spaulding did the shooting in his pajamas.

Structural ambiguity, appropriately enough, comes in manyforms. Three
particularly common kinds of ambiguity areattachment ambiguity, coor-
dination ambiguity , andnoun-phrase bracketing ambiguity.

A sentence has an attachment ambiguity if a particular constituent can
be attached to the parse tree at more than one place. The Groucho Marx
sentence above is an example of PP-attachment ambiguity. Various kinds
of adverbial phrases are also subject to this kind of ambiguity. For example
in the following example the gerundive-VPflying to New Yorkcan be part
of a gerundive sentence whose subject isthe Grand Canyonor it can be an
adjunct modifying the VP headed bysaw:

(10.3) I saw the Grand Canyon flying to New York.

In a similar kind of ambiguity, the sentence “Can you book TWA
flights” is ambiguous between a reading meaning ‘Can you bookflights
on behalf of TWA’, and the other meaning ‘Can you book flights run by
TWA’). Here either one NP is attached to another to form a complex NP
(TWA flights), or both NPs are distinct daughters of the verb phrase. Fig-
ure 10.12 shows both parses.

Another common kind of ambiguity iscoordination ambiguity, in
which there are different sets of phrases that can be conjoined by a conjunc-
tion like and. For example, the phraseold men and womencan be bracketed
[old [men and women]], referring toold menandold women, or as[old men]
and [women], in which case it is only the men who are old.
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(a) S (b) S

Aux NP VP Aux NP VP

V NP NP V NP

Nom

Nom Nom

Pro PNoun Noun Pro PNoun Noun

can you book TWA flights can you book TWA flights

Figure 10.12 Two parse trees for an ambiguous sentence. Parse (a) corre-
sponds to the meaning ‘Can you book flights on behalf of TWA?’,parse (b) to
‘Can you book flights which are run by TWA’.

These ambiguities all combine in complex ways. A program that sum-
marized the news, for example, would need to be able to parse sentences like
the following from the Brown corpus :

(10.4) President Kennedy today pushed aside other White House business
to devote all his time and attention to working on the Berlin crisis
address he will deliver tomorrow night to the American people over
nationwide television and radio.

This sentence has a number of ambiguities, although since they are se-
mantically unreasonable, it requires a careful reading to see them. The last
noun phrase could be parsed[nationwide [television and radio]]or [[na-
tionwide television] and radio]. The direct object ofpushed asideshould
be other White House businessbut could also be the bizarre phrase[other
White House business to devote all his time and attention to working] (i.e.
a structure likeKennedy denied [his intention to propose a new budget to
address the deficit]). Then the phraseon the Berlin crisis address he will
deliver tomorrow night to the American peoplecould be an adjunct modi-
fying the verbpushed. ThePP over nationwide television and radiocould
be attached to any of the higherVPs or NPs (for example it could modify
peopleor night).

The fact that there are many unreasonable parses for a sentence is an
extremely irksome problem that affects all parsers. In practice, parsing a
sentence thus requiresdisambiguation: choosing the correct parse from aDISAMBIGUA­

TION
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multitude of possible parsers. Disambiguation algorithmsgenerally require
both statistical and semantic knowledge, so they will be introduced later, in
Chapter 12 and Chapter 17.

Parsers which do not incorporate disambiguators must simply return
all the possible parse trees for a given input. Since the top-down parser of
Figure 10.7 only returns the first parse it finds, it would thusneed to be
modified to return all the possible parses. The algorithm would be changed
to collect each parse as it is found and continue looking for more parses.
When the search space has been exhausted, the list of all the trees found is
returned. Subsequent processing or a human analyst can thendecide which
of the returned parses is correct.

Unfortunately, we almost certainly do not want all possibleparses from
the robust, highly ambiguous, wide-coverage grammars usedin practical ap-
plications. The reason for this lies in the potentially exponential number of
parses that are possible for certain inputs. Consider the ATIS example (10.5):

(10.5) Show me the meal on Flight UA 386 from San Francisco to Denver.

S

VP

V NP NP

show me NP PP

Det N P NP

the meal on NP PP

NP PP P NP

flight 286 P NP to Denver

from SF

Figure 10.13 A correct parse for (10.5).

When our extremely small grammar is augmented with the recursiveVP !
VP PP and NP ! NP PP rules introduced above, the three prepositional
phrases at the end of this sentence conspire to yield a total of 14 parse trees
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for this sentence. For examplefrom San Franciscocould be part of theVP
headed byshow(which would have the bizarre interpretation that the show-
ing was happening from San Francisco).

Church and Patil (1982) showed that the number of parses for sen-
tences of this type grows at the same rate as the number of parenthesiza-
tions of arithmetic expressions. Such parenthesization problems, in turn, are
known to grow exponentially in accordance with what are called the Catalan
numbers:

C(n) = 1
n+1

�
2n
n

�
The following table shows the number of parses for a simple noun-

phrase as a function of the number of trailing prepositionalphrases. As can
be seen, this kind of ambiguity can very quickly make it imprudent to keep
every possible parse around.

Number of Number of
PPs NP Parses
2 2
3 5
4 14
5 132
6 469
7 1430
8 4867

There are two basic ways out of this dilemma: using dynamic pro-
gramming to exploit regularities in the search space so thatcommon sub-
parts are derived only once, thus reducing some of the costs associated with
ambiguity, and augmenting the parser’s search strategy with heuristics that
guide it toward likely parses first. The dynamic programmingapproach will
be explored in the next section, while the heuristic search strategies will be
covered in Chapter 12.

Even if a sentence isn’t ambiguous, it can be inefficient to parse due
to local ambiguity. Local ambiguity occurs when some part of a sentenceLOCAL

AMBIGUITY

is ambiguous, i.e. has more than parse, even if the whole sentence is not
ambiguous. For example the sentenceBook that flightis unambiguous, but
when the parser sees the first wordBook, it cannot know if it is a verb or
a noun until later. Thus it must use backtracking or parallelism to consider
both possible parses.
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Repeated Parsing of Subtrees

The ambiguity problem is related to another inefficiency of the top-down
parser of Section 10.2. The parser often builds valid trees for portions of
the input, then discards them during backtracking, only to find that it has to
rebuild them again. Consider the process involved in findinga parse for the
NP in (10.6):

(10.6) a flight from Indianapolis to Houston on TWA

The preferred parse, which is also the one found first by the parser presented
in Section 10.2, is shown as the bottom tree in Figure 10.14. While there are
5 distinct parses of this phrase, we will focus here on the ridiculous amount
repeated work involved in retrieving this single parse.

Because of the way the rules are consulted in our top-down, depth-
first, left-to-right approach, the parser is led first to small parse trees that fail
because they do not cover all of the input. These successive failures trigger
backtracking events which lead to parses that incrementally cover more and
more of the input. The sequence of trees attempted by our top-down parser
is shown in Figure 10.14.

This figure clearly illustrates the kind of silly reduplication of work
that arises in backtracking approaches. Except for its topmost component,
every part of the final tree is derived more than once. The following table
shows the number of times that each of the major constituentsin the final tree
is derived. The work done on this example would, of course, bemagnified
by any backtracking caused by the verb phrase or sentential level. Note, that
although this example is specific to top-down parsing, similar examples of
wasted effort exist for bottom-up parsing as well.

a flight 4
from Indianapolis 3

to Houston 2
on TWA 1

a flight from Indianapolis 3
a flight from Indianapolis to Houston 2

a flight from Indianapolis to Houston on TWA 1
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NP

Nom

Det Noun

a flight from Indianapolis to Houston on TWA

NP

NP PP

Nom NP

Det Noun Prep Prop-Noun

a flight from Indianapolis to Houston on TWA

NP

NP

NP PP PP

Nom NP NP

Det Noun Prep Prop-Noun Prep Prop-Noun

a flight from Indianapolis to Houston on TWA

NP

NP

NP

NP PP PP PP

Nom NP NP NP

Det Noun Prep Prop-Noun Prep Prop-Noun Prep Prop-Noun

a flight from Indianapolis to Houston on TWA

Figure 10.14 Reduplicated effort caused by backtracking in top-down pars-
ing.
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10.4 THE EARLEY ALGORITHM

The previous section presented three kinds of problems thatafflict standard
bottom-up or top-down parsers, even when they have been augmented with
filtering and other improvements:left-recursive rules, ambiguity, andinef-
ficient reparsing of subtrees. Luckily, there is a single class of algorithms
which can solve all these problems.Dynamic programming once again DYNAMIC

PROGRAM­
MING

provides a framework for solving this problem, just as it helped us with the
Minimum Edit Distance, Viterbi, and Forward algorithms. Recall that dy-
namic programming approaches systematically fill in tablesof solutions to
sub-problems. When complete, the tables contain the solution to all the sub-
problems needed to solve the problem as a whole. In the case ofparsing,
such a table is used to store subtrees for each of the various constituents in
the input as they are discovered. The efficiency gain arises from the fact that
these subtrees are discovered once, stored, and then used inall parses calling
for that constituent. This solves the reparsing problem (subtrees are looked
up, not re-parsed) and the ambiguity problem (the parsing table implicitly
stores all possible parses by storing all the constituents with links that enable
the parses to be reconstructed). Furthermore, dynamic programming parsing
algorithms also solve the problem of left-recursion. As we discussed ear-
lier, there are three well-known dynamic programming parsers: the Cocke-
Younger-Kasami (CYK) algorithm which we will present in Chapter 12, the
Graham-Harrison-Ruzzo (GHR) (Grahamet al., 1980) algorithm and the
Earley algorithm (Earley, 1970) which we will introduce in the remainder of
this chapter.

The Earley algorithm (Earley, 1970) uses a dynamic programming ap-
proach to efficiently implement a parallel top-down search of the kind dis-
cussed in Section 10.1. As with many dynamic programming solutions, this
algorithm reduces an apparently exponential-time problemto a polynomial-
time one by eliminating the repetitive solution of sub-problems inherent in
backtracking approaches. In this case, the dynamic programming approach
leads to a worst-case behavior ofO(N3), whereN is the number of words in
the input.

The core of the Earley algorithm is a single left-to-right pass that fills
an array called achart that hasN+ 1 entries. For each word position inCHART

the sentence, the chart contains a list of states representing the partial parse
trees that have been generated so far. By the end of the sentence, the chart
compactly encodes all the possible parses of the input. Eachpossible subtree
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is represented only once and can thus be shared by all the parses that need it.
The individual states contained within each chart entry contain three

kinds of information: a subtree corresponding to a single grammar rule, in-
formation about the progress made in completing this subtree, and the posi-
tion of the subtree with respect to the input. Graphically, we will use a dot
within the right hand side of a state’s grammar rule to indicate the progress
made in recognizing it. The resulting structure is called adotted rule. ADOTTED RULE

state’s position with respect to the input will be represented by two numbers
indicating where the state begins and where its dot lies. Consider the follow-
ing three example states, which would be among those createdby the Earley
algorithm in the course of parsing (10.7):

(10.7) Book that flight. (same as (10.1).)

S ! � VP; [0;0]
NP ! Det� Nominal; [1;2]
VP ! V NP�; [0;3]

The first state, with its dot to the left of its constituent, represents a top-
down prediction for this particular kind ofS. The first 0 indicates that the
constituent predicted by this state should begin at the start of the input; the
second 0 reflects the fact that the dot lies at the beginning aswell. The second
state, created at a later stage in the processing of this sentence, indicates that
anNP begins at position 1, that aDet has been successfully parsed and that
aNominalis expected next. The third state, with its dot to the right ofall its
two constituents, represents the successful discovery of atree corresponding
to a VP that spans the entire input. These states can also be represented
graphically, in which the states of the parse are edges, or arcs, and the chart
as a whole is a directed acyclic graph, as in Figure 10.15.

The fundamental operation of an Earley parser is to march through the
N+1 sets of states in the chart in a left-to-right fashion, processing the states
within each set in order. At each step, one of the three operators described
below is applied to each state depending on its status. In each case, this
results in the addition of new states to the end of either the current or next set
of states in the chart. The algorithm always moves forward through the chart
making additions as it goes; states are never removed and thealgorithm never
backtracks to a previous chart entry once it has moved on. Thepresence of
a stateS ! α�; [0;N] in the list of states in the last chart entry indicates a
successful parse. Figure 10.16 gives the complete algorithm.
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Book that flight
0 1 2 3

VP −> V NP .

NP −> Det . Nominal

S −> .VP

Figure 10.15 A directed acyclic graph representation of the 3 dotted rules
above.

The following three sections describe in detail the three operators used
to process states in the chart. Each takes a single state as input and derives
new states from it. These new states are then added to the chart as long
as they are not already present. The PREDICTOR and the COMPLETER add
states to the chart entry being processed, while the SCANNER adds a state to
the next chart entry.

Predictor

As might be guessed from its name, the job of the PREDICTOR is to create
new states representing top-down expectations generated during the parsing
process. The PREDICTOR is applied to any state that has a non-terminal to
the right of the dot that is not a part-of-speech category. This application
results in the creation of one new state for each alternativeexpansion of that
non-terminal provided by the grammar. These new states are placed into the
same chart entry as the generating state. They begin and end at the point in
the input where the generating state ends.

For example, applying the PREDICTOR to the stateS! � VP; [0;0]
results in adding the statesVP! � Verb; [0;0] andVP! � Verb NP; [0;0] to
the first chart entry.

Scanner

When a state has a part-of-speech category to the right of thedot, the SCAN-
NER is called to examine the input and incorporate a state corresponding
to the predicted part-of-speech into the chart. This is accomplished by cre-
ating a new state from the input state with the dot advanced over the pre-
dicted input category. Note that the Earley parser thus usestop-down input
to help disambiguate part-of-speech ambiguities; only those parts-of-speech
of a word that are predicted by some state will find their way into the chart.



378 Chapter 10. Parsing with Context-Free Grammars

function EARLEY-PARSE(words, grammar) returns chart

ENQUEUE((γ ! � S; [0;0]),chart[0])
for i from 0 to LENGTH(words) do
for eachstatein chart[i] do

if INCOMPLETE?(state) and
NEXT-CAT(state) is not a part of speechthen

PREDICTOR(state)
elseif INCOMPLETE?(state) and

NEXT-CAT(state) is a part of speechthen
SCANNER(state)

else
COMPLETER(state)

end
end
return (chart)

procedure PREDICTOR((A ! α � B β; [i; j]))
for each (B ! γ) in GRAMMAR -RULES-FOR(B,grammar) do

ENQUEUE((B ! � γ; [ j; j]),chart[j])
end

procedure SCANNER((A ! α � B β; [i; j]))
if B � PARTS-OF-SPEECH(word[j] ) then

ENQUEUE((B ! word[ j]; [ j; j +1]),chart[j+1] )

procedure COMPLETER((B ! γ �; [ j;k]))
for each (A ! α � B β; [i; j]) in chart[j] do

ENQUEUE((A ! α B � β; [i;k]),chart[k])
end

procedure ENQUEUE(state, chart-entry)
if stateis not already inchart-entrythen

PUSH(state, chart-entry)
end

Figure 10.16 The Earley algorithm.

Returning to our example, when the stateVP! �Verb NP; [0;0] is pro-
cessed, the SCANNER consults the current word in the input since the cat-
egory following the dot is a part-of-speech. The SCANNER then notes that
bookcan be a verb, matching the expectation in the current state.This results
in the creation of the new stateVP! Verb�NP; [0;1]. The new state is then
added to the chart entry thatfollows the one currently being processed.
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Completer

The COMPLETER is applied to a state when its dot has reached the right
end of the rule. Intuitively, the presence of such a state represents the fact
that the parser has successfully discovered a particular grammatical category
over some span of the input. The purpose of the COMPLETER is to find and
advance all previously created states that were looking forthis grammatical
category at this position in the input. New states are then created by copying
the older state, advancing the dot over the expected category and installing
the new state in the current chart entry.

For example, when the stateNP! Det Nominal�; [1;3] is processed,
the COMPLETER looks for states ending at 1 expecting anNP. In the current
example, it will find the stateVP! Verb�NP; [0;1] created by the Scanner.
This results in the addition of a new complete stateVP! Verb NP�; [0;3].
An Example

Figure 10.17 shows the sequence of states created during thecomplete pro-
cessing of Example 10.1/10.7. The algorithm begins by seeding the chart
with a top-down expectation for anS. This is accomplished by adding a
dummy stateγ ! � S; [0;0] to Chart[0]. When this state is processed, it is
passed to the PREDICTOR leading to the creation of the three states repre-
senting predictions for each possible type ofS, and transitively to states for
all of the left corners of those trees. When the stateVP ! � Verb; [0;0] is
processed, the SCANNER is called and the first word is consulted. A state
representing the verb sense ofBook is then added to the entry for Chart[1].
Note that when the stateVP ! �V NP; [0;0] is processed, the SCANNER is
called again. However, this time a new state is not added since it would be
identical to the one already in the chart. Note also that since this admittedly
deficient grammar generates no predictions for theNounsense ofBook, no
entries will be made for it in the chart.

When all the states of Chart[0] have been processed, the algorithm
moves on to Chart[1] where it finds the state representing theverb sense
of book. This is a complete state with its dot to the right of its constituent
and is therefore passed to the COMPLETER. The COMPLETER then finds
the two previously existingVP states expecting aVerb at this point in the
input. These states are copied with their dots advanced and added to the
Chart[1]. The completed state corresponding to an intransitive VP leads to
the creation of the imperativeSstate. Alternatively, the dot in the transitive
verb phrase leads to the creation of the two states predicting NPs. Finally,
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Chart[0]
γ ! � S [0,0] Dummy start state
S! � NP VP [0,0] Predictor
NP ! � Det NOMINAL [0,0] Predictor
NP ! � Proper-Noun [0,0] Predictor
S! � Aux NP VP [0,0] Predictor
S! � VP [0,0] Predictor
VP ! � Verb [0,0] Predictor
VP ! � Verb NP [0,0] Predictor

Chart[1]
Verb! book� [0,1] Scanner
VP ! Verb� [0,1] Completer
S! VP� [0,1] Completer
VP ! Verb� NP [0,1] Completer
NP ! � Det NOMINAL [1,1] Predictor
NP ! � Proper-Noun [1,1] Predictor

Chart[2]
Det ! that� [1,2] Scanner
NP ! Det�NOMINAL [1,2] Completer
NOMINAL! � Noun [2,2] Predictor
NOMINAL! � Noun NOMINAL [2,2] Predictor

Chart[3]
Noun! flight� [2,3] Scanner
NOMINAL! Noun� [2,3] Completer
NOMINAL! Noun� NOMINAL [2,3] Completer
NP ! Det NOMINAL� [1,3] Completer
VP ! Verb NP� [0,3] Completer
S! VP� [0,3] Completer
NOMINAL! � Noun [3,3] Predictor
NOMINAL! � Noun NOMINAL [3,3] Predictor

Figure 10.17 Sequence of states created in chart while parsingBook that
flight. Each entry shows the state, its start and end points, and the Earley
function that placed it in the chart.
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the stateNP! � Det Nominal; [1;1] causes the Scanner to consult the word
that and add a corresponding state to Chart[2].

Moving on to Chart[2], the algorithm finds the state representing the
determiner sense ofthat. This complete state leads to the advancement of
the dot in theNP state predicted in Chart[1], and also to the predictions for
the various kinds ofNominal. The first of these causes the SCANNER to be
called for the last time to process the wordflight.

Moving on to Chart[3], the presence of the state representing flight
leads in quick succession to the completion of anNP, transitiveVP, and an
S. The presence of the stateS! VP�; [0;3] in the last chart entry signals the
discovery of a successful parse.

Retrieving Parse Trees from a Chart

The version of the Earley algorithm just described is actually a recognizer not
a parser. After processing, valid sentences will leave the stateS! α�; [0;N]
in the chart. Unfortunately, as it stands we have no way of retrieving the
structure of thisS. To turn this algorithm into a parser, we must be able to
extract individual parses from the chart. To do this, the representation of
each state must be augmented with an additional field to storeinformation
about the completed states that generated its constituents.

This information can be gathered by making a simple change tothe
COMPLETER. Recall that the COMPLETER creates new states by advancing
older incomplete ones when the constituent following the dot is discovered.
The only change necessary is to have COMPLETERadd a pointer to the older
state onto the list of previous-states of the new state. Retrieving a parse tree
from the chart is then merely a recursive retrieval startingwith the state (or
states) representing a completeS in the final chart entry. Figure 10.18 shows
the chart produced by an appropriately updated COMPLETER.

If there are an exponential number of trees for a given sentence, the
Earley algorithm can not magicallyreturn them all in a polynomial amount
of time. The best it can do is build the chart in polynomial time. Figure 10.19
illustrates a portion of the chart from Figure 10.17 using the directed graph
notation. Note that since large charts in this format can getrather confusing,
this figure only includes the states that play a role in the final parse.
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Chart[0]
S0 γ ! � S [0,0] [] Dummy start state
S1 S! � NP VP [0,0] [] Predictor
S2 NP ! � Det NOMINAL [0,0] [] Predictor
S3 NP ! � Proper-Noun [0,0] [] Predictor
S4 S! � Aux NP VP [0,0] [] Predictor
S5 S! � VP [0,0] [] Predictor
S6 VP ! � Verb [0,0] [] Predictor
S7 VP ! � Verb NP [0,0] [] Predictor

Chart[1]
S8 Verb! book� [0,1] [] Scanner
S9 VP ! Verb� [0,1] [S8] Completer
S10 S! VP� [0,1] [S9] Completer
S11 VP ! Verb� NP [0,1] [S8] Completer
S12 NP ! � Det NOMINAL [1,1] [] Predictor
S13 NP ! � Proper-Noun [1,1] [] Predictor

Chart[2]
S14 Det ! that� [1,2] [] Scanner
S15 NP ! Det�NOMINAL [1,2] [S14] Completer
S16 NOMINAL! � Noun [2,2] [] Predictor
S17 NOMINAL! � Noun NOMINAL [2,2] [] Predictor

Chart[3]
S18 Noun! flight� [2,3] [] Scanner
S19 NOMINAL! Noun� [2,3] [S18] Completer
S20 NOMINAL! Noun� NOMINAL [2,3] [S18] Completer
S21 NP ! Det NOMINAL� [1,3] [S14,S19] Completer
S22 VP ! Verb NP� [0,3] [S8,S21] Completer
S23 S! VP� [0,3] [S22] Completer
S24 NOMINAL! � Noun [3,3] [] Predictor
S25 NOMINAL! � Noun NOMINAL [3,3] [] Predictor

Figure 10.18 Sequence of states created in chart while parsingBook that
flight including structural information.
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Book that flight

S23

S22

S8 S14 S18

S21

0 1 2 3

Figure 10.19 A portion of the chart shown in Figure 10.17 displayed in a
directed acyclic graph notation.

10.5 FINITE-STATE PARSING METHODS

Some language-processing tasks don’t require complete parses. For these
tasks, apartial parse or shallow parseof the input sentence may be suf-SHALLOW

PARSE

ficient. For example,information extraction algorithms generally do not
extractall the possible information in a text; they simply extract enough to
fill out some sort of template of required data. Many partial parsing sys-
tems usecascadesof finite-state automata instead of context-free grammars.CASCADES

Relying on simple finite-state automata rather than full parsing makes such
systems extremely efficient. Since finite-state systems cannot model certain
kinds of recursive rules, however, they trade this efficiency for a certain lack
of coverage. We will discuss information extraction in Chapter 15; here we
just show how finite-state automata can be used to recognizebasic phrases, BASIC

PHRASES

such as noun groups, verb groups, locations, etc. Here’s theoutput of the
FASTUS basic phrase identifier; of course the choice of whichbasic phrases
to produce can be dependent on the application:
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Company Name: Bridgestone Sports Co.
Verb Group: said
Noun Group: Friday
Noun Group: it
Verb Group: had set up
Noun Group: a joint venture
Preposition: in
Location: Taiwan
Preposition: with
Noun Group: a local concern
Conjunction: and
Noun Group: a Japanese trading house
Verb Group: to produce
Noun Group: golf clubs
Verb Group: to be shipped
Preposition: to
Location: Japan

These basic phrases are produced by a collection finite-state rules com-
piled into a transducer. To give a feel for how this works, we’ll give a simpli-
fied set of the FASTUS rules from Appelt and Israel (1997) usedto build the
automaton to detectnoun groups. A noun group is like the core of a nounNOUN

GROUPS

phrase; it consists of the head noun and the modifiers to the left (determiner,
adjectives, quantifiers, numbers, etc).

A noun-group can consist of just a pronounshe, him, themor a time-
phraseyesterday, or a date:

NG ! Pronounj Time-NPj Date-NP

It can also consist of certain determiners that can stand alone (this,
that); or a head noun (HdNns) preceded by optional determiner phrase (DETP)
and/or optional adjectives (Adjs) (the quick and dirty solution, the frustrat-
ing mathematics problem) or a head noun modified by a gerund phrase (the
rising index):

NG ! (DETP) (Adjs) HdNnsj DETP Ving HdNnsj DETP-CP (and HdNns)

The parentheses above are used to indicate optional elements, while
braces are used just for grouping. Determiner-phrases comein two varieties:

DETP ! DETP-CPj DETP-INCP

Complete determiner-phrases (DETP-CP) are those which can stand
alone as anNP, such asthe only five, another three, this, many, hers, all,
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andthe most. Adv-pre-numare adverbs that can appear before a number in
the determiner (almost 5, precisely 5), while Pro-Poss-cpare possessive pro-
nouns that can stand on their own as completeNPs (mine, his). Quantifiers
(Q) includemany, few, much, etc.

DETP-CP! ( f Adv-pre-numj “another”jf Det j Pro-Possg (fAdv-pre-numj “only” (“other”) g)g) Numberj Q j Q-erj (“the”) Q-estj “another”j Det-cpj DetQ j Pro-Poss-cp

Incomplete determiner-phrases (DETP-INCP) are those which cannot
act asNPs alone, for examplethe, his only, every, a. Pro-Poss-incompare
possessive pronouns which cannot stand on their own as a completeNP (e.g.
my, her):

DETP-INCP ! f f f Det j Pro-Possg “only”j “a” j “an”j Det-incompj Pro-Poss-incompg (“other”)j (DET-CP) “other”g
An adjective sequence (Adjs) consists of one or more adjectives or par-

ticiples separated by commas and/or conjunctions (e.g.big, bad, and ugly,
or interesting but outdated):

Adjs ! AdjP ( f “,” j (“,”) Conj g f AdjP j Vparticipleg) *

Adjective phrases can be made of adjectives, participles, ordinal num-
bers, and noun-verb combinations, likeman-eating, and can be modified
by comparative and superlative quantifiers (Q-er:more, fewer; Q-est:most,
fewest). This rule-set chooses to disallow participles as the firstword in
adjective-phrases or noun groups, to avoid incorrectly taking many Verb-
Object combinations as noun groups.

AdjP ! Ordinalj (fQ-erj Q-estg f Adj j Vparticipleg +j f N[sing,!Time-NP] (“-”) f Vparticiplegj Number (“-”) f “month” j “day” j “year”g (“-”) “old” g
Nouns can be conjoined (cats and dogs):

HdNns ! HdNn (“and” HdNn)

Finally, we need to deal with noun-noun compounds and other noun-
like pre-modifiers of nouns, in order to cover head noun groups likegasoline
and oil tanks, California wines, Clinton, andquick-reaction strike:
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HdNn ! PropNj f PreNsj PropN PreNsg N[!Time-NP]j f PropN CommonN[!Time-NP]g
Noun modifiers of nouns can be conjoined (gasoline and oil) or created

via dash (quick-reaction). Adj-noun-likerefers to adjectives that can appear
in the position of a prenominal noun (e.g.presidential retreat):

PreNs ! PreN (“and” PreN2) *
preN ! (Adj ”-”) Common-Sing-N
preN2 ! PreNj Ordinalj Adj-noun-like

Figure 10.20 shows an FSA for theAdjs portion of the noun-group
recognizer, and an FSA for theAdjP portion.

0 2 31
AdjP ","

"," "and"

"and"
AdjP

Vparticle

ε

Figure 10.20 A portion of an FSA grammar, covering conjoined adjective
phrases. In a real automaton, eachAdjPnode would actually be expanded with
a copy of theAdjPautomaton shown in Figure 10.21

Vparticle

ε

Nsing[!timenp]
"−"

Vparticle

Ordinal

Q−est

Adj

3

1

0

2

4

5
6 7

Number

"−" "−" 8
"month"

"day"
"year"

"old"ε

ε

Q−er

9 ε

Vparticle
Adj

Figure 10.21 A portion of an FSA grammar, covering the internal details
of adjective phrases.

The pieces of automata in Figure 10.20 and Figure 10.21 can then
be combined into a single large Noun-Group-Recognizer by starting with
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the NG automaton and iteratively expanding out each reference to another
rule/automaton. This is only possible because none of thesereferences are
recursive; that is, because the expansion ofAdjP doesn’t refer toAdjP.

Page 345, however, showed that a more complete grammar of English
requires this kind of recursion. Recall, for example, that acomplete defini-
tion of NP needs to refer to otherNPs in the rules for relative clauses and
other post-nominal modifiers.

One way to handle recursion is by allowing only a limited amount
of recursion; this is what FASTUS does, by using its automatacascade.
The second level of FASTUS finds non-recursive noun groups; the third
level combines these groups into largerNP-like units by adding on measure
phrases:

20,000 iron and “metal wood” clubs a month,

attaching preposition phrases:

production of 20,000 iron and “metal wood” clubs a month,

and dealing with noun group conjunction:

a local concern and a Japanese trading house

In a single level system, each of these phenomena would require recur-
sive rules (e.g.NP! NP and NP). By splitting the parsing into two levels,
FASTUS essentially treats theNPon the left-hand side as a different kind of
object from theNPs on the right-hand side.

A second method for dealing with recursion is to use a model which
looks finite-state but isn’t. One such model is theRecursive Transition
Network or RTN. An RTN is defined by a set of graphs like those in Fig-RTN

ure 10.20 and Figure 10.21, in which each arc contains a terminal or non-
terminal node. The difference between an RTN and an FSA lies in how the
non-terminals are handled. In an RTN, every time the machinecomes to an
arc labeled with a non-terminal, it treats that non-terminal as asub-routine.
It places its current location onto a stack, jumps to the non-terminal, and
then jumps back when that non-terminal has been parsed. If a rule for NP
contains a self-reference, the RTN once again puts the current location on a
stack and jumps back to the beginning of the NP.

Since an RTN is exactly equivalent to a context-free grammar, travers-
ing an RTN can thus be thought of as a graphical way to view a simple
top-down parser for context-free rules. RTNs are most oftenused as a con-
venient graphical metaphor when displaying or describing grammars, or as
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a way to implement a system which has a small amount of recursion but is
otherwise finite-state.

10.6 SUMMARY

This chapter introduced a lot of material. The most important two ideas are
those ofparsing andpartial parsing . Here’s a summary of the main points
we covered about these ideas:� Parsing can be viewed as asearchproblem.� Two common architectural metaphors for this search aretop-down

(starting with the rootS and growing trees down to the input words)
andbottom-up (staring with the words and growing trees up toward
the rootS).� One simple parsing algorithm is the top-down depth-first left-to-right
parser of Figure 10.6 on page 362.� Top down parsers can be made more efficient by using aleft-corner
table to only suggest non-terminals which are compatible with the in-
put.� Ambiguity , left-recursion, andrepeated parsing of sub-treesall pose
problems for this simple parsing algorithm.� A sentence isstructurally ambiguous if the grammar assigns it more
than one possible parse.� Common kinds of structural ambiguity includePP-attachment, coor-
dination ambiguity andnoun-phrase bracketing ambiguity.� Thedynamic programming parsing algorithms use a table of partial-
parses to efficiently parse ambiguous sentences. TheEarley algorithm
is a top-down dynamic-programming algorithm, while theCYK algo-
rithm is bottom up.� Certaininformation extraction problems can be solved without full
parsing. These are often addressed viaFSA cascades.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Writing about the history of compilers, Knuth notes:
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In this field there has been an unusual amount of parallel discov-
ery of the same technique by people working independently.

Indeed, the problem of identifying the first appearance of various parsing
ideas recalls Kruskal’s (1983) comment about the ‘remarkable history of
multiple independent discovery and publication’ of dynamic programming
algorithms for sequence comparison. This history will therefore error on
the side of succinctness in giving only a characteristic early mention of each
algorithm; the interested reader should see Aho and Ullman (1972).

Bottom-up parsing seems to have been first described by Yngve(1955),
who gave a breadth-first bottom-up parsing algorithm as partof an illustra-
tion of a machine translation procedure. Top-down approaches to parsing
and translation was described (presumably independently)by at least Glen-
nie (1960), Irons (1961), and Kuno and Oettinger (1962). Dynamic pro-
gramming parsing, once again, has a history of independent discovery. Ac-
cording to Martin Kay (p.c.), a dynamic programming parser containing the
roots of the CYK algorithm was first implemented by John Cockein 1960.
Later work extended and formalized the algorithm, as well asproving its
time complexity (Kay, 1967; Younger, 1967; Kasami, 1965). The related
well-formed substring table (WFST) seems to have been independentlyWFST

proposed by Kuno (1965), as a data structure which stores theresults of all
previous computations in the course of the parse. Based on a generalization
of Cocke’s work, a similar data-structure had been independently described
by Kay (1967) and Kay (1973). The top-down application of dynamic pro-
gramming to parsing was described in Earley’s Ph.D. thesis (Earley, 1968)
and Earley (1970). Sheil (1976) showed the equivalence of the WFST and
the Earley algorithm. Norvig (1991) shows that the efficiency offered by
all of these dynamic programming algorithms can be capturedin any lan-
guage with amemoizationfunction (such as LISP) simply by wrapping the
memoizationoperation around a simple top-down parser.

While parsing via cascades of finite-state automata had beencom-
mon in the early history of parsing (Harris, 1962), the focusshifted to full
CFG parsing quite soon afterwards. Church (1980) argued fora return to
finite-state grammars as a processing model for natural language understand-
ing; Other early finite-state parsing models include Ejerhed (1988). Abney
(1991) argued for the important practical role of shallow parsing. Much re-
cent work on shallow parsing applies machine learning to thetask of learning
the patterns; see for example Ramshaw and Marcus (1995), Shlomo Arga-
mon (1998), and Munozet al. (1999).
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The classic reference for parsing algorithms is Aho and Ullman (1972);
although the focus of that book is on computer languages, most of the algo-
rithms have been applied to natural language. A good programming lan-
guages textbook such as Ahoet al. (1986) is also useful.

EXERCISES

10.1 Modify the top-down parser in Figure 10.7 to add bottom-up filtering.
You can assume the use of a left-corner table like the one on page 366.

10.2 Write an algorithm for eliminating left-recursion based onthe intu-
ition on page 368.

10.3 Implement the finite-state grammar for noun-groups described on pages
384–387. Test it on some sample noun-phrases. If you have access to an on-
line dictionary with part-of-speech information, start with that; if not, build
a more restricted system by hand.

10.4 Augment the Earley algorithm of Figure 10.16 to enable parsetrees
to be retrieved from the chart by modifying the pseudocode for the COM-
PLETER as described on page 381.

10.5 Implement the Earley algorithm as augmented in the previousex-
ercise. of Figure 10.16. Check it on a test sentence using a baby gram-
mar.

10.6 Discuss the relative advantages and disadvantages of partial parsing
versus full parsing.

10.7 Discuss how you would augment a parser to deal with input thatmay
be be incorrect, such as spelling errors or misrecognitionsfrom a speech
recognition system.



11
FEATURES AND
UNIFICATION

FRIAR FRANCIS: If either of you know any inward impediment
why you should not be conjoined, charge you, on your souls,
to utter it.

William Shakespeare,Much Ado About Nothing

From a reductionist perspective, the history of the naturalsciences over the
last few hundred years can be seen as an attempt to explain thebehavior of
larger structures by the combined action of smaller primitives. In biology,
the properties of inheritance have been explained by the action of genes,
and then again the properties of genes have been explained bythe action of
DNA. In physics, matter was reduced to atoms and then again tosubatomic
particles. The appeal of reductionism has not escaped computational lin-
guistics. In this chapter we introduce the idea that grammatical categories
like VPto, Sthat, Non3sgAux, or 3sgNP, as well as the grammatical rules like
S! NP VPthat make use of them, should be thought of asobjectsthat can
have complex sets ofpropertiesassociated with them. The information in
these properties is represented byconstraints, and so these kinds of models
are often calledconstraint-based formalisms. CONSTRAINT­

BASED
FORMALISMS

Why do we need a more fine-grained way of representing and plac-
ing constraints on grammatical categories? One problem arose in Chapter 9,
where we saw that naive models of grammatical phenomena suchas agree-
ment and subcategorization can lead to overgeneration problems. For exam-
ple, in order to avoid ungrammatical noun phrases such asthis flightsand
verb phrases likedisappeared a flight, we were forced to create a huge pro-
liferation of primitive grammatical categories such asNon3sgVPto, NPmass,



392 Chapter 11. Features and Unification

3sgNPandNon3sgAux. These new categories led, in turn, to an explosion in
the number of grammar rules and a corresponding loss of generality in the
grammar. A constraint-based representation scheme will allow us to repre-
sent fine-grained information about number and person, agreement, subcat-
egorization, as well as semantic categories like mass/count.

Constraint-based formalisms have other advantages that wewill not
cover in this chapter, such as the ability to model more complex phenomena
than context-free grammars, and the ability to efficiently and conveniently
compute semantics for syntactic representations.

Consider briefly how this approach might work in the case of grammat-
ical number. As we saw in Chapter 9, noun phrases likethis flightandthose
flights can be distinguished based on whether they are singular or plural.
This distinction can be captured if we associate a property called NUMBER

that can have the value singular or plural, with appropriatemembers of the
NPcategory. Given this ability, we can say thatthis flight is a member of the
NP category and, in addition, has the value singular for itsNUMBER prop-
erty. This same property can be used in the same way to distinguish singular
and plural members of theVPcategory such asserves lunchandserve lunch.

Of course, simply associating these properties with various words and
phrases does not solve any of our overgeneration problems. To make these
properties useful, we need the ability to perform simple operations, such as
equality tests, on them. By pairing such tests with our core grammar rules,
we can add various constraints to help ensure that only grammatical strings
are generated by the grammar. For example, we might want to ask whether
or not a given noun phrase and verb phrase have the same valuesfor their
respective number properties. Such a test is illustrated bythe following kind
of rule.

S ! NP VP

Only if the number of the NP is equal to the number of the VP.

The remainder of this chapter provides the details of one computational
implementation of a constraint-based formalism, based onfeature struc-
tures andunification. The next section describesfeature structures, the
representation used to capture the kind of grammatical properties we have in
mind. Section 11.2 then introduces theunification operator that is used to
implement basic operations over feature structures. Section 11.3 then cov-
ers the integration of these structures into a grammatical formalism. Section
11.4 then introduces the unification algorithm and its required data struc-
tures. Next, Section 11.5 describes how feature structuresand the unifica-
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tion operator can be integrated into a parser. Finally, Section 11.6 discusses
the most significant extension to this constraint-based formalism, the use of
typesandinheritance, as well as other extensions.

11.1 FEATURE STRUCTURES

One of the simplest ways to encode the kind of properties thatwe have in
mind is through the use offeature structures. These are simply sets ofFEATURE

STRUCTURES

feature-value pairs, where features are unanalyzable atomic symbols drawn
from some finite set, and values are either atomic symbols or feature struc-
tures. Such feature structures are traditionally illustrated with the following
kind of matrix-like diagram.266664FEATURE1 VALUE1

FEATURE2 VALUE2

...

FEATUREn VALUEn

377775
To be concrete, let us consider the number property discussed above.

To capture this property, we will use the symbolNUMBER to designate this
grammatical attribute, and the symbolsSG andPL (introduced in Chapter 3)
to designate the possible values it can take on in English. A simple feature
structure consisting of this single feature would then be illustrated as follows.h

NUMBER SG
i

Adding an additional feature-value pair to capture the grammatical notion of
person leads to the following feature structure."

NUMBER SG

PERSON 3

#
Next we can encode the grammatical category of the constituent that this
structure corresponds to through the use of theCAT feature. For example,
we can indicate that these features are associated with a noun phrase by
using the following structure.264CAT NP

NUMBER SG

PERSON 3

375
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This structure can be used to represent the3sgNPcategory introduced in
Chapter 9 to capture a restricted subcategory of noun phrases. The corre-
sponding plural version of this structure would be capturedas follows.264CAT NP

NUMBER PL

PERSON 3

375
Note that the value of theCAT and PERSONfeatures remains the same for
these last two structures. This illustrates how the use of feature structures
allows us to both preserve the core set of grammatical categories and draw
distinctions among members of a single category.

As mentioned earlier in the definition of feature structures, features
are not limited to atomic symbols as their values; they can also have other
feature structures as their values. This is particularly useful when we wish
to bundle a set of feature-value pairs together for similar treatment. As an
example of this, consider that theNUMBER andPERSONfeatures are often
lumped together since grammatical subjects must agree withtheir predicates
in both their number and person properties. This lumping together can be
captured by introducing anAGREEMENT feature that takes a feature struc-
ture consisting of theNUMBER andPERSONfeature-value pairs as its value.
Introducing this feature into our third person singular noun phrase yields the
following kind of structure.2664CAT NP

AGREEMENT

"
NUMBER SG

PERSON 3

#3775
Given this kind of arrangement, we can test for the equality of the values for
both theNUMBER and PERSONfeatures of two constituents by testing for
the equality of theirAGREEMENT features.

This ability to use feature structures as values leads fairly directly to
the notion of afeature path. A feature path is nothing more than a list ofFEATURE

PATH

features through a feature structure leading to a particular value. For exam-
ple, in the last feature structure, we can say that thehAGREEMENT NUMBERi
path leads to the valueSG, while thehAGREEMENT PERSONi path leads to
the value 3. This notion of a path leads naturally to an alternative graph-
ical way of illustrating features structures, shown in Figure 11.1, which as
we will see in Section 11.4 is suggestive of how they will be implemented.
In these diagrams, feature structures are depicted as directed graphs where
features appear as labeled edges and values as nodes.
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CAT NP

AGREEMENT

NUMBER

PERSON

SG

3

Figure 11.1 A directed graph notation for feature structures.

Although this notion of paths will prove useful in a number ofset-
tings, we introduce it here to help explain an additional important kind of
feature structure: those that contain features that actually share some feature
structure as a value. Such feature structures will be referred to asreentrant REENTRANT

structures. What we have in mind here is not the simple idea that two fea-
tures might have equal values, but rather that they share precisely the same
feature structure (or node in the graph). These two cases canbe distinguished
clearly if we think in terms of paths through a graph. In the case of simple
equality, two paths lead to distinct nodes in the graph that anchor identical,
but distinct structures. In the case of a reentrant structure, two feature paths
actually lead to the same node in the structure.

Figure 11.2 illustrates a simple example of reentrancy. In this structure,
thehHEAD SUBJECT AGREEMENTi path and thehHEAD AGREEMENTi path
lead to the same location. Shared structures like this will be denoted in our
matrix diagrams by adding numerical indexes that signal thevalues to be
shared. The matrix version of the feature structure from Figure 11.2 would
be denoted as follows, using the notation of the PATR-II system (Shieber,
1986), based on Kay (1979):26666664CAT S

HEAD

26664AGREEMENT 1

"
NUMBER SG

PERSON 3

#
SUBJECT

h
AGREEMENT 1

i3777537777775
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NUMBER

PERSON

SG

3
AGREEMENT

SUBJECT

AGREEMENT

HEAD

CAT S

Figure 11.2 A feature structure with shared values. The location (value)
found by following thehHEAD SUBJECT AGREEMENTi path is the same as
that found via thehHEAD AGREEMENTi path.

As we will see, these simple structures give us the ability toexpress
linguistic generalizations in surprisingly compact and elegant ways.

11.2 UNIFICATION OF FEATURE STRUCTURES

As noted earlier, feature structures would be of little use without our being
able to perform reasonably efficient and powerful operations on them. As we
will show, the two principal operations we need to perform are merging the
information content of two structures and rejecting the merger of structures
that are incompatible. Fortunately, a single computational technique, called
unification, suffices for both of these purposes. The bulk of this sectionUNIFICATION

will illustrate through a series of examples how unificationinstantiates these
notions of merger and compatibility. Discussion of the unification algorithm
and its implementation will be deferred to Section 11.4.

We begin with the following simple application of the unification op-
erator.h

NUMBER SG
it hNUMBER SG

i
=
h

NUMBER SG
i

As this equation illustrates, unification is implemented asa binary operator



Section 11.2. Unification of Feature Structures 397

(represented here ast) that accepts two feature structures as arguments and
returns a feature structure when it succeeds. In this example, unification is
being used to perform a simple equality check. The unification succeeds
because the correspondingNUMBER features in each structure agree as to
their values. In this case, since the original structures are identical, the output
is the same as the input. The following similar kind of check fails since the
NUMBER features in the two structures have incompatible values.h

NUMBER SG
it hNUMBER PL

i
Fails!

This next unification illustrates an important aspect of thenotion of
compatibility in unification.h

NUMBER SG
it hNUMBER []

i
=
h

NUMBER SG
i

In this situation, these features structures are taken to becompatible, and
are hence capable of being merged, despite the fact that the given values for
the respectiveNUMBER features are different. The [] value in the second
structure indicates that the value has been left unspecified. A feature with
such a [] value can be successfully matched to any value in a corresponding
feature in another structure. Therefore, in this case, the value SG from the
first structure can match the [] value from the second, and as is indicated by
the output shown, the result of this type of unification is a structure with the
value provided by the more specific, non-null, value.

The next example illustrates another of the merger aspects of unifica-
tion. h

NUMBER SG
it hPERSON 3

i
=
"

NUMBER SG

PERSON 3

#
Here the result of the unification is a merger of the original two structures
into one larger structure. This larger structure contains the union of all the
information stored in each of the original structures. Although this is a sim-
ple example, it is important to understand why these structures are judged to
be compatible: they are compatible because they contain no features that are
explicitly incompatible. The fact that they each contain a feature-value pair
that the other does not is not a reason for the unification to fail.

We will now consider a series of cases involving the unification of
somewhat more complex reentrant structures. The followingexample illus-
trates an equality check complicated by the presence of a reentrant structure
in the first argument.
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"
NUMBER SG

PERSON 3

#
SUBJECT

h
AGREEMENT 1

i37775t24SUBJECT

24AGREEMENT

"
PERSON 3

NUMBER SG

#3535
=
26664AGREEMENT 1

"
NUMBER SG

PERSON 3

#
SUBJECT

h
AGREEMENT 1

i37775
The important elements in this example are theSUBJECTfeatures in the two
input structures. The unification of these features succeeds because the val-
ues found in the first argument by following the1 numerical index, match
those that are directly present in the second argument. Notethat, by itself,
the value of theAGREEMENT feature in the first argument would have no
bearing on the success of unification since the second argument lacks an
AGREEMENT feature at the top level. It only becomes relevant because the
value of theAGREEMENT feature is shared with theSUBJECTfeature.

The following example illustrates the copying capabilities of unifica-
tion.

(11.1)
24AGREEMENT 1

SUBJECT
h

AGREEMENT 1

i35t24SUBJECT

24AGREEMENT

"
PERSON 3

NUMBER SG

#3535
=
26664AGREEMENT 1

SUBJECT

24AGREEMENT 1

"
PERSON 3

NUMBER SG

#3537775
Here the value found via the second argument’shSUBJECT AGREEMENTi
feature is copied over to the corresponding place in the firstargument. In
addition, theAGREEMENT feature of the first argument receives a value as
a side-effect of the index linking it to the end ofhSUBJECT AGREEMENTi
feature.
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The next example demonstrates the important difference between fea-
tures that actually share values versus those that merely have similar values.

(11.2)
2664AGREEMENT

h
NUMBER SG

i
SUBJECT

�
AGREEMENT

h
NUMBER SG

i�3775t24SUBJECT

24AGREEMENT

"
PERSON 3

NUMBER SG

#3535
=
266664AGREEMENT

h
NUMBER SG

i
SUBJECT

24AGREEMENT

"
NUMBER SG

PERSON 3

#35377775
The values at the end of thehSUBJECT AGREEMENTi path and thehAGREEMENTi path are the same, but not shared, in the first argument. The
unification of theSUBJECTfeatures of the two arguments adds thePERSON

information from the second argument to the result. However, since there
is no index linking theAGREEMENT feature to thehSUBJECT AGREEMENTi
feature, this information is not added to the value of theAGREEMENT fea-
ture.

Finally, consider the following example of a failure to unify.26664AGREEMENT 1

"
NUMBER SG

PERSON 3

#
SUBJECT

h
AGREEMENT 1

i37775t26666664AGREEMENT

"
NUMBER SG

PERSON 3

#
SUBJECT

24AGREEMENT

"
NUMBER PL

PERSON 3

#3537777775
Fails!

Proceeding through the features in order, we first find that the AGREEMENT

features in these examples successfully match. However, when we move
on to theSUBJECTfeatures, we find that the values found at the end of the
respectiveh SUBJECT AGREEMENT NUMBERi paths differ, causing a unifi-
cation failure.
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Feature structures are a way of representing partial information about
some linguistic object or placing informational constraints on what the object
can be. Unification can be seen as a way of merging the information in each
feature structure, or describing objects which satisfy both sets of constraints.
Intuitively, unifying two feature structures produces a new feature structure
which is more specific (has more information) than, or is identical to, either
of the input feature structures. We say that a less specific (more abstract)
feature structuresubsumesan equally or more specific one. SubsumptionSUBSUMES

is represented by the operatorv. A feature structureF subsumes a feature
structureG (F vG) if and only if:

1. for every featurex in F , F(x) v G(x) . (whereF(x) means ‘the value
of the featurex of feature structureF ’)

2. for all pathsp andq in F such thatF(p) = F(q), it is also the case that
G(p) = G(q).
For example, consider these feature structures:

(11.3)
h

NUMBER SG
i

(11.4)
h

PERSON 3
i

(11.5)
"

NUMBER SG

PERSON 3

#
(11.6)

2664CAT VP

AGREEMENT 1

SUBJECT
h

AGREEMENT 1

i3775
(11.7)

2666664CAT VP

AGREEMENT 1

SUBJECT

24AGREEMENT

"
PERSON 3

NUMBER SG

#353777775
(11.8)

2666664CAT VP

AGREEMENT 1

SUBJECT

24AGREEMENT 1

"
PERSON 3

NUMBER SG

#353777775
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The following subsumption relations hold among them:

11:3v 11:5
11:4v 11:5

11:6v 11:7v 11:8
Subsumption is a partial ordering; there are pairs of feature structures

that neither subsume nor are subsumed by each other:

11:3 6v 11:4
11:4 6v 11:3
Since every feature structure is subsumed by the empty structure [],

the relation among feature structures can be defined as asemilattice. The SEMILATTICE

semilattice is often represented pictorially with the mostgeneral feature []
at the top and the subsumption relation represented by linesbetween feature
structures. Unification can be defined in terms of the subsumption semilat-
tice. Given two feature structuresF and G, F tG is defined as the most
general feature structureH s.t. F v H andGv H. Since the information
ordering defined by unification is a semilattice, the unification operation is
monotonic (Pereira and Shieber, 1984; Rounds and Kasper, 1986; Moshier, MONOTONIC

1988). This means that if some description is true of a feature structure,
unifying it with another feature structure results in a feature structure that
still satisfies the original description. The unification operation is therefore
order-independent; given a set of feature structures to unify, we can check
them in any order and get the same result. Thus in the above example we
could instead have chosen to check theAGREEMENT attribute first and the
unification still would have failed.

To summarize, unification is a way of implementing the integration of
knowledge from different constraints. Given two compatible feature struc-
tures as input, it produces the most general feature structure which nonethe-
less contains all the information in the inputs. Given two incompatible fea-
ture structures, it fails.

11.3 FEATURES STRUCTURES IN THEGRAMMAR

Our primary purpose in introducing feature structures and unification has
been to provide a way to elegantly express syntactic constraints that would
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be difficult to express using the mechanisms of context-freegrammars alone.
Our next step, therefore, is to specify a way to integrate feature structures
and unification operations into the specification of a grammar. This can be
accomplished byaugmentingthe rules of ordinary context-free grammars
with attachments that specify feature structures for the constituents of the
rules, along with appropriate unification operations that express constraints
on those constituents. From a grammatical point of view, these attachments
will be used to accomplish the following goals:� To associate complex feature structures with both lexical items and

instances of grammatical categories.� To guide the composition of feature structures for larger grammatical
constituents based on the feature structures of their component parts.� To enforce compatibility constraints between specified parts of gram-
matical constructions.

We will use the following notation to denote the grammar augmenta-
tions that will allow us to accomplish all of these goals, based on the PATR-II
system described in Shieber (1986):

β0 ! β1 � � �βnfset o f constraintsg
The specified constraints have one of the following forms.hβi f eature pathi = Atomic valuehβi f eature pathi = hβ j f eature pathi
The notationhβi feature pathi denotes a feature path through the feature
structure associated with theβi component of the context-free part of the
rule. The first style of constraint specifies that the value found at the end
of the given path must unify with the specified atomic value. The second
form specifies that the values found at the end of the two givenpaths must
be unifiable.

To illustrate the use of these constraints, let us return to the informal
solution to the number agreement problem proposed at the beginning of this
chapter.

S ! NP VP

Only if the number of the NP is equal to the number of the VP.

Using the new notation, this rule can now be expressed as follows.

S ! NP VPhNP NUMBERi = hVP NUMBERi
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Note that in cases where there are two or more constituents ofthe same
syntactic category in a rule, we will subscript the constituents to keep them
straight, as inVP! V NP1 NP2

Taking a step back from the notation, it is important to note that in
this approach the simple generative nature of context-freerules has been
fundamentally changed by this augmentation. Ordinary context-free rules
are based on the simple notion of concatenation; anNP followed by aVP
is anS, or generatively, to produce anSall we need to do is concatenate an
NP to aVP. In the new scheme, this concatenation must be accompanied by
a successful unification operation. This leads naturally toquestions about
the computational complexity of the unification operation and its effect on
the generative power of this new grammar. These issues will be discussed in
detail in Chapter 13.

To review, there are two fundamental components to this approach.� The elements of context-free grammar rules will have feature-based
constraints associated with them. This reflects a shift fromatomic
grammatical categories to more complex categories with properties.� The constraints associated with individual rules can referto, and ma-
nipulate, the feature structures associated with the partsof the rule to
which they are attached.

The following sections present applications of unificationconstraints
to four interesting linguistic phenomena: agreement, grammatical heads,
subcategorization, and long distance dependencies.

Agreement

As discussed in Chapter 9, agreement phenomena show up in a number
of different places in English. This section illustrates how unification can
be used to capture the two main types of English agreement phenomena:
subject-verb agreement and determiner-nominal agreement. We will use the
following ATIS sentences as examples throughout this discussion to illus-
trate these phenomena.

(11.9) This flight serves breakfast.

(11.10) Does this flight serve breakfast?

(11.11) Do these flights serve breakfast?

Notice that the constraint used to enforceSUBJECT-VERB agreement
given above is deficient in that it ignores thePERSONfeature. The following
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constraint which makes use of theAGREEMENT feature takes care of this
problem.

S ! NP VPhNP AGREEMENTi = hVP AGREEMENTi
Examples 11.10 and 11.11 illustrate a minor variation onSUBJECT-

VERB agreement. In these Yes-No questions, the subjectNP must agree
with the auxiliary verb, rather than the main verb of the sentence, which
appears in a non-finite form. This agreement constraint can be handled by
the following rule.

S ! Aux NP VPhAuxAGREEMENTi = hNP AGREEMENTi
Agreement between determiners and nominals in noun phrasesis han-

dled in a similar fashion. The basic task is to allow the formsgiven above,
but block the unwanted*this flights and *those flightforms where the de-
terminers and nominals clash in theirNUMBER feature. Again, the logical
place to enforce this constraint is in the grammar rule that brings the parts
together.

NP ! Det NominalhDet AGREEMENTi = hNominalAGREEMENTihNP AGREEMENTi = hNominalAGREEMENTi
This rule states that theAGREEMENT feature of theDetmust unify with

the AGREEMENT feature of theNominal, and moreover, that theAGREE-
MENT feature of theNP is constrained to be the same as that of theNominal.

Having expressed the constraints needed to enforce subject-verb and
determiner-nominal agreement, we must now fill in the rest ofthe machinery
needed to make these constraints work. Specifically, we mustconsider how
the various constituents that take part in these constraints (theAux, VP, NP,
Det, andNominal) acquire values for their various agreement features.

We can begin by noting that our constraints involve both lexical and
non-lexical constituents. The simpler lexical constituents, AuxandDet, re-
ceive values for their respective agreement features directly from the lexicon
as in the following rules.

Aux ! dohAuxAGREEMENT NUMBERi = PLhAuxAGREEMENT PERSONi = 3
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Aux ! doeshSAGREEMENT NUMBERi = SGhSAGREEMENT PERSONi = 3

Determiner! thishDeterminerAGREEMENT NUMBERi = SG

Determiner! thesehDeterminerAGREEMENT NUMBERi = PL

Returning to our firstSrule, let us first consider theAGREEMENT fea-
ture for theVPconstituent. The constituent structure for thisVP is specified
by the following rule.

VP ! Verb NP

It seems clear that the agreement constraint for this constituent must
be based on its constituent verb. This verb, as with the previous lexical
entries, can acquire its agreement feature values directlyfrom lexicon as in
the following rules.

Verb ! servehVerbAGREEMENT NUMBERi = PL

Verb ! serveshVerbAGREEMENT NUMBERi = SGhVerbAGREEMENT PERSONi = 3

All that remains is to stipulate that the agreement feature of the parentVPis
constrained to be the same as its verb constituent.

VP ! Verb NPhVP AGREEMENTi = hVerbAGREEMENTi
In other words, non-lexical grammatical constituents can acquire values for
at least some of their features from their component constituents.

The same technique works for the remainingNP and Nominalcate-
gories. The values for the agreement features for these categories are derived
from the nounsflight andflights.

Noun! flighthNounAGREEMENT NUMBERi = SG

Noun! flightshNounAGREEMENT NUMBERi = PL
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Similarly, theNominalfeatures are constrained to have the same values
as its constituent noun, as follows.

Nominal ! NounhNominalAGREEMENTi = hNounAGREEMENTi
Note that this section has only scratched the surface of the English

agreement system, and that the agreement system of other languages can be
considerably more complex than English.

Head Features

To account for the way compositional grammatical constituents such as noun
phrases, nominals, and verb phrases come to have agreement features, the
preceding section introduced the notion of copying needed feature structures
from children to their parents. This use turns out to be a specific instance
of a much more general phenomenon in constraint-based grammars. Specif-
ically, the features for most grammatical categories are copied fromoneof
the children to the parent. The child that provides the features is called the
head of the phrase, and the features copied are referred to ashead features.HEAD OF THE

PHRASE

HEAD
FEATURES To make this clear, consider the following three rules from the last

section.

VP ! Verb NPhVP AGREEMENTi = hVerbAGREEMENTi
NP ! Det NominalhDet AGREEMENTi = hNominalAGREEMENTihNP AGREEMENTi = hNominalAGREEMENTi
Nominal ! NounhNominalAGREEMENTi = hNounAGREEMENTi
In each of these rules, the constituent providing the agreement feature

structure up to the parent is the head of the phrase. More specifically, the
verb is the head of the verb phrase, the nominal is the head of the noun
phrase, and the noun is the head of the nominal. In addition, we can say that
the agreement feature structure is a head feature. We can rewrite our rules to
reflect these generalizations by placing the agreement feature structure under
a HEAD feature and then copying that feature upward as in the following
constraints.
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VP ! Verb NP (11.12)hVP HEADi = hVerbHEADi
NP ! Det Nominal (11.13)hNP HEADi = hNominalHEADihDet HEAD AGREEMENTi = hNominalHEAD AGREEMENTi
Nominal ! Noun (11.14)hNominalHEADi = hNounHEADi
Similarly, the lexical rules that introduce these featuresmust now re-

flect thisHEAD notion, as in the following.

Noun! flightshNounHEAD AGREEMENT NUMBERi = PL

Verb ! serveshVerbHEAD AGREEMENT NUMBERi = SGhVerbHEAD AGREEMENT PERSONi = 3

The notion of a head is an extremely significant one in grammar, be-
cause it provides a way for a syntactic rule to be linked to a particular word.
In this way heads will play an important role in thedependency grammars
and lexicalized grammarsof Chapter 12, and thehead transducersmen-
tioned in Chapter 21.

Subcategorization

Recall that subcategorization is the notion that verbs can be picky about the
patterns of arguments they will allow themselves to appear with. In Chap-
ter 9, to prevent the generation of ungrammatical sentenceswith verbs and
verb phrases that do not match, we were forced to split the category of verb
into multiple sub-categories. These more specific verbs were then used in
the definition of the specific verb phrases that they were allowed to occur
with, as in the following rule.

Verb-with-S-comp! think

VP ! Verb-with-S-comp S

Clearly, this approach introduces exactly the same undesirable prolif-
eration of categories that we saw with the similar approach to solving the
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number problem. The proper way to avoid this proliferation is to introduce
feature structures to distinguish among the various members of the verb cate-
gory. This goal can be accomplished by associating an atomicfeature called
SUBCAT, with an appropriate value, with each of the verbs in the lexicon.
For example, the transitive version ofservescould be assigned the following
feature structure in the lexicon.

Verb ! serveshVerbHEAD AGREEMENT NUMBERi = SGhVerbHEAD SUBCATi = TRANS

The SUBCAT feature is a signal to the rest of the grammar that this verb
should only appear in verb phrases with a single noun phrase argument. This
constraint is enforced by adding corresponding constraints to all the verb
phrase rules in the grammar, as in the following.

VP ! VerbhVP HEADi = hVerbHEADihVP HEAD SUBCATi = INTRANS

VP ! Verb NPhVP HEADi = hVerbHEADihVP HEAD SUBCATi = TRANS

VP ! Verb NP NPhVP HEADi = hVerbHEADihVP HEAD SUBCATi = DITRANS

The first unification constraint in these rules states that the verb phrase
receives itsHEAD features from its verb constituent, while the second con-
straint specifies what the value of thatSUBCAT feature must be. Any attempt
to use a verb with an inappropriate verb phrase will fail since the value of the
SUBCAT feature of theVPwill fail to unify with the atomic symbol given in
second constraint. Note this approach requires unique symbols for each of
the 50 to 100 verb phrase frames in English.

This is a somewhat opaque approach since these unanalyzableSUBCAT

symbols do not directly encode either the number or type of the arguments
that the verb expects to take. To see this, note that one can not simply exam-
ine a verb’s entry in the lexicon and know what its subcategorization frame
is. Rather, you must use the value of theSUBCAT feature indirectly as a
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pointer to those verb phrase rules in the grammar that can accept the verb in
question.

A somewhat more elegant solution, which makes better use of the ex-
pressive power of feature structures, allows the verb entries to directly spec-
ify the order and category type of the arguments they require. The following
entry for servesis an example of one such approach, in which the verb’s
subcategory feature expresses alist of its objects and complements.

Verb ! serveshVerbHEAD AGREEMENT NUMBERi = SGhVerbHEAD SUBCAT FIRST CATi = NPhVerbHEAD SUBCAT SECONDi = END

This entry uses theFIRST feature to state that the first post-verbal ar-
gument must be anNP; the value of theSECOND feature indicates that this
verb expects only one argument. A verb likeleave Boston in the morning,
with two arguments, would have the following kind of entry.

Verb! leaveshVerbHEAD AGREEMENT NUMBERi = SGhVerbHEAD SUBCAT FIRST CATi = NPhVerbHEAD SUBCAT SECOND CATi = PPhVerbHEAD SUBCAT THIRDi = END

This scheme is, of course, a rather baroque way of encoding a list; it is
also possible to use the idea oftypesdefined in Section 11.6 to define a list
type more cleanly.

The individual verb phrase rules must now check for the presence of
exactly the elements specified by their verb, as in the following transitive
rule.

VP ! Verb NP (11.15)hVP HEADi = hVerbHEADihVP HEAD SUBCAT FIRST CATi = hNP CAT ihVP HEAD SUBCAT SECONDi = END

The second constraint in this rule’s constraints states that the category
of the first element of the verb’sSUBCAT list must match the category of the
constituent immediately following the verb. The third constraint goes on to
state that this verb phrase rule expects only a single argument.



410 Chapter 11. Features and Unification

Our previous examples have shown rather simple subcategorization
structures for verbs. In fact, verbs can subcategorize for quite complexsub-
categorization frames, (e.g.NP PP, NP NP, or NP S) and these frames canSUBCATEGO­

RIZATION
FRAMES

be composed of many different phrasal types. In order to comeup with a list
of possible subcategorization frames for English verbs, wefirst need to have
a list of possible phrase types that can make up these frames.Figure 11.3
shows one short list of possible phrase types for making up subcategorization
frames for verbs; this list is modified from one used to createverb subcate-
gorization frames in the FrameNet project (Bakeret al., 1998), and includes
phrase types for the subjects of verbsthere, it, as well as objects and com-
plements.

To use the phrase types in Figure 11.3 in a unification grammar, each
phrase type would have to be described using features. For example the form
VPto which is subcategorized for bywantmight be expressed as:

Verb! wanthVerbHEAD SUBCAT FIRST CATi = VPhVerbHEAD SUBCAT FIRST FORMi = INFINITIVE

Each of the 50 to 100 possible verb subcategorization framesin English
would be described as a set drawn from these phrase types. Forexample,
here’s an example of the two-complementwant. We’ve used this following
example to demonstrate two different notational possibilities. First, lists can
be represented via an angle brackets notationh andi. Second, instead of us-
ing a rewrite-rule annotated with path equations, we can represent the lexical
entry as a single feature structure:26666664ORTH WANT

CAT VERB

HEAD

264SUBCAT h hCAT NP
i
,

24CAT VP

HEAD
h

VFORM INFINITIVE
i35i37537777775

Combining even a limited set of phrase types results in a verylarge set
of possible subcategorization frames. Furthermore, each verb allows many
different subcategorization frames. For example, here arejust some of the
subcategorization patterns for the verbask, with examples from the BNC:



Section 11.3. Features Structures in the Grammar 411

Noun Phrase Types
There nonreferential there There is still much to learn. . .
It nonreferential it It was evident that my ideas. . .
NP noun phrase As he was relatinghis story. . .

Preposition Phrase Types
PP preposition phrase couch their messagein terms. . .
PPing gerundive PP censured himfor not having intervened. . .
PPpart Particle turn it off

Verb Phrase Types
VPbrst bare stem VP she coulddiscuss it
VPto to-marked infin. VP Why do you wantto know?
VPwh Wh- VP it is worth consideringhow to write
VPing gerundive VP I would considerusing it

Complement Clause types
Finite Clause

Sfin finite clause maintainthat the situation was unsatisfactory
Swh- Wh- clause . . . it tells uswhere we are. . .
Swheth Whether/if clause askwhether Aristophanes is depicting a. . .

Nonfinite Clause
Sing gerundive clause . . . seesome attention being given. . .
Sto to-marked clause knowthemselves to be relatively unhealthy
Sforto for-to clause She was waitingfor him to make some reply. . .
Sbrst bare stem clause commandedthat his sermons be published

Other Types
AjP adjective phrase thought itpossible
Quo quotes asked“What was it like?”

Figure 11.3 A small set of potential phrase types which can be combined
to create a set of potential subcategorization frames for verbs. Modified from
the FrameNet tagset (Bakeret al., 1998). The sample sentence fragments are
from the British National Corpus.

Subcat Example
Quo asked [Quo “What was it like?”]
NP asking [NP a question]
Swh asked [Swhwhat trades you’re interested in]
Sto ask [Stohim to tell you]
PP that means asking [PP at home]
Vto asked [Vto to see a girl called Evelyn]
NP Swheth asked [NP him] [Swhethwhether he could make]
NP NP asked [NP myself] [NP a question]
NP Swh asked [NP him] [Swhwhy he took time off]
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A number of comprehensive subcategorization-frame tagsets exist, such
as the COMLEX set (Macleodet al., 1998), which includes subcategoriza-
tion frames for verbs, adjectives, and nouns, and the ACQUILEX tagset of
verb subcategorization frames (Sanfilippo, 1993). Many subcategorization-
frame tagsets add other information about the complements,such as spec-
ifying the identity of the subject in a lower verb phrase thathas no overt
subject; this is calledcontrol information. For exampleTemmy promisedCONTROL

Ruth to go(at least in some dialects) implies that Temmy will do the go-
ing, whileTemmy persuaded Ruth to goimplies that Ruth will do the going.
Some of the multiple possible subcategorization frames fora verb can be
partially predicted by the semantics of the verb; for example many verbs of
transfer (likegive, send, carry) predictably take the two subcategorization
framesNP NPandNP PP:

NP NP sent FAA Administrator James Busey a letter
NP PP sent a letter to the chairman of the Armed Services Committee

These relationships between subcategorization frames across classes
of verbs are called argument-structurealternations, and will be discussedALTERNA­

TIONS

in Chapter 16 when we discuss the semantics of verbal argument structure.
Chapter 12 will introduce probabilities for modeling the fact that verbs gen-
erally have a bias toward which of their possible they prefer.

Subcategorization in Other Parts of Speech

Although the notion of subcategorization, orvalenceas it is often called, wasVALENCE

originally designed for verbs, more recent work has focusedon the fact that
many other kinds of words exhibit forms of valence-like behavior. Consider
the following contrasting uses of the prepositionswhile andduring.

(11.16) Keep your seatbelt fastened while we are taking off.

(11.17) *Keep your seatbelt fastened *while takeoff.

(11.18) Keep your seatbelt fastened during takeoff.

(11.19) *Keep your seatbelt fastened during we are taking off.

Despite the apparent similarities between these words, they make quite dif-
ferent demands on their arguments. Representing these differences is left as
Exercise 11.5 for the reader.

Many adjectives and nouns also have subcategorization frames. Here
are some examples using the adjectivesapparent, aware, andunimportant
and the nounsassumptionandquestion:
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It wasapparent [Sfin that the kitchen was the only room. . . ]
It wasapparent [PPfrom the way she rested her hand over his]
aware [Sfinhe may have caused offense]
it is unimportant [Swhethwhether only a little bit is accepted]
theassumption[Sfin that wasteful methods have been employed]
thequestion [Swhethwhether the authorities might have decided]

See Macleodet al.(1998) for a description of subcategorization frames
for nouns and adjectives.

Verbs express subcategorization constraints on their subjects as well as
their complements. For example, we need to represent the lexical fact that
the verbseemcan take aSfin as its subject (That she was affected seems
obvious), while the verbpaint cannot. TheSUBJECTfeature can be used to
express these constraints.

Long Distance Dependencies

The model of subcategorization we have developed so far has two compo-
nents. Each head word has aSUBCAT feature which contains a list of the
complements it expects. Then phrasal rules like theVP rule in (11.16) match
up each expected complement in theSUBCAT list with an actual constituent.
This mechanism works fine when the complements of a verb are infact to
be found in the verb phrase.

Sometimes, however, a constituent subcategorized for by the verb is
not locally instantiated, but is in along-distancerelationship with the pred-
icate. Here are some examples of suchlong-distance dependencies:

LONG­
DISTANCE
DEPENDEN­
CIES

What cities does Continental service?
What flights do you have from Boston to Baltimore?
What time does that flight leave Atlanta?

In the first example, the constituentwhat citiesis subcategorized for
by the verbservice, but because the sentence is an example of awh-non-
subject-question, the object is located at the front of the sentence. Recall
from Chapter 9 that a (simple) phrase-structure rule for awh-non-subject-
question is something like the following:

S ! Wh-NP Aux NP VP

Now that we have features, we’ll be able to augment this phrase-structure
rule to require theAux and theNP to agree (since theNP is the subject).
But we also need some way to augment the rule to tell it that theWh-NP
should fill some subcategorization slot in theVP. The representation of such
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long-distance dependencies is a quite difficult problem, because the verb
whose subcategorization requirement is being filled can be quite distant from
the filler. In the following (made-up) sentence, for example, thewh-phrase
which flightmust fill the subcategorization requirements of the verbbook,
despite the fact that there are two other verbs (wantandhave) in between:

Which flight do you want me to have the travel agent book?

Many solutions to representing long-distance dependencies in unifica-
tion grammars involve keeping a list, often called agap list, implementedGAP LIST

as a featureGAP, which is passed up from phrase to phrase in the parse
tree. Thefiller (for examplewhich flightabove) is put on the gap list, andFILLER

must eventually be unified with the subcategorization frameof some verb.
See Sag and Wasow (1999) for an explanation of such a strategy, together
with a discussion of the many other complications that must be modeled in
long-distance dependencies.

11.4 IMPLEMENTING UNIFICATION

As discussed, the unification operator takes two feature structures as input
and returns a single merged feature structure if successful, or a failure sig-
nal if the two inputs are not compatible. The input feature structures are
represented as directed acyclic graphs (DAGs), where features are depicted
as labels on directed edges, and feature values are either atomic symbols or
DAGs. As we will see, the implementation of the operator is a relatively
straightforward recursive graph matching algorithm, suitably tailored to ac-
commodate the various requirements of unification. Roughlyspeaking, the
algorithm loops through the features in one input and attempts to find a corre-
sponding feature in the other. If all of the features match, then the unification
is successful. If any single feature causes a mismatch then the unification
fails. Not surprisingly, the recursion is motivated by the need to correctly
match those features that have feature structures as their values.

One somewhat unusual aspect of the algorithm is that rather than con-
struct a new output feature structure with the unified information from all the
information from the two arguments, it destructively alters the arguments so
that in the end they point to exactly the same information. Thus the result
of a successful call to the unification operator consists of suitably altered
versions of the arguments (failed unifications also result in alterations to the
arguments, but more on that later in Section 11.5.) As is discussed in the
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next section, the destructive nature of this algorithm necessitates certain mi-
nor extensions to the simple graph version of feature structures as DAGs we
have been assuming.

Unification Data Structures

To facilitate the destructive merger aspect of the algorithm, we add a small
complication to the DAGs used to represent the input featurestructures; fea-
ture structures are represented using DAGs with additionaledges, or fields.
Specifically, each feature structure consists of two fields:a content field and
a pointer field. The content field may be null or contain an ordinary fea-
ture structure. Similarly, the pointer field may be null or contain a pointer to
another feature structure. If the pointer field of the DAG is null, then the con-
tent field of the DAG contains the actual feature structure tobe processed.
If, on the other hand, the pointer field is non-null, then the destination of the
pointer represents the actual feature structure to be processed. Not surpris-
ingly, the merger aspects of unification are achieved by altering the pointer
field of DAGs during processing.

To make this scheme somewhat more concrete, consider the extended
DAG representation for the following familiar feature structure.

(11.20)
"

NUMBER SG

PERSON 3

#
The extended DAG representation is illustrated with our textual matrix dia-
grams by treating theCONTENT andPOINTER fields as ordinary features, as
in the following matrix.

(11.21)
2666666664CONTENT

2666664NUMBER

"
CONTENTS SG

POINTER NULL

#
PERSON

"
CONTENTS 3

POINTER NULL

#3777775
POINTER NULL

3777777775
Figure 11.4 shows this extended representation in its graphical form.

Note that the extended representation contains content andpointer links both
for the top-level layer of features, as well as for each of theembedded feature
structures all the way down to the atomic values.

Before going on to the details of the unification algorithm, we will
illustrate the use of this extended DAG representation withthe following
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SG

NULL

3

NULL

NULL

CONTENT

POINTER

NUMBER

PERSON

CONTENT

POINTER

CONTENT

POINTER

Figure 11.4 An extended DAG notation for Examples 11.20 and 11.21.

simple example. The original extended representation of the arguments to
this unification are shown in Figure 11.5.

(11.22)
h

NUMBER SG
it hPERSON 3

i
=
"

NUMBER SG

PERSON 3

#
SG

NULL

3

NULL

NULL

NULL

CONTENT

POINTER

CONTENT

POINTER

PERSON

NUMBER

CONTENT

CONTENT

POINTER

POINTER

Figure 11.5 The original arguments to Example 11.22.
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At a high level, we would simply say that the unification results in the
creation of a new structure containing the union of the information from the
two original arguments. With the extended notation, we can see how the uni-
fication is accomplished by making some additions to the original arguments
and changing some of the pointers from one structure to the other so that in
the end they contain the same content. In this example, this is accomplished
by first adding aPERSON feature to the first argument, and assigning it a
value by filling itsPOINTER field with a pointer to the appropriate location
in the second argument, as shown in Figure 11.6.

CONTENT

CONTENT

CONTENT

CONTENT

CONTENT

POINTER

POINTER

POINTER

POINTER

SG

NULL

NULL

3

NULL

NUMBER

PERSON

PERSON

POINTER

NULL

NULL

Figure 11.6 The arguments after assigning the first argument’s newPER-
SON feature to the appropriate value in the second argument.
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The process is, however, not yet complete. While it is clear from Figure
11.6 that the first argument now contains all the correct information, the
second one does not; it lacks aNUMBER feature. We could, of course, add
a NUMBER feature to this argument with a pointer to the appropriate place
in the first one. This change would result in the two argumentshaving all
the correct information from this unification. Unfortunately, this solution is
inadequate since it does not meet our requirement that the two arguments be
truly unified. Since the two arguments are not completely unified at the top
level, future unifications involving one of the arguments would not show up
in the other. The solution to this problem is to simply set thePOINTER field
of the second argument to point at the first one. When this is done any future
change to either argument will be immediately reflected in both. The result
of this final change is shown in Figure 11.7.

CONTENT

CONTENT

CONTENT

CONTENT

CONTENT

POINTER

POINTER

POINTER

POINTER

SG

NULL

NULL

3

NULL

NUMBER

PERSON

PERSON

POINTER

NULL

Figure 11.7 The final result of unifying F1 and F2.



Section 11.4. Implementing Unification 419

function UNIFY(f1, f2) returns fstructureor failure

f1-real Real contents off1
f2-real Real contents off2

if f1-real is null then
f1.pointer f2
return f2

else if f2-real is null then
f2.pointer f1
return f1

else if f1-realandf2-realare identicalthen
f1.pointer f2
return f2

else ifbothf1-realandf2-realare complex feature structuresthen
f2.pointer f1
for each featurein f2-realdo

other-feature Find or create
a feature corresponding tofeaturein f1-real

if UNIFY(feature.value,other-feature.value) returns failure then
return failure

return f1
else return failure

Figure 11.8 The Unification Algorithm.

The Unification Algorithm

The unification algorithm that we have been leading up to is shown in Figure
11.8. To review, this algorithm accepts two feature structures represented
using the extended DAG representation. As can be seen from the code, it
may return as its return either one of these arguments. This is, however,
somewhat deceptive since the true effect of this algorithm is the destructive
unification of the two inputs.

The first step in this algorithm is to acquire the true contents of both of
the arguments. Recall that if the pointer field of an extendedfeature structure
is non-null, then the real content of that structure is foundby following the
pointer found in pointer field. The variablesf1-real andf2-realare the result
of this pointer following process, which is often referred to asdereferenc-
ing. DEREFER­

ENCING
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As with all recursive algorithms, the next step is to test forthe various
base cases of the recursion before proceeding on to a recursive call involving
some part of the original arguments. In this case, there are three possible base
cases:� One or both of the arguments has a null value.� The arguments are identical.� The arguments are non-complex and non-identical.

In the case where either of the arguments is null, the pointerfield for
the null argument is changed to point to the other argument, which is then
returned. The result is that both structures now point at thesame value.

If the structures are identical, then the pointer of the firstis set to the
second and the second is returned. It is important to understand why this
pointer change is done in this case. After all, since the arguments are iden-
tical, returning either one would appear to suffice. This might be true for a
single unification but recall that we want the two arguments to the unification
operator to be truly unified. The pointer change is necessarysince we want
the arguments to be truly identical, so that any subsequent unification that
adds information to one will add it to both.

If neither of the preceding tests is true then there are two possibili-
ties: they are non-identical atomic values, or they are non-identical complex
structures. The former case signals an incompatibility in the arguments that
leads the algorithm to return a failure signal. In the lattercase, a recursive
call is needed to ensure that the component parts of these complex structures
are compatible. In this implementation, the key to the recursion is a loop
over all the features of thesecondargument,f2. This loop attempts to unify
the value of each feature inf2 with the corresponding feature inf1. In this
loop, if a feature is encountered inf2 that is missing fromf1, a feature is
added tof1 and given the valueNULL . Processing then continues as if the
feature had been there to begin with. Ifeveryone of these unifications suc-
ceeds, then the pointer field off2 is set tof1 completing the unification of the
structures andf1 is returned as the value of the unification.

We should note that an unfortunate aspect of this algorithm is that it
is capable of producing feature structures containing cycles. This situation
can arise when the algorithm is asked to unify a structure with a second
structure that contains the first as a subpart. The way to avoid this situation
is to employ what is called anoccur check (Robinson, 1965). This checkOCCUR

CHECK

analyzes the input DAGs and returnsfailure when one of the arguments is
contained as a subpart of the other. In practice, this check is omitted from
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Figure 11.9 The initial argumentsf1 andf2 to Example 11.23.

most implementations due to its computational cost.

An Example

To illustrate this algorithm, let us walk through the following example.

(11.23)
264AGREEMENT 1

h
NUMBER SG

i
SUBJECT

h
AGREEMENT 1

i375t"
SUBJECT

�
AGREEMENT

h
PERSON 3

i�#
Figure 11.9 shows the extended representations for the arguments to

this unification. Note how the reentrant structure in the first argument is
captured through the use of thePTR field.

These original arguments are neither identical, nor null, nor atomic, so
the main loop is entered. Looping over the features off2, the algorithm is
led to a recursive attempt to unify the values of the corresponding SUBJECT

features off1 andf2.
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Figure 11.10 f1andf2after the recursion adds the value of the newPERSON

feature.h
AGREEMENT 1

it�AGREEMENT
h

PERSON 3
i�

These arguments are also non-identical, non-null, and non-atomic so
the loop is entered again leading to a recursive check of the values of the
AGREEMENT features.h

NUMBER SG
it hPERSON 3

i
In looping over the features of the second argument, the factthat the

first argument lacks aPERSON feature is discovered. APERSON feature
initialized with aNULL value is, therefore, added to the first argument. This,
in effect, changes the previous unification to the following."

NUMBER SG

PERSON NULL

#t hPERSON 3
i

After creating this newPERSONfeature, the next recursive call leads
to the unification of theNULL value of the new feature in the first argument
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Figure 11.11 The final structures off1 andf2 at the end.

with the 3 value of the second argument. This recursive call results in the
assignment of the pointer field of the first argument to the 3 value in f2, as
shown in 11.10.

Since there are no further features to check in thef2 argument at any
level of recursion, each in turn sets the pointer for itsf2 argument to point at
its f1 argument and returns it. The result of all these assignmentsis shown
in Figure 11.11.

11.5 PARSING WITH UNIFICATION CONSTRAINTS

We now have all the pieces necessary to the integrate featurestructures and
unification into a parser. Fortunately, the order-independent nature of unifi-
cation allows us to largely ignore the actual search strategy used in the parser.
Once we have unification constraints associated with the context-free rules
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of the grammar, and feature structures with the states of thesearch, any of
the standard search algorithms described in Chapter 10 can be used.

Of course, this leaves a fairly large range of possible implementation
strategies. We could, for example, simply parse as we did before using the
context-free components of the rules, and then build the feature structures
for the resulting trees after the fact, filtering out those parses that contain
unification failures. Although such an approach would result in only well-
formed structures in the end, it fails to use the power of unification to reduce
the size of the parser’s search space during parsing.

The next section describes an approach that makes better useof the
power of unification by integrating unification constraintsdirectly into the
Earley parsing process, allowing ill-formed structures tobe eliminated as
soon as they are proposed. As we will see, this approach requires only min-
imal changes to the basic Earley algorithm. We then move on tobriefly
consider an approach to unification parsing that moves even further away
from standard context-free methods.

Integrating Unification into an Earley Parser

We have two goals in integrating feature structures and unification into the
Earley algorithm: to use feature structures to provide a richer representation
for the constituents of the parse, and to block the entry intothe chart of ill-
formed constituents that violate unification constraints.As we will see, these
goals can be accomplished via fairly minimal changes to the original Earley
scheme given on page 378.

The first change involves the various representations used in the orig-
inal code. Recall that the Earley algorithm operates by using a set of un-
adorned context-free grammar rules to fill in a data-structure called a chart
with a set of states. At the end of the parse, the states that make up this chart
represent all possible parses of the input. Therefore, we begin our changes
by altering the representations of both the context-free grammar rules, and
the states in the chart.

The rules are altered so that in addition to their current components,
they also include a feature structure derived from their unification constraints.
More specifically, we will use the constraints listed with a rule to build a fea-
ture structure, represented as a DAG, for use with that rule during parsing.

Consider the following context-free rule with unification constraints.
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S ! NP VPhNP HEAD AGREEMENTi = hVP HEAD AGREEMENTihSHEADi = hVP HEADi
Converting these constraints into a feature structure results in the following
structure:26666664S

h
HEAD 1

i
NP

�
HEAD

h
AGREEMENT 2

i�
VP

�
HEAD 1

h
AGREEMENT 2

i�37777775
In this derivation, we combined the various constraints into a single structure
by first creating top-level features for each of the parts of the context-free
rule, S, NP, and VP in this case. We then add further components to this
structure by following the path equations in the constraints. Note that this
is a purely notational conversion; the DAGs and the constraint equations
contain the same information. However, tying the constraints together in a
single feature structure puts it in a form that can be passed directly to our
unification algorithm.

The second change involves the states used to represent partial parses
in the Earley chart. The original states contain fields for the context-free rule
being used, the position of the dot representing how much of the rule has
been completed, the positions of the beginning and end of thestate, and a list
of other states that represent the completed sub-parts of the state. To this set
of fields, we simply add an additional field to contain the DAG representing
the feature structure corresponding to the state. Note thatwhen a rule is
first used by PREDICTOR to create a state, the DAG associated with the state
will simply consist of the DAG retrieved from the rule. For example, when
PREDICTOR uses the aboveS rule to enter a state into the chart, the DAG
given above will be its initial DAG. We’ll denote states likethis as follows,
whereDagdenotes the feature structure given above.

S! � NP VP; [0;0]; [];Dag

Given these representational additions, we can move on to altering
the algorithm itself. The most important change concerns the actions that
take place when a new state is created via the extension of an existing state,
which takes place in the COMPLETER routine. Recall that COMPLETER is
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called when a completed constituent has been added to the chart. Its task
is to attempt to find, and extend, existing states in the chartthat are looking
for constituents that are compatible with the newly completed constituent.
COMPLETER is, therefore, a function that creates new states bycombining
the information from two other states, and as such is a likelyplace to apply
the unification operation.

To be more specific, COMPLETER adds a new state into the chart by
finding an existing state whose� can be advanced by the newly completed
state. A� can be advanced when the category of the constituent immediately
following it matches the category of the newly completed constituent. To
accommodate the use of feature structures, we can alter thisscheme by uni-
fying the feature structure associated with the newly completed state with the
appropriate part of the feature structure being advanced. If this unification
succeeds, then the DAG of the new state receives the unified structure and is
entered into the chart, if it fails then no new state is entered into the chart.
The appropriate alterations to COMPLETER are showin in Figure 11.12.

Consider this process in the context of parsing the phraseThat flight,
where theThathas already been seen, as is captured by the following state.

NP! Det�Nominal[0;1]; [SDet];Dag1

Dag1
266666664NP

h
HEAD 1

i
DET

"
HEAD

�
AGREEMENT 2

h
NUMBER SG

i�#
NOMINAL

�
HEAD 1

h
AGREEMENT 2

i�
377777775

Now consider the later situation where the parser has processedflight and
has subsequently produced the following state.

Nominal! Noun�; [1;2]; [SNoun];Dag2

Dag2

26664NOMINAL
h

HEAD 1

i
NOUN

"
HEAD 1

�
AGREEMENT

h
NUMBER SG

i�#37775
To advance theNP rule, the parser unifies the feature structure found under
the NOMINAL feature ofDag2, with the feature structure found under the
NOMINAL feature of theNP’s Dag1. As in the original algorithm, a new state
is created to represent the fact that an existing state has been advanced. This
new state’s DAG is given the DAG that resulted from the above unification.
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function EARLEY-PARSE(words, grammar) returns chart

ENQUEUE((γ ! � S; [0;0]; dagγ),chart[0])
for i from 0 to LENGTH(words) do
for eachstatein chart[i] do

if INCOMPLETE?(state) and
NEXT-CAT(state) is not a part of speechthen

PREDICTOR(state)
elseif INCOMPLETE?(state) and

NEXT-CAT(state) is a part of speechthen
SCANNER(state)

else
COMPLETER(state)

end
end
return (chart)

procedure PREDICTOR((A ! α � B β; [i; j]; dagA))
for each (B ! γ) in GRAMMAR -RULES-FOR(B,grammar) do

ENQUEUE((B ! � γ; [ j; j]; dagB),chart[j])
end

procedure SCANNER((A ! α � B β; [i; j]; dagA))
if B � PARTS-OF-SPEECH(word[j] ) then

ENQUEUE((B ! word[ j]; [ j; j +1]; dagB),chart[j+1] )

procedure COMPLETER((B ! γ �; [ j;k]; dagB))
for each (A ! α � B β; [i; j]; dagA) in chart[j] do

if new-dag UNIFY-STATES(dagB,dagA,B) 6= Fails!
ENQUEUE((A ! α B � β; [i;k];new�dag),chart[k])

end

procedure UNIFY-STATES(dag1,dag2,cat)
dag1-cp COPYDAG(dag1)
dag2-cp COPYDAG(dag2)
UNIFY(FOLLOW-PATH(cat,dag1-cp), FOLLOW-PATH(cat,dag2-cp))

procedure ENQUEUE(state, chart-entry)
if stateis not subsumed by a state inchart-entrythen

PUSH(state, chart-entry)
end

Figure 11.12 Modifications to the Earley algorithm to include unification.
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The final change to the original algorithm concerns the checkfor states
already contained in the chart. In the original algorithm, the ENQUEUE func-
tion refused to enter into the chart any state that wasidentical to one already
present in the chart. Where identical meant the same rule, with the same
start and finish positions, and the same position of the�. It is this check
that allows the algorithm to, among other things, avoid the infinite recursion
problems associated with left-recursive rules.

The problem, of course, is that our states are now more complex since
they have complex feature structures associated with them.States that ap-
peared identical under the original criteria might in fact now be different
since their associated DAGs may differ. The obvious solution to this prob-
lem is to simply extend the identity check to include the DAGsassociated
with the states, but it turns out that we can improve on this solution.

The motivation for the improvement lies in the motivation for the iden-
tity check. Its purpose is to prevent the wasteful addition of a state into the
chart whose effect on the parse would be accomplished by an already exist-
ing state. Put another way, we want to prevent the entry into the chart of
any state that would duplicate the work that will eventuallybe done by other
states. Of course, this will clearly be the case with identical states, but it
turns out it is also the case for states in the chart that aremore generalthan
new states being considered.

Consider the situation where the chart contains the following state,
where theDagplaces no constraints on theDet.

NP! �Det NP; [i; i]; [];Dag

Such a state simply says that it is expecting aDet at positioni, and that any
Detwill do.

Now consider the situation where the parser wants to insert anew state
into the chart that is identical to this one, with the exception that its DAG
restricts theDet to be singular. In this case, although the states in question
are not identical, the addition of the new state to the chart would accomplish
nothing and should therefore be prevented.

To see this let’s consider all the cases. If the new state is added, then a
subsequent singularDet will match both rules and advance both. Due to the
unification of features, both will have DAGs indicating thattheir Dets are
singular, with the net result being duplicate states in the chart. If on the other
hand, a pluralDet is encountered, the new state will reject it and not advance,
while the old rule will advance, entering a single new state into the chart. On
the other hand, if the new state is not placed in the chart, a subsequent plural
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or singularDet will match the more general state and advance it, leading to
the addition of one new state into the chart. Note that this leaves us in exactly
the same situation as if the new state had been entered into the chart, with
the exception that the duplication is avoided. In sum, nothing worthwhile is
accomplished by entering into the chart a state that is more specific than a
state already in the chart.

Fortunately, the notion ofsubsumptiondescribed earlier gives us a for-
mal way to talk about the generalization and specializationrelations among
feature structures. This suggests that the proper way to alter ENQUEUE is to
check if a newly created state issubsumedby any existing states in the chart.
If it is, then it will not be allowed into the chart. More specifically, a new
state that is identical in terms of its rule, start and finish positions, subparts,
and� position, to an existing state, will be not be entered into the chart if its
DAG is subsumed by the DAG of an existing state (ie. ifDagold v Dagnew).
The necessary change to the original Earley ENQUEUE procedure is shown
in Figure 11.12.

The Need for Copying

The calls to COPYDAG within the UNIFY-STATE procedure require some
elaboration. Recall that one of the strengths of the Earley algorithm (and of
the dynamic programming approach in general) is that once states have been
entered into the chart they may be used again and again as partof different
derivations, including ones that in the end do not lead to successful parses.
This ability is the motivation for the fact that states already in the chart are
not updated to reflect the progress of their�, but instead are copied are then
updated, leaving the original states intact so that they canbe used again in
further derivations.

The call to COPYDAG in UNIFY-STATE is required to preserve this be-
havior because of the destructive nature of our unification algorithm. If we
simply unified the DAGS associated the existing states, those states would
be altered by the unification, and hence would not be available in the same
form for subsequent uses by the COMPLETER function. Note that has nega-
tive consequences regardless of whether the unification succeeds or fails, in
either case the original states are altered.

Let’s consider what would happen if the call to COPYDAG was absent
in the following example where an early unification attempt fails.

(11.24) Show me morning flights.

Let’s assume that our parser has the following entry for the ditransitive ver-
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sion of the verbshow, as well as the following transitive and ditransitive verb
phrase rules.

Verb! showhVerbHEAD SUBCAT FIRST CATi = NPhVerbHEAD SUBCAT SECOND CATi = NPhVerbHEAD SUBCAT THIRDi = END

VP ! Verb NPhVP HEADi = hVerbHEADihVP HEAD SUBCAT FIRST CATi = hNP CAT ihVP HEAD SUBCAT SECONDi = END

VP ! Verb NP NPhVP HEADi = hVerbHEADihVP HEAD SUBCAT FIRST CATi = hNP1 CAT ihVP HEAD SUBCAT SECOND CATi = hNP2 CAT ihVP HEAD SUBCAT THIRDi = END

When the wordmeis read, the state representing transitive verb phrase
will be completed since its dot has moved to the end. COMPLETER will,
therefore, call UNIFY-STATES before attempting to enter this complete state
into the chart. This will fail since theSUBCAT structures of these two rules
can not be unified. This is, of course, exactly what we want since this version
of showis ditransitive. Unfortunately, because of the destructive nature of
our unification algorithm we have already altered the DAG attached to the
state representingshow, as well as the one attached to theVP thereby ruining
them for use with the correct verb phrase rule later on. Thus,to make sure
that states can be used again and again with multiple derivations, copies are
made of the dags associated with states before attempting any unifications
involving them.

We should note that all of this copying can be quite expensive. As a
result, a number of alternative techniques have been developed that attempt
to minimize this cost (Pereira, 1985; Karttunen and Kay, 1985; Tomabechi,
1991; Kogure, 1990). Kieferet al.(1999) describe a set of related techniques
used to speed up a large unification-based parsing system.
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Unification Parsing

A more radical approach to using unification in parsing can bemotivated
by looking at an alternative way of denoting our augmented grammar rules.
Consider the followingSrule that we have been using throughout this chap-
ter.

S ! NP VPhNP HEAD AGREEMENTi = hVP HEAD AGREEMENTihSHEADi = hVP HEADi
An interesting way to alter the context-free part of this rule is to change
the way the its grammatical categories are specified. In particular, we can
place the categorical information about the parts of the rule inside the fea-
ture structure, rather than inside the context-free part ofthe rule. A typi-
cal instantiation of this approach would give us the following rule (Shieber,
1986).

X0 ! X1 X2hX0 CATi = ShX1 CATi = NPhX2 CATi = VPhX1 HEAD AGREEMENTi = hX2 HEAD AGREEMENTih X0 HEADi = hX2 HEADi
Focusing solely on the context-free component of the rule, this rule

now simply states that theX0 constituent consists of two components, and
that the theX1 constituent is immediately to the left of theX2 constituent.
The information about the actual categories of these components is placed
inside the rule’s feature structure; in this case, indicating thatX0 is anS, X1

is an NP, andX2 is a VP. Altering the Earley algorithm to deal with this
notational change is trivial. Instead of seeking the categories of constituents
in the context-free components of the rule, it simply needs to look at theCAT

feature in the DAG associated with a rule.
Of course, since it is the case that these two rules contain precisely the

same information, it isn’t clear that there is any benefit to this change. To
see the potential benefit of this change, consider the following rules.

X0 ! X1 X2hX0 CATi = h X1 CATihX2 CATi = PP
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X0 ! X1 and X2hX1 CATi = h X2 CATihX0 CATi = h X1 CATi
The first rule is an attempt to generalize over various rules that we have

already seen, such asNP! NP PPandVP! VP PP. It simply states that
any category can be followed by a prepositional phrase, and that the resulting
constituent has the same category as the original. Similarly, the second rule
is an attempt to generalize over rules such asS!S and S, NP!NP and NP,
and so on.1 It states that any constituent can be conjoined with a constituent
of the same category to yield a new category of the same type. What these
rules have in common is their use of context-free rules that contain con-
stituents with constrained, but unspecified, categories, something that can
not be accomplished with our old rule format.

Of course, since these rules rely on the use theCAT feature, their ef-
fect could be approximated in the old format by simply enumerating all the
various instantiations of the rule. A more compelling case for the new ap-
proach is motivated by the existence of grammatical rules, or constructions,
that contain constituents that are not easily characterized using any existing
syntactic category.

Consider the following examples of the English HOW-MANY con-
struction from the WSJ (Jurafsky, 1992).

(11.25) How early does it open?
(11.26) How deepis her Greenness?
(11.27) How papery are your profits?
(11.28) How quickly we forget.
(11.29) How many of you can name three famous sporting Blanchards?

As is illustrated in these examples, the HOW-MANY construction has two
components: the lexical itemhow, and a lexical item or phrase that is rather
hard to characterize syntactically. It is this second element that is of interest
to us here. As these examples show, it can be an adjective, adverb, or some
kind of quantified phrase (although not all members of these categories yield
grammatical results). Clearly, a better way to describe this second element
is as ascalarconcept, a constraint can captured using feature structures, as
in the following rule.
1 These rules should not be mistaken for correct, or complete,accounts of the phenomena
in question.
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X0 ! X1 X2hX1 ORTHi = hhowihX2 SEMi = h SCALARi
A complete account of rules like this involves semantics andwill therefore
have to wait for Chapter 14. The key point here is that by usingfeature
structures a grammatical rule can place constraints on its constituents in a
manner that does not make any use of the notion of a syntactic category.

Of course, dealing this kind of rule requires some changes toour pars-
ing scheme. All of the parsing approaches we have consideredthus far are
driven by the syntactic category of the various constituents in the input. More
specifically, they are based on simple atomic matches between the categories
that have been predicted, and categories that have been found. Consider, for
example, the operation of the COMPLETER function shown in Figure 11.12.
This function searches the chart for states that can be advanced by a newly
completed state. It accomplishes this by matching the category of the newly
completed state against the category of the constituent following the� in the
existing state. Clearly this approach will run into troublewhen there are no
such categories to consult.

The remedy for this problem with COMPLETER is to search the chart
for states whose DAGsunify with the DAG of the newly completed state.
This eliminates any requirement that states or rules have a category. The
PREDICTOR can be changed in a similar fashion by having it add states to
the chart states whoseX0 DAG component can unify with the constituent
following the � of the predicting state. Exercise 11.6 asks you to make the
necessary changes to the pseudo-code in Figure 11.12 to effect this style of
parsing. Exercise 11.7 asks you to consider some of the implications of these
alterations, particularly with respect to prediction.

11.6 TYPES AND INHERITANCE

I am surprised that ancient and modern writers have not attributed
greater importance to the laws of inheritance. . .

(de Tocqueville, 1966)

The basic feature structures we have presented so far have two prob-
lems that have led to extensions to the formalism. The first problem is that
there is no way to place a constraint on what can be the value ofa feature.
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For example, we have implicitly assumed that theNUMBER attribute can take
only SG andPL as values. But in our current system, there is nothing, for ex-
ample, to stopNUMBER from have the value 3RD or FEMININE as values:h

NUMBER FEMININE
i

This problem has caused many unification-based grammaticaltheories
to add various mechanisms to try to constrain the possible values of a fea-
ture. Formalisms like Functional Unification Grammar (FUG)(Kay, 1979,
1984, 1985) and Lexical Functional Grammar (LFG) (Bresnan,1982), for
example, focused on ways to keep intransitive verb likesneezefrom uni-
fying with a direct object (Marie sneezed Pauline). This was addressed in
FUG by adding a special atomnonewhich is not allowed to unify with any-NONE

thing, and in LFG by addingcoherenceconditions which specified when a
feature should not be filled. Generalized Phrase Structure (GPSG) (Gazdar
et al., 1985, 1988) added a class offeature co-occurrence restrictions, to
prevent, for example, nouns from having some verbal properties.

The second problem with simple feature structures is that there is no
way to capture generalizations across them. For example, the many types of
English verb phrases described in the Subcategorization section on page 407
share many features, as do the many kinds of subcategorization frames for
verbs. Syntactitions were looking for ways to express thesegeneralities

A general solution to both of these problems is the use oftypes. TypeTYPES

systems for unification grammars have the following characteristics:

1. Each feature structure is labeled by a type.

2. Conversely, each type hasappropriateness conditionsexpressing whichAPPROPRI­
ATENESS

features are appropriate for it.

3. The types are organized into atype hierarchy, in which more specificTYPE
HIERARCHY

types inherit properties of more abstract ones.

4. The unification operation is modified to unify the types of feature struc-
tures in addition to unifying the attributes and values.

In such typed feature structure systems, types are a new class of
TYPED
FEATURE
STRUCTURE

objects, just like attributes and values were for standard feature structures.
Types come in two kinds:simple types(also calledatomic types), andcom-SIMPLE

TYPES

plex types. Let’s begin with simple types. A simple type is an atomic sym-COMPLEX
TYPES

bol like sgor pl (we will useboldfacefor all types), and replaces the simple
atomic values used in standard feature structures. All types are organized
into a multiple-inheritancetype hierarchy (apartial order or lattice). Fig-TYPE

HIERARCHY
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ure 11.13 shows the type hierarchy for the new typeagr, which will be the
type of the kind of atomic object that can be the value of anAGREE feature.

agr

1st 3rd sg pl

3−sg 1−pl 3−pl1−sg

3sg−fem 3sg−neut3sg−masc

Figure 11.13 A simple type hierarchy for the subtypes of typeagr which
can be the value of theAGREE attribute. After Carpenter (1992).

In the hierarchy in Figure 11.13,3rd is asubtypeof agr, and3-sg is SUBTYPE

a subtype of both 3rd andsg. Types can be unified in the type hierarchy;
the unification of any two types is the most-general type thatis more specific
than the two input types. Thus:

3rd t sg= 3sg
1stt pl = 1pl
1stt agr = 1st
3rd t 1st = undefined

The unification of two types which do not have a defined unifier is
undefined, although it is also possible to explicitly represent thisfail type FAIL TYPE

using the symbol? (Aı̈t-Kaci, 1984).
The second kind of types are complex types, which specify:� A set of features that are appropriate for that type� Restrictions on the values of those features (expressed in terms of
types)� Equality constraints between the values

Consider a simplified representation of the complex typeverb, which
just represents agreement and verb morphological form information. A defi-
nition ofverb would define the two appropriate features,AGREEandVFORM,
and would also define the type of the values of the two features. Let’s sup-
pose that theAGREE feature takes values of typeagr defined in Figure 11.13
above, and theVFORM feature takes values of typevform (wherevform sub-
sumes the 7 subtypesfinite, infinitive , gerund, base, present-participle,
past-participle, andpassive-participle. Thusverb would be defined as fol-



436 Chapter 11. Features and Unification

lows (where the convention is to indicate the type either at the type of the
AVM or just to the lower left of the left bracket):264verb

AGREE agr
VFORM vform

375
By contrast, the typenoun might be defined with theAGREE feature,

but without theVFORM feature:"
noun
AGREE agr

#
The unification operation is augmented for typed feature structures just

by requiring that the type of the two structures must unify inaddition to the
values of the component features unifying.264verb

AGREE 1st
VFORM gerund

375t264verb
AGREE sg
VFORM gerund

375=
264verb

AGREE 1-sg
VFORM gerund

375
Complex types are also part of the type hierarchy. Subtypes of complex

types inherit all the features of their parents, together with the constraints
on their values. Sanfilippo (1993), for example, uses the type hierarchy to
encode the hierarchical structure of the lexicon. Figure 11.14 shows a small
part of this hierarchy, the part that models the various subcategories of verbs
which take sentential complements; these are divided into the transitive ones
(which take direct objects: (ask yourself whether you have become better
informed) and the intransitive ones (Monsieur asked whether I wanted to
ride). The typetrans-comp-catwould introduce the required direct object,
constraining it to be of typenoun-phrase, while types likesbase-comp-
cat would introduce the baseform (bare stem) complement and constraint its
vform to be the baseform.

Extensions to Typing

Typed feature structures can be extended by allowing inheritance withde-
faults. Default systems have been mainly used in lexical type hierarchiesDEFAULTS

of the sort described in the previous section, in order to encode generaliza-
tions and subregular exceptions to them. In early versions of default unifi-
cation the operation was order-dependent, based on thepriority union op-PRIORITY

UNION

eration (Kaplan, 1987). More recent architectures, such asLascarides and



Section 11.6. Types and Inheritance 437

trans−comp−cat sfin−comp−cat swh−comp−cat sbase−comp−cat sinf−comp−cat intrans−comp−cat

comp−cat

tr−sfin−comp−cat
tr−swh−comp−cat

tr−sbase−comp−cat intr−sinf−comp−catintr−swh−comp−cat
intr−sbase−comp−catintr−sfin−comp−cat

Figure 11.14 Part of the type hierarchy for the verb typeverb-cat, showing
the subtypes of thecomp-cattype. These are all subcategories of verbs which
take sentential complements. After Sanfilippo (1993).

Copestake (1997) default unification for typed feature structures, are order-
independent, drawing on Young and Rounds (1993) and relatedto Reiter’s
default logic (Reiter, 1980).

Many unification-based theories of grammar, including HPSG(Pollard
and Sag, 1987, 1994) and LFG (Bresnan, 1982) use an additional mechanism
besides inheritance for capturing lexical generalizations, the lexical rule. LEXICAL RULE

Lexical rules express lexical generalizations by allowinga reduced, hence
more redundant-free lexicon to be automatically expanded by the rules. Pro-
posed originally by Jackendoff (1975), see Pollard and Sag (1994) for exam-
ples of modern lexical rules, Carpenter (1991) for a discussion of complexity
issues, and Meurers and Minnen (1997) for a recent efficient implementa-
tion. Some authors have proposed using the type hierarchy toreplace lexical
rules, either by adding abstract types and some disjunctions Krieger and Ner-
bonne (1993) or viatype underspecificationanddynamic typing, in which TYPE

UNDERSPECI­
FICATION
DYNAMIC
TYPINGunderspecified types are combined to make new types on-line (Koenig and

Jurafsky, 1995).
Types can also be used to represent constituency. Rules like(11.13)

on page 407 used a normal phrase structure rule template and added the fea-
tures via path equations. Instead, it’s possible to represent the whole phrase
structure rule as a type. In order to do this, we need a way to represent con-
stituents as features. One way to do this, following Sag and Wasow (1999), is
to take a typephrasewhich has a feature calledDTRS (‘daughters’), whose
value is a list ofphrases. For example the phraseI love New Yorkcould have
the following representation, (showing only theDTRS feature):2666664phrase

DTRS h"CAT PRO

ORTH I

#
,

2664CAT VP

DTRS h"CAT V

ORTH LOVE

#
,

"
CAT NP

ORTH NEW YORK

#i3775i3777775
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Other Extensions to Unification

There are many other extensions to unification besides typing, including
path inequations (Moshier, 1988; Carpenter, 1992; Carpenter and Penn,PATH

INEQUATIONS

1994) negation (Johnson, 1988, 1990),set-valued features(Pollard andNEGATION

SET­VALUED
FEATURES Moshier, 1990), anddisjunction Kay (1979), Kasper and Rounds (1986).
DISJUNCTION In some unification systems these operations are incorporated into feature

structures. Kasper and Rounds (1986) and others, by contrast, implement
them in a separate metalanguage which is used todescribefeature structures.
This idea derives from the work of Pereira and Shieber (1984), and even ear-
lier work by Kaplan and Bresnan (1982), all of whom distinguished between
a metalanguage for describing feature structures and the actual feature struc-
tures themselves. The descriptions may thus use negation and disjunction to
describe a set of feature structures (i.e. a certain featuremust not contain a
certain value, or may contain any of a set of values). but an actual instance
of a feature structure that meets the description would not have negated or
disjoint values.

11.7 SUMMARY

This chapter introduced feature structures and the unification operation which
is used to combine them.� A feature structure is a set of features-value pairs, where features are

unanalyzable atomic symbols drawn from some finite set, and val-
ues are either atomic symbols or feature structures. They are repre-
sented either asattribute-value matrices (AVMs ) or as acyclic graphs
(DAGs), where features are directed labeled edges and feature values
are nodes in the graph.� Unification is the operation for both combining information (merging
the information content of two feature structures) and comparing in-
formation (rejecting the merger of incompatible features).� A phrase-structure rule can be augmented with feature structures, and
with feature constraints expressing relations among the feature struc-
tures of the constituents of the rule.Subcategorizationconstraints can
be represented as feature structures on head verbs (or otherpredicates).
The elements which are subcategorized for by a verb may appear in the
verb phrase or may be realized apart from the verb, as along-distance
dependency.
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tures place constraints on which type of values a given feature can
take, and can also be organized into atype hierarchy to capture gen-
eralizations across types.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The use of features in linguistic theory comes originally from phonology.
Anderson (1985) credits Jakobson (1939) with being the firstto use features
(calleddistinctive features) as an ontological type in a theory, drawing on
previous uses of features by Trubetskoi (1939) and others. The semantic use
of features followed soon after; see Chapter 16 for the history of componen-
tial analysis in semantics. Features in syntax were well established by the
50s and were popularized by Chomsky (1965).

The unification operation in linguistics was developed independently
by Kay (1979) (feature structure unification) and Colmerauer (1970, 1975)
(term unification). Both were working in machine translation and looking
for a formalism for combining linguistic information whichwould be re-
versible. Colmerauer’s original Q-system was a bottom-up parser based on
a series of rewrite rules which contained logical variables, designed for a
English to French machine translation system. The rewrite rules were re-
versible to allow them to work for both parsing and generation. Colmerauer,
Fernand Didier, Robert Pasero, Philippe Roussel, and Jean Trudel designed
the Prolog language based on extended Q-systems to full unification based
on the resolution principle of Robinson (1965), and implemented a French
analyzer based on it (Colmerauer and Roussel, 1996). The modern use of
Prolog and term unification for natural language via DefiniteClause Gram-
mars was based on Colmerauer’s (1975) metamorphosis grammars, and was
developed and named by Pereira and Warren (1980). MeanwhileMartin Kay
and Ron Kaplan had been working with ATN grammars. In an ATN analysis
of a passive, the first NP would be assigned to the subject register, then when
the passive verb was encountered, the value would be moved into the object
register. In order to make this process reversible, they restricted assignments
to registers so that certain registers could only be filled once, i.e. couldn’t be
overwritten once written. They thus moved toward the concepts of logical
variables without realizing it. Kay’s original unificationalgorithm was de-
signed for feature structures rather than terms (Kay, 1979). The integration
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of unification into an Earley-style approach given in Section 11.5 is based
on (Shieber, 1985b).

See Shieber (1986) for a clear introduction to unification, and Knight
(1989) for a multidisciplinary survey of unification.

Inheritance and appropriateness conditions were first proposed for lin-
guistic knowledge by Bobrow and Webber (1980) in the contextof an ex-
tension of the KL-ONE knowledge representation system (Brachman and
Schmolze, 1985b). Simple inheritance without appropriateness conditions
was taken up by number of researchers; early users include Jacobs (1985)
& (1987) and Flickingeret al. (1985). Aı̈t-Kaci (1984) borrowed the no-
tion of inheritance in unification from the logic programming community.
Typing of feature structures, including both inheritance and appropriateness
conditions, was independently proposed by Calder (1987), Pollard and Sag
(1987), and Elhadad (1990). Typed feature structures were formalized by
King (1989) and Carpenter (1992). There is an extensive literature in the
use of type hierarchies in linguistics, particularly for capturing lexical gen-
eralizations; besides the papers previously discussed, the interested reader
should consult Evans and Gazdar (1996) for a description of the DATR lan-
guage, designed for defining inheritance networks for linguistic knowledge
representation, Fraser and Hudson (1992) for the use of inheritance in a de-
pendency grammar and Daelemanset al.(1992) for a general overview. For-
malisms and systems for the implementation of constraint-based grammars
via typed feature structures include PAGE (?), ALE (Carpenter and Penn,
1994), and ConTroll (Götzet al., 1997).

Grammatical theories based on unification include Lexical Functional
Grammar (LFG) (Bresnan, 1982), Head-Driven Phrase Structure Grammar
(HPSG) (Pollard and Sag, 1987, 1994), Construction Grammar(Kay and
Fillmore, 1999), and Unification Categorial Grammar (Uszkoreit, 1986).

EXERCISES

11.1 Draw the DAGs corresponding to the AVMs given in Examples 11.1
and 11.2.

11.2 Consider the following BERP examples, focusing on their useof pro-
nouns.
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I want to spend lots of money.
Tell me about Chez-Panisse.
I’d like to take her to dinner.
She doesn’t like mexican.

Assuming that these pronouns all belong to the categoryPro, write lexical
and grammatical entries with unification constraints that block the following
examples.

*Me want to spend lots of money.
*Tell I about Chez-Panisse.
*I would like to take she to dinner.
*Her doesn’t like mexican.

11.3 Draw a picture of the subsumption semilattice corresponding to the
feature structures in Examples 11.3 to 11.8. Be sure to include the most
general feature structure [].

11.4 Consider the following examples.

The sheep are baaaaing.
The sheep is baaaaing.

Create appropriate lexical entries for the wordsthe, sheep, andbaaaaing.
Show that your entries permit the correct assignment of a value to theNUM-
BER feature for the subjects of these examples, as well as their various
parts.

11.5 Create feature structures expressing the different subcatframes for
while andduring shown on page 412.

11.6 Alter the pseudocode shown in Figure 11.12 so that it performs the
more radical kind of unification parsing described on page 431.

11.7 Consider the following problematic grammar suggested by Shieber
(1985b).

S ! ThT Fi = a

T1 ! T2 AhT1 Fi = hT2 F Fi
S ! A

A ! a



442 Chapter 11. Features and Unification

Show the firstSstate entered into the chart using your modifiedPRE-
DICTOR from the previous exercise, then describe any problematic behavior
displayed byPREDICTORon subsequent iterations. Discuss the cause of the
problem and how in might be remedied.

11.8 Using the list approach to representing a verb’s subcategorization
frame, show how a grammar could handle any number of verb subcatego-
rization frames with only the following twoVP rules. More specifically,
show the constraints that would have to be added to these rules to make this
work.

VP ! Verb

VP ! VP X

The solution to this problem involves thinking about a recursive walk down
a verb’s subcategorization frame. This is a hard problem; you might consult
Shieber (1986) if you get stuck.

11.9 Page 437 showed how to use typed feature structure to represent con-
stituency. Use that notation to represent rules 11.13, 11.14, and 11.15 shown
on page 407.
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LEXICALIZED AND
PROBABILISTIC PARSING

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth. . .

Robert FrostThe Road Not Taken

The characters in Damon Runyon’s short stories are willing to bet “on any
proposition whatever”, as Runyon says about Sky Masterson in The Idyll of
Miss Sarah Brown; from the probability of getting aces back-to-back to the
odds against a man being able to throw a peanut from second base to home
plate. There is a moral here for language processing: with enough knowl-
edge we can figure the probability of just about anything. Thelast three
chapters have introduced sophisticated models of syntactic structure and its
parsing. In this chapter we show that it is possible to build probabilistic mod-
els of sophisticated syntactic information and use some of this probabilistic
information in efficient probabilistic parsers.

Of what use are probabilistic grammars and parsers? One key contri-
bution of probabilistic parsing is todisambiguation. Recall that sentences
can be very ambiguous; the Earley algorithm of Chapter 10 could repre-
sent these ambiguities in an efficient way, but was not equipped to resolve
them. A probabilistic grammar offers a solution to the problem: choose
the most-probable interpretation. Thus, due to the prevalence of ambiguity,
probabilistic parsers can play an important role in most parsing or natural-
language understanding task.
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Another important use of probabilistic grammars is inlanguage mod-
eling for speech recognition or augmentative communication. We saw that
N-gram grammars were important in helping speech recognizers in predict-
ing upcoming words, helping constrain the search for words.Probabilistic
versions of more sophisticated grammars can provide additional predictive
power to a speech recognizer. Indeed, since humans have to deal with the
same problems of ambiguity as do speech recognizers, it is significant that
we are finding psychological evidence that people use something like these
probabilistic grammars in human language-processing tasks (reading, hu-
man speech understanding).

This integration of sophisticated structural and probabilistic models of
syntax is at the very cutting edge of the field. Because of its newness, no
single model has become standard, in the way the context-free grammar has
become a standard for non-probabilistic syntax. We will explore the field
by presenting a number of probabilistic augmentations to context-free gram-
mars, showing how to parse some of them, and suggesting directions the
field may take. The chapter begins withprobabilistic context-free gram-
mars (PCFGs), a probabilistic augmentation of context-free grammars, to-
gether with theCYK algorithm , a standard dynamic programming algo-
rithm for parsing PCFGs. We then show two simple extensions to PCFGs
to handle probabilisticsubcategorizationinformation and probabilisticlex-
ical dependencies, give an evaluation metric for evaluating parsers, and then
introduce some advanced issues and some discussion of humanparsing.

12.1 PROBABILISTIC CONTEXT-FREE GRAMMARS

The simplest augmentation of the context-free grammar is the Probabilistic
Context-Free Grammar (PCFG), also known as the Stochastic Context-PCFG

Free Grammar (SCFG), first proposed by Booth (1969).SCFG

Recall that a context-free grammarG is defined by four parameters
(N; Σ; P; S):

1. a set of nonterminal symbols (or ‘variables’)N

2. a set of terminal symbolsΣ (disjoint fromN)

3. a set of productionsP, each of the formA ! β, where A is a non-
terminal andβ is a string of symbols from the infinite set of strings(Σ[N)�.

4. a designated start symbolS
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S ! NP VP [:80] Det ! that[:05] j the[:80] j a[:15]
S ! Aux NP VP [:15] Noun! book [:10]
S ! VP [:05] Noun! flights [:50]
NP ! Det Nom [:20] Noun! meal [:40]
NP ! Proper-Noun [:35] Verb ! book [:30]
NP ! Nom [:05] Verb ! include [:30]
NP ! Pronoun [:40] Verb ! want [:40]
Nom! Noun [:75] Aux ! can [:40]
Nom! Noun Nom [:20] Aux ! does [:30]
Nom! Proper-Noun Nom[:05] Aux ! do [:30]
VP ! Verb [:55] Proper-Noun! TWA [:40]
VP ! Verb NP [:40] Proper-Noun! Denver [:40]
VP ! Verb NP NP [:05] Pronoun! you[:40] j I [:60]
Figure 12.1 A PCFG; a probabilistic augmentation of the miniature En-
glish grammar and lexicon in Figure 10.2. These probabilities are not based
on a corpus; they were made up merely for expository purposes.

A probabilistic context-free grammar augments each rule inP with a
conditional probability:

A! β [p] (12.1)

A PCFG is thus a 5-tupleG = (N; Σ; P; S; D), whereD is a function
assigning probabilities to each rule inP. This function expresses the proba-
bility p that the given nonterminalA will be expanded to the sequenceβ; it
is often referred to as

P(A! β)
or as

P(A! βjA)
Formally this is conditional probability of a given expansion given the

left-hand-size nonterminalA. Thus if we consider all the possible expansions
of a nonterminal, the sum of their probabilities must be 1. Figure 12.1 shows
a sample PCFG for a miniature grammar with only three nouns and three
verbs. Note that the probabilities of all of the expansions of a nonterminal
sum to 1. Obviously in any real grammar there are a great many more rules
for each nonterminal and hence the probabilities of any particular rule are
much smaller.
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How are these probabilities used? A PCFG can be used to estimate a
number of useful probabilities concerning a sentence and its parse-tree(s).
For example a PCFG assigns a probability to each parse-treeT (i.e. each
derivation) of a sentenceS. This attribute is useful indisambiguation.
For example, consider the two parses of the sentence “Can youbook TWA
flights” (one meaning ‘Can you book flights on behalf of TWA’, and the other
meaning ‘Can you book flights run by TWA’) shown in Figure 12.2.

The probability of a particular parseT is defined as the product of the
probabilities of all the rulesr used to expand each noden in the parse tree:

P(T;S) = ∏
n2T

p(r(n)) (12.2)

The resulting probabilityP(T;S) is both the joint probability of the
parse and the sentence, and also the probability of the parseP(T). How can
this be true? First, by the definition of joint probability:

P(T;S) = P(T)P(SjT) (12.3)

But since a parse tree includes all the words of the sentence,P(SjT) is
1. Thus:

P(T;S) = P(T)P(SjT) = P(T) (12.4)

The probability of each of the trees in Figure 12.2 can be computed by
multiplying together each of the rules used in the derivation. For example,
the probability of the left tree in Figure 12.2a (call itTl ) and the right tree
(12.2b orTr) can be computed as follows:

P(Tl ) = :15� :40� :05� :05� :35� :75� :40� :40� :40�:30� :40� :50= 1:5�10�6 (12.5)

P(Tr) = :15� :40� :40� :05� :05� :75� :40� :40� :40�:30� :40� :50= 1:7�10�6 (12.6)

We can see that the right tree in Figure 12.2(b) has a higher probability.
Thus this parse would correctly be chosen by a disambiguation algorithm
which selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest
probability is the correct way to do disambiguation. The disambiguation
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(a) S (b) S

Aux NP VP Aux NP VP

V NP NP V NP

Nom

Nom Nom

Pro PNoun Noun Pro PNoun Noun

can you book TWA flights can you book TWA flights

Rules P Rules P
S ! Aux NP VP .15 S ! Aux NP VP .15
NP ! Pro .40 NP ! Pro .40
VP ! V NP NP .05 VP ! V NP .40
NP ! Nom .05 NP ! Nom .05
NP ! PNoun .35 Nom ! PNoun Nom .05
Nom ! Noun .75 Nom ! Noun .75
Aux ! Can .40 Aux ! Can .40
NP ! Pro .40 NP ! Pro .40
Pro ! you .40 Pro ! you .40
Verb ! book .30 Verb ! book .30
PNoun ! TWA .40 Pnoun! TWA .40
Noun ! flights .50 Noun ! flights .50

Figure 12.2 Two parse trees for an ambiguous sentence. Parse (a) corre-
sponds to the meaning ‘Can you book flights on behalf of TWA?’,parse (b) to
‘Can you book flights which are run by TWA’.

algorithm picks the best tree for a sentenceS out of the set of parse trees
for S(which we’ll call τ(S)). We want the parse treeT which is most likely
given the sentenceS.

T̂(S) = argmax
T2τ(S) P(TjS) (12.7)

By definition the probabilityP(TjS) can be rewritten asP(T;S)=P(S), thus
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leading to:

T̂(S) = argmax
T2τ(S) P(T;S)

P(S) (12.8)

Since we are maximizing over all parse trees for the same sentence,
P(S) will be a constant for each tree, and so we can eliminate it:

T̂(S) = argmax
T2τ(S) P(T;S) (12.9)

Furthermore, since we showed above thatP(T;S) = P(T), the final
equation for choosing the most likely parse simplifies to choosing the parse
with the highest probability:

T̂(S) = argmax
T2τ(S) P(T) (12.10)

A second attribute of a PCFG is that it assigns a probability to the string
of words constituting a sentence. This is important inlanguage modelingin
speech recognition, spell-correction, or augmentative communication. The
probability of an unambiguous sentence isP(T;S) = P(T) or just the prob-
ability of the single parse tree for that sentence. The probability of an am-
biguous sentence is the sum of the probabilities of all the parse trees for the
sentence:

P(S) = ∑
T2τ(S)P(T;S) (12.11)= ∑
T2τ(S)P(T) (12.12)

An additional useful feature of PCFGs for language modelingis that
they can assign a probability to substrings of a sentence. For example, Je-
linek and Lafferty (1991) give an algorithm for efficiently computing the
probability of aprefix of a sentence. This is the probability that the grammarPREFIX

generates a sentence whose initial substring isw1w2: : :wi . Stolcke (1995)
shows how the standard Earley parser can be augmented to compute these
prefix probabilities, and Jurafskyet al. (1995) describes an application of a
version of this algorithm as the language model for a speech recognizer.

A PCFG is said to beconsistentif the sum of the probabilities of allCONSISTENT

sentences in the language equals 1. Certain kinds of recursive rules cause
a grammar to be inconsistent by causing infinitely looping derivations for
some sentences. For example a ruleS! Swith probability 1 would lead to
lost probability mass due to derivations that never terminate. See Booth and
Thompson (1973) for more details on consistent and inconsistent grammars.



Section 12.1. Probabilistic Context-Free Grammars 449

Probabilistic CYK Parsing of PCFGs

The parsing problem for PCFGs is to produce the most-likely parse for a
given sentence, i.e. to compute

T̂(S) = argmax
T2τ(S) P(T) (12.13)

Luckily, the algorithms for computing the most-likely parse are sim-
ple extensions of the standard algorithms for parsing. Chapter 10 introduced
the use of the Earley algorithm to find all parses for a given input sentence
and a given context-free grammar. It is possible to augment the Earley al-
gorithm to compute the probability of each of its parses, andthus to find the
most likely parse. Instead of presenting the probabilisticEarley algorithm
here, however, we will present theprobabilistic CYK (Cocke-Younger-
Kasami) algorithm. We do this because the probabilistic Earley algorithm is
somewhat complex to present, and also because the CYK algorithm is worth
understanding, and we haven’t yet studied it. The reader is thus referred to
Stolcke (1995) for the presentation of the probabilistic Earley algorithm.

Where the Earley algorithm is essentially a top-down parserwhich uses
a dynamic programming table to efficiently store its intermediate results, the
CYK algorithm is essentially a bottom-up parser using the same dynamic
programming table. The fact that CYK is bottom-up makes it more efficient
when processing lexicalized grammars, as we will see later.

Probabilistic CYK parsing was first described by Ney (1991),but the
version of the probabilistic CYK algorithm that we present is adapted from
Collins (1999) and Aho and Ullman (1972). Assume first that the PCFG is
in Chomsky normal form; recall from page 344 that a grammar isin CNF if
it is ε-free and if in addition each production is either of the formA! B C
or A! a. The CYK algorithm assumes the following input, output, anddata
structures:� Input.

– A Chomsky normal form PCFGG= fN;Σ;P;S;Dg. Assume that
the jNj nonterminals have indices 1; 2; : : : jNj, and that the start
symbolShas index 1.

– n wordsw1 : : :wn.� Data Structure. A dynamic programming arrayπ[i; j;a] holds the
maximum probability for a constituent with nonterminal indexa span-
ning wordsi : : : j. Back-pointers in the area are used to store the links
between constituents in a parse-tree.
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tree whose root isSand which spans the entire string of wordsw1 : : :wn.

Like the other dynamic programming algorithms (minimum edit dis-
tance, Forward, Viterbi, and Earley), the CYK algorithm fills out the prob-
ability array by induction. In this description, we will usewi j , to mean the
string of words from wordi to word j, following Aho and Ullman (1972):� base case:Consider the input strings of length one (i.e. individual

wordswi). In Chomsky normal form, the probability of a given nonter-
minal A expanding to a single wordwi must come only from the rule
A ! wi (sinceA

�) wi if and only if A! wi is a production).� recursive case:For strings of words of length> 1, A
�)wi j if and only

if there is at least one ruleA! BC and somek;1� k< j, such that B
derives the firstk symbols ofwi j and C derives the lastj� k symbols
of wi j . Since each of these strings of words is shorter than the original
stringwi j , their probability will already be stored in the matrixπ. We
compute the probability ofwi j by multiplying together the probability
of these two pieces. But there may be multiple parses ofwi j , and so
we’ll need to take the max over all the possible divisions ofwi j (i.e.
over all values ofk and over all possible rules).

Figure 12.3 gives pseudocode for this probabilistic CYK algorithm,
again adapted from Collins (1999) and Aho and Ullman (1972).

Learning PCFG probabilities

Where do PCFG probabilities come from? There are two ways to assign
probabilities to a grammar. The simplest way is to use a corpus of already-
parsed sentences. Such a corpus is called atreebank. For example the PennTREEBANK

Treebank (Marcuset al., 1993), distributed by the Linguistic Data Consor-
tium, contains parse trees for the Brown Corpus, one millionwords from
the Wall Street Journal, and parts of the Switchboard corpus. Given a tree-
bank, the probability of each expansion of a nonterminal canbe computed by
counting the number of times that expansion occurs and then normalizing.

P(α! βjα) = Count(α! β)
∑γ Count(α! γ) = Count(α! β)

Count(α) (12.14)

When a treebank is unavailable, the counts needed for computing PCFG
probabilities can be generated by first parsing a corpus. If sentences were
unambiguous, it would be as simple as this: parse the corpus,increment a
counter for every rule in the parse, and then normalize to getprobabilities.
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function CYK(words,grammar) returns bestparse

Create and clearp[numwords,numwords,numnonterminals]

# base case
for i = 1 to numwords

for A = 1 to numnonterminals
if A! wi is in grammar then

π[i, i, A] = P(A! wi)
# recursive case
for j = 2 to numwords

for i = 1 to numwords-j+1
for k = 1 to j-1

for A = 1 to numnonterminals
for B = 1 to numnonterminals
for C = 1 to numnonterminals

prob= π[i,k,B] � p[i+k, j-k,C] � P(A!BC)
if (prob> π[i, j,A]) then

π[i, j,A] = prob
B[i, j,A] = fk,A,Bg

Figure 12.3 The Probabilistic CYK algorithm for finding the maximum
probability parse of a string ofnumwordswords given a PCFG grammar with
numrules rules in Chomsky Normal Form.B is the array of back-pointers
used to recover the best parse. After Collins (1999) and Aho and Ullman
(1972).

However, since most sentences are ambiguous, in practice weneed to keep
a separate count for each parse of a sentence and weight each partial count
by the probability of the parse it appears in. The standard algorithm for
computing this is called theInside-Outside algorithm, and was proposedINSIDE­

OUTSIDE

by Baker (1979) as a generalization of the forward-backwardalgorithm of
Chapter 7. See Manning and Schütze (1999) for a complete description of
the algorithm.

12.2 PROBLEMS WITH PCFGS

While probabilistic context-free grammars are a natural extension to context-
free grammars, they have a number of problems as probabilityestimators.
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Because of these problems, most current probabilistic parsing models use
some augmentation of PCFGs rather than using vanilla PCFGs.This section
will summarize problems with PCFGs in modelingstructural dependencies
and in modelinglexical dependencies.

One problem with PCFGs comes from their fundamental independence
assumption. By definition, a CFG assumes that the expansion of any one
nonterminal is independent of the expansion of any other nonterminal. This
independence assumption is carried over in the probabilistic version; each
PCFG rule is assumed to be independent of each other rule, andthus the rule
probabilities are multiplied together. But an examinationof the statistics of
English syntax shows that sometimes the choice of how a node expands is de-
pendent on the location of the node in the parse tree. For example, consider
the differential placement in a sentence of pronouns versusfull lexical noun
phrases. Beginning with Kuno (1972), many linguists have shown that there
is a strong tendency in English (as well as in many other languages) for the
syntactic subject of a sentence to be a pronoun. This tendency is caused by
the use of subject position to realize the ‘topic’ or old information in a sen-
tence (Givón, 1990). Pronouns are a way to talk about old information, while
non-pronominal (‘lexical’) noun-phrases are often used tointroduce new ref-
erents. For example, Franciset al.(1999) show that of the 31,021 subjects of
declarative sentences in Switchboard, 91% are pronouns (12.15a), and only
9% are lexical (12.15b). By contrast, out of the 7,489 directobjects, only
34% are pronouns (12.16a), and 66% are lexical (12.16b).

(12.15) (a)She’sable to take her baby to work with her.
(b) Uh,my wife worked until we had a family.

(12.16) (a) Some laws absolutely prohibitit .
(b) All the people signedconfessions.

These dependencies could be captured if the probability of expanding
an NP as a pronoun (for example via the ruleNP! Pronoun) versus a lexical
NP (for example via the ruleNP! DetNoun) were dependent on whether
the NP was a subject or an object. But this is just the kind of probabilistic
dependency that a PCFG does not allow.

An even more important problem with PCFGs is their lack of sensitiv-
ity to words. Lexical information in a PCFG can only be represented via the
probability of pre-terminal nodes (Verb, Noun, Det) to be expanded lexically.
But there are a number of other kinds of lexical and other dependencies that
turn out to be important in modeling syntactic probabilities. For example
a number of researchers have shown that lexical informationplays an im-
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portant role in selecting the correct parsing of an ambiguous prepositional-
phrase attachment (Fordet al., 1982; Whittemoreet al., 1990; Hindle and
Rooth, 1991,inter alia). Consider the following example from Hindle and
Rooth (1991):

(12.17) Moscow sent more than 100,000 soldiers into Afghanistan. . .

Here the preposition phraseinto Afghanistancan be attached either to
the NPmore than 100,000 soldiersor to the verb-phrase headed bysent.
In a PCFG, the attachment choice comes down to the choice between two
rules: NP! NPPP (NP-attachment) andVP! NPPP (VP-attachment).
The probability of these two rules depends on the training corpus; Hindle and
Rooth (1991) report that NP-attachment happens about 67% compared to
33% for VP-attachment in 13 million words from the AP newswire; Collins
(1999) reports 52% NP-attachment in a corpus containing a mixture of Wall
Street Journal and I.B.M. computer manuals. Whether the preference is 52%
or 67%, crucially in a PCFG this preference is purely structural and must be
the same for all verbs.

In (12.17), however, the correct attachment is to the verb; in this case
because the verbsendsubcategorizes for a destination, which can be ex-
pressed with the prepositioninto. Indeed all of the cases of ambiguousinto-
PP-attachments with the main verbsendin the Penn Treebank’s Brown and
Wall Street Journal corpora attached to the verb. Thus a model which kept
separatelexical dependencystatistics for different verbs would be able toLEXICAL

DEPENDENCY

choose the correct parse in these cases.
Coordination ambiguities are another case where lexical dependencies

are the key to choosing the proper parse. Figure 12.4 shows anexample
from Collins (1999), with two parses for the phrasedogs in houses and cats.
Becausedogsis semantically a better conjunct forcatsthanhouses(and be-
cause dogs can’t fit inside cats) the parse[dogs in [NP houses and cats]]
is intuitively unnatural and should be dispreferred. The two parses in Fig-
ure 12.4, however, have exactly the same PCFG rules and thus aPCFG will
assign them the same probability.

In summary, probabilistic context-free grammars have a number of in-
adequacies as a probabilistic model of syntax. In the next section we sketch
current methods for augmenting PCFGs to deal with these issues.
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(a) NP (b) NP

NP Conj NP NP PP

NP PP and Noun Noun Prep NP

Noun Prep NP cats dogs in NP Conj NP

dogs in Noun Noun and Noun

houses houses cats

Figure 12.4 An instance of coordination ambiguity. Although the left
structure is intuitively the correct one, a PCFG will assignthem identically
probabilities since both structure use the exact same rules. After Collins
(1999)

12.3 PROBABILISTIC LEXICALIZED CFGS

We saw in Chapter 11 that syntactic constituents could be associated with a
lexical head. This idea of a head for each constituent dates back to Bloom-
field (1914), but was first used to extend PCFG modeling by Black et al.
(1992). The probabilistic representation of lexical headsused in recent parsers
such as Charniak (1997) and Collins (1999) is simpler than the complex
head-feature models we saw in Chapter 11. In the simpler probabilistic rep-
resentation, each nonterminal in a parse-tree is annotatedwith a single word
which is its lexical head. Figure 12.5 shows an example of such a tree from
Collins (1999), in which each nonterminal is annotated withits head. “Work-
ers dumped sacks into a bin” is a shortened form of a WSJ sentence.

In order to generate such a tree, each PCFG rule must be augmented to
identify one right-hand-side constituent to be the head daughter. The head-
word for a node is then set to the headword of its head daughter. Choosing
these head daughters is simple for textbook examples (NN is the head of
NP), but is complicated and indeed controversial for most phrases (should
the complementizerto or the verb be the head of an infinite verb-phrase?).
Modern linguistic theories of syntax generally include a component that de-
fines heads (see for example Pollard and Sag, 1994). Collins (1999) also
gives a description of a practical set of head rules for Penn Treebank gram-
mars modified from Magerman; for example their rule for finding the head
of an NP is to return the very last word in the NP if it is tagged POS (posses-
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S(dumped)

NP(workers) VP(dumped)

NNS(workers) VBD(dumped) NP(sacks) PP(into)

NNS(sacks) P(into) NP(bin)

DT(a) NN(bin)

workers dumped sacks into a bin

Figure 12.5 A lexicalized tree from Collins (1999).

sive); else to search from right to left in the NP for the first child which is an
NN, NNP, NNPS, NNS, NX, POS, or JJR; else to search from left toright
for the first child which is an NP.

One way to think of these head features is as a simplified version of
the head features in a unification grammar; instead of complicated re-entrant
feature values, we just allow an attribute to have a single value from a finite
set (in fact the set of words in the vocabulary). Technically, grammars in
which each node is annotated by non-recursive features are calledattribute
grammars. ATTRIBUTE

GRAMMARS

Another way to think of a lexicalized grammar is as a simple context-
free grammar with a lot more rules; it’s as if we created many copies of each
rule, one copy for each possible headword for each constituent; this idea of
building a lexicalized grammar is due to Schabeset al. (1988) and Schabes
(1990). In general there may be too many such rules to actually keep them
around, but thinking about lexicalized grammars this way makes it clearer
that we can parse them with standard CFG parsing algorithms.

Let’s now see how these lexicalized grammars can be augmented with
probabilities, and how by doing so we can represent the kind of lexical de-
pendencies we discussed above and in Chapter 9. Suppose we were to treat a
probabilistic lexicalized CFG like a normal but huge PCFG. Then we would
store a probability for each rule/head combination, as in the following con-
trived examples:

VP(dumped) ! VBD(dumped) NP(sacks) PP(into)[3�10�10]
VP(dumped) ! VBD(dumped) NP(cats) PP(into)[8�10�11]
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VP(dumped) ! VBD(dumped) NP(hats) PP(into)[4�10�10]
VP(dumped) ! VBD(dumped) NP(sacks) PP(above)[1�10�12]: : : (12.18)

The problem with this method, of course, is that there is no corpus
big enough to train such probabilities. Training standard PCFG probabilities
would result in zero counts for almost all the rules. To avoidthis, we need to
make some simplifying independence assumptions in order tocluster some
of the counts.

Perhaps the main difference between various modern statistical parsers
lies in exactly which independence assumptions they make. In the rest of this
section we describe a simplified version of Charniak’s (1997) parser, but we
could also have chosen any of the other similar dependency-based statistical
parsers (such as Magerman (1995), Collins (1999), and Ratnaparkhi (1997)).

Like many of these others, Charniak’s parser incorporates lexical de-
pendency information by relating the heads of phrases to theheads of their
constituents. His parser also incorporates syntactic subcategorization infor-
mation by conditioning the probability of a given rule expansion of a non-
terminal on the head of the nonterminal. Let’s look at examples of slightly
simplified versions of the two kinds of statistics (simplified by being condi-
tioned on less factors than in Charniak’s complete algorithm).

First, recall that in a vanilla PCFG, the probability of a node n being
expanded via ruler is conditioned on exactly one factor: the syntactic cat-
egory of the noden. (For simplicity we will use the notationn to mean the
syntactic category ofn.) We will simply add one more conditioning factor:
the headword of the nodeh(n). Thus we will be computing the probability

p(r(n)jn; h(n)) (12.19)

Consider for example the probability of expanding theVP in Figure 12.5
via the ruler, which is:

VP ! VBD NP PP

This probability isp(rjVP; dumped), answering the question “What is
the probability that aVP headed bydumpedwill be expanded asVBD NP
PP?”. This lets us capture subcategorization information about dumped; for
example, aVPwhose head isdumpedmay be more likely to have anNPand
aPP than aVPwhose head isslept.

Now that we have added heads as a conditioning factor, we needto
decide how to compute the probability of a head. The null assumption would
make all heads equally likely; the probability that the headof a node would
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besackswould be the same as the probability that the head would beracks.
This doesn’t seem very useful. The syntactic category of thenode ought
to matter (nouns might have different kinds of heads than verbs). And the
neighboring heads might matter too. Let’s condition the probability of a
noden having a headh on two factors: the syntactic category of the noden,
and the head of the node’s motherh(m(n)). This is the probability

p(h(n) = wordijn;h(m(n))) (12.20)

Consider for example the probability that theNP that is the second
daughter of theVP in Figure 12.5 has the headsacks. The probability of this
head isp(head(n) = sacksjn = NP;h(m(n)) = dumped). This probability
answers the question “What is the probability that an NP whose mother’s
head isdumpedhas the headsacks?”, sketched in the following drawing:

X(dumped)

NP(?sacks?)

The figure shows that what this head-probability is really doing is cap-
turing dependencyinformation e.g. between the wordsdumpedandsacks.

How are these two probabilities used to compute the probability of
a complete parse? Instead of just computing the probabilityof a parse by
multiplying each of the PCFG rule probabilities, we will modify equation
(12.2) by additionally conditioning each rule on its head:

P(T;S) = ∏
n2T

p(r(n)jn;h(n)) � p(h(n)jn;h(m(n))) (12.21)

Let’s look at a sample parse-ambiguity to see if these lexicalized prob-
abilities will be useful in disambiguation. Figure 12.6 shows an alternative
(incorrect) parse for the sentence “Workers dumped sacks into a bin”, again
from Collins (1999). In this incorrect parse thePP into a binmodifies the
NP sacksinstead of theVP headed bydumped. This parse is incorrect be-
causeinto a bin is extremely unlikely to be a modifier of this NP; it is much
more likely to modifydumped, as in the original parse in Figure 12.5.

The head-head and head-rule probabilities in equation (12.21) will in-
deed help us correctly choose theVP attachment (Figure 12.5) over the
NP attachment (Figure 12.6). One difference between the twotrees is that
VP(dumped)expands toVBD NP PPin the correct tree andVBD NP in the
incorrect tree. Let’s compute both of these by counting in the Brown corpus
portion of the Penn Treebank. The first rule is quite likely:

p(VP! VBDNPPPjVP;dumped)
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S(dumped)

NP(workers) VP(dumped)

NNS(workers) VBD(dumped) NP(sacks)

NP(sacks) PP(into)

NNS(sacks) P(into) NP(bin)

DT(a) NN(bin)

workers dumped sacks into a bin

Figure 12.6 An incorrect parse of the sentence in Figure 12.5 from Collins
(1999)= C(VP(dumped)! VBDNPPP)

∑βC(VP(dumped)! β)= 6
9
= :67 (12.22)

The second rule never happens in the Brown corpus. In practice this
zero value would be smoothed somehow, but for now let’s just notice that the
first rule is preferred. This isn’t surprising, sincedumpis a verb of caused-
motion into a new location:

p(VP! VBDNPjVP;dumped) = C(VP(dumped)! VBDNP)
∑βC(VP(dumped)! β)= 0

9
= 0 (12.23)

What about the head probabilities? In the correct parse, aPP node
whose mother’s head isdumpedhas the headinto. In the incorrect, aPP
node whose mother’s head issackshas the headinto. Once again, let’s use
counts from the Brown portion of the Treebank:

p(intojPP;dumped) = C(X(dumped)! : : :PP(into): : :)
∑βC(X(dumped)! : : :PP: : :)= 2

9
= :22 (12.24)
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p(intojPP;sacks) = C(X(sacks)! : : :PP(into): : :)
∑βC(X(sacks)! : : :PP: : :)= 0

0
=? (12.25)

Once again, the head probabilities correctly predict thatdumpedis
more likely to be modified byinto than issacks.

Of course, one example does not prove that one method is better than
another. Furthermore, as we mentioned above, the probabilistic lexical gram-
mar presented above is a simplified version of Charniak’s actual algorithm.
He adds additional conditioning factors (such as conditioning the rule-expan-
sion probability on the syncat of the node’s grandparent), and also proposes
various backoff and smoothing algorithms, since any given corpus may still
be too small to acquire these statistics. Other statisticalparsers include even
more factors, such as the distinction between arguments andadjuncts and
giving more weight to lexical dependencies which are closerin the tree than
those which are further (Collins, 1999), the three left-most parts of speech
in a given constituent (Magerman and Marcus, 1991), and general structural
preferences (such as the preference for right-branching structures in English)
(Briscoe and Carroll, 1993).

Many of these statistical parsers have been evaluated (on the same cor-
pus) using the methodology of the Methodology Box on page 460.

Extending the CYK algorithm to handle lexicalized probabilities is left
as an exercise for the reader.

12.4 DEPENDENCYGRAMMARS

The previous section showed that constituent-based grammars could be aug-
mented with probabilistic relations between head words, and showed that
this lexical dependencyinformation is important in modeling the lexical
constraints that heads (such as verbs) place on their arguments or modifiers.

An important class of grammar formalisms is based purely on this lex-
ical dependencyinformation itself. In thesedependency grammars, con- DEPENDENCY

GRAMMARS

stituents and phrase-structure rules do not play any fundamental role. In-
stead, the syntactic structure of a sentence is described purely in terms of
words and binary semantic or syntactic relations between these words (called
lexical dependencies), Dependency grammars often draw heavily from theLEXICAL DE­

PENDENCIES

work of Tesnière (1959), and the namedependencywas presumably first DEPENDENCY
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METHODOLOGY BOX: EVALUATING PARSERS

The standard techniques for evaluating parsers and grammars are
called the PARSEVAL measures, and were proposed by Blacket al.
(1991) based on the same ideas from signal-detection theorythat we
saw in earlier chapters. In the simplest case, a particular parsing of
the test set (for example the Penn Treebank) is defined as the correct
parse. Given this ‘gold standard’ for a test set, a given constituent in
a candidate parsec of a sentences is labeled ‘correctly’ if there is a
constituent in the treebank parse with the same starting point, ending
point, and nonterminal symbol. We can then measure the precision,
recall, and a new metric (crossing brackets) for each sentences:

labeled recall:= # of correct constituents in candidate parse ofs
# of correct constituents in treebank parse ofs

labeled precision:= # of correct constituents in candidate parse ofs
# of total constituents in candidate parse ofs

cross-brackets: the number of crossed brackets (e.g. the number
of constituents for which the treebank has a bracketing suchas
((A B) C) but the candidate parse has a bracketing such as (A
(B C))).

Using a portion of the Wall Street Journal treebank as the test
set, parsers such as Charniak (1997) and Collins (1999) achieve just
under 90% recall, just under 90% precision, and about 1% cross-
bracketed constituents per sentence.

For comparing parsers which use different grammars, the PAR-
SEVAL metric includes a canonicalization algorithm for removing
information likely to be grammar-specific (auxiliaries, pre-infinitival
“to”, etc) and computing a simplified score. The interested reader
should see Blacket al.(1991). There are also related evaluation met-
rics for dependency parses (Collinset al., 1999) and dependency-
based metrics which work for any parse structure (Lin, 1995;Carroll
et al., 1998).

For grammar-checking, we can compute instead the precision
and recall of a simpler task: how often the parser correctly rejected
an ungrammatical sentence (or recognized a grammatical sentence).
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used by David Hays. But this lexical dependency notion of grammar is in
fact older than the relatively recent phrase-structure or constituency gram-
mars, and has its roots in the ancient Greek and Indian linguistic traditions.
Indeed the notion in traditional grammar of ‘parsing a sentence into subject
and predicate’ is based on lexical relations rather than constituent relations.

I

GAVE

HIM

MY

ADDRESS

.

<ROOT>
main:

subj:
dat:

obj:

attr: pnct:

Figure 12.7 A sample dependency grammar parse, using the dependency
formalism of Karlssonet al. (1995), after Järvinen and Tapanainen (1997).

Figure 12.7 shows an example parse of the sentenceI gave him my ad-
dress, using the dependency grammar formalism of Järvinen and Tapanainen
(1997) and Karlssonet al. (1995). Note that there are no non-terminal or
phrasal nodes; each link in the parse tree holds between two lexical nodes
(augmented with the special<ROOT> node). The links are drawn from
a fixed inventory of around 35 relations, most of which roughly represent
grammatical functions or very general semantic relations.Other dependency-
based computational grammars, such asLink Grammar (Sleator and Tem- LINK

GRAMMAR

perley, 1993), use different but roughly overlapping links. The following
table shows a few of the relations used in Järvinen and Tapanainen (1997):

Dependency Description
subj syntactic subject
obj direct object (incl. sentential complements)
dat indirect object
pcomp complement of a preposition)
comp predicate nominals (complements of copulas)
tmp temporal adverbials
loc location adverbials
attr premodifying (attributive) nominals (genitives, etc)
mod nominal postmodifiers (prepositional phrases, adjectives)
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We have already discussed why dependency information is important.
Is there any advantage to using only dependency informationand ignoring
constituency? Dependency grammar researchers argue that one of the main
advantages of pure dependency grammars is their ability to handle languages
with relatively free word order. For example the word order in languagesFREE WORD

ORDER

like Czech is much more flexible than in English; anobjectmight occur be-
fore or after alocation adverbialor a comp. A phrase-structure grammar
would need a separate rule for each possible place in the parse tree that such
an adverbial phrase could occur. A dependency grammar wouldjust have
one link-type representing this particular adverbial relation. Thus a depen-
dency grammar abstracts away from word-order variation, representing only
the information that is necessary for the parse.

There are a number of computational implementations of dependency
grammars;Link Grammar (Sleator and Temperley, 1993) and ConstraintLINK

GRAMMAR

Grammar (Karlssonet al., 1995) are easily-available broad-coverage depen-
dency grammars and parsers for English. Dependency grammars are also
often used for other languages. Hajič (1998), for example,describes the
500,000 word Prague Dependency Treebank for Czech which hasbeen used
to train probabilistic dependency parsers (Collinset al., 1999).

Categorial Grammar

Categorial grammars were first proposed by Adjukiewicz (1935), and mod-
ified by Bar-Hillel (1953), Lambek (1958), Dowty (1979), Ades and Steed-
man (1982), and Steedman (1989) inter alia. See Bach (1988) for an intro-
duction and the other papers in Oehrleet al.(1988) for a survey of extensions
to the basic models. We will describe a simplified version of the combina-
tory categorial grammar of (Steedman, 1989). A categorial grammar has
two components. Thecategorial lexiconassociates each word with a syn-
tactic and semantic category. Thecombinatory rules allow functions and
arguments to be combined. There are two types of categories:functors and
arguments. Arguments, like nouns, have simple categories like N. Verbs
or determiners act more like functors. For example, a determiner can be
thought of as a function which applies to a N on its right to produce a NP.
Such complex categories are built using the X/Y and XnY operators. X/Y
means a function from Y to X, i.e. something which combines with a Y
on its right to produce an X. Determiners thus receive the category NP/N:
something which combines with an N on its right to produce an NP. Similar,
transitive verbs might have the category VP/NP; something which combines
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with a NP on the right to produce a VP. Ditransitive verbs likegive might
have the category (VP/NP)/NP; something which combines with a NP on its
right to yield a transitive verb. The simplest combination rules just combine
an X/Y with a Y on its right to produce and X or a XnY with a Y on its left
to produce and X.

Consider the simple sentenceHarry eats applesfrom Steedman (1989).
Instead of using a primitive VP category, let’s assume that afinite verb phrase
like eat appleshas the category (SnNP); something which combines with an
NP on the left to produce a sentence.Harry andapplesare both NPs.Eatsis
a finite transitive verb which combines with an NP on the rightto produce a
finite VP: (S\backslash NP)/NP. The derivation of S proceeds as follows:

(12.26)

Harry eats apples
NP (SnNP)/NP NP

SnNP
S

Modern categorial grammars include more complex combinatory rules
which are needed for coordination and other complex phenomena, and also
include composition of semantic categories as well as syntactic ones. See
Chapter 15 for a discussion of semantic composition, and theabove-mentioned
references for more details about categorial grammar.

12.5 HUMAN PARSING

How do people parse? Do we have evidence that people use any ofthe
models of grammar and parsing developed over the last 4 chapters? Do
people use probabilities to parse? The study of human parsing (often called
humansentence processing) is a relatively new one, and we don’t yet haveSENTENCE

PROCESSING

complete answers to these questions. But in the last 20 yearswe have learned
a lot about human parsing; this section will give a brief overview of some
recent theories. These results are relatively recent, however, and there is still
disagreement over the correct way to model human parsing, sothe reader
should take some of this with a grain of salt.

An important component of human parsing is ambiguity resolution.
How can we find out how people choose between two ambiguous parses of
a sentence? As was pointed out in this chapter and in Chapter 9, while al-
most every sentence is ambiguous in some way, people rarely notice these
ambiguities. Instead, they only seem to see one interpretation for a sentence.
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Following a suggestion by Fodor (1978), Fordet al. (1982) used this fact
to show that the human sentence processor is sensitive tolexical subcate-
gorization preferences. They presented subjects with ambiguous sentences
like (12.27–12.28), in which the preposition phraseon the beachcould at-
tach either to a noun phrase (the dogs) or a verb phrase. They asked the
subjects to read the sentence and check off a box indicating which of the two
interpretations they got first. The results are shown after each sentence:

(12.27) The women kept the dogs on the beach� The women kept the dogs which were on the beach. 5%� The women kept them (the dogs) on the beach. 95%

(12.28) The women discussed the dogs on the beach� The women discussed the dogs which were on the beach. 90%� The women discussed them (the dogs) while on the beach. 10%

The results were that subjects preferred VP-attachment with keepand
NP-attachment withdiscuss. This suggests thatkeephas a subcategorization
preference for a VP with three constituents: (VP! V NP PP) while discuss
has a subcategorization preference for a VP with two constituents: (VP!
V NP), although both verbs still allow both subcategorizations.

Much of the more recent ambiguity-resolution research relies on a
specific class of temporarily ambiguous sentences calledgarden-path sen-GARDEN­PATH

tences. These sentences, first described by Bever (1970), are sentences
which are cleverly constructed to have three properties which combine to
make them very difficult for people to parse:

1. they aretemporarily ambiguous: the sentence is unambiguous, but
its initial portion is ambiguous.

2. one of these two parses in the initial portion is somehow preferable to
the human parsing mechanism.

3. but the dispreferred parse is the correct one for the sentence.

The result of these three properties is that people are ‘led down the
garden path’ towards the incorrect parse, and then are confused when they
realize it’s the wrong one. Sometimes this confusion is quite conscious, as in
Bever’s example (12.29); in fact this sentence is so hard to parse that readers
often need to be shown the correct structure. In the correct structureraced
is part of a reduced relative clause modifyingThe horse, and means ‘The
horse [which was raced past the barn] fell’; this structure is also present in
the sentence ‘Students taught by the Berlitz method do better when they get
to France’.
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(12.29) The horse raced past the barn fell.

(a) S (b) S

NP VP NP VP

NP VP

PP PP

NP ? NP

Det N V P Det N V Det N V P Det N V

The horse raced past the barn fell The horse raced past the barn fell

(12.30) The complex houses married and single students and their families.
(a) S (b) S

NP NP VP

Det Adj N Det N V

The complex houses The complex houses

(12.31) The student forgot the solution was in the back of thebook.

(a) S (b) S

NP VP NP VP

S

NP ? NP VP

Det N V Det N V Det N V Det N V

The students forgot the solution was The students forgot thesolution was

Other times the confusion caused by a garden-path sentence is so subtle
that it can only be measured by a slight increase in reading time. For exam-
ple in (12.31) from Trueswellet al. (1993) (modified from an experiment by
Ferreira and Henderson (1991)), readers often mis-parsethe solutionas the
direct object offorgot rather than as the subject of an embedded sentence.
This is another subcategorization preference difference;forgot prefers a di-
rect object (VP! V NP) to a sentential complement (VP! V S). But the
difference is subtle, and is only noticeable because the subjects spent sig-
nificantly more time reading the wordwas. How do we know how long a
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subject takes to read a word or a phrase? One way is by scrolling a sentence
onto a computer screen one word or phrase at a time; another isby using
aneye-trackerto track how long their eyes linger on each word. Trueswell
et al. (1993) employed both methods in separate experiments. This‘mini-
garden-path’ effect at the wordwassuggests that subjects had chosen the
direct object parse and had to re-analyze or rearrange theirparse now that
they realize they are in a sentential complement. By contrast, a verb which
prefers a sentential complement (likehope) didn’t cause extra reading time
atwas.

These garden-path sentences are not just restricted to English. (12.32)
shows a Spanish example from Gilboy and Sopena (1996) in which the word
que, just like Englishthat, is ambiguous between the relative clause marker
and the sentential complement marker. Thus up to the phrasedos hijas,
readers assume the sentence means “the man told the woman that he had
two daughters”; after reading the secondque, they must reparseque tenia
dos hijasas a relative clause modifier ofmujer rather than a complement of
dijo.

(12.32) El
The

hombre
man

le
her

dijo
told

a
to

la
the

mujer
woman

que
that

teńia
had

dos
two

hijas
daughters

que
that

la
her

invitaba
he invited

a
to

cenar.
dinner.

‘The man told the woman who had two daughters that (he) would invite her
for dinner.’

Example (12.33) shows a Japanese garden path from Mazuka andItoh
(1995). In this sentence, up to the verbmikaketa(saw), the reader assumes
the sentence means “Yoko saw the child at the intersection.”But upon read-
ing the wordmikaketa(taxi-DAT), they they have to reanalyzechild not as
the object ofsaw, but as the object ofput-on.

(12.33) Yoko-ga
Yoko-NOM

kodomo-o
child-ACC

koosaten-de
intersection-LOC

mikaketa
saw

takusii-ni
taxi-DAT

noseta.
put on

‘Yoko made the child ride the taxi she saw at the intersection.’

In the Spanish and Japanese examples, and in examples (12.29) and
(12.31), the garden path is caused by thesubcategorization preferencesof
the verbs. The garden-path and other methodologies have been employed to
study many kinds of preferences besides subcategorizationpreferences. Ex-
ample (12.31) from Jurafsky (1996) shows that sometimes these preferences
have to do with part-of-speech preferences (for example whether housesis
more likely to be a verb or a noun). Many of these preferences have been
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shown to be probabilistic and to be related to the kinds of probabilities we
have been describing in this chapter. MacDonald (1993) showed that the
human processor is sensitive to whether a noun is more likelyto be a head
or a non-head of a constituent, and also to word-word collocation frequen-
cies. Mitchellet al. (1995) showed that syntactic phrase-structure frequen-
cies (such as the frequency of the relative clause construction) play a role
in human processing. Juliano and Tanenhaus (1993) showed that the hu-
man processor is sensitive to a combination of lexical and phrase-structure
frequency.

Besides grammatical knowledge, human parsing is affected by many
other factors which we will describe later, including resource constraints
(such as memory limitations, to be discussed in Chapter 13),thematic struc-
ture (such as whether a verb expects semanticagentsor patients, to be dis-
cussed in Chapter 16) and semantic, discourse, and other contextual con-
straints (to be discussed in Chapter 15 and Chapter 18). While there is gen-
eral agreement about the knowledge sources used by the humansentence
processor, there is less agreement about thetime courseof knowledge use.
Frazier and colleagues (most recently in Frazier and Clifton, 1996) argue
that an initial interpretation is built using purely syntactic knowledge, and
that semantic, thematic, and discourse knowledge only becomes available
later. This view is often called amodularist perspective; researchers hold-
ing this position generally argue that human syntactic knowledge is a distinct
module of the human mind. Many other researchers (includingMacDonald,
1994; MacWhinney, 1987; Pearlmutter and MacDonald, 1992; Taboret al.,
1997; Trueswell and Tanenhaus, 1994; Trueswellet al., 1994) hold aninter-
actionist perspective, arguing that people use multiple kinds of information
incrementally. For this latter group, human parsing is an interactive process,
in which different knowledge sources interactively constrain the process of
interpretation.

Researchers such as MacDonald (1993) argue that these constraints are
fundamentally probabilistic. For example Jurafsky (1996)and Narayanan
and Jurafsky (1998) showed that a probabilistic model whichincluded PCFG
probabilities as well as syntactic and thematic subcategorization probabili-
ties could account for garden-path examples such as those in(12.29–12.31)
above. For exampleP(N!houses) is greater thanP(V!houses), and this is
one of the factors accounting for the processing difficulty of example (12.30)
above. In the Jurafsky and Narayanan-Jurafsky model, the human language
processor takes an input sentence, and computes the most-likely interpre-
tation by relying on probabilistic sources of linguistic information. Errors
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(such as garden-path sentences) are caused by two factors. First, the stored
probabilities may simply not match the intended interpretation of the speaker
(i.e. people may just rank the wrong interpretation as the best one). Second,
people are unwilling or unable to maintain very many interpretations at one
time. Whether because of memory limitations, or just because they have a
strong desire to come up with a single interpretation, they prune away low-
ranking interpretations. Jurafsky and Narayanan-Jurafsky suggest that this
pruning happens via probabilistic beam search in the human parser (like the
pruning described in Chapter 7). The result is that they prune away the cor-
rect interpretation, leaving the highest-scoring but incorrect one.

12.6 SUMMARY

This chapter has sketched the basics ofprobabilistic parsing, concentrat-
ing onprobabilistic context-free grammars andprobabilistic lexicalized
grammars.� Probabilistic grammars assign a probability to a sentence or string of

words, while attempting to capture more sophisticated syntactic infor-
mation than theN-gram grammars of Chapter 6,� A probabilistic context-free grammar (PCFG) is a context-free gram-
mar in which every rule is annotated with the probability of choosing
that rule. Each PCFG rule is treated as if it wereconditionally inde-
pendent; thus the probability of a sentence is computed bymultiply-
ing the probabilities of each rule in the parse of the sentence.� The Cocke-Younger-Kasami (CYK ) algorithm is a bottom-up dy-
namic programming parsing algorithm. Both the CYK and Earley can
be augmented to compute the probability of a parse while theyare
parsing a sentence.� PCFG probabilities can be learning by counting in aparsed corpus, or
by parsing a corpus. TheInside-Outsidealgorithm is a way of dealing
with the fact that the sentences being parsed are ambiguous.� Probabilistic lexicalized CFGs augment PCFGs with alexical head
for each rule. The probability of a rule can then be conditioned on the
lexical head or nearby heads.� Parsers are evaluated using three metrics:labeled recall, labeled pre-
cision, andcross-brackets.
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sentence-processing experimentsthat the human parser operates prob-
abilistically and uses probabilistic grammatical knowledge such as sub-
categorization information.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

Many of the formal properties of probabilistic context-free grammars were
first worked out by Booth (1969) and Salomaa (1969). Baker (1979) pro-
posed the Inside-Outside algorithm for unsupervised training of PCFG prob-
abilities, which used a CYK-style parsing algorithm to compute inside prob-
abilities. Jelinek and Lafferty (1991) extended the CYK algorithm to com-
pute probabilities for prefixes. Stolcke (1995) drew on boththese algorithm
to adopt the Earley algorithm to PCFGs.

A number of researchers starting in the early 1990’s worked on adding
lexical dependencies to PCFGs, and on making PCFG probabilities more
sensitive to surrounding syntactic structure. Many of these papers were first
presented at the DARPA Speech and Natural Language Workshopin June,
1990. A paper by Hindle and Rooth (1990) applied lexical dependencies
to the problem of attaching preposition phrases; in the question session to
a later paper Ken Church suggested applying this method to full parsing
(Marcus, 1990). Early work on such probabilistic CFG parsing augmented
with probabilistic dependency information includes Magerman and Marcus
(1991), Blacket al.(1992), Jones and Eisner (1992), Bod (1993), and Jelinek
et al. (1994), in addition to Collins (1996), Charniak (1997), andCollins
(1999) discussed above.

Probabilistic formulations of grammar other than PCFGs include prob-
abilistic TAG grammar (Resnik, 1992; Schabes, 1992), basedon the TAG
grammars discussed in Chapter 9, probabilistic LR parsing (Briscoe and
Carroll, 1993), and probabilistic link grammar (Laffertyet al., 1992). An
approach to probabilistic parsing calledsupertaggingextends the part-of-SUPERTAG­

GING

speech tagging metaphor to parsing by using very complex tags that are in
fact fragments of lexicalized parse trees (Bangalore and Joshi, 1999; Joshi
and Srinivas, 1994), based on the lexicalized TAG grammars of Schabes
et al. (1988). For example the nounpurchasewould have a different tag
as the first noun in a noun compound (where it might be on the left of a
small tree dominated by Nominal) than as the second noun (where it might
be on the right). See Goodman (1997) and Abney (1997) for probabilis-
tic treatments of feature-based grammars. Another approach combines the
finite-state model of parsing described in Chapter 9 with theN-gram, by
doing partial parsing and then computingN-grams over basic phrases (e.g.
P(PPjNP)). (Moore et al., 1995; Zechner and Waibel, 1998). A number
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of probabilistic parsers are based on dependency grammars;see for exam-
ple Chelbaet al. (1997), Chelba and Jelinek (1998), and Berger and Printz
(1998); these parsers were also used as language models for speech recogni-
tion.

Related to probabilistic dependency grammars is the idea oflearning
subcategorization frames for verbs, as well as probabilities for these frames.
Algorithms which learn non-probabilistic subcategorization frames for verbs
include the cue-based approach of Brent (1993) and the finite-state automa-
ton approach of Manning (1993). Briscoe and Carroll (1997) extract more
complex subcategorization frames (using 160 possible subcategorization la-
bels) and also learns subcategorization frame frequencies, using a probabilis-
tic LR parser and some post-processing. Roland and Jurafsky(1998) showed
that it is important to compute subcategorization probabilities for the word
sense (‘lemma’) rather than the simple orthographic word.

Many probabilistic and corpus-based approaches have been taken to
the preposition-phrase attachment problem since Hindle and Rooth’s study,
including TBL (Brill and Resnik, 1994), Maximum Entropy (Ratnaparkhi
et al., 1994), Memory-Based Learning (Jakub and Daelemans, 1997), log-
linear models (Franz, 1997), and decision trees using semantic distance be-
tween heads (computed from WordNet) (Stetina and Nagao, 1997), as well
as the use of machine learning techniques like boosting (Abneyet al., 1999).

Manning and Schütze (1999) is a good advanced textbook on statisti-
cal natural language processing which covers probabilistic parsing. Collins’
(1999) dissertation includes a very readable survey of the field and introduc-
tion to his parser.

EXERCISES

12.1 Implement the CYK algorithm.

12.2 Sketch out how the CYK algorithm would have to be augmented to
handle lexicalized probabilities.

12.3 Implement your lexicalized extension of the CYK algorithm.
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12.4 Implement your lexicalized extension of the CYK algorithm.

12.5 Implement the PARSEVAL metrics described on page 460. Next ei-
ther use a treebank or create your own hand-checked parsed testset. Now use
your CFG (or other) parser and grammar and parse the testset and compute
labeled recall, labeled precision, and cross-brackets.

12.6 Take any three sentences from Chapter 9 and hand-parse them into
the dependency grammar formalism of Karlssonet al.(1995) shown on page
461.



13
LANGUAGE AND
COMPLEXITY

This is the dog, that worried the cat, that killed the rat, that ate
the malt, that lay in the house that Jack built.

Mother Goose,The house that Jack built

This is the malt that the rat that the cat that the dog worried
killed ate.

Victor H. Yngve (1960)

Much of the humor in musical comedy and comic operetta comes from
entwining the main characters in fabulously complicated plot twists. Casilda,
the daughter of the Duke of Plaza-Toro in Gilbert and Sullivan’s The Gon-
doliers, is in love with her father’s attendent Luiz. Unfortunately, Casilda
discovers she has already been married (by proxy) as a babe ofsix months to
“the infant son and heir of His Majesty the immeasurably wealthy King of
Barataria”. It is revealed that this infant son was spiritedaway by the Grand
Inquisitor and raised by a “highly respectable gondolier” in Venice as a gon-
dolier. The gondolier had a baby of the same age and could never remember
which child was which, and so Casilda was in the unenviable position, as
she puts it, of “being married to one of two gondoliers, but itis impossible
to say which”. By way of consolation, the Grand Inquisitor informs her that
“such complications frequently occur”.

Luckily, such complications don’t frequently occur in natural language.
Or do they? In fact there are sentences that are so complex that they are hard
to understand, such as Yngve’s sentence above, or the sentence:

“The Republicans who the senator who she voted for chastised
were trying to cut all benefits for veterans”.
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Studying such sentences, and more generally understandingwhat level of
complexity tends to occur in natural language, is an important area of lan-
guage processing. Complexity plays an important role, for example, in de-
ciding when we need to use a particular formal mechanism. Formal mecha-
nisms like finite automata, Markov models, transducers, phonological rewrite
rules, and context-free grammars, can be described in termsof their power,POWER

or equivalently in terms of thecomplexity of the phenomena that they canCOMPLEXITY

describe. This chapter introduces the Chomsky hierarchy, atheoretical tool
that allows us to compare the expressive power or complexityof these dif-
ferent formal mechanisms. With this tool in hand, we summarize arguments
about the correct formal power of the syntax of natural languages, in particu-
lar English but also including a famous Swiss dialect of German that has the
interesting syntactic property calledcross-serial dependencies. This prop-
erty has been used to argue that context-free grammars are insufficiently
powerful to model the morphology and syntax of natural language.

In addition to using complexity as a metric for understanding the rela-
tion between natural language and formal models, the field ofcomplexity is
also concerned with what makes individual constructions orsentences hard
to understand. For example we saw above that certainnestedor center-
embeddedsentences are difficult for people to process. Understanding what
makes some sentences difficult for people to process is an important part of
understanding human parsing.

13.1 THE CHOMSKY HIERARCHY

How are automata, context-free grammars, and phonologicalrewrite rules
related? What they have in common is that each describes aformal lan-
guage, which we have seen is a set of strings over a finite alphabet. But the
kind of grammars we can write with each of these formalism areof different
generative power. One grammar is of greater generative power orcomplex-GENERATIVE

POWER

ity than another if it can define a language that the other cannot define. We
will show, for example, that a context-free grammar can be used to describe
formal languages that cannot be described with a finite stateautomaton.

It is possible to construct a hierarchy of grammars, where the set of
languages describable by grammars of greater power subsumes the set of
languages describable by grammars of lesser power. There are many possi-
ble such hierarchies; the one that is most commonly used in computational
linguistics is theChomsky hierarchy (Chomsky, 1959a), which includesCHOMSKY

HIERARCHY
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four kinds of grammars, characterized graphically in Figure 13.1.

 Context−Free Languages (with no epsilon productions)

 Context−Sensitive Languages

  Type 0 Languages

  Regular (or Right Linear) Languages

Figure 13.1 A Venn diagram of the languages on the Chomsky Hierarchy

What is perhaps not intuitively obvious is that the decreasein the gen-
erative power of languages from the most powerful to the weakest can be
accomplished merely by placing constraints on the way the grammar rules
are allowed to be written. The following table shows the fourtypes of gram-
mars in the Chomsky hierarchy, defined by the constraints on the form that
rules must take. In these examples,A is a single non-terminal, andα, β, and
γ are arbitrary strings of terminal and non-terminal symbols. They may be
empty unless this is specifically disallowed below.x is an arbitrary string of
terminal symbols.

Type Common Name Rule Skeleton Linguistic Example
0 Turing Equivalent α! β, s.t.α 6= ε ATNs

1 Context Sensitive αAβ! αγβ, s.t.γ 6= ε Tree-Adjoining Grammars

2 Context Free A! γ Phrase Structure Grammars

3 Regular A! xB or A! x Finite State Automata

Figure 13.2 The Chomsky Hierarchy

Type 0 or unrestricted grammars have no restrictions on the form
of their rules, except that the left-hand side cannot be the empty stringε.
Any (non-null) string can be written as any other string (or as ε). Type 0
grammars characterize therecursively enumerable languages, i.e., thoseRECURSIVELY

ENUMERABLE

whose strings can be listed (enumerated) by a Turing Machine.
Context-sensitivegrammars have rules that rewrite a non-terminalCONTEXT­

SENSITIVE
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symbol A in the contextαAβ as any non-empty string of symbols. They can
be either written in the formαAβ ! αγβ or in the formA! γ /α β. We
have seen this latter version in the Chomsky-Halle representation of phono-
logical rules (Chomsky and Halle, 1968) , as the following rule of Flapping
demonstrates:

/t/ ! [dx] / V́ V

While the form of these rules seems context-sensitive, Chapter 4 showed
that phonological rule systems that do not have recursion are actually equiv-
alent in power to the regular grammars. A linguistic model that is known to
be context-sensitive is the Tree-Adjoining Grammar (Joshi, 1985).

Another way of conceptualizing a rule in a context-sensitive grammar
is as rewriting a string of symbolsδ as another string of symbolsφ in a
“non-decreasing” way; such thatφ has at least as many symbols asδ.

We studiedcontext-free grammars in Chapter 9. Context-free rulesCONTEXT­
FREE

allow any single nonterminal to be rewritten as any string ofterminals and
nonterminals. A nonterminal may also be rewritten asε, although we didn’t
make use of this option in Chapter 9.

Regular grammars are equivalent to regular expressions. That is, a
given regular language can be characterized either by a regular expression
of the type we discussed in Chapter 2, or by a regular grammar.Regular
grammars can either beright-linear or left-linear . A rule in a right-linearRIGHT­LINEAR

LEFT­LINEAR grammar has a single non-terminal on the left, and at most onenon-terminal
on the right-hand side. If there is a non-terminal on the right-hand side,
it must be the last symbol in the string. The right-hand-sideof left-linear
grammars is reversed (the right-hand-side must start with (at most) a single
non-terminal). All regular languages have both a left-linear and a right-linear
grammar. For the rest of our discussion, we will consider only the right-
linear grammars.

For example, consider the following regular (right-linear) grammar:

S ! aA

S ! bB

A ! aS

B ! bbS

S ! ε

It is regular, since the left-hand-side of each rule is a single non-terminal
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and each right-hand side has at most one (rightmost) non-terminal. Here is a
sample derivation in the language:

S) aA) aaS) aabB) aabbbS) aabbbaA) aabbbaaS) aabbbaa

We can see that each time S expands, it produces eitheraaSor bbbS;
thus the reader should convince themself that this languagecorresponds to
the regular expression(aa[bbb)�.

We will not present the proof that a language is regular if andonly if it
is generated by a regular language; it was first proved by Chomsky and Miller
(1958) and can be found in textbooks like Hopcroft and Ullman(1979) and
Lewis and Papadimitriou (1981). The intuition is that sincethe nonterminals
are always at the right or left edge of a rule, they can be processed iteratively
rather than recursively.

13.2 HOW TO TELL IF A LANGUAGE ISN’ T REGULAR

How do we know which type of rules to use for a given problem? Could we
use regular expressions to write a grammar for English? Our do we need to
use context-free rules or even context-sensitive rules? Itturns out that for
formal languages there are methods for deciding this. That is, we can say for
a given formal language whether it is representable by a regular expression,
or whether it instead requires a context-free grammar, and so on.

So if we want to know if some part of natural language (the phonol-
ogy of English, let’s say, or perhaps the morphology of Turkish) is repre-
sentable by a certain class of grammars, we need to find a formal language
that models the relevant phenomena and figure out which classof grammars
is appropriate for this formal language.

Why should we care whether (say) the syntax of English is repre-
sentable by a regular language? One main reason is that we’d like to know
which type of rule to use in writing computational grammars for English.
If English is regular, we would write regular expressions, and use efficient
automata to process the rules. If English is context-free, we would write
context-free rules and use the Earley algorithm to parse sentences, and so
on.

Another reason to care is that it tells us something about theformal
properties of different aspects of natural language; it would be nice to know
where a language ‘keeps’ its complexity; whether the phonological system
of a language is simpler than the syntactic system, or whether a certain



478 Chapter 13. Language and Complexity

kind of morphological system is inherently simpler than another kind. It
would be a strong and exciting claim, for example, if we couldshow that the
phonology of English was capturable by a finite-state machine rather than
the context-sensitive rules that are traditionally used; it would mean that En-
glish phonology has quite simple formal properties. Indeed, this fact was
shown by Johnson (1972), and helped lead to the modern work infinite-state
methods shown in Chapter 3 and Chapter 4.

The Pumping Lemma

The most common way to prove that a language is regular is to actually
build a regular expression for the language. In doing this wecan rely on
the fact that the regular languages are closed under union, concatenation,
Kleene star, complementation, and intersection. We saw examples of union,
concatenation, and Kleene star in Chapter 2. So if we can independently
build a regular expression for two distinct parts of a language, we can use the
union operator to build a regular expression for the whole language, proving
that the language is regular.

Sometimes we want to prove that a given language isnot regular. An
extremely useful tool for doing this is thePumping Lemma. There are twoPUMPING

LEMMA

intuitions behind this lemma (our description of the pumping lemma draws
from Lewis and Papadimitriou (1981) and Hopcroft and Ullman(1979)).
First, if a language can be modeled by a finite automaton, we must be able
to decide with a bounded amount of memory whether any string was in the
language or not. This amount of memory can’t grow larger for different
strings (since a given automaton has a fixed number of states). Thus the
memory needs must not be proportional to the length of the input. This
means for example that languages likeanbn are not likely to be regular, since
we would need some way to remember whatn was in order to make sure that
there were an equal number ofa’s andb’s. The second intuition relies on the
fact that if a regular language has any long strings (longer than the number
of states in the automaton), there must be some sort of loop inthe automaton
for the language. We can use this fact by showing that if a languagedoesn’t
have such a loop, then it can’t be regular.

Let’s consider a languageL and the corresponding deterministic FSA
M, which hasN states. Consider an input string also of lengthN. The
machine starts out in stateq0; after seeing 1 symbol it will be in stateq1;
after N symbols it will be in stateqn. In other words, a string of lengthN
will go through N+1 states (fromq0 to qN). But there are onlyN states
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in the machine. This means that at least 2 of the states along the accepting
path (call themqi and q j ) must be the same. In other words, somewhere
on an accepting path from the initial to final state, there must be a loop.
Figure 13.3 shows an illustration of this point. Letx be the string of symbols
that the machine reads on going from the initial stateq0 to the beginning of
the loopqi . y is the string of symbols that the machine reads in going through
the loop.z is the string of symbols from the end of the loop (q j ) to the final
accepting state (qN).

q0
q

Nx

y

z
q i=j

Figure 13.3 A machine with N states accepting a stringxyzof N symbols

The machine accepts the concatenation of these three strings of sym-
bols, i.e. xyz. But if the machine acceptsxyz it must acceptxz! This is
because the machine could just skip the loop in processingxz. Furthermore,
the machine could also go around the loop any number of times;thus it must
also acceptxyyz, xyyyz, xyyyyz, etc. In fact, it must accept any string of the
form xynz for n� 0.

The version of the pumping lemma we give is a simplified one for
infinite regular languages; stronger versions can be statedthat also apply to
finite languages, but this one gives the flavor of this class oflemmas:

Pumping Lemma. Let L be an infinite regular language. Then
there are stringsx, y, andz, such thaty 6= ε andxynz2 L for n� 0.

The pumping lemma states that if a language is regular, then there is
some stringy that can be ‘pumped’ appropriately. But this doesn’t mean that
if we can pump some stringy, the language must be regular. Non-regular
languages may also have strings that can be pumped. Thus the lemma is not
used for showing that a languageis regular. Rather it is used for showing
that a languageisn’t regular, by showing that in some language there is no
possible string that can be pumped in the appropriate way.

Let’s use the pumping lemma to show that the languageanbn (i.e. the
language consisting of strings ofas followed by an equal number ofbs) is
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not regular. We must show that any possible strings that we pick cannot be
divided up into three partsx, y, andz such thaty can be pumped. Given a
random strings from anbn, we can distinguish three ways of breakings up,
and show that no matter which way we pick, we cannot find somey that can
be pumped:

1. y is composed only ofas. (This implies thatx is all as too, andz
contains all thebs, perhaps preceded by someas.) But if y is all as,
that meansxynz has moreas thanxyz. But this means it has moreas
thanbs, and so cannot be a member of the languageanbn!

2. y is composed only ofbs. The problem here is similar to case 1; Ify
is all bs, that meansxynz has morebs thanxyz, and hence has morebs
thanas.

3. y is composed of bothas andbs (this implies thatx is only as, while
z is only bs). This means thatxynz must have somebs beforeas, and
again cannot be a member of the languageanbn!

Thus there is no string inanbn that can be divided intox, y, z in such a
way thaty can be pumped, and henceanbn is not a regular language.

But while anbn is not a regular language, it is a context-free language.
In fact, the context-free grammar that modelsanbn only takes two rules!
Here they are:

S ! a S b

S ! ε

Here’s a sample parse tree using this grammar to derive the sentence
aabb:

S

S

S

a a ε b b

Figure 13.4 Context-free parse tree foraabb
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There is also a pumping lemma for context-free languages, that can be
used whether or not a language is context-free; complete discussions can be
found in Hopcroft and Ullman (1979) and Partee (1990).

Are English and other Natural Languges Regular Languages?

“How’s business?” I asked.
“Lousy and terrible.” Fritz grinned richly. “Or I pull off a new
deal in the next month or I go as a gigolo,”
“ Either. . . or . . . ,’ I corrected, from force of professional habit.
“I’m speaking a lousy English just now,” drawled Fritz, with
great self-satisfaction. “Sally says maybe she’ll give me afew
lessons.”

Christopher Isherwood. 1935. “Sally Bowles” from
Goodbye to Berlin

The pumping lemma provides us with the theoretical machinery for
understanding the well-known arguments that English (or rather ‘the set of
strings of English words considered as a formal language’) is not a regular
language.

The first such argument was given by Chomsky (1956) and Chomsky
(1957). He first considers the languagefxxR;x 2 a;b�g. xR means ‘the re-
verse ofx’, so each sentence of this language consists of a string ofas andbs
followed by the reverse or ‘mirror image’ of the string. Thislanguage is not
regular; Partee (1990) shows this by intersecting it with the regular language
aa�bbaa�. The resulting language isanb2an; it is left as an exercise for the
reader (Exercise 13.3) to show that this is not regular by thepumping lemma.

Chomsky then showed that a particular subset of the grammar of En-
glish is isomorphic to the mirror image language. He has us consider the fol-
lowing English syntactic structures, whereS1;S2 : : :Sn, are declarative sen-
tences in English:� If S1, thenS2� EitherS3, or S4� The man who saidS5 is arriving today

Clearly, Chomsky points out, these are English sentences. Further-
more, in each case there is a lexical dependency between one part of each
structure and another. “If” must be followed by “then” (and not, for example,
“or”). “Either” must be followed by “or” (and not, for example, “because”).
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Now these sentences can be embedded in English, one in another; for
example, we could build sentences like the following:

If either the man who saidS5 is arriving todayor the man who
saidS5 is arriving tomorrow,then the man who saidS6 is arriving
the day after. . .

The regular languages are closed under substitution orhomomorphism;
this just means that we can rename any of the symbols in the above sentences.
Let’s introduce the following substitution:

if ! a
then ! a
either ! b
or ! b
other words! ε
Now if we apply this substitution to the sentence above, we get the

following sentence:

abba

This sentence has just the mirror-like property that we showed above
was not capturable by finite-state methods. If we assume thatif, then, either,
or, can be nested indefinitely, then English is isomorphic toxxR;x 2 a;b�,
and hence is not a regular language. Of course, it’s not true that these struc-
tures can be nested indefinitely (sentences like this get hard to understand
after a couple nestings); we will return to this issues in Section 13.4.

Partee (1990) gave a second proof that English is not a regular lan-
guage. This proof is based on a famous class of sentences withcenter-
embeddedstructures (Yngve, 1960); here is a variant of these sentences:CENTER­

EMBEDDED

The cat likes tuna fish.
The cat the dog chased likes tuna fish.
The cat the dog the rat bit chased likes tuna fish.
The cat the dog the rat the elephant admired bit chased likes tuna fish.

As was true with the either/or sentences above, these sentences get
harder to understand as they get more complex. But for now, let’s assume
that the grammar of English allows an indefinite number of embeddings.
Then in order to show that English is not regular, we need to show that
sentences like these are isomorphic to some non-regular language. Since
every frontedNP must have its associated verb, these sentences are of the
form:
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(the + noun)n (transitive verb)n�1 likes tuna fish.

The idea of the proof will be to show that sentences of these struc-
tures can be produced by intersecting English with a regularexpression. We
will then use the pumping lemma to prove that the resulting language isn’t
regular.

In order to build a simple regular expression that we can intersect with
English to produce these sentences, we define regular expressions for the
noun groups (A) and the verbs (B):

A = f the cat, the dog, the rat, the elephant, the kangaroo,. . .g
B = f chased, bit, admired, ate, befriended, . . .g
Now if we take the regular expression/A* B* likes tuna fish/

and intersect it with English (considered as a set of strings), the resulting lan-
guage is:

L = xnyn�1 likes tuna fish; x2 A;y2 B

This language L can be shown to be non-regular via the pumping
lemma (see Exercise 13.2). Since the intersection of English with a regu-
lar language is not a regular language, English cannot be a regular language
either.

The two arguments we have seen so far are based on English syntax.
There are also arguments against the finite-state nature of English based on
English morphology. These morphological arguments are a different kind
of argument, because they don’t prove that English morphology couldn’t be
regular, only that a context-free model of English morphology is much more
elegant and captures some useful descriptive generalizations. Let’s summa-
rize one from Sproat (1993) on the prefixen-. Like other English verbs, the
verbs formed with this prefix can take the suffix-able. So for example the
verbsenjoyandenrichcan be suffixed (enjoyable, enrichable). But the noun
or adjective stems themselves cannot take the-able(so*joyable, *richable).
In other words,-able can attach if the verb-forming prefixen- has already
attached, but not if it hasn’t.

The reason for this is very simple;en-creates verbs, and-ableonly at-
taches to verbs. But expressing this fact in a regular grammar has an annoy-
ing and inelegant redundancy; it would have to have two paths, one through
joy, one throughenjoy, leading to different states, as follows:

This morphological fact is easy to express in a context-freegrammar;
this is left as an exercise for the reader.

This kind of ‘elegance’ argument against regular grammars also has
been made for syntactic phenomena. For example a number of scholars have
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en−;em−

−able
joy

rich

joy

rich

would have to have a
duplicate representation
of all these nouns and
adjectives

Figure 13.5 A part of an FSA for English morphology (after Sproat
(1993)).

argued that English number agreement cannot be captured by aregular (or
even a context-free) grammar. In fact, a simple regular grammarcanmodel
number agreement, as Pullum and Gazdar (1982) show. They considered the
following sentences, which have a long-distance agreementdependency:

Which problemdid your professor say she thoughtwasunsolv-
able?
Whichproblemsdid your professor say she thoughtwereunsolv-
able?

Here’s their regular (right-linear) grammar that models these sentences:

S ! Which problem did your professor say T

S ! Which problems did your professor say U

T ! she thought Tj you thought Tj was unsolvable

U ! she thought Uj you thought Uj were unsolvable

So a regular grammar could model English agreement. The problem
with such a grammar is not its computational power, but its elegance, as we
saw in Chapter 9; such a regular grammar would have a huge explosion in the
number of grammar rules. But for the purposes of computational complexity,
agreement is not part of an argument that English is not a regular language.
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13.3 IS NATURAL LANGUAGE CONTEXT-FREE?

The previous section argued that English (considered as a set of strings)
doesn’t seem like a regular language. The natural next question to ask is
whether English is a context-free language. This question was first asked by
Chomsky (1956), and has an interesting history; a number of well-known
attempts to prove English and other languages non-context-free have been
published, and all except two have been disproved after publication. One
of these two correct (or at least not-yet disproved) arguments derives from
the syntax of a dialect of Swiss German; the other from the morphology of
Bambara, a Northwestern Mande language spoken in Mali and neighboring
countries. The interested reader should see Pullum (1991, p. 131–146) for
an extremely witty history of both the incorrect and correctproofs; this sec-
tion will merely summarize one of the correct proofs, the onebased on Swiss
German.

Both of the correct arguments, and most of the incorrect ones, make use
of the fact that the following languages, and ones that have similar properties,
are not context-free:fxx j x2 fa;bg�g (13.1)

This language consists of sentences containing two identical strings concate-
nated. The following related language is also not context-free:

anbmcndm (13.2)

The non-context-free nature of such languages can be shown using the pump-
ing lemma for context-free languages.

The attempts to prove that the natural languages are not a subset of
the context-free languages do this by showing that natural languages have a
property of thesexx languages calledcross-serial dependencies. In a cross-

CROSS­
SERIAL
DEPENDEN­
CIESserial dependency, words or larger structures are related in left-to-right order

as shown in Figure 13.6. A language that has arbitrarily longcross-serial
dependencies can be mapped to thexx languages.

The successful proof, independently proposed by Huybregts(1984)
and Shieber (1985a), shows that a dialect of Swiss German spoken in Zürich
has cross-serial constraints which make certain parts of that language equiv-
alent to the non-context-free languageanbmcndm. The intuition is that Swiss
German allows a sentence to have a string of dative nouns followed by a
string of accusative nouns, followed by a string of dative-taking verbs, fol-
lowed by a string of accusative-taking verbs.
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Figure 13.6 A schematic of a cross-serial dependency.

We will follow the version of the proof presented in Shieber (1985a).
First, he notes that Swiss German allows verbs and their arguments to be
ordered cross-serially. Assume that all the example clauses we present below
are preceded by the string“Jan säit das” (“Jan says that”):

(13.3) . . . mer
. . . we

em Hans
Hans/DAT

es
the

huus
house/ACC

hälfed
helped

aastriiche.
paint.

‘. . . we helped Hans paint the house.’

Notice the cross-serial nature of the semantic dependency:both nouns
precede both verbs, andem Hans(Hans) is the argument ofhälfed (helped)
while es huus(the house) is the argument ofaastriiche(paint). Furthermore,
there is a cross-serial case dependency between the nouns and verbs;hälfed
(helped) requires the dative, andem Hansis dative, whileaastriiche(paint)
takes the accusative, andes huus(the house) is accusative.

Shieber points out that this case marking can occur even across triply
embedded cross-serial clauses like the following:

(13.4) . . . mer
. . . we

d’chind
the children/ACC

em Hans
Hans/DAT

es
the

huus
house/ACC

haend
have

wele
wanted to

laa
let

hälfe
help

aastriiche.
paint.

‘. . . we have wanted to let the children help Hans paint the house.’

Shieber notes that among such sentences, those with all dative NPs
preceding all accusative NPs, and all dative-subcategorizing V’s preceding
all accusative-subcategorizing V’s are acceptable.

Jan säit das mer (d’chind)� (em Hans)� es huus haend wele laa�
hälfe� aastriche.

Let’s call the regular expression above R. Since it’s a regular expres-
sion (you see it only has concatenation and Kleene stars) it must define a
regular language, and so we can intersect R with Swiss German, and if the
result is context free, so is Swiss German.
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But it turns out that Swiss German requires that the number ofverbs
requiring dative objects (hälfe) must equal the number of dative NPs (em
Hans) and similarly for accusatives. Furthermore, an arbitrarynumber of
verbs can occur in a subordinate clause of this type (subjectto performance
constraints). This means that the result of intersecting this regular language
with Swiss German is the following language:

L = Jan säit das mer (d’chind)n(em Hans)m es huus haend wele
(laa)n (hälfe)m aastriiche.

But this language is of the formwanbmxcndmy, which is not context-
free!
So we can conclude that Swiss German is not context free.

13.4 COMPLEXITY AND HUMAN PROCESSING

We noted in passing earlier that many of the sentences that were used to
argue for the non-finite state nature of English (like the ‘center-embedded’
sentences) are quite difficult to understand. If you are a speaker of Swiss
German (or if you have a friend who is), you will notice that the long cross-
serial sentences in Swiss German are also rather difficult tofollow. Indeed,
as Pullum and Gazdar (1982) point out,

“. . . precisely those construction-types that figure in the various
proofs that English is not context-free appear to cause massive
difficulty in the human processing system. . . ”

This brings us to a second use of the termcomplexity. In the previous
section we talked about the complexity of a language. Here weturn to a
question that is as much psychological as computational: the complexity of
an individual sentence. Why are certain sentences hard to comprehend? Can
this tell us anything about computational processes?

Many things can make a sentence hard to understand; complicated
meanings, extremely ambiguous sentences, the use of rare words, and bad
handwriting are just a few. Chapter 12 introduced garden-path sentences,
which are certainly complex, and showed that their complexity was due to
improper choices made on temporarily ambiguous sentences by the human
parser. But there is a another, particular, kind of complexity (often called
‘linguistic complexity’ or ‘syntactic complexity’) that bears an interesting
relation to the formal-language complexity from the previous section. These
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are sentences whose complexity arises not from rare words ordifficult mean-
ings, but from a particular combination of syntactic structure and human
memory limitations. Here are some examples of sentences (taken from a
summary in Gibson (1998)) that cause difficulties when people try to read
them (we will use the # to mean that a sentence causes extreme processing
difficulty). In each case the (ii) example is significantly more complex than
the (i) example:

(13.5) (i) The cat likes tuna fish.
(ii) #The cat the dog the rat the elephant admired bit chased likes

tuna fish.

(13.6) (i) If when the baby is crying, the mother gets upset, the father will
help, so the grandmother can rest easily.

(ii) #Because if when the baby is crying, the mother gets upset, the
father will help, the grandmother can rest easily.

(13.7) (i) The child damaged the pictures which were taken bythe
photographer who the professor met at the party.

(ii) #The pictures which the photographer who the professormet at
the party took were damaged by the child.

(13.8) (i) The fact that the employee who the manager hired stole office
supplies worried the executive.

(ii) #The executive who the fact that the employee stole office
supplies worried hired the manager.

The earliest work on sentences of this type noticed that theyall exhibit
nestingor center-embedding(Chomsky, 1957; Yngve, 1960; Chomsky and
Miller, 1963; Miller and Chomsky, 1963). That is, they all contain exam-
ples where a syntactic category A is nested within another category B, and
surrounded by other words (X and Y):

[B X [A] Y]

In each of the examples above, part (i) has zero or one embedding,
while part (ii) has two or more embeddings. For example in (13.5ii) above,
there are 3 reduced relative clauses embedded inside each other:

# [S The cat [S0 the dog [S0 the rat [S0 the elephant admired] bit]
chased] likes tuna fish].

In (13.6ii) above, thewhenclauses are nested inside theif clauses in-
side thebecauseclauses.
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#[Because [if [when the baby is crying, the mother gets upset],
the father will help], [the grandmother can rest easily]].

In (13.7ii), the relative clausewho the professor met at the partyis
nested in betweenthe photographerandtook. The relative clausewhich the
photographer. . . tookis then nested betweenThe picturesandwere damaged
by the child.

#The pictures [ which the photographer [ who the professor met
at the party ] took ] were damaged by the child.

Could we explain the difficulty of these nested structures just by say-
ing that they are ungrammatical in English? The answer seemsto be no.
The structures that are used in the complex sentences in (13.5ii)–(13.8ii) are
the same ones used in the easier sentences (13.5i)–(13.8i).The difference
between the easy and complex sentences seems to hinge on thenumberof
embeddings. But there is no natural way to write a grammar that allowsN
embeddings but notN+1 embeddings.

Rather, the complexity of these sentences seems to be a processing
phenomenon; some fact about the human parsing mechanism is unable to
deal with these kinds of multiple nestings. If complexity isa fact about
‘parsers’ rather than grammars, we would expect sentences to be complex
for similar reasons in other languages. That is, other languages have different
grammars, but presumably some of the architecture of the human parser is
shared from language to language.

It does seems to be the case that multiply nested structures of this
kind are also difficult in other languages. For example Japanese allows a
singly nested clause, but an additional nesting makes a sentence unprocess-
able (Cowper, 1976; Babyonyshev and Gibson, 1999).

(13.9) Ani-ga
older-brother-NOM

imooto-o
younger-sister-ACC

ijimeta.
bullied

‘My older brother bullied my younger sister’

(13.10) Bebiisitaa-wa
babysitter-TOP

[[ani-ga
[[older-brother-NOM

imooto-o
younger-sister-ACC

ijimeta]
bullied]

to]
that]

itta.
said

‘The babysitter said that my older brother bullied my younger sister’
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(13.11) #Obasan-wa
aunt-TOP

[[Bebiisitaa-ga
[[babysitter-NOM

[[ani-ga
[[older-brother-NOM

imooto-o
younger-sister-ACC

ijimeta]
bullied]

to]
that]

itta]
said]

to]
that]

omotteiru.
thinks

‘#My aunt thinks that the babysitter said that my older brother bullied
my younger sister’

There are a number of attempts to explain these complexity effects,
many of which are memory-based. That is, they rely on the intuition that
each embedding requires some memory resource to store. A sentence with
too much embedding either uses up too many memory resources,or creates
multiple memory traces that are confusable with each other.The result is
that the sentence is too hard to process at all.

For example Yngve (1960) proposed that the human parser is based on
a limited-size stack. A stack-based parser places incomplete phrase-structure
rules on the stack; if multiple incomplete phrases are nested, the stack will
contain an entry for each of these incomplete rules. Yngve suggests that
the more incomplete phrase-structure rules the parser needs to store on the
stack, the more complex the sentence. Yngve’s intuition wasthat these stack
limits might mean that English is actually a regular rather than context-free
language, since a context-free grammar with a finite limit onits stack-size
can be modeled by a finite automaton.

An extension to this model (Miller and Chomsky, 1963) proposes that
self-embeddedstructures are particularly difficult. A self-embedded struc-SELF­

EMBEDDED

ture contains a syntactic category A nested within another example of A, and
surrounded by other words (X and Y):

[A X [A] Y]

Such structures might be difficult because a stack-based parser might
confused two copies of the rule on the stack. This problem with self-embedding
is also naturally modeled with an activation-based model, which might have
only one copy of a particular rule.

Although these classic parser-based explanations have intuitive appeal,
and tie in nicely to the formal language complexity issues, it seems un-
likely that they are correct. One problem with them is that there are lots
of syntactic complexity effects that aren’t explained by these models. For
example there are significant complexity differences between sentences that
have the same number of embeddings, such as the well-known difference be-
tween subject-extracted relative clauses ( 13.12ii) and object-extracted rela-
tive clauses ( 13.12i):
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(13.12) (i) [S The reporter [S0 who [S the senator attacked ]] admitted the
error ].

(ii) [ S The reporter [S0 who [S attacked the senator ]] admitted the
error ].

The object-extracted relative clauses are more difficult toprocess (mea-
sured for example by the amount of time it takes to read them (Ford, 1983),
and other factors; see for example Wanner and Maratsos (1978) and King
and Just (1991), and Gibson (1998) for a survey). Different researchers have
hypothesized a number of different factors that might explain this complex-
ity difference.

For example MacWhinney and colleages MacWhinney (1977, 1982),
MacWhinney and Csaba Pléh (1988) suggest that it causes difficulty for
reader toshift perspectivefrom one clause participant to another. Object
relative require two perspective shifts (from the matrix subject to the relative
clause subject and then back) while subject relatives require none (the matrix
subject is the same as the relative clause subject). Anotherpotential source
of the difficulty in the object-extraction is that the first noun (the reporter)
plays two different thematic roles – agent of one clause, patient of the other.
This conflicting role-assignment may cause difficulties (Bever, 1970).

Gibson (1998) points out that there is another important difference be-
tween the object and subject extractions: the object extraction has two nouns
that appear before any verb. The reader must hold on to these two nouns
without knowing how they will fit into the sentences. Having multiple noun
phrases lying around that aren’t integrated into the meaning of the sentence
presumably causes complexity for the reader.

Based on this observation, Gibson proposes theSyntactic Prediction
Locality Theory (SPLT), which predicts that the syntactic memory load as-SPLT

sociated with a structure is the sum of the memory loads associated with
each of the words that are obligatorily required to completethe sentence. A
sentence with multiple noun phrases and no verbs will require multiple verbs
before the sentence is complete, and will thus have a high load. Memory load
is also based on how many other new phrases or discourse referents have to
be held in memory at the same time. Thus the memory load for a word is
higher if there have been many interveningnew discourse referentssince the
word has been predicted. Thus while a sequence of unintegrated NPs is very
complex, a sequence in which one of the two NPs is a pronoun referring to
someone already in the discourse is less complex. For example the follow-
ing examples of doubly nested relative clauses are processable because the



492 Chapter 13. Language and Complexity

innermost NP (I) does not introduce a new discourse entity.

(13.13) (a) A syntax book [that some Italian [that I had neverheard of ]
wrote ] was published by MIT Press (Frank, 1992)

(b) The pictures [ that the photographer [ who I met at the party ]
took ] turned out very well.(Bever, personal communication to
E. Gibson)

In summary, the early suggestions that the complexity of human sen-
tence processing is related to memory seem to be correct at some level; com-
plexity in both natural and formal languages is caused by theneed to keep
many un-integrated things in memory. This is a deep and fascinating find-
ing about language processing. But the relation between formal and natural
complexity is not as simple as Yngve and others thought. Exactly which
factors do play a role in complexity is an exciting research area that is just
beginning to be investigated.

13.5 SUMMARY

This chapter introduced two different ideas ofcomplexity: the complexity
of a formal language, and the complexity of a human sentence.� Grammars can be characterized by theirgenerative power. One gram-

mar is of greater generative power orcomplexity than another if it can
define a language that the other cannot define. TheChomsky hier-
archy is a hierarchy of grammars based on their generative power. It
includesTuring equivalent, context-sensitive, context-free, andreg-
ular grammars.� Thepumping lemmacan be used to prove that a given language isnot
regular. English is not a regular language, although the kinds of sen-
tences that make English non-regular are exactly those thatare hard for
people to parse. Despite many decades of attempts to prove the con-
trary, English does, however, seem to be a context-free language. The
syntax of Swiss-German and the morphology of Bambara, by contrast,
are not context-free, and seem to require context-sensitive grammars.� Center-embeddedsentences are hard for people to parse. Many the-
ories agree that this difficulty is somehow caused bymemory limita-
tions of the human parser.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

Chomsky (1956) first asked whether finite-state automata or context-free
grammars were sufficient to capture the syntax of English. His suggestion
in that paper that English syntax contained “examples that are not easily ex-
plained in terms of phrase structure” was a motivation for his development of
syntactic transformations. Pullum (1991, p. 131–146) is the definitive histor-
ical study of research on the non-context-free-ness of natural language. The
early history of attempts to prove natural languages non-context-free is sum-
marized in Pullum and Gazdar (1982). The pumping lemma was originally
presented by Bar-Hillelet al. (1961), who also offer a number of impor-
tant proofs about the closure and decidability properties of finite-state and
context-free languages. Further details, including the pumping lemma for
context-free languages (also due to Bar-Hillelet al. (1961)) can be found in
a textbook in automata theory such as Hopcroft and Ullman (1979).

Yngve’s idea that the difficulty of center-embedded sentences could be
explained if the human parser was finite-state was taken up byChurch (1980)
in his master’s thesis. He showed that a finite-state parser that implements
this idea could also explain a number of other grammatical and psycholin-
guistic phenomena. While the field has turned toward more sophisticated
models of complexity, Church’s work can be seen as the beginning of the
return to finite-state models that characterized the 1980’sand 1990’s.

There are a number of other ways of looking at complexity thatwe
didn’t have space to go into here. One is whether language processing is
NP-complete.NP-completeis the name of a class of problems which areNP­

COMPLETE

suspected to be particularly difficult to process Bartonet al. (1987) prove a
number of complexity results about the NP-completeness of natural language
recognition and parsing. Among other things, they showed that

1. maintaining lexical and agreement feature ambiguities over a poten-
tially infinite-length sentence causes the problem of recognizing sen-
tences in some unification-based formalisms like Lexical-Functional
Grammar to be NP-complete.

2. Two-level morphological parsing (or even just mapping between lexi-
cal and surface form) is also NP-complete.

Recent work has also begun to link processing complexity with information-
theoretic measures like Kolmogorov complexity (Juola, 1999).
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EXERCISES

13.1 Is the languageanb2an context-free?

13.2 Use the pumping lemma to show this language is not regular:

L = xnyn�1likes tuna fish;x2 A;y2 B

13.3 Partee (1990) showed that the languagexxR;x2a;b� is not regular, by
intersecting it with the regular languageaa�bbaa�. The resulting language
is anb2an. Use the pumping lemma to show that this language is not regular,
completing the proof thatxxR;x2 a;b� is not regular.

13.4 Build a context-free grammar for the language

L = fxxRjx2 a;b�g
13.5 Using a context-free grammar to represent the English morphological
facts described in Figure 13.5. Assume thaten-applies to a particular class
of adjectives (call itAdj35) and nouns (call itNoun16).



Part III
SEMANTICS

Semantics is the study of the meaning of linguistic utterances. For
our purposes, this amounts to the study of formal representations that
are capable of capturing the meanings of linguistic utterances, and
the study of algorithms that are capable of mapping from linguistic
utterances to appropriate meaning representations. As we will see, the
most important topic to be addressed in this study is how the meaning
of an utterance is related to the meanings of the phrases, words, and
morphemes that make it up. Following tradition, issues related to
speakers and hearers, and the context in which utterances are found,
will be deferred to Part IV, which takes up the topic of Pragmatics.

This part of the book begins by exploring ways to represent the
meaning of utterances, focusing on the use of First Order Predicate
Calculus. It next explores various theoretical and practical approaches
to compositional semantic analysis, as well as its use in practical prob-
lems such as question answering and information extraction. It next
turns to the topic of the meanings of individual words, the role of
meaning in the organization of a lexicon, and algorithms forword-
sense disambiguation. Finally, it covers the topic of information re-
trieval, an application area of great importance that operates almost
entirely on the basis of individual word meanings.





14
REPRESENTING
MEANING

ISHMAEL: Surely all this is not without meaning.

Herman Melville,Moby Dick

The approach to semantics that is introduced here, and is elaborated
on in the next four chapters, is based on the notion that the meaning of lin-
guistic utterances can be captured in formal structures, which we will call
meaning representations. Correspondingly, the frameworks that are usedMEANING

REPRESENTA­
TIONS

to specify the syntax and semantics of these representations will be called
meaning representation languages. These meaning representations play

MEANING
REPRESENTA­
TION
LANGUAGESa role analogous to that of the phonological, morphological, and syntactic

representations introduced in earlier chapters.
The need for these representations arises when neither the raw linguis-

tic inputs, nor any of the structures derivable from them by any of the trans-
ducers we have studied, facilitate the kind of semantic processing that is de-
sired. More specifically, what is needed are representations that can bridge
the gap from linguistic inputs to the kind of non-linguisticknowledge needed
to perform a variety of tasks involving the meaning of linguistic inputs.

To illustrate this idea, consider the following everyday language tasks
that require some form of semantic processing.� Answering an essay question on an exam.� Deciding what to order at a restaurant by reading a menu.� Learning to use a new piece of software by reading the manual.� Realizing that you’ve been insulted.� Following a recipe.
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It should be clear that simply having access to the kind of phonological, mor-
phological, and syntactic representations we have discussed thus far will not
get us very far on accomplishing any of these tasks. These tasks require ac-
cess to representations that link the linguistic elements involved in the task to
the non-linguisticknowledge of the worldneeded to successfully accomplish
them. For example, some of the knowledge of the world needed to perform
the above tasks includes:� Answering and grading essay questions requires backgroundknowl-

edge about the topic of the question, the desired knowledge level of
the students, and how such questions arenormallyanswered.� Reading a menu and deciding what to order, giving advice about where
to go to dinner, following a recipe, and generating new recipes all re-
quire deep knowledge about food, its preparation, what people like to
eat and what restaurants are like.� Learning to use a piece of software by reading a manual, or giving ad-
vice about how to do the same, requires deep knowledge about current
computers, the specific software in question, similar software applica-
tions, and knowledge about users in general.

In the representational approach being explored here, we take linguis-
tic inputs and construct meaning representations that are made up of the
same kind of stuffthat is used to represent this kind of everyday common-
sense knowledge of the world. The process whereby such representations
are created and assigned to linguistic inputs is calledsemantic analysis.SEMANTIC

ANALYSIS

To make this notion more concrete, consider Figure 14.1, which shows
sample meaning representations for the sentenceI have a carusing four
frequently used meaning representation languages. The first row illustrates a
sentence in First Order Predicate Calculus, which will be covered in detail in
Section 14.3; the graph in the center illustrates a SemanticNetwork , which
will be discussed further in Section 14.5; the third row contains a Conceptual
Dependency diagram, discussed in more detail in Chapter 16,and finally a
frame-based representation, also covered in Section 14.5.

While there are a number of significant differences among these four
approaches to representation, at an abstract level they allshare as a common
foundation the notion that a meaning representation consists of structures
composed from a set of symbols. When appropriately arranged, these sym-
bol structures are taken to correspond to objects, and relations among ob-
jects, in some world being represented. In this case, all four representations
make use of symbols corresponding to the speaker, a car, and anumber of



4999x;yHaving(x)^Haver(Speaker;x)^HadThing(y;x)^Car(y)
Having

Haver Had-Thing

Speaker Car

Car Having* POSS-BY Haver: Speaker
Speaker HadThing: Car

Figure 14.1 A list of symbols, two directed graphs, and a record structure:
a sampler of meaning representations forI have a car.

relations denoting the possession of one by the other.
It is important to note that these representations can be viewed from at

least two distinct perspectives in all four of these approaches: as represen-
tations of the meaning of the particular linguistic inputI have a car, and as
representations of the state of affairs in some world. It is this dual perspec-
tive that allows these representations to be used to link linguistic inputs to
the world and to our knowledge of it.

The structure of this part of the book parallels that of the previous parts.
We will alternate discussions of the nature of meaning representations with
discussions of the computational processes that can produce them. More
specifically, this chapter introduces the basics of what is needed in a mean-
ing representation, while Chapter 15 introduces a number oftechniques for
assigning meanings to linguistic inputs. Chapter 16 explores a range of com-
plex representational issues related to the meanings of words. Chapter 17
then explores some robust computational methods designed to exploit these
lexical representations.

Note that since the emphasis of this chapter is on the basic require-
ments of meaning representations, we will defer a number of extremely im-
portant issues to later chapters. In particular, the focus of this chapter is on
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representing what is sometimes called theliteral meaning of sentences. ByLITERAL
MEANING

this, we have in mind representations that are closely tied to the conventional
meanings of the words that are used to create them, and that donot reflect
the context in which they occur. The shortcomings of such representations
with respect to phenomena such as idioms and metaphor will bediscussed
in the next two chapters, while the role of context in ascertaining the deeper
meaning of sentences will be covered in Chapters 18 and 19.

There are three major parts to this chapter. Section 14.1 explores some
of the practical computational requirements for what is needed in a meaning
representation language. Section 14.2 then discusses someof the ways that
language is structured to convey meaning. Section 14.3 thenprovides an
introduction to First Order Predicate Calculus, which has historically been
the principal technique used to investigate semantic issues.

14.1 COMPUTATIONAL DESIDERATA FORREPRESENTATIONS

We begin by considering the issue of why meaning representations are needed
and what they should do for us. To focus this discussion, we will consider in
more detail the task of giving advice about restaurants to tourists. In this dis-
cussion, we will assume that we have a computer system that accepts spoken
language queries from tourists and construct appropriate responses by using
a knowledge base of relevant domain knowledge. A series of examples will
serve to introduce some of the basic requirements that a meaning represen-
tation must fulfill, and some of the complications that inevitably arise in the
process of designing such meaning representations. In eachof these exam-
ples, we will examine the role that the representation of themeaning of the
request must play in the process of satisfying it.

Verifiability

Let us begin by considering the following simple question.

(14.1) Does Maharani serve vegetarian food?

This example illustrates the most basic requirement for a meaning represen-
tation: it must be possible to use the representation to determine the relation-
ship between the meaning of a sentence and the world as we knowit. In other
words, we need to be able to determine the truth of our representations. The
most straightforward way to implement this notion is make itpossible for a
system to compare, ormatch, the representation of the meaning of an input
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against the representations in itsknowledge base, its store of information KNOWLEDGE
BASE

about its world.
In this example, let us assume that the meaning of this question con-

tains, as a component, the meaning underlying the proposition Maharani
serves vegetarian food. For now, we will simply gloss this representation as:

Serves(Maharani;VegetarianFood)
It is this representation of the input that will be matched against the

knowledge base of facts about a set of restaurants. If the system finds a
representation matching the input proposition in its knowledge base, it can
return an affirmative answer. Otherwise, it must either sayNo, if its knowl-
edge of local restaurants is complete, or say that it does notknow if there is
reason to believe that its knowledge is incomplete.

This notion is known asverifiability , and concerns a system’s abilityVERIFIABILITY

to compare the state of affairs described by a representation to the state of
affairs in some world as modeled in a knowledge base.1

Unambiguous Representations

The domain of semantics, like all the other domains we have studied, is
subject to ambiguity. Specifically, single linguistic inputs can legitimately
have different meaning representations assigned to them based on the cir-
cumstances in which they occur.

Consider the following example from theBERPcorpus.

(14.2) I wanna eat someplace that’s close toICSI.

Given the allowable argument structures for the verbeat, this sentence can
either mean that the speaker wants to eatat some nearby location, or under
a Godzilla as speaker interpretation, the speaker may want to devour some
nearby location. The answer generated by the system for thisrequest will
depend on which interpretation is chosen as the correct one.

Since ambiguities such as this abound in all genres of all languages,
some means of determining that certain interpretations arepreferable (or
alternatively less preferable) than others is needed. The various linguistic
phenomenon that give rise to such ambiguities, and the techniques that can
be employed to deal with them, will be discussed in detail in the next four
chapters.

1 This is a fairly practical characterization of verifiability. More theoretical views of this
notion are briefly covered in Section 14.6.
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Our concern in this chapter, however, is with the status of our meaning
representations with respect to ambiguity, and not with howwe arrive at
correct interpretations. Since we reason about, and act upon, the semantic
content of linguistic inputs, the final representation of aninput’s meaning
should be free from any ambiguity. Therefore, regardless ofany ambiguity
in the raw input, it is critical that a meaning representation language support
representations that have a single unambiguous interpretation. 2

A concept closely related to ambiguity isvagueness. Like ambiguity,VAGUENESS

vagueness can make it difficult to determine what to do with a particular
input based on its meaning representation. Vagueness, however, does not
give rise to multiple representations.

Consider the following request as an example.

(14.3) I want to eat Italian food.

While the use of the phraseItalian foodmay provide enough information for
a restaurant advisor to provide reasonable recommendations, it is neverthe-
less quitevagueas to what the user really wants to eat. Therefore, a vague
representation of the meaning of this phrase may be appropriate for some
purposes, while a more specific representation may be neededfor other pur-
poses. It will, therefore, be advantageous for a meaning representation lan-
guage to support representations that maintain a certain level of vagueness.
Note that it is not always easy to distinguish ambiguity fromvagueness.
Zwicky and Sadock (1975) provide a useful set of tests that can be used as
diagnostics.

Canonical Form

The notion that single sentences can be assigned multiple meanings leads to
the related phenomenon of distinct inputs that should be assigned the same
meaning representation. Consider the following alternative ways of express-
ing Example 14.1.

(14.4) Does Maharani have vegetarian dishes?

(14.5) Do they have vegetarian food at Maharani?

(14.6) Are vegetarian dishes served at Maharani?

(14.7) Does Maharani serve vegetarian fare?

2 This does not foreclose the use of intermediate semantic representations that maintain
some level of ambiguity on the way to a single unambiguous form. Examples of such repre-
sentations will be discussed in Chapter 15.
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Given that these alternatives use different words and have widely vary-
ing syntactic analyses, it would not be unreasonable to expect them to have
substantially different meaning representations. Such a situation would,
however, have undesirable consequences for our matching approach to de-
termining the truth of our representations. If the system’sknowledge base
contains only a single representation of the fact in question, then the rep-
resentations underlying all but one of our alternatives will fail to produce a
match. We could, of course, store all possible alternative representations of
the same fact in the knowledge base, but this would lead to an enormous
number of problems related to keeping such a knowledge base consistent.

The way out of this dilemma is motivated by the fact that sincethe an-
swers given for each of these alternatives should be the samein all situations,
we might say that they all mean the same thing, at least for thepurposes of
giving restaurant recommendations. In other words, at least in this domain,
we can legitimately consider assigning the same meaning representation to
the propositions underlying each of these requests. Takingsuch an approach
would guarantee that our matching scheme for answering Yes-No questions
will still work.

The notion that inputs that mean the same thing should have the same
meaning representation is known as the doctrine ofcanonical form. This CANONICAL

FORM

approach greatly simplifies various reasoning tasks since systems need only
deal with a single meaning representation for a potentiallywide range of
expressions.

Canonical form does, of course, complicate the task of semantic anal-
ysis. To see this, note that the alternatives given above usecompletely dif-
ferent words and syntax to refer to vegetarian fare and to what restaurants do
with it. More specifically, to assign the same representation to all of these
requests our system will have to conclude thatvegetarian fare, vegetarian
dishesandvegetarian foodrefer to the same thing in this context, that the
use here ofhavingandservingare similarly equivalent, and that the differ-
ent syntactic parses underlying these requests are all compatible with the
same meaning representation.

Being able to assign the same representation to such diverseinputs is
a tall order. Fortunately there are some systematic meaningrelationships
among word senses and among grammatical constructions thatcan be ex-
ploited to make this task tractable. Consider the issue of the meanings of
the wordsfood, dishandfare in these examples. A little introspection, or a
glance at a dictionary, reveals that these words have a fair number of distinct
uses. Fortunately, it also reveals that there is at least onesense that is shared



504 Chapter 14. Representing Meaning

among them all. If a system has the ability to choose that shared sense, then
an identical meaning representation can be assigned to the phrases contain-
ing these words.

In general, we say that these words all have variousword sensesandWORD
SENSES

that some of the senses are synonymous with one another. The process of
choosing the right sense in context is calledword sense disambiguation,WORD SENSE

DISAMBIGUA­
TION

or word sense tagging by analogy to part-of-speech tagging.The topics of
synonymy, sense tagging, and a host of other topics related to word meanings
will be covered in Chapters 16 and 17. Suffice it to say here that the fact that
inputs may use different words does not preclude the assignment of identical
meanings to them.

Just as there are systematic relationships among the meanings of dif-
ferent words, there are similar relationships related to the role that syntactic
analyses play in assigning meanings to sentences. Specifically, alternative
syntactic analyses often have meanings that are, if not identical, at least sys-
tematically related to one another. Consider the followingpair of examples.

(14.8) Maharani serves vegetarian dishes.

(14.9) Vegetarian dishes are served by Maharani.

Despite the different placement of the arguments toservein these examples,
we can still assignMaharaniandvegetarian dishesto the same roles in both
of these examples because of our knowledge of the relationship between ac-
tive and passive sentence constructions. In particular, wecan use knowledge
of where grammatical subjects and direct objects appear in these construc-
tions to assignMaharani, to the role of the server, andvegetarian dishesto
the role of thing being served in both of these examples, despite the fact that
they appear in different surface locations. The precise role of the grammar in
the construction of meaning representations will be covered in Chapter 15.

Inference and Variables

Continuing with the topic of the computational purposes that meaning rep-
resentations should serve, we should consider more complexrequests such
as the following.

(14.10) Can vegetarians eat at Maharani?

Here, it would be a mistake to invoke canonical form to force our system to
assign the same representation to this request as for the previous examples.
The fact that this request results in the same answer as the others arises not
because they mean the same thing, but because there is a commonsense con-
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nection between what vegetarians eat and what vegetarian restaurants serve.
This is a fact about the world and not a fact about any particular kind of
linguistic regularity. This implies that no approach basedon canonical form
and simple matching will give us an appropriate answer to this request. What
is needed is a systematic way to connect the meaning representation of this
request with the facts about the world as they are represented in a knowledge
base.

We will use the terminference to refer generically to a system’s abil-INFERENCE

ity to draw valid conclusions based on the meaning representation of inputs
and its store of background knowledge. It must be possible for the system
to draw conclusions about the truth of propositions that arenot explicitly
represented in the knowledge base, but are nevertheless logically derivable
from the propositions that are present.

Now consider the following somewhat more complex request.

(14.11) I’d like to find a restaurant where I can get vegetarian food.

Unlike our previous examples, this request does not make reference to any
particular restaurant. The user is stating that they would like information
about an unknown and unnamed entity that is a restaurant thatserves veg-
etarian food. Since this request does not mention any particular restaurant,
the kind of simple matching-based approach we have been advocating is not
going to work. Rather, answering this request requires a more complex kind
of matching that involves the use of variables. We can gloss arepresentation
containing such variables as follows.

Serves(x;VegetarianFood)
Matching such a proposition succeeds only if the variablex can be re-

placed by some known object in the knowledge base in such a waythat the
entire proposition will then match. The concept that is substituted for the
variable can then be used to fulfill the user’s request. Of course, this simple
example only hints at the issues involved in the use of such variables. Suffice
it to say that linguistic inputs contain many instances of all kinds of indef-
inite references and it is therefore critical for any meaning representation
language to be able to handle this kind of expression.

Expressiveness

Finally, to be useful a meaning representation scheme must be expressive
enough to handle an extremely wide range of subject matter. The ideal sit-
uation, of course, would be to have a single meaning representation lan-
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guage that could adequately represent the meaning of any sensible natural
language utterance. Although this is probably too much to expect from any
single representational system, Section 14.3 will show that First Order Pred-
icate Calculus is expressive enough to handle quite a lot of what needs to be
represented.

14.2 MEANING STRUCTURE OFLANGUAGE

The previous section focused on some of the purposes that meaning rep-
resentations must serve, without saying much about what we will call the
meaning structure of language. By this, we have in mind the various meth-

MEANING
STRUCTURE
OF
LANGUAGE ods by which human languages convey meaning. These include avariety of

conventional form-meaning associations, word-order regularities, tense sys-
tems, conjunctions and quantifiers, and a fundamental predicate-argument
structure. The remainder of this section focuses exclusively on this last no-
tion of a predicate-argument structure, which is the mechanism that has had
the greatest practical influence on the nature of meaning representation lan-
guages. The remaining topics will be addressed in Chapter 15where the
primary focus will be on how they contribute to how meaning representa-
tions are assembled, rather than on the nature of the representations.

Predicate-Argument Structure

It appears to be the case that all human languages have a form of predicate-
argument arrangement at the core of their semantic structure. To a first ap-
proximation, this predicate-argument structure asserts that specific relation-
ships hold among the various concepts underlying the constituent words and
phrases that make up sentences. It is largely this underlying structure that
permits the creation of a single composite meaning representation from the
meanings of the various parts of an input. One of the most important jobs
of a grammar is to help organize this predicate-argument structure. Corre-
spondingly, it is critical that our meaning representationlanguages support
the predicate-argument structures presented to us by language.

We have already seen the beginnings of this concept in our discus-
sion of verb complements in Chapter 9 and Chapter 11. There wesaw that
verbs dictate specific constraints on the number, grammatical category, and
location of the phrases that are expected to accompany them in syntactic
structures. To briefly review this idea, consider the following examples.
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(14.12) I want Italian food.
(14.13) I want to spend less than five dollars.
(14.14) I want it to be close by here.

These examples can be classified as having one of the following three syn-
tactic argument frames.

NP want NP

NP want Inf-VP

NP want NP Inf-VP

These syntactic frames specify the number, position and syntactic cat-
egory of the arguments that are expected to accompany a verb.For example,
the frame for the variety ofwantthat appears in Example 14.12 specifies the
following facts:� There are two arguments to this predicate.� Both arguments must beNPs.� The first argument is pre-verbal and plays the role of the subject.� The second argument is post-verbal and plays the role of the direct

object.

As we have shown in previous chapters, this kind of information is quite
valuable in capturing a variety of important facts about syntax. By analyzing
easily observable semantic information associated with these frames, we can
also gain considerable insight into our meaning representations. We will
begin by considering two extensions of these frames into thesemantic realm:
semantic roles and semantic restrictions on these roles.

The notion of a semantic role can be understood by looking at the sim-
ilarities among the arguments in Examples 14.12 through 14.14. In each of
these cases, the pre-verbal argument always plays the role of the entity do-
ing the wanting, while the post-verbal argument plays the role of the concept
that iswanted. By noticing these regularities and labeling them accordingly,
we can associate the surface arguments of a verb with a set of discrete roles
in its underlying semantics. More generally, we can say thatverb subcatego-
rization frames allow thelinking of arguments in the surface structure withL
the semantic roles these arguments play in the underlying semantic repre-
sentation of an input. The study of roles associated with specific verbs and
across classes of verbs is usually referred to asthematic role or case role THEMATIC

ROLE

CASE ROLEanalysis and will be studied in more detail in Section 14.4 and Chapter 16.
The notion of semantic restrictions arises directly from these semantic

roles. Returning to Examples 14.12 through 14.14, we can seethat it is not
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merely the case that each initial noun phrase argument will be thewanter
but that only certain kinds, orcategories, of concepts can play the role of
wanter in any straightforward manner. Specifically,want restricts the con-
stituents appearing as the first argument to those whose underlying concepts
can actually partake in a wanting. Traditionally, this notion is referred to as
aselection restriction. Through the use of these selection restrictions, verbsSELECTION

RESTRICTION

can specify semantic restrictions on their arguments.
Before leaving this topic, we should note that verbs are by nomeans

the only objects in a grammar that can carry a predicate-argument structure.
Consider the following phrases from theBERPcorpus.

(14.15) an Italian restaurant under fifteen dollars

In this example, the meaning representation associated with the preposition
undercan be seen as having something like the following structure.

Under(ItalianRestaurant;$15)
In other words, prepositions can be characterized as two-argument predicates
where the first argument is an object that is being placed in some relation to
the second argument.

Another non-verb based predicate-argument structure is illustrated in
the following example.

(14.16) make a reservation for this evening for a table for two persons at 8.

Here, the predicate-argument structure is based on the concept under-
lying the nounreservation, rather thanmake, the main verb in the phrase.
This example gives rise to a four argument predicate structure like the fol-
lowing.

Reservation(Hearer;Today;8PM;2)
This discussion makes it clear that any useful meaning representation

language must be organized in a way that supports the specification of se-
mantic predicate-argument structures. Specifically, thissupport must include
support for the kind of semantic information that languagespresent:� Variable arity predicate-argument structures.� The semantic labeling of arguments to predicates.� The statement of semantic constraints on the fillers of argument roles.
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14.3 FIRST ORDER PREDICATE CALCULUS

First Order Predicate Calculus (FOPC) is a flexible, well-understood, and
computationally tractable approach to the representationof knowledge that
satisfies many of the requirements raised in Sections 14.1 and 14.2 for a
meaning representation language. Specifically, it provides a sound computa-
tional basis for the verifiability, inference, and expressiveness requirements.
However, the most attractive feature ofFOPC is the fact that it makes very
few specific commitments as to how things ought to be represented. As we
will see, the specific commitments it does make are ones that are fairly easy
to live with; the represented world consists of objects, properties of objects,
and relations among objects.

The remainder of this section first provides an introductionto the basic
syntax and semantics ofFOPC and then describes the application ofFOPC

to a number of linguistically relevant topics. Section 14.6then discusses
the connections betweenFOPCand some of the other representations shown
earlier in Figure 14.1.

Elements of FOPC

We will explore FOPC in a bottom-up fashion by first examining its
various atomic elements and then showing how they can be composed to
create larger meaning representations. Figure 14.2, whichprovides a com-
plete context-free grammar for the particular syntax ofFOPCthat we will be
using, will be our roadmap for this section.

Let’s begin by examining the notion of aTerm, the FOPC device for TERM

representing objects. As can be seen from Figure 14.2,FOPCprovides three
ways to represent these basic building blocks: constants, functions, and vari-
ables. Each of these devices can be thought of as a way of naming, or point-
ing to, an object in the world under consideration.

Constants in FOPC refer to specific objects in the world being de-CONSTANTS

scribed. Such constants are conventionally depicted as either single capi-
talized letters such asA andB or single capitalized words that are often rem-
iniscent of proper nouns such asMaharani andHarry. Like programming
language constants,FOPCconstants refer to exactly one object. Objects can,
however, have multiple constants that refer to them.

Functions in FOPC correspond to concepts that which are often ex-FUNCTIONS

pressed in English as genitives such asthe location of Maharanior Maha-
rani’s location. A FOPC translation of such an expression might look like
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Formula ! AtomicFormulaj Formula Connective Formulaj Quantifier Variable; : : : Formulaj : Formulaj (Formula)
AtomicFormula! Predicate(Term; : : :)

Term ! Function(Term; : : :)j Constantj Variable

Connective! ^ j _ j )
Quantifier ! 8 j 9
Constant! A j VegetarianFoodj Maharani� � �
Variable ! x j y j � � �

Predicate! Servesj Nearj � � �
Function ! LocationO f j CuisineO fj � � �

Figure 14.2 A context-free grammar specification of the syntax of First
Order Predicate Calculus representations. (Adapted from Russell and Norvig
(1995).)

the following.

LocationO f(Maharani)
FOPC functions are syntactically the same as single argument predicates. It
is important to remember, however, that while they have the appearance of
predicates they are in factTermsin that they refer to unique objects. Func-
tions provide a convenient way to refer to specific objects without having
to associate a named constant with them. This is particularly convenient in
cases where many named objects, like restaurants, will havea unique con-
cept such as a location associated with them.

The notion of avariable is our finalFOPCmechanism for referring toVARIABLE
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objects. Variables, which are normally depicted as single lower-case letters,
give us the ability to make assertions and draw inferences about objects with-
out having to make reference to any particular named object.This ability to
make statements about anonymous objects comes in two flavors: making
statements about a particular unknown object and making statements about
all the objects in some arbitrary world of objects. We will return to the topic
of variables after we have presented quantifiers, the elements of FOPC that
will make them useful.

Now that we have the means to refer to objects, we can move on tothe
FOPC mechanisms that are used to state relations that hold among objects.
As one might guess from its name,FOPC is organized around the notion of
the predicate. Predicates are symbols that refer to, or name, the relations that
hold among some fixed number of objects in a given domain. Returning to
the example introduced informally in Section 14.1, a reasonableFOPCrepre-
sentation forMaharani serves vegetarian foodmight look like the following
formula.

Serves(Maharani;VegetarianFood)
This FOPCsentence asserts thatServes, a two-place predicate, holds between
the objects denoted by the constantsMaharaniandVegetarianFood.

A somewhat different use of predicates is illustrated by thefollowing
typical representation for a sentence likeMaharani is a restaurant.

Restaurant(Maharani)
This is an example of a one-place predicate that is used, not to relate multiple
objects, but rather to assert a property of a single object. In this case, it
encodes the category membership ofMaharani. We should note that while
this is a commonplace way to deal with categories it is probably not the
most useful. Section 14.4 will return to the topic of the representation of
categories.

With the ability to refer to objects, to assert facts about objects, and
to relate objects to one another, we have the ability to create rudimentary
composite representations. These representations correspond to the atomic
formula level in Figure 14.2. Recall that this ability to create composite
meaning representations was one of the core components of the meaning
structure of language described in Section 14.2.

This ability to compose complex representations is not limited to the
use of single predicates. Larger composite representations can also be put
together through the use oflogical connectives. As can be seen from FigureLOGICAL

CONNEC­
TIVES

14.2, logical connectives give us the ability to create larger representations
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by conjoining logical formulas using one of three operators. Consider, for
example, the followingBERPsentence and one possible representation for it.

(14.17) I only have five dollars and I don’t have a lot of time.

Have(Speaker;FiveDollars)^:Have(Speaker;LotO f Time)
The semantic representation for this example is built up in astraightforward
way from semantics of the individual clauses through the useof the^ and: operators. Note that the recursive nature of the grammar in Figure 14.2
allows an infinite number of logical formulas to be created through the use
of these connectives. Thus as with syntax, we have the ability to create an
infinite number of representations using a finite device.

The Semantics of FOPC

The various objects, properties, and relations represented in a FOPCknowl-
edge base acquire their meanings by virtue of their correspondence to ob-
jects, properties, and relations out in the external world being modeled by
the knowledge base.FOPCsentences can, therefore, be assigned a value of
Trueor Falsebased on whether the propositions they encode are in accord
with the world or not.

Consider the following example.

(14.18) Ay Caramba is near ICSI.

Capturing the meaning of this example inFOPC involves identifying the
TermsandPredicatesthat correspond to the various grammatical elements
in the sentence, and creating logical formulas that capturethe relations im-
plied by the words and syntax of the sentence. For this example, such an
effort might yield something like the following.

Near(LocationO f(AyCaramba);LocationO f(ICSI))
The meaning of this logical formula then arises from the relationship

between the termsLocationO f(AyCaramba), LocationO f(ICSI), the predi-
cateNear, and the objects and relation they correspond to in the worldbeing
modeled. Specifically, this sentence can be assigned a valueof Trueor False
based on whether or not the real Ay Caramba is actually close to ICSI or not.
Of course, since our computers rarely have direct access to the outside world
we have to rely on some other means to determine the truth of formulas like
this one.

For our current purposes, we will adopt what is known as a database
semantics for determining the truth of our logical formulas. Operationally,
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atomic formulas are taken to be true if they are literally present in the knowl-
edge base or if they can be inferred from other formula that are in the knowl-
edge base. The interpretations of formulas involving logical connectives is
based on the meaning of the components in the formulas combined with the
meanings of the connectives they contain. Figure 14.3 givesinterpretations
for each of the logical operators shown in Figure 14.2.

P Q :P P^Q P_Q P ) Q

False False True False False True
False True True False True True
True False False False True False
True True False True True True

Figure 14.3 Truth table giving the semantics of the various logical
connectives.

The semantics of thê (and), and: (not) operators are fairly straight-
forward, and are correlated with at least some of the senses of their corre-
sponding English terms. However, it is worth pointing out that the_ (or)
operator is not disjunctive in the same way that the corresponding English
word is, and that the) (implies) operator is only loosely based on any
commonsense notions of implication or causation. As we willsee in more
detail in Section 14.4, in most cases it is safest to rely directly on the en-
tries in the truth table, rather than on intuitions arising from the names of the
operators.

Variables and Quantifiers

We now have all the machinery necessary to return to our earlier discussion
of variables. As noted above, variables are used in two ways in FOPC: to re-
fer to particular anonymous objects and to refer generically to all objects in
a collection. These two uses are made possible through the use of operators
known asquantifiers. The two operators that are basic toFOPCare the ex- QUANTIFIERS

istential quantifier, which is denoted9, and is pronounced as “there exists”,
and the universal quantifier, which is denoted8, and is pronounced as “for
all”.

The need for an existentially quantified variable is often signaled by
the presence of an indefinite noun phrase in English. Consider the following
example.

(14.19) a restaurant that serves Mexican food near ICSI.
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Here reference is being made to an anonymous object of a specified category
with particular properties. The following would be a reasonable representa-
tion of the meaning of such a phrase.9xRestaurant(x)̂

Serves(x;MexicanFood)^Near((LocationO f(x);LocationO f(ICSI))
The existential quantifier at the head of this sentence instructs us on

how to interpret the variablex in the context of this sentence. Informally, it
says that for this sentence to be true there must be at least one object such
that if we were to substitute it for the variablex, the resulting sentence would
be true. For example, ifAyCarambais a Mexican restaurant near ICSI, then
substitutingAyCarambafor x results in the following logical formula.

Restaurant(AyCaramba)^Serves(AyCaramba;MexicanFood)^Near((LocationO f(AyCaramba);LocationO f(ICSI))
Based on the semantics of thêoperator, this sentence will be true if

all of its three component atomic formulas are true. These inturn will be true
if they are either present in the system’s knowledge base or can be inferred
from other facts in the knowledge base.

The use of the universal quantifier also has an interpretation based on
substitution of known objects for variables. The substitution semantics for
the universal quantifier takes the expressionfor all quite literally; the8 oper-
ator states that for the logical formula in question to be true the substitution
of any object in the knowledge base for the universally quantified variable
should result in a true formula. This is in marked contrast tothe9 operator
which only insists on a single valid substitution for the sentence to be true.

Consider the following example.

(14.20) All vegetarian restaurants serve vegetarian food.

A reasonable representation for this sentence would be something like the
following.8xVegetarianRestaurant(x) ) Serves(x;VegetarianFood)
For this sentence to be true, it must be the case that every substitution of a
known object forx must result in a sentence that is true. We can divide up the
set of all possible substitutions into the set of objects consisting of vegetarian
restaurants and the set consisting of everything else. Let us first consider the
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case where the substituted object actually is a vegetarian restaurant; one such
substitution would result in the following sentence.

VegetarianRestaurant(Maharani)) Serves(Maharani;VegetarianFood)
If we assume that we know that the consequent clause,

Serves(Maharani;VegetarianFood)
is true then this sentence as a whole must be true. Both the antecedent and
the consequent have the valueTrue and, therefore, according to the first
two rows of Table 14.3 the sentence itself can have the valueTrue. This
result will, of course, be the same for all possible substitutions of Terms
representing vegetarian restaurants forx.

Remember, however, that for this sentence to be true it must be true
for all possible substitutions. What happens when we consider a substitu-
tion from the set of a objects that are not vegetarian restaurants? Consider
the substitution of a non-vegetarian restaurant such asAy Caramba’sfor the
variablex.

VegetarianRestaurant(AyCaramba)) Serves(AyCaramba;VegetarianFood)
Since the antecedent of the implication isFalse, we can determine

from Table 14.3 that the sentence is alwaysTrue, again satisfying the8
constraint.

Note, that it may still be the case thatAy Carambaserves vegetarian
food without actually being a vegetarian restaurant. Note also, that despite
our choice of examples, there are no implied categorical restrictions on the
objects that can be substituted forx by this kind of reasoning. In other words,
there is no restriction ofx to restaurants or concepts related to them. Con-
sider the following substitution.

VegetarianRestaurant(Carburetor)) Serves(Carburetor;VegetarianFood)
Here the antecedent is still false and hence the rule remainstrue under this
kind of irrelevant substitution.

To review, variables in logical formulas must be either existentially (9)
or universally (8) quantified. To satisfy an existentially quantified variable,
there must be at least one substitution that results in a truesentence. Sen-
tences with universally quantified variables must be true under all possible
substitutions.
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Inference

One of the most important desiderata given in Section 14.1 for a meaning
representation language is that it should support inference — the ability to
add valid new propositions to a knowledge base, or to determine the truth
of propositions not explicitly contained within a knowledge base. This sec-
tion briefly discussesmodus ponens, the most important inference method
provided byFOPC. Applications of modus ponens will be discussed in Chap-
ter 18.

Modus ponensis a familiar form of inference that corresponds to whatMODUS
PONENS

is informally known asif-then reasoning. We can abstractly define modus
ponens as follows, whereα andβ should be taken asFOPCformulas.

α
α ) β

β

In general, schemas like this indicate that the formula below the line can
be inferred from the formulas above the line by some form of inference.
Modus ponens simply states that if the left-hand side of an implication rule
is present in the knowledge base, then the right-hand side ofthe rule can be
inferred. In the following discussions, we will refer to theleft hand side of
an implication as the antecedent, and the right-hand side asthe consequent.

As an example of a typical use of modus ponens, consider the follow-
ing example, which uses a rule from the last section.

(14.21)

VegetarianRestaurant(Rudys)8xVegetarianRestaurant(x) ) Serves(x;VegetarianFood)
Serves(Rudys;VegetarianFood)

Here, the formulaVegetarianRestaurant(Rudys) matches the antecedent
of the rule, thus allowing us to use modus ponens to conclude
Serves(Rudys;VegetarianFood).

Modus ponens is typically put to practical use in one of two ways: for-
ward chaining and backward chaining. Inforward chaining systems, modusFORWARD

CHAINING

ponens is used in precisely the manner just described. As individual facts are
added to the knowledge base, modus ponens is used to fire all applicable im-
plication rules. In this kind of arrangement, as soon as a newfact is added to
the knowledge base, all applicable implication rules are found and applied,
each resulting in the addition new facts to the knowledge base. These new
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propositions in turn can be used to fire implication rules applicable to them.
The process continues until no further facts can be deduced.

The forward chaining approach has the advantage that facts will be
present in the knowledge base when needed, since in a sense all inference
is performed in advance. This can substantially reduce the time needed to
answer subsequent queries since they should all amount to simple lookups.
The disadvantage of this approach is that facts may be inferred and stored
that will never be needed.Production systems, which are heavily used PRODUCTION

SYSTEMS

in cognitive modeling work, are forward chaining inferencesystems aug-
mented with additional control knowledge that governs which rules are to be
fired.

In backward chaining, modus ponens is run in reverse to prove spe-BACKWARD
CHAINING

cific propositions, called queries. The first step is to see ifthe query formula
is true by determining if it is present in the knowledge base.If it is not,
then the next step is to search for applicable implication rules present in the
knowledge base. An applicable rule is one where the consequent of the rule
matches the query formula. If there are such any such rules, then the query
can be proved if the antecedent of any one them can be shown to be true.
Not surprisingly, this can be performed recursively by backward chaining
on the antecedent as a new query. TheProlog programming language is a
backward chaining system that implements this strategy.

To see how this works, let’s assume that we have been asked to verify
the truth of the propositionServes(Rudys;VegetarianFood), assuming the
facts given above the line in 14.21. Since it is not present inthe knowledge
base, a search for an applicable rule is initiated that results in the rule given
above. After substituting, the constantRudysfor the variablex, our next task
is to prove the antecedent of the rule,VegetarianRestaurant(Rudys), which
of course is one of the facts we are given.

Note that it is critical to distinguish between reasoning via backward
chaining from queries to known facts, and reasoning backwards from known
consequents to unknown antecedents. To be specific, by reasoning back-
wards we mean that if the consequent of a rule is known to be true, we as-
sume that the antecedent will be as well. For example, let’s assume that we
know thatServes(Rudys;VegetarianFood) is true. Since this fact matches
the consequent of our rule, we might reason backwards to the conclusion
thatVegetarianRestaurant(Rudys).

While backward chaining is a sound method of reasoning, reasoning
backwards is an invalid, though frequently useful, form ofplausible rea-
soning. Plausible reasoning from consequents to antecedents is known as
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abduction, and as we will see in Chapter 18 is often useful in accountingforABDUCTION

many of the inferences people make while analyzing extendeddiscourses.
While forward and backward reasoning are sound, neither iscomplete.COMPLETE

This means that there are valid inferences that can not be found by sys-
tems using these methods alone. Fortunately, there is an alternative infer-
ence technique calledresolution that is sound and complete. Unfortunately,RESOLUTION

inference systems based on resolution are far more computationally expen-
sive than forward or backward chaining systems. In practice, therefore, most
systems use some form of chaining, and place a burden on knowledge base
developers to encode the knowledge in a fashion that permitsthe necessary
inferences to be drawn.

14.4 SOME L INGUISTICALLY RELEVANT CONCEPTS

Entire lives have been spent studying the representation ofvarious aspects
of human knowledge. These efforts have ranged from tightly focused ef-
forts to represent individual domains such as time, to monumental efforts to
encode all of our commonsense knowledge of the world (Lenat and Guha,
1991). Our focus here is considerably more modest. This section provides a
brief overview of the representation of a few important topics that have clear
implications for language processing. Specifically, the following sections
provide introductions to the meaning representations of categories, events,
time, and beliefs.

Categories

As we noted in Section 14.2, words with predicate-like semantics often ex-
press preferences for the semantics of their arguments in the form of selec-
tion restrictions. These restrictions are typically expressed in the form of
semantically-based categories where all the members of a category share a
set of relevant features.

The most common way to represent categories is to create a unary
predicate for each category of interest. Such predicates can then be asserted
for each member of that category. For example, in our restaurant discussions
we have been using the unary predicateVegetarianRestaurantas in:

VegetarianRestaurant(Maharani)
Similar logical formulas would be included in our knowledgebase for

each known vegetarian restaurant.
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Unfortunately, in this method categories are relations, rather than full-
fledged objects. It is, therefore, difficult to make assertions about categories
themselves, rather than about their individual members. For example, we
might want to designate the most popular member of a given category as in
the following expression.

MostPopular(Maharani;VegetarianRestaurant)
Unfortunately, this is not a legalFOPCformula since the arguments to pred-
icates inFOPCmust beTerms, not other predicates.

One way to solve this problem is to represent all the conceptsthat
we want to make statements about as full-fledged objects via atech-
nique calledreification. In this case, we can represent the category ofREIFICATION

VegetarianRestaurantas an object just asMaharani is. The notion of mem-
bership in such a category is then denoted via a membership relation as in
the following.

ISA(Maharani;VegetarianRestaurant)
The relation denoted byISA(is a) holds between objects and the cate-

gories in which they are members. This technique can be extended to create
hierarchies of categories through the use of other similar relations, as in the
following.

AKO(VegetarianRestaurant;Restaurant)
Here, the relationAKO (a kind of) holds between categories and denotes
a category inclusion relationship. Of course, to truly givethese predicates
meaning they would have to be situated in a larger set of factsdefining cate-
gories as sets.

Chapter 16 discusses the practical use of such relations in databases of
lexical relations, in the representation of selection restrictions, and in word
sense disambiguation.

Events

The representations for events that we have used until now have consisted of
single predicates with as many arguments as are needed to incorporate all the
roles associated with a given example. For example, the representation for
making a reservationdiscussed in Section 14.2 consisted of a single pred-
icate with arguments for the person making the reservation,the restaurant,
the day, the time, and the number of people in the party, as in the following.

Reservation(Hearer;Maharani;Today;8PM;2)
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In the case of verbs, this approach simply assumes that the predicate rep-
resenting the meaning of a verb has the same number of arguments as are
present in the verb’s syntactic subcategorization frame.

Unfortunately, there are three problems with this approachthat make
it awkward to apply in practice:� Determining the correct number of roles for any given event.� Representing facts about the roles associated with an event.� Ensuring that all the correct inferences can be derived directly from the

representation of an event.� Ensuring that no incorrect inferences can be derived from the represen-
tation of an event.

We will explore these, and other related issues, by considering a series
of representations for events. This discussion will focus on the following
examples of the verbeat.

(14.22) I ate.

(14.23) I ate a turkey sandwich.

(14.24) I ate a turkey sandwich at my desk.

(14.25) I ate at my desk.

(14.26) I ate lunch.

(14.27) I ate a turkey sandwich for lunch.

(14.28) I ate a turkey sandwich for lunch at my desk.

Clearly, the variable number of arguments for a predicate-bearing verb
like eatposes a tricky problem. While we would like to think that all of these
examples denote the same kind of event, predicates inFOPChave fixedarityARITY

— they take a fixed number of arguments.
One possible solution is suggested by the way that examples like these

are handled syntactically. The solution given in Chapter 11was to create
one subcategorization frame for each of the configurations of arguments that
a verb allows. The semantic analog to this approach is to create as many
different eatingpredicates as are needed to handle all of the ways thateat
behaves. Such an approach would yield the following kinds ofrepresenta-
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tions for Examples 14.22 through 14.22.

Eating1(Speaker)
Eating2(Speaker;TurkeySandwich)
Eating3(Speaker;TurkeySandwich;Desk)
Eating4(Speaker;Desk)
Eating5(Speaker;Lunch)
Eating6(Speaker;TurkeySandwich;Lunch)
Eating7(Speaker;TurkeySandwich;Lunch;Desk)

This approach simply sidesteps the issue of how many arguments the
Eatingpredicate should have by creating distinct predicates for each of the
subcategorization frames. Unfortunately, this approach comes at a rather
high cost. Other than the suggestive names of the predicates, there is noth-
ing to tie these events to one another even though there are obvious logical
relations among them. Specifically, if Example 14.28 is truethen all of the
other examples are true as well. Similarly, if Example 14.27is true then
Examples 14.22, 14.23 and 14.26 must also be true. Such logical connec-
tions can not be made on the basis of these predicates alone. Moreover, we
would expect a commonsense knowledge base to contain logical connections
between concepts likeEatingand related concepts likeHungerandFood.

One method to solve these problems involves the use of what are called
meaning postulates. Consider the following example postulate. MEANING

POSTULATES8w;x;y;z Eating7(w;x;y;z) ) Eating6(w;x;y)
This postulate explicitly ties together the semantics of two of our predicates.
Other postulates could be created to handle the rest of the logical relations
among the variousEatingsand the connections from them to other related
concepts.

Although such an approach might be made to work in small domains,
it clearly has scalability problems. A somewhat more sensible approach is to
say that Examples 14.22 through 14.28 all reference the samepredicate with
some of the arguments missing from some of the surface forms.Under this
approach, as many arguments are included in the definition ofthe predicate
as ever appear with it in an input. Adopting the structure of apredicate
like Eating7 as an example would give us a predicate with four arguments
denoting the eater, thing eaten, meal being eaten and the location of the
eating. The following formulas would then capture the semantics of our
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examples.9w;x;y Eating(Speaker;w;x;y)9w;x Eating(Speaker;TurkeySandwich;w;x)9w Eating(Speaker;TurkeySandwich;w;Desk)9w;x Eating(Speaker;w;x;Desk)9w;x Eating(Speaker;w;Lunch;x)9w Eating(Speaker;TurkeySandwich;Lunch;w)
Eating(Speaker;TurkeySandwich;Lunch;Desk)

This approach directly yields the obvious logical connections among
these formulas without the use of meaning postulates. Specifically, all of the
sentences with ground terms as arguments logically imply the truth of the
formulas with existentially bound variables as arguments.

Unfortunately, this approach still has at least two glaringdeficiencies:
it makes too many commitments, and it does not let us individuate events.
As an example of how it makes too many commitments, consider how we
accommodated thefor lunchcomplement in Examples 14.26 through 14.28;
a third argument, the meal being eaten, was added to theEatingpredicate.
The presence of this argument implicitly makes it the case that all eating
events are associated with a meal (ie. breakfast, lunch, or dinner). More
specifically, the existentially quantified variable for themeal argument in the
above examples states that there is some formal meal associated with each
of these eatings. This is clearly silly since one can certainly eat something
independent of it being associated with a meal.

To see how this approach fails to properly individuate events, consider
the following formulas.9w;x Eating(Speaker;w;x;Desk)9w;x Eating(Speaker;w;Lunch;x)9w;x Eating(Speaker;w;Lunch;Desk)
If we knew that the first two formula were referring to the sameevent, they
could be combined to create the third representation. Unfortunately, with
the current representation we have no way of telling if this is possible. The
independent facts thatI ate at my deskand I ate lunchdo not permit us to
conclude thatI ate lunch at my desk. Clearly what is lacking is some way of
referring to the events in question.

As with categories, we can solve these problems if we employ reifica-
tion to elevate events to objects that can be quantified and related to a other
objects via sets of defined relations (Davidson, 1967; Parsons, 1990). Con-
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sider the representation of Example 14.23 under this kind ofapproach.9w ISA(w;Eating)^Eater(w;Speaker)^Eaten(w;TurkeySandwich)
This representation states that there is an eating event where theSpeaker

is doing the eating and aTurkeySandwichis being eaten. The meaning rep-
resentations for Examples 14.22 and 14.27 can be constructed similarly.9w ISA(w;Eating)^Eater(w;Speaker)9w ISA(w;Eating)^Eater(w;Speaker)^Eaten(w;TurkeySandwich)^MealEaten(w;Lunch)

Under this reified-event approach:� There is no need to specify a fixed number of arguments for a given
surface predicate, rather as many roles and fillers can be glued on as
appear in the input.� No more roles are postulated than are mentioned in the input.� The logical connections among closely related examples is satisfied
without the need for meaning postulates.

Representing Time

In the preceding discussion of events, we did not address theissue of repre-
senting the time when the represented events are supposed tohave occurred.
The representation of such information in a useful form is the domain of
temporal logic. This discussion will serve to introduce the most basic con-TEMPORAL

LOGIC

cerns of temporal logic along with a brief discussion of the means by which
human languages convey temporal information, which among other things
includestense logic, the ways that verb tenses convey temporal information.TENSE LOGIC

The most straightforward theory of time hold that it flows inexorably
forward, and that events are associated with either points or intervals in time,
as on a timeline. Given these notions, an ordering can be imposed on distinct
events by situating them on the timeline. More specifically,we can say that
one eventprecedesanother, if the flow of time leads from the first event to
the second. Accompanying these notions in most theories is the idea of the
current moment in time. Combining this notion with the idea of a temporal
ordering relationship yields the familiar notions of past,present and future.

Not surprisingly, there are a large number of schemes for representing
this kind of temporal information. The one presented here isa fairly simple
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one that stays within theFOPCframework of reified events that we have been
pursuing. Consider the following examples.

(14.29) I arrived in New York.

(14.30) I am arriving in New York.

(14.31) I will arrive in New York.

These sentences all refer to the same kind of event and differsolely in the
tense of the verb. In our current scheme for representing events, all three
would share the following kind of representation, which lacks any temporal
information.9w ISA(w;Arriving)^Arriver(w;Speaker)^Destination(w;NewYork)

The temporal information provided by the tense of the verbs can be
exploited by predicating additional information about theevent variablew.
Specifically, we can add temporal variables representing the interval corre-
sponding to the event, the end point of the event, and temporal predicates
relating this end point to the current time as indicated by the tense of the
verb. Such an approach yields the following representations for ourarriving
examples.9i;e;w; t ISA(w;Arriving)^Arriver(w;Speaker)^Destination(w;NewYork)

IntervalO f(w; i)^EndPoint(i;e)^Precedes(e;Now)9i;e;w; t ISA(w;Arriving)^Arriver(w;Speaker)^Destination(w;NewYork)
IntervalO f(w; i)^MemberO f(i;Now)9i;e;w; t ISA(w;Arriving)^Arriver(w;Speaker)^Destination(w;NewYork)
IntervalO f(w; i)^EndPoint(i;e)^Precedes(Now;e)

This representation introduces a variable to stand for the interval of time as-
sociated with the event, and a variable that stands for the end of that interval.
The two-place predicatePrecedesrepresents the notion that the first time
point argument precedes the second in time; the constantNow refers to the
current time. For past events, the end point of the interval must precede the
current time. Similarly, for future events the current timemust precede the
end of the event. For events happening in the present, the current time is
contained within the event interval.
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Unfortunately, the relation between simple verb tenses andpoints in
time is by no means straightforward. Consider the followingexamples.

(14.32) Ok, we fly from San Francisco to Boston at 10.

(14.33) Flight 1390 will be at the gate an hour now.

In the first example, the present tense of the verbfly is used to refer to a
future event, while in the second the future tense is used to refer to a past
event.

More complications occur when we consider some of the other verb
tenses. Consider the following examples.

(14.34) Flight 1902 arrived late.

(14.35) Flight 1902 had arrived late.

Although both refer to events in the past, representing themin the same way
seems wrong. The second example seems to have another unnamed event
lurking in the background (eg. Flight 1902 had already arrived latewhen
something else happened). To account for this phenomena, Reichenbach
(1947) introduced the notion of areference point. In our simple temporal REFERENCE

POINT

scheme, the current moment in time is equated with the time ofthe utterance,
and is used as a reference point for when the event occurred (before, at,
or after). In Reichenbach’s approach, the notion of the reference point is
separated out from the utterance time and the event time. Thefollowing
examples illustrate the basics of this approach.

(14.36) When Mary’s flight departed, I ate lunch.

(14.37) When Mary’s flight departed, I had eaten lunch.

In both of these examples, the eating event has happened in the past,
ie. prior to the utterance. However, the verb tense in the first example indi-
cates that the eating event began when the flight departed, while the second
example indicates that the eating was accomplished prior tothe flight’s de-
parture. Therefore, in Reichenbach’s terms thedepartureevent specifies the
reference point. These facts can be accommodated by asserting additional
constraints relating theeatinganddepartureevents. In the first example, the
reference point precedes theeating event, and in the second example, the
eating precedes the reference point. Figure 14.4 illustrates Reichenbach’s
approach with the primary English tenses. Exercise 14.9 asks you to repre-
sent these examples inFOPC.

This discussion has focused narrowly on the broad notions ofpast,
present, and future and how they are signaled by verb tenses.Of course,
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Past Perfect Simple Past Present Perfect

Present Simple Future Future Perfect

I had eaten. I ate. I have eaten.

I eat. I will eat. I will have eaten.

E R R,E E

E E R

U U R,U

UU,RU,R,E

Figure 14.4 Reichenbach’s approach applied to various English tenses.In
these diagrams, time flows from left to right, anE denotes the time of the event,
anR denotes the reference time, and anU denotes the time of the utterance.

languages also have many other more direct and more specific ways to con-
vey temporal information, including the use of a wide variety of temporal
expressions as in the following ATIS examples.

(14.38) I’d like to go at 6:45, in the morning.

(14.39) Somewhere around noon, please.

(14.40) Later in the afternoon, near 6pm.

As we will see in the next chapter, grammars for such temporalexpressions
are of considerable practical importance in information extraction and ques-
tion answering applications.

Finally, we should note that there is a systematic conceptual organiza-
tion reflected in examples like these. In particular, temporal expressions in
English are frequently expressed in spatial terms, as is illustrated by the var-
ious uses ofat, in, somewhereandnear in these examples (Lakoff and John-
son, 1980; Jackendoff, 1983a). Metaphorical organizations such as these,
where one domain is systematically expressed in terms of another, will be
discussed in more detail in Chapter 16.

Aspect

In the last section, we discussed ways to represent the time of an event with
respect to the time of an utterance describing it. In this section, we address
the notion ofaspect, which concerns a cluster of related topics, includingASPECT

whether an event has ended or is ongoing, whether it is conceptualized as
happening at a point in time or over some interval, and whether or not any
particular state in the world comes about because of it. Based on these and
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related notions, event expressions have traditionally been divided into four
general classes:statives, activities, accomplishments, andachievements.
The following examples provide prototypical instances of each class.

Stative: I know my departure gate.

Activity: John is flying.

Accomplishment: Sally booked her flight.

Achievement: She found her gate.

Although the earliest versions of this classification were discussed by Aristo-
tle, the one presented here is due to Vendler (1967). In the following discus-
sion, we’ll present a brief characterization of each of the four classes, along
with some diagnostic techniques suggested in Dowty (1979) for identifying
examples of each kind.

Stativeexpressions represent the notion of an event participant having STATIVE

a particular property, or being in a state, at a given point intime. As such,
they can be thought of as capturing an aspect of a world at a single point in
time. Consider the following ATIS examples.

(14.41) I like Flight 840 arriving at 10:06.

(14.42) I need the cheapest fare.

(14.43) I have a round trip ticket for $662.

(14.44) I want to go first class.

In examples like these, the event participant denoted by thesubject can be
seen as experiencing something at a specific point in time. Whether or not
the experiencer was in the same state earlier, or will be in the future is left
unspecified.

There are a number of diagnostic tests for identifying statives. As an
example, stative verbs are distinctly odd when used in the progressive form.

(14.45) *I am needing the cheapest fare on this day.

(14.46) *I am wanting to go first class.

We should note that in these and subsequent examples, we are using an * to
indicate a broadened notion of ill-formedness that may include both semantic
and syntactic factors.

Statives are are also odd when used as imperatives.

(14.47) *Need the cheapest fare!

Finally, statives are not easily modified by adverbs likedeliberately
andcarefully.
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(14.48) *I deliberately like Flight 840 arriving at 10:06.

(14.49) *I carefully like Flight 840 arriving at 10:06.

Activity expressions describe events undertaken by a participant thatACTIVITY

have no particular end-point. Unlike statives, activitiesare seen as occurring
over some span of time, and are therefore not associated withsingle points
in time. Consider the following examples.

(14.50) She drove a Mazda.

(14.51) I live in Brooklyn.

These examples both specify that the subject is engaged in, or has engaged
in, the activity specified by the verb for some period of time.

Unlike statives, activity expressions are fine in both the progressive and
imperative forms.

(14.52) She is living in Brooklyn.

(14.53) Drive a Mazda!

However, like statives, activity expressions are odd when temporally
modified with temporal expressions usingin.

(14.54) *I live in Brooklyn in a month.

(14.55) *She drove a Mazda in an hour.

They can, however, successfully be used withfor temporal adverbials, as in
the following examples.

(14.56) I live in Brooklyn for a month.

(14.57) She drove a Mazda for an hour.

Unlike activities, accomplishment expressions describe events thatACCOMPLISH­
MENT

have a natural end-point and result in a particular state. Consider the fol-
lowing examples.

(14.58) He booked me a reservation.

(14.59) United flew me to New York.

In these examples, there is an event that is seen as occurringover some period
of time that ends when the intended state is accomplished.

A number of diagnostics can be used to distinguish accomplishment
events from activities. Consider the following examples, which make use of
the wordstopas a test.

(14.60) I stopped living in Brooklyn.

(14.61) She stopped booking my flight.
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In the first example, which is an activity, one can safely conclude that the
statementI lived in Brooklyneven though this activity came to an end. How-
ever, from the second example, one can not conclude the statement She
booked her flight, since the activity was stopped before the intended state was
accomplished. Therefore, although stopping an activity entails that the ac-
tivity took place, stopping an accomplishment event indicates that the event
did not succeed.

Activities and accomplishments can also be distinguished by by how
they can be modified by various temporal adverbials. Consider the following
examples.

(14.62) *I lived in Brooklyn in a year.

(14.63) She booked a flight in a minute.

In general, accomplishments can be modified byin temporal expressions,
while simple activities can not.

The final aspectual class,achievements, are similar to accomplish- ACHIEVE­
MENTS

ments in that they result in a state. Consider the following examples.

(14.64) She found her gate.

(14.65) I reached New York.

Unlike accomplishments, achievement events are thought ofas happening in
an instant, and are not equated with any particular activityleading up to the
state. To be more specific, the events in these examples may have been pre-
ceded by extendedsearchingor travelingevents, but the events correspond-
ing directly tofoundandreachare conceived of as points not intervals.

The point-like nature of these events has implications for how they can
be temporally modified. In particular, consider the following examples.

(14.66) I lived in New York for a year.

(14.67) *I reached New York for a few minutes.

Unlike activity and accomplishment expressions, achievements can not be
modified byfor adverbials.

Achievements can also be distinguished from accomplishments by em-
ploying the wordstop, as we did earlier. Consider the following examples.

(14.68) I stopped booking my flight.

(14.69) *I stopped reaching New York.

As we saw earlier, usingstop with an accomplishment expression results
in a failure to reach the intended state. Note, however, thatthe resulting
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expression is perfectly well-formed. On the other hand, using stopwith an
achievement example is unacceptable.

We should note that since both accomplishments and achievements are
events that result in a state, they are sometimes characterized as sub-types of
a single aspectual class. Members of this combined class areknown astelic
eventualities.TELIC EVEN­

TUALITIES

Before moving on, we should make two points about this classification
scheme. The first point is that event expressions can easily be shifted from
one class to another. Consider the following examples.

(14.70) I flew.

(14.71) I flew to New York.

The first example is a simple activity; it has no natural end-point and can
not be temporally modified byin temporal expressions. On the other hand,
the second example is clearly an accomplishment event sinceit has an end-
point, results in a particular state, and can be temporally modified in all the
ways that accomplishments can. Clearly the classification of an event is not
solely governed by the verb, but by the semantics of the entire expression in
context.

The second point is that while classifications such as this one are often
useful, they do notexplain why it is that events expressed in natural lan-
guages fall into these particular classes. We will revisit this issue in Chap-
ter 16 where we will sketch a representational approach due to Dowty (1979)
that accounts for these classes.

Representing Beliefs

There are a fair number of words and expressions that have what might be
called aworld creatingability. By this, we mean that their meaning repre-
sentations contain logical formulas that are not intended to taken as true in
the real world, but rather as part of some kind of hypothetical world. In addi-
tion, these meaning representations often denote a relation from the speaker,
or some other entity, to this hypothetical world. Examples of words that
have this ability arebelieve, want, imagineandknow. World-creating words
generally take various sentence-like constituents as arguments.

Consider the following example.

(14.72) I believe that Mary ate British food.

Applying our event-oriented approach we would say that there two events
underlying this sentence: a believing event relating the speaker to some spe-
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cific belief, and an eating event that plays the role of the believed thing.
Ignoring temporal information, a straightforward application of our reified
event approach would produce the following kind of representation.9u;v ISA(u;Believing)^ ISA(v;Eating)^Believer(u;Speaker)^BelievedProp(u;v)^Eater(v;Mary)^Eaten(v;BritishFood)

This seems relatively straightforward, all the right rolesare present and
the two events are tied together in a reasonable way. Recall,however, that
in conjunctive representations like this all of the individual conjuncts must
be taken to be true. In this case, this results in a statement that there actually
was an eating of British food by Mary. Specifically, by breaking this for-
mula apart into separate formulas by conjunction elimination the following
formula can be produced.9v ISA(v;Eating)^Eater(v;Mary)^Eaten(v;BritishFood)
This is clearly more than we want to say. The fact that the speaker believes
this proposition does not make it true; it is only true in the world represented
by the speaker’s beliefs. What is needed is a representationthat has a struc-
ture similar to this, but where theEatingevent is given a special status.

Note that reverting to the simpler predicate representations we used
earlier in this chapter does not help. A common mistake usingsuch rep-
resentations would be to represent this sentence with the following kind of
formula.

Believing(Speaker;Eating(Mary;BritishFood))
The problem with this representation is that it is not even valid FOPC. The
second argument to theBelievingpredicate should be aFOPC term, not a
formula. This syntactic error reflects a deeper semantic problem. Predicates
in FOPChold between the objects in the domain being modeled, not between
the relations that hold among the objects in the domain. Therefore, FOPC

lacks a meaningful way to assert relations about full propositions, which is
unfortunately exactly what words likebelieve, want, imagineandknowwant
to do.

The standard method for handling this situation is to augment FOPC

with operatorsthat allow us to make statements about full logical formu-
las. Let’s consider how this approach might work in the case of Example
14.72. We can introduce an operator calledBelievesthat takes twoFOPC

formulas as its arguments: a formula designating a believer, and a formula
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designating the believed proposition. Applying this operator would result in
the following meaning representation.

Believes(Speaker;9vISA(v;Eating)^Eater(v;Mary)^Eaten(v;BritishFood)
Under this approach, the contribution of the wordbelievesto this mean-

ing representation is not aFOPCproposition at all, but rather an operator that
is applied to the believed proposition. Therefore, as we discuss in Chap-
ter 15, these world creating verbs play quite a different role in the semantic
analysis than more ordinary verbs likeeat.

As one might expect, keeping track of who believes what aboutwhom
at any given point in time gets rather complex. As we will see in Chapter 18,
this is an important task in interactive systems that must track users’ beliefs
as they change during the course of a dialog.

Operators likeBelievesthat apply to logical formulas are known as
modal operators. Correspondingly, a logic augmented with such operatorsMODAL

OPERATORS

is known as amodal logic. Modal logics have found many uses in the rep-MODAL LOGIC

resentation of commonsense knowledge in addition to the modeling of be-
lief, among the more prominent are representations of time and hypothetical
worlds.

Not surprisingly, modal operators and modal logics raise a host of com-
plex theoretical and practical problems that we can not evenbegin to do jus-
tice to here. Among the more important issues are the following.� How inference works in the presence of specific modal operators.� The kinds of logical formula that particular operators can be applied

to.� How modal operators interact with quantifiers and logical connectives.� The influence of these operators on the equality of terms across formu-
las.

The last issue in this list has consequences for modeling agent’s knowl-
edge and beliefs in dialog systems and deserves some elaboration here. In
standardFOPCsystems, logical terms that are known to be equal to one an-
other can be freely substituted without having any effect onthe truth of sen-
tences they occur in. Consider the following examples

(14.73) Snow has delayed Flight 1045.
(14.74) John’s sister’s flight serves dinner.

Assuming that these two flights are the same, substitutingFlight 1045 for
John’s sister’s flighthas no effect on the truth of either sentence.



Section 14.4. Some Linguistically Relevant Concepts 533

Now consider, the following variation on the first example.

(14.75) John knows that snow has delayed Flight 1045.
(14.76) John knows that his sister’s flight serves dinner.

Here the substitution does not work. John may well know that Flight 1045
has been delayed without knowing that his sister’s flight is delayed, simply
because he may not know the number of his sister’s flight. In other words,
even if we assume that these sentences are true, and that John’s sister is
on Flight 1045, we can not say anything about the truth of the following
sentence.

(14.77) John knows that snow has delayed his sister’s flight.

Settings like this where a modal operator likeKnow is involved are
calledreferentially opaque. In referentially opaque settings, substitution of

REFEREN­
TIALLY
OPAQUE

equal terms may or may not succeed. Ordinary settings where such substitu-
tions always work are said to bereferentially transparent .

REFEREN­
TIALLY
TRANSPAR­
ENT

Pitfalls

As noted in Section 14.3, there are a number of common mistakes in rep-
resenting the meaning of natural language utterances, thatarise from con-
fusing, or equating, elements from real languages with elements inFOPC.
Consider the following example, which on the surface looks like a standard
implication rule.

(14.78) If you’re interested in baseball, the Rockies are playing tonight.

A straightforward translation of this sentence intoFOPC might look some-
thing like this.

HaveInterestIn(Hearer;Baseball)) Playing(Rockies;Tonight)
This representation is flawed for a large number of reasons. The most ob-
vious ones arise from the semantics ofFOPC implications. In the event that
the hearer is not interested in baseball, this formula becomes meaningless.
Specifically, we can not draw any conclusion about the consequent clause
when the antecedent is false. But of course this is a ridiculous conclusion,
we know that the Rockies game will go forward regardless of whether or not
the hearer happens to like baseball. Exercise 14.10 asks youto come up with
a more reasonableFOPCtranslation of this example.

Now consider the following example.

(14.79) One more beer and I’ll fall off this stool.
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Again, a simple-minded translation of this sentence might consist of a con-
junction of two clauses: one representing a drinking event and one represent-
ing a falling event. In this case, the surface use of the wordandobscures the
fact that this sentence instead has an implication underlying it. The lesson
of both of these examples is that English words likeand, or and if are only
tenuously related to the elements ofFOPCwith the same names.

Along the same lines, it is important to remember the complete lack
of significance of the names we make use of in representingFOPCformulas.
Consider the following constant.

InexpensiveVegetarianIndianFoodOnTuesdays

Despite its impressive morphology, this term, by itself, has no more meaning
than a constant likeX99 would have. See McDermott (1976) for a discourse
on the inherent dangers of such naming schemes.

14.5 RELATED REPRESENTATIONALAPPROACHES

Over the years, a fair number of representational schemes have been invented
to capture the meaning of linguistic utterances for use in natural language
processing systems. Other than logic, two of the most widelyused schemes
have beenSemantic NetworksandFrames, which are also known asslot-SEMANTIC

NETWORKS

FRAMES filler representations. TheKL -ONE (Brachman and Schmolze, 1985a), and
KRL (Bobrow and Winograd, 1977) systems represent influential efforts to
represent knowledge for use in natural language processingsystems.

In semantic networks, objects are represented as nodes in a graph, with
relations between objects being represented by named links. In frame-based
systems, objects are represented as feature-structures similar to those dis-
cussed in Chapter 11, which can, of course, also be naturallyrepresented as
graphs. In this approach features are called slots and the values, or fillers,
of these slots can either be atomic values or other embedded frames. The
following diagram illustrates how Example 14.72 might be captured in a
frame-based approach.

I believe Mary ate British food.
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It is now widely accepted that meanings represented in theseapproaches can
be translated into equivalent statements inFOPCwith relative ease.

14.6 ALTERNATIVE APPROACHES TOMEANING

The notion that the translation of linguistic inputs into a formal representa-
tion made up of discrete symbols adequately captures the notion of meaning
is, not surprisingly, subject to a considerable amount of debate. The follow-
ing sections give brief, wholly inadequate, overviews of some of the major
concerns in these debates.

Meaning as Action

An approach that holds considerable appeal when we considerthe seman-
tics of imperative sentences is the notion ofmeaning as action. Under this MEANING AS

ACTION

view, utterances are viewed as actions, and the meanings of these utterances
resides inprocedures that are activated in the hearer as a result of hearing
the utterance. This approach was followed in the creation ofthe histori-
cally importantSHRDLU system, and is summed up well by its creator Terry
Winograd (1972b).

One of the basic viewpoints underlying the model is that all lan-
guage use can be thought of as a way of activating procedures
within the hearer. We can think of an utterance as a program -
one that indirectly causes a set of operations to be carried out
within the hearer’s cognitive system.

A recent procedural model of semantics is theexecuting schemaor
x-schemamodel of Baileyet al. (1997), Narayanan (1997a, 1997b), andX­SCHEMA

Changet al. (1998). The intuition of this model is that various parts of the
semantics of events, including theaspectualfactors discussed on 526, are
based on schematized descriptions of sensory-motor processes like incep-
tion, iteration, enabling, completion, force, and effort.The model represents
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the aspectual semantics of events via a kind of probabilistic automaton called
aPetri net (Murata, 1989). The nets used in the model have states likeready,
process, finish, suspend, andresult.

The meaning representation of an example likeJack is walking to the
storeactivates theprocessstate of the walking event. An accomplishment
event likeJack walked to the storeactivates theresult state. An iterative
activity like Jack walked to the store every weekis simulated in the model
by an iterative activation of theprocessandresultnodes. This idea of using
sensory-motor primitives as a foundation for semantic description is also
based on the work of Regier (1996) on the role of visual primitives in a
computational model of learning the semantics of spatial prepositions.

Meaning as Truth

The role of formal meaning representations in linguistics,natural language
processing, artificial intelligence, and cognitive modeling, is quite different
from its role in more philosophical circles. In the former approaches, the
name of the game is getting from linguistic inputs to appropriate, unambigu-
ous, and operationally useful representations.3

To philosophers, however, the mere translation of a sentence from its
original natural form to another artificial form does not getus any closer to its
meaning (Lewis, 1972). Formal representations may facilitate real semantic
work, but are not by themselves of much interest. Under this view, the im-
portant work is in the functions, or procedures, that determine the mapping
from these representations to the world being modeled. Of particular interest
in these approaches are the functions that determine thetruth conditions ofTRUTH

CONDITIONS

sentences, or their formal representations.

14.7 SUMMARY

This chapter has introduced the representational approachto meaning. The
following are some of the highlights of this chapter.� A major approach to meaning in computational linguistics involves the

creation of formal meaning representations that capture the meaning-
related content of linguistic inputs. These representations are intended
to bridge the gap from language to commonsense knowledge of the

3 Of course, what counts as useful varies considerably among these areas
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world.� The frameworks specify the syntax and semantics of these representa-
tions are called meaning representation languages. A wide variety of
such languages are used in natural language processing and artificial
intelligence.� Such representations need to be able to support the practical compu-
tational requirements of semantic processing. Among theseare the
need to determine the truth of propositions, to support unambiguous
representation, to represent variables, to support inference, and to be
expressive.� Human languages have a wide variety of features that are usedto con-
vey meaning. Among the most important of these is the abilityto con-
vey a predicate-argument structure.� FOPC is a well-understood computationally tractable meaning repre-
sentation language that offers much of what is needed in a meaning
representation language.� Important classes of meaning including categories, events, and time
can be captured inFOPC. Propositions corresponding to such concepts
as beliefs and desires require extensions toFOPC including modal op-
erators.� Semantic networks and frames can be captured within theFOPCframe-
work.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The earliest computational use of declarative meaning representations in
natural language processing was in the context of question-answering sys-
tems (Greenet al., 1963; Raphael, 1968; Lindsey, 1963). These systems
employed ad-hoc representations for the facts needed to answer questions.
Questions were then translated into a form that could be matched against
facts in the knowledge base. Simmons (1965) provides an overview of these
early efforts.

Woods (1967) investigated the use ofFOPC-like representations in question-
answering as a replacement for the ad-hoc representations in use at the time.
Woods (1973) further developed and extended these ideas in the landmark
Lunar system. Interestingly, the representations used in Lunar had both a
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truth-conditional and a procedural semantics. Winograd (1972b) employed
a similar representation based on the Micro-Planner language in hisSHRDLU

system.
During this same period, researchers interested in the cognitive model-

ing of language and memory had been working with various forms of asso-
ciative network representations. Masterman (1957) was probably the first to
make computational use of a semantic network-like knowledge representa-
tion, although semantic networks are generally credited toQuillian (1968).
A considerable amount work in the semantic network framework was carried
out during this era (Norman and Rumelhart, 1975; Schank, 1972; Wilks,
1975c, 1975b; Kintsch, 1974). It was during this period thata number of
researchers began to incorporate Fillmore’s notion of caseroles (Fillmore,
1968) into their representations. Simmons (1973a) was the earliest adopter
of case roles as part of representations for natural language processing.

Detailed analyses by Woods (1975) and Brachman and Schmolze(1985a)
aimed at figuring out what semantic networks actually mean led to the devel-
opment of a number of more sophisticated network-like languages including
KRL (Bobrow and Winograd, 1977) andKL -ONE (Brachman and Schmolze,
1985a). As these frameworks became more sophisticated and well-defined
it became clear that they were restricted variants ofFOPCcoupled with spe-
cialized inference procedures. A useful collection of papers covering much
of this work can be found in (Brachman and Levesque, 1985). Russell and
Norvig (1995) describe a modern perspective on these representational ef-
forts.

Linguistic efforts to assign semantic structures to natural language sen-
tences in the generative era began with the work of Katz and Fodor (1963).
The limitations of their simple feature-based representations and the natu-
ral fit of logic to many of linguistic problems of the day quickly led to the
adoption of a variety of predicate-argument structures as preferred semantic
representations (Lakoff, 1972; McCawley, 1968). The subsequent introduc-
tion by Montague (1973) of truth-conditional model-theoretic framework
into linguistic theory led to a much tighter integration between theories of
formal syntax and a wide range of formal semantic frameworks. Good in-
troductions to Montague semantics and its role in linguistic theory can be
found in (Dowtyet al., 1981; Partee, 1976).

The representation of events as reified objects is due to Davidson (1967).
The approach presented here, which explicitly reifies eventparticipants, is
due to Parsons (1990). The use of modal operators and modal logic in the
representation of knowledge and belief is due to Hintikka (1969a). Moore
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(1977) was the first to make computational use of this approach. Faucon-
nier (1985) deals with a wide range of issues relating to beliefs and belief
spaces from a cognitive science perspective. Most current computational
approaches to temporal reasoning are based on Allen’s notion of temporal
intervals (Allen, 1984). ter Meulen (1995) provides a modern treatment of
tense and aspect. Davis (1990) describes the use ofFOPCto represent knowl-
edge across a wide range of common sense domains including quantities,
space, time, and beliefs.

A recent comprehensive treatment of logic and language can be found
in (van Benthem and ter Meulen, 1997). The classic semanticstext is (Lyons,
1977). McCawley (1993) is an indispensable textbook covering a wide range
of topics concerning logic and language. Chierchia and McConnell-Ginet
(1991) also provides broad coverage of semantic issues froma linguistic
perspective. Heim and Kratzer (1998) is a more recent text written from the
perspective of current generative theory.

EXERCISES

14.1 Choose a recipe from your favorite cookbook and try to make explicit
all the common-sense knowledge that would be needed to follow it.

14.2 Proponents of information retrieval occasionally claim that natural
language texts in their raw form are a perfectly suitable source of knowledge
for question answering. Sketch an argument against this claim.

14.3 Peruse your daily newspaper for three examples of ambiguoussen-
tences. Describe the various sources of the ambiguities.

14.4 Consider a domain where the wordcoffeecan refer to the follow-
ing concepts in a knowledge-base: a caffeinated or decaffeinated beverage,
ground coffee used to make either kind of beverage, and the beans them-
selves. Give arguments as to which of the following uses of coffee are am-
biguous and which are vague.

a. I’ve had my coffee for today.

b. Buy some coffee on your way home.



540 Chapter 14. Representing Meaning

c. Please grind some more coffee.

14.5 Encode inFOPCas much of the knowledge as you can that you came
up with for Exercise 14.1

14.6 The following rule, which we gave as a translation for Example 14.20,
is not a reasonable definition of what it means to be a vegetarian restaurant.8xVegetarianRestaurant(x) ) Serves(x;VegetarianFood)
Give aFOPC rule that better defines vegetarian restaurants in terms of what
they serve.

14.7 Give aFOPCtranslations for the following sentences:

a. Vegetarians do not eat meat.

b. Not all vegetarians eat eggs.

14.8 Give a set of facts and inferences necessary to prove the following
assertions:

a. McDonalds is not a vegetarian restaurant.

b. Some vegetarians can eat at McDonalds.

Don’t just place these facts in your knowledge-base. Show that they
can be inferred from some more general facts about vegetarians and Mc-
Donalds

14.9 Give FOPC translations for the following sentences that capture the
temporal relationships between the events.

a. When Mary’s flight departed, I ate lunch.

b. When Mary’s flight departed, I had eaten lunch.

14.10 Give a reasonableFOPCtranslation of the following example.

If you’re interested in baseball, the Rockies are playing tonight.

14.11 On Page 512 we gave the followingFOPC translation for Example
14.17.

Have(Speaker;FiveDollars)^:Have(Speaker;LotO f Time)
This literal representation would not be particularly useful to a restaurant-
oriented question answering system. Give a deeperFOPCmeaning represen-
tation for this example that is closer to what it really means.
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14.12 Describe, in English, the knowledge that would be needed to infer
the deeper representation you produced for the last exercise from the initial
literal representation.

14.13 On Page 512, we gave the following representation as a translation
for the sentenceAy Caramba is near ICSI.

Near(LocationO f(AyCaramba);LocationO f(ICSI))
In our truth-conditional semantics, this formula is eithertrue or false given
the contents of some knowledge-base. Critique this truth-conditional ap-
proach with respect to the meaning of words likenear.





15 SEMANTIC ANALYSIS

‘Then you should say what you mean,’ the March Hare went on.
‘I do,’ Alice hastily replied; ‘at least–at least I mean whatI say–
that’s the same thing, you know.’
‘Not the same thing a bit!’ said the Hatter. ‘You might just as
well say that ”I see what I eat” is the same thing as ”I eat what
I see”!’

Lewis Carroll,Alice in Wonderland

This chapter presents a number of computational approachesto the
problem ofsemantic analysis, the process whereby meaning representationsSEMANTIC

ANALYSIS

of the kind discussed in the previous chapter are composed and assigned
to linguistic inputs. As we will see in this and later chapters, the creation
of rich and accurate meaning representations necessarily involves a wide
range of knowledge-sources and inference techniques. Among the sources of
knowledge that are typically used are the meanings of words,the meanings
associated with grammatical structures, knowledge about the structure of the
discourse, knowledge about the context in which the discourse is occurring,
and common-sense knowledge about the topic at hand.

The first approach we cover is a kind ofsyntax-driven semantic anal-
ysis that is fairly limited in its scope. It assigns meaning representations to
inputs based solely on static knowledge from the lexicon andthe grammar.
In this approach, when we refer to an input’s meaning, or meaning represen-
tation, we have in mind an impoverished representation thatis both context-
independent and inference-free. Meaning representationsof this type corre-
spond to the notion of a literal meaning introduced in the last chapter.

There are two reasons for proceeding along these lines: there are some
limited application domains where such representations are sufficient to pro-
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duce useful results, and these impoverished representations can serve as in-
puts to subsequent processes that can produce richer, more useful, meaning
representations. Chapters 18 and 19 will show how these meaning represen-
tations can be used in processing extended discourses, while Chapter 21 will
show how they can be used in machine translation.

Section 15.5 then presents two alternative approaches to semantic anal-
ysis that are more well-suited to practical applications. The first approach,
semantic grammars, has been widely applied in the construction of inter-
active dialog systems. In this approach, the elements of thegrammars are
strongly motivated by the semantic entities and relations of the domain be-
ing discussed. As we will see, the actual algorithms used in this approach
are quite similar to those described in Section 15.1. The difference lies in
the grammars that are used.

The final approach, presented in Section 15.5, addresses thetask of
extracting small amounts of pertinent information from large bodies of text.
As we will see, thisinformation extraction task does not require the kind
of complete syntactic analysis assumed in the other approaches. Instead,
a series of quite limited, mostly finite-state, automata arecombined via a
cascadeto produce a robust semantic analyzer.

15.1 SYNTAX -DRIVEN SEMANTIC ANALYSIS

The approach detailed in this section is based on theprinciple of composi-
tionality .1 The key idea underlying this approach is that the meaning of aPRINCIPLE OF

COMPOSI­
TIONALITY

sentence can be composed from the meanings of it parts. Of course, when in-
terpreted superficially, this principle is somewhat less than useful. We know
that sentences are composed of words, and that words are the primary car-
riers of meaning in language. It would seem then that all thisprinciple tells
us is that we should compose the meaning representation for sentences from
the meanings of the words that make them up.

Fortunately, the Mad Hatter has provided us with a hint as to how to
make this principle useful. The meaning of a sentence is not based solely on
the words that make it up, it is based on the ordering, grouping, and relations
among the words in the sentence. Of course, this is simply another way

1 This is normally referred to as Frege’s principle of compositionality. There appears to be
little reason for this ascription, since the principle never explicitly appears in any of his writ-
ings. Indeed, many of his writings can be taken as supportinga decidedly non-compositional
view. Janssen (1997) discusses this topic in more detail.
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Input Parser Semantic 
Analyzer

Output
Semantic
Representations

Figure 15.1 A simple pipeline approach to semantic analysis.

of saying that the meaning of a sentence is partially based onits syntactic
structure. Therefore, insyntax-driven semantic analysis, the composition of
meaning representations is guided by the syntacticcomponentsandrelations
provided by the kind of grammars discussed in Chapters 9, 11,and 12.

We can begin by assuming that the syntactic analysis of an input sen-
tence will form the input to a semantic analyzer. Figure 15.1illustrates the
obvious pipeline-oriented approach that follows directlyfrom this assump-
tion. An input is first passed through a parser to derive its syntactic analysis.
This analysis is then passed as input to asemantic analyzerto produce a SEMANTIC

ANALYZER

meaning representation. Note that although this diagram shows a parse tree
as input, other syntactic representations such as feature structures, or lexi-
cal dependency diagrams, can be used. The remainder of this section will
assume tree-like inputs.

Before moving on, we should make explicit a major assumptionabout
the role ambiguity of this approach. In the syntax driven approach presented
here, ambiguities arising from the syntax and the lexicon will lead to the cre-
ation of multiple ambiguous meaning representations. It isnot the job of the
semantic analyzer, narrowly defined, to resolve these ambiguities. Instead,
it is the job of subsequent interpretation processes with access to domain
specific knowledge, and knowledge of context toselectamong competing
representations. Of course, we can cut down on the number of ambiguous
representations produced, through the use of robust part-of-speech taggers,
prepositional phrase attachment mechanisms, and, as we will see in Chap-
ter 16, word-sense disambiguation mechanisms.

Let’s consider how such an analysis might proceed with the following
example.

(15.1) AyCaramba serves meat.

Figure 15.2 shows the simplified parse tree (lacking featureattachments),
along with an appropriate meaning representation for this example. As sug-
gested by the dashed arrows, a semantic analyzer given this tree as input
might fruitfully proceed by first retrieving a meaning representation from the
subtree corresponding to the verbserves. The analyzer might next retrieve
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S 9eIsa(e;Serving)^Server(e;AyCaramba)^Served(e;Meat)
NP VP

NP

Proper-Noun Verb Mass-Noun

AyCaramba serves meat

Figure 15.2 Parse tree for the sentenceAyCaramba serves meat.

meaning representations corresponding to the two noun phrases in the sen-
tence. Then using the representation acquired from the verbas a template,
the noun phrase meaning representations can be used to bind the appropriate
variables in the verb representation, thus producing the meaning representa-
tion for the sentence as a whole.

Unfortunately, there is a rather obvious problem with this simplified
story. As described, the function used to interpret the treein Figure 15.2
must know, among other things, that it is the verb that carries the template
upon which the final representation is based, where this verboccurs in the
tree, where its corresponding arguments are, and which argument fills which
role in the verb’s meaning representation. In other words, it requires a good
deal of specific knowledge aboutthis particular example and its parse treeto
create the required meaning representation. Given that there are an infinite
number of such trees for any reasonable grammar, any approach based on
one semantic function for every possible tree is in serious trouble.

Fortunately, we have faced this problem before. Languages are not
defined by enumerating the strings or trees that are permitted, but rather by
specifying finite devices that are capable of generating therequired set of
outputs. It would seem, therefore, that the right place for semantic knowl-
edge in a syntax-directed approach is with the finite set of devices that are
used to generate trees in the first place: the grammar rules and the lexical
entries. This is known as therule to rule hypothesis(Bach, 1976).RULE TO

RULE
HYPOTHESIS

Designing an analyzer based on this approach brings us back to the no-
tion of parts and what it means for them to have meanings. The remainder of
this section can be seen as an attempt to answer the followingtwo questions.� What does it mean for syntactic constituents to have meanings?� What do these meanings have to be like so that they can be composed

into larger meanings?
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Semantic Augmentations to Context-Free Grammar Rules

In keeping with the approach begun in Chapter 11, we will begin by aug-
menting context-free grammar rules withsemantic attachments. These at- SEMANTIC AT­

TACHMENTS

tachments can be thought of as instructions that specify howto compute
the meaning representation of a construction from the meanings of its con-
stituent parts. Abstractly, our augmented rules have the following structure.

A ! α1 : : :αn f f (α j :sem; : : : ;αk:sem)g
The semantic attachment to the basic context-free rule is shown in thef: : :g to the right of the rule’s syntactic constituents. This notation states that

the meaning representation assigned to the constructionA, which we will
denote asA.sem, can be computed by running the functionf on some subset
of the semantic attachments ofA’s constituents.

This characterization of our semantic attachments as a simple func-
tion application is rather abstract. To make this notion more concrete, we
will walk through the semantic attachments necessary to compute the mean-
ing representation for a series of examples beginning with Example 15.1,
shown earlier in Figure 15.2. We will begin with the more concrete entities
in this example, as specified by the noun phrases, and work ourway up to the
more complex expressions representing the meaning of the entire sentence.
The concrete entities in this example are represented by theFOPCconstants
AyCarambaandMeat. Our first task is to associate these constants with the
constituents of the tree that introduce them. The first step toward accom-
plishing this is to pair them with the lexical rules representing the words that
introduce them into the sentence.

ProperNoun! AyCaramba fAyCarambag
MassNoun! meat fMeatg

These two rules specify that the meanings associated with the subtrees gen-
erated by these rules consist of the constantsAyCarambaandMeat.

Note, however, that as the arrows in Figure 15.2 indicate, the subtrees
corresponding to these rules do not directly contribute theseFOPCconstants
to the final meaning representation. Rather, it is theNPs higher in the tree
that contribute them to the final representation. In keepingwith the principle
of compositionality, we can deal with this indirect contribution by stipulating
that the upperNPs obtain their meaning representations from the meanings
of their children. In these two cases, we will assume that themeaning repre-
sentations of the children are simply copied upward to the parents.

NP ! ProperNoun fProperNoun.semg
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NP ! MassNoun fMassNoun.semg
These rules state that the meaning representation of the noun phrases

are the same as the meaning representations of their individual components,
denoted byProperNoun.semandMassNoun.sem. In general, it will be the
case that for non-branching grammar rules, the semantic expression associ-
ated with the child will be copied unchanged to the parent.

Before proceeding, we should point out that there is at leastone poten-
tially confusing aspect to this discussion. While the static semantic attach-
ment to our firstNP rule is simplyProperNoun.sem, the semantic value of
the tree produced by that rule in this example isAyCaramba. It is critical
to distinguish between the semantic attachment of a rule, and the semantic
value associated with a tree generated by a rule. The first is aset of in-
structions on how to construct a meaning representation, while the second
consists of the result of following those instructions.

Returning to our example, having accounted for the constants in the
representation, we can move on to the event underlying this utterance as
specified byserves. As illustrated in Figure 15.2, a genericServingevent
involves aServerand somethingServed, as captured in the following logical
formula.9e;x;y Isa(e;Serving)^Server(e;x)^Served(e;y)

As a first attempt at this verb’s semantic attachment, we can simply
take this logical formula asserve’s semantic attachment, as in the following.

Verb ! servesf9 e;x;y Isa(e;Serving)^Server(e;x)^Served(e;y)g
Moving up the parse tree, the next constituent to be considered is the

VP that dominates bothservesandmeat. Unlike theNPs, we can not simply
copy the meaning of these children up to the parentVP. Rather, we need to
incorporatethe meaning of theNP into the meaning of theVerband assign
the resulting representation to theVP.sem. In this case, this consists of re-
placing the variabley with the logical termMeat as the second argument of
theServedrole of theServesevent. This yields the following meaning rep-
resentation, which can be glossed as something likesomeone serves meat.9 e;x Isa(e;Serving)^Server(e;x)^Served(e;Meat)

To come up with this representation, the semantic attachment for the
VPmust provide a means to replace the quantified variabley within the body
of V.semwith the logical constantMeat, as stipulated byNP.sem. Abstracting
away from this specific example, theVPsemantic attachment must have two
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capabilities: the means toknow exactly which variables within theVerb’s
semantic attachment are to be replaced by the semantics of the Verb’s argu-
ments, and the ability to perform such a replacement.

Unfortunately, there is no straightforward way to do this given the
mechanisms we now have at our disposal. TheFOPCformula we attached to
theV.semdoes not provide any advice about when and how each of its three
quantified variables should be replaced, and we have no simple way, within
our current specification ofFOPC, for performing such a replacement even if
we did know.

Fortunately, there is a notational extension toFOPCcalled thelambda
notation(Church, 1940) that provides exactly the kind of formal parameter LAMBDA

NOTATION

functionality that we need. This notation extends the syntax of FOPC to
include expressions of the following form.

λxP(x)
Such expressions consist of the Greek symbolλ, followed by one or more
variables, followed by aFOPCexpression that makes use of those variables.

The usefulness of theseλ-expressions is based on the ability toapply
them to logical terms to yield newFOPC expressions where the formal pa-
rameter variables are bound to the specified terms. This process is known
as λ-reduction and is little more than a simple textual replacement of the
λ variables with the specifiedFOPC terms, accompanied by the subsequent
removal of theλ. The following expressions illustrate the application of a
λ-expression to the constantA, followed by the result of performing aλ-
reduction on this expression.

λxP(x)(A)
P(A)

This λ-notation provides both of the capabilities we said were needed in the
Verbsemantics: the formal parameter list makes a set of variables within the
body available, and theλ-reduction process implements the desired replace-
ment of variables with terms.

An important and useful variation of this technique is the use of one
λ-expression as the body of another as in the following expression.

λxλy Near(x;y)
This fairly abstract expression can be glossed as the state of some-

thing being near something else. The following expressionsillustrate a sin-
gle λ-application and subsequent reduction with this kind of embeddedλ-
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expression.

λxλy Near(x;y)(ICSI)
λy Near(ICSI;y)
The important point here is that the resulting expression isstill a λ-

expression; the first reduction bound the variablex and removed the outer
λ, thus revealing the inner expression. As might be expected,this result-
ing λ-expression can, in turn, be applied to another term to arrive at a fully
specified logical formula, as in the following.

λy Near(ICSI;y)(AyCaramba)
Near(ICSI;AyCaramba)
This technique, calledcurrying 2(Schönkfinkel, 1924), is a way ofCURRYING

converting a predicate with multiple arguments into a sequence of single
argument predicates. As we will see shortly, this techniqueis quite useful
when the arguments to a predicate do not all appear together as daughters of
the predicated in a parse tree.

With theλ-notation and the process ofλ-reduction, we have the tools
needed to return to the semantic attachments for ourVP constituent. Re-
call that what was needed was a way to replace the variable representing the
Servedrole with the meaning representation provided by theNPconstituent
of the VP. This can be accomplished in two steps: changing the semantic
attachment of theVerb to a λ-expression, and having the semantic attach-
ment of theVPapply this expression to theNP semantics. The first of these
steps can be accomplished by designatingx, the variable corresponding to
theServedrole, as theλ-variable for aλ-expression provided as the seman-
tic attachment forserve.

Verb ! servesfλx9e;y Isa(e;Serving)^Server(e;y)^Served(e;x)g
This attachment makes the variablex externally available to be bound

by an application of this expression to a logical term. The attachment for our
transitiveVPrule, therefore, specifies aλ-application where theλ-expression
is provided byVerb.semand the argument is provided byNP.sem.

VP ! Verb NP fVerb.sem(NP.sem)g
This λ-application results in the replacement, or binding, ofx, the

single formal parameter of theλ-expression, with the value contained in
2 Currying is the standard term, although Heim and Kratzer (1998) present an interest-
ing argument for the termSchönkfinkelizationover currying, since Currylater built on
Schönfinkel’s work.
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NP.sem. A λ-reduction removes theλ revealing the inner expression with
the parameterx replaced by the constantMeat. This expression, the mean-
ing of the verb phraseserves meat, is then the value ofVP.sem.9e;y Isa(e;Serving)^Server(e;y)^Served(e;Meat)

To complete this example, we must create the semantic attachment for
theSrule. Like theVP rule, this rule must incorporate anNP argument into
the appropriate role in the event representation now residing in theVP.sem. It
should, therefore, consist of anotherλ-application where the value ofVP.sem
provides theλ-expression and the sentence-initialNP.semprovides the final
argument to be incorporated.

S ! NP VP fVP.sem(NP.sem)g
Unfortunately, as it now stands the value ofVP.Semdoesn’t provide the

necessaryλ expression. Thelambda-application performed at theVP rule
resulted in a genericFOPCexpression with two existentially quantified vari-
ables. TheVerb attachment should instead have consisted of an embedded
λ-expression to make theServerrole available for binding at theS level of
the grammar. Therefore, our revised representation of theVerb attachment
will be the following.

Verb ! servesfλxλy 9e Isa(e;Serving)^Server(e;y)^Served(e;x)g
The body of thisVerb attachment consists of aλ-expression inside a

λ-expression. The outer expression provides the variable that is replaced by
the firstλ-reduction, while the inner expression can be used to bind the final
variable corresponding to theServerrole. This ordering of the variables in
the multiple layersλ-expressions in semantic attachment of the verb explic-
itly encodes facts about the expected location of aVerb’s arguments in the
syntax.

The parse tree for this example, with each node annotated with its cor-
responding semantic value, is shown in Figure 15.3.

This example has served to illustrate several of the most basic tech-
niques used in this syntax-driven approach to semantic analysis. Section
15.2 will provide a more complete inventory of semantic attachments for
some of the major English grammatical categories. Before proceeding to
that inventory, however, we will first analyze several additional examples.
These examples will serve to introduce a few more of the basicconstructs
needed to make this approach work, and will illustrate the general approach
to developing semantic attachments for a grammar.
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S 9eIsa(e;Serving)^Server(e;AC)^Served(e;Meat)
NPAC VP λx9eIsa(e;Serving)^Server(e;x)^Served(e;Meat)

NP Meat

ProperNounAC Verb Mass-Noun Meat

AyCaramba serves meat

Figure 15.3 Parse tree with semantic attachments forAyCaramba serves
meat.

Let’s consider the following variation on Example 15.1.

(15.2) A restaurant serves meat.

Since the verb phrase of this example is unchanged from Example 15.1, we
can restrict our attention to the derivation of the semantics of the subject
noun phrase and its subsequent integration with the verb phrase in theSrule.
As a starting point, let’s assume that the following formulais a plausible
representation for the meaning of the subject in this example.9xIsa(x;Restaurant)
Combining this new representation with the one already developed for the
verb phrase, yields the following meaning representation.9e;x Isa(e;Serving)^Server(e;x)^Served(e;Meat)^ Isa(x;Restaurant)
In this formula, the restaurant, represented by the variable x, is specified as
playing the role of theServerby its presence as the second argument to the
Serverpredicate.

Unfortunately, theλ-application specified as the semantic attachment
for the S rule will not produce this result. A literal interpretationof λ-
reduction as a textual replacement results in the followingexpression, where
the entire meaning representation of the noun phrase is embedded in the
Serverpredicate.9e Isa(e;Serving)^Server(e;9xIsa(x;Restaurant))^Served(e;Meat)

Although this expression has a certain intuitive appeal, itis not a valid
FOPC formula. Expressions like the one denoting our restaurant can not
appear as arguments to predicates; such arguments are limited toFOPCterms.
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In fact, since by definitionλ-expressions can only be applied toFOPCterms,
the application of theλ-expression attached to theVP to the semantics of the
subject was ill-formed to begin with.

We can solve this problem in a manner similar to the way thatλ-
expressions were used to solve the verb phrase andS semantic attachment
problems: by adding a new notation to the existingFOPCsyntax that facil-
itates the compositional creation of the desired meaning representation. In
this case, we will introduce the notion of acomplex-term that allowsFOPC COMPLEX­

TERM

expressions like9xIsa(x;Restaurant) to appear in places where normally
only ordinary FOPC terms would appear. Formally, a complex-term is an
expression with the following three-part structure.< Quanti f ier variable body>

Applying this notation to our current example, we arrive at the follow-
ing representation.9e Isa(e;Serving)^Server(e;< 9xIsa(x;Restaurant) >)^Served(e;Meat)

As was the case withλ-expressions, this notational change will only
be useful if we can provide a straightforward way to convert it into ordinary
FOPCsyntax. This can be accomplished by rewriting any predicateusing a
complex-term according to the following schema.

P(< Quanti f ier variable body>))
Quanti f ier variable body Connective P(variable)

In other words, the complex-term:

1. Is extracted from the predicate in which it appears,

2. Is replaced by the variable that represents the object in question,

3. And has its variable, quantifier, body prepended to the newexpression
through the use of an appropriate connective.

The following pair of expressions illustrates this complex-term reduc-
tion on our current example.

Server(e;< 9xIsa(x;Restaurant) >))9xIsa(x;Restaurant)^Server(e;x)
The connective that is used to attach the extracted formula to the front of the
new expression depends on the type of the quantifier being used: ^ is used
with 9, and ) is used with8.
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It will also be useful to be able to access the three components of
complex-terms. We will, therefore, extend the syntax used to refer to the
semantics of a constituent by allowing reference to its parts. For exam-
ple, if A:semis a complex-term thenA:sem:quanti f ier, A:sem:variable, and
A:sem:body retrieve the complex-term’s quantifier, variable, and body, re-
spectively.

Returning to Example 15.2, we can now address the creation ofthe
target meaning representation for the phrasea restaurant. Given the simple
syntactic structure of this noun phrase, the job of theNPsemantic attachment
is fairly straightforward.

NP ! Det Nominal f< Det:sem x Nominal:sem(x) >g
This attachment creates a complex-term consisting of a quantifier retrieved
from theDet, followed by an arbitrary variable, and then an applicationof the
λ-expression associated with theNominalto that variable. Thisλ-application
ensures that the correct variable appears within the predicate specified by the
Nominal.

The attachment for the determiner simply specifies the quantifier to be
used.

Det ! a f9g
The job of the nominal category is to create theIsa formula andλ-

expression needed for use in the noun phrase.

Nominal ! Noun fλxIsa(x;Noun:sem)g
Finally, the noun attachment simply provides the name of thecategory

being discussed.

Noun! restaurant fRestaurantg
In walking through this example, we have introduced five concrete

mechanisms that instantiate the abstract functional characterization of se-
mantic attachments that began this section.� The association of normalFOPCexpressions with lexical items.� The association of function-likeλ-expressions with lexical items.� The copying of semantic values from children to parents.� The function-like application ofλ-expressions to the semantics of one

or more children of a constituent.� The use of complex-terms to allow quantified expressions to be tem-
porarily treated as terms.
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The introduction ofλ-expressions and complex-terms was motivated
by the gap between the syntax ofFOPC and the syntax of English. These
extra-logical devices serve to bring the syntax ofFOPC closer to the syn-
tax of the language being processed thus facilitating the semantic analysis
process. Meaning representations that make use of these kinds of devices
are usually referred to asquasi-logical formsor intermediate representa- QUASI­

LOGICAL
FORMS

tions. Note, there is a subtle difference in usage between these two uses. The
term quasi-logical form is usually applied to representations that can easily

INTERMEDI­
ATE
REPRESENTA­
TIONSbe converted to a logical representation via some simple syntactic transfor-

mation. The term intermediate representation is normally used to refer to
meaning representations that serve as input to further analysis processes in
an attempt to produce deeper meaning representations.

For the purposes of this chapter, our meaning representations are quasi-
logical forms since they can easily be converted toFOPC. From a somewhat
broader perspective, they are also intermediate forms since further interpre-
tation is certainly needed to get them closer to reasonable meaning represen-
tations.

The few rules introduced in this section also serve to illustrate a prin-
ciple that guides the design of semantic attachments in the compositional
framework. In general, it is the lexical rules that provide content level pred-
icates and terms for our meaning representations. The semantic attachments
to grammar rules put these predicates and terms together in the right ways,
but do not in general introduce predicates and terms into therepresentation
being created.

Quantifier Scoping and the Translation of Complex Terms

The schema given above to translate expressions containingcomplex terms
into FOPCexpressions is, unfortunately, not unique. Consider the following
example, along with its original unscoped meaning representation.

(15.3) Every restaurant has a menu.9eIsa(e;Having)^Haver(e;< 8x Isa(x;Restaurant) >)^Had(e;< 9y Isa(y;Menu) >)
If the complex-terms filling theHaverand theHad roles are rewritten

so that the quantifier for theHaver role has the outer scope, then the result
is the following meaning representation, which corresponds to the common-
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sense interpretation of this sentence.8xRestaurant(x) )9e;y Having(e)^Haver(e;x)^ Isa(y;Menu)^Had(e;y)
On the other hand, if the terms are rewritten in the reverse order, then

the following FOPC representation results, which states that there is one
menu that all restaurants share.9y Isa(y;Menu)^8x Isa(x;Restaurant) )9eHaving(e)^Haver(e;x)^Had(e;y)

This example illustrates the problem of ambiguousquantifier scopingQUANTIFIER
SCOPING

– a single logical formula with two complex terms gives rise to two distinct
and incompatibleFOPCrepresentations. In the worst case, sentences withN
quantifiers will haveO(N!) different possible quantifier scopings.

In practice, most systems employ an ad hoc set of heuristic preference
rules that can be used to generate preferred forms in order oftheir overall
likelihood. In cases where no preference rules apply, a leftto right quantifier
ordering that mirrors the surface order of the quantifiers isused. Domain
specific knowledge can then be used to either accept a quantified formula, or
reject it and request another formula. Alshawi (1992) presents a comprehen-
sive approach to generating plausible quantifier scopings.

15.2 ATTACHMENTS FOR AFRAGMENT OF ENGLISH

This section describes a set of semantic attachments for a small fragment
of English. As in the rest of this chapter, to keep the presentation simple,
we omit the feature structures associated with these rules when they are not
needed. Remember that these features are needed to ensure that the cor-
rect rules are applied in the correct situations. Most importantly for this
discussion, they are needed to ensure that the correct verb entries are being
employed based on their subcategorization feature structures.

Sentences

For the most part, our semantic discussions have only dealt with declarative
sentences. This section expands our coverage to include theother sentence
types first introduced in Chapter 9: imperatives, Yes/No questions, and WH
questions. Let’s start by considering the following examples.

(15.4) Flight 487 serves lunch.
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(15.5) Serve lunch.

(15.6) Does Flight 207 serve lunch?

(15.7) Which flights serve lunch?

The meaning representations of these examples all contain proposi-
tions concerning the serving of lunch on flights. However, they differ with
respect to the role that these propositions are intended to serve in the settings
in which they are uttered. More specifically, the first example is intended to
convey factual information to a hearer, the second is a request for an action,
and the last two are requests for information. To capture these differences,
we will introduce a set of operators that can be applied toFOPC sentences
in the same way that belief operators were used in Chapter 14.Specifically,
the operatorsDCL, IMP, YNQ, andWHQwill be applied to theFOPCrepre-
sentations of declaratives, imperatives, yes-no questions, and wh-questions,
respectively.

Producing meaning representations that make appropriate use of these
operators requires the right set of semantic attachments for each of the pos-
sible sentence types. For declarative sentences, we can simply alter the basic
sentence rule we have been using as follows.

S ! NP VP fDCL(VP.sem(NP.sem))g
The normal interpretation for a representation headed by the DCL operator
would be as a factual statement to be added to the current knowledge-base.

Imperative sentences begin with a verb phrase and lack an overt sub-
ject. Because of the missing subject, the meaning representation for the main
verb phrase will consist of aλ-expression with an unboundλ-variable rep-
resenting this missing subject. To deal with this, we can simply supplya
subject to theλ-expression by applying a finalλ-reduction to a dummy con-
stant. TheIMP operator can then be applied to this representation as in the
following semantic attachment.

S ! VP fIMP(VP.sem(DummyYou))g
Applying this rule to Example 15.5, results in the followingrepresen-

tation.

IMP(9eServing(e)^Server(e;DummyYou)^Served(e;Lunch)
As will be discussed in Chapter 19, imperatives can be viewedas a kind of
speech act– actions that are performed by virtue of being uttered.

As discussed in Chapter 9,yes-no-questionsconsist of a sentence-
initial auxiliary verb, followed by a subject noun phrase and then a verb
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phrase. The following semantic attachment simply ignores the auxiliary, and
with the exception of theYNQoperator, constructs the same representation
that would be created for the corresponding declarative sentence.

S ! Aux NP VP fYNQ(VP.sem(NP.sem))g
The use of this rule with for Example 15.6 produces the following rep-

resentation.

YNQ(9eServing(e)^Server(e;F lt207)^Served(e;Lunch))
Yes-no-questions should be thought as asking the whether the proposi-

tional part of its meaning is true or false given the knowledge currently con-
tained in the knowledge-base. Adopting the kind of semantics described in
Chapter 14, yes-no-questions can be answered by determining if the proposi-
tion is in the knowledge-base, or if can be inferred from the knowledge-base.

Unlike yes-no-questions,wh-subject-questionsask for specific infor-
mation about the subject of the sentence rather than the sentence as a whole.
The following attachment produces a representation that consists of the op-
eratorWHQ, the variable corresponding to the subject of the sentence,and
the body of the proposition.

S ! WhWord NP VP fWHQ(NP.sem.var;VP.sem(NP.sem))g
The following representation is the result of applying thisrule to Ex-

ample 15.7.

WHQ(x;9e;x Isa(e;Serving)^Server(e;x)^Served(e;Lunch)^ Isa(x;F light))
Such questions can be answered by returning a set of assignments for the
subject variable that make the resulting proposition true with respect to the
current knowledge-base.

Finally, consider the followingwh-non-subject-question.

(15.8) How can I go from Minneapolis to Long Beach?

In examples like this, the question is not about the subject of the sentence but
rather some other argument, or some aspect of the proposition as a whole.
In this case, the representation needs to provide an indication as to what the
question is about. The following attachment provides this information by
providing the semantics of the auxiliary as an argument to theWHQoperator.

S ! WhWord Aux NP VP fWHQ WhWord.sem VP.sem(NP.sem)g
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The following representation would result from an application of this
rule to Example 15.8.

WHQ(How;9e Isa(e;Going)^Goer(e;User)^Origin(e;Minn)^Destination(e;LongBeach))
As we will discuss in Section 15.5 and Chapter 19, correctly answering this
kind of question involves a fair amount of domain specific reasoning. For ex-
ample, the correct way to answer Example 15.8 is to search forflights with
the specified departure and arrival cities. Note, however, that there is no men-
tion of flights or flying in the actual question. The question-answerer there-
fore has to apply knowledge specific to this domain to the effect that ques-
tions about going places are really questions about flights to those places.

Finally, we should make it clear that this particular attachment is only
useful for rather simple wh-questions without missing arguments or embed-
ded clauses. As discussed in Chapter 11, the presence of long-distance
dependencies in these questions requires additional mechanisms to deter-
mine exactly what is being asked about. Woods (1977) and Alshawi (1992)
provide extensive discussions of general mechanisms for handling wh-non-
subject questions. Section 15.5 presents a more ad hoc approach that is often
used in practical systems.

Noun Phrases

As we have already seen, the meaning representations for noun phrases can
be either normalFOPC terms or complex-terms. The following sections de-
tail the semantic attachments needed to produce meaning representations for
some of the most frequent kinds of English noun phrases. Unfortunately, as
we will see, the syntax of English noun phrases provides surprisingly little
insight into their meaning. It is often the case that the bestwe can do is
provide a rather vague intermediate level of meaning representation that can
serve as input to further interpretation processes.

Compound Nominals

Compound nominals, also known as noun-noun sequences, consist of simple
sequences of nouns, as in the following examples.

(15.9) Flight schedule

(15.10) Summer flight schedule

As noted in Chapter 9, the syntactic structure of this construction can be
captured by the regular expressionNoun�, or by the following context-free
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grammar rules.

Nominal ! Noun

Nominal ! Noun Nominal

In these constructions, the final noun in the sequence is the head of the
phrase and denotes an object that is semantically related insome unspeci-
fied way to the other nouns that precede it in the sequence. In general, an
extremely wide range of common-sense relations can be denoted by this con-
struction. Discerning the exact nature of these relationships is well beyond
the scope of the kind of superficial semantic analysis presented in this chap-
ter. The attachment in the following rule builds up a vague representation
that simply notes the existence of a semantic relation between the head noun
and the modifying nouns, by incrementally noting such a relation between
the head noun and each noun to its left.

Nominal! Noun Nominalfλx Nominal.sem(x)̂ NN(Noun.sem, x)g
The relationNN is used to specify that a relation holds between the

modifying elements of a compound nominal and the headNoun. In the ex-
amples given above, this leads to the following meaning representations.

λxIsa(x;Schedule)^NN(x;Flight)
λxIsa(x;Schedule)^NN(x;Flight)^NN(x;Summer)
Note that this representation correctly instantiates a term representing

aSchedule, while avoiding the creation of terms representing either aFlight
or Summer.

Genitive Noun Phrases

Recall from Chapter 9 that genitive noun phrases make use of complex deter-
miners that consist of noun phrases with possessive markers, as inAtlanta’s
airport andMaharani’s menu. It is quite tempting to represent the relation
between these words as an abstract kind of possession. A little introspec-
tion, however, reveals that the relation between a city and its airport has little
in common with a restaurant and its menu. Therefore, as with compound
nominals, it turns out to be best to simply state an abstract semantic relation
between the various constituents.

NP! ComplexDet Nominalf< 9xNominal:sem(x)^GN(x;ComplexDet:sem) >g
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ComplexDet! NP ’s fNP.semg
Applying these rules toAtlanta’s airport results in the following com-

plex term.< 9xIsa(x;Airport)^GN(x;Atlanta) >
Subsequent semantic interpretation would have to determine that the relation
denoted by the relationGN is actually a location.

Adjective Phrases

English adjectives can be split into two major categories: pre-nominal and
predicate. These categories are exemplified by the following BERP exam-
ples.

(15.11) I don’t mind a cheap restaurant.

(15.12) This restaurant is cheap.

For the pre-nominal case, an obviousand often incorrectproposal for
the semantic attachment is illustrated in the following rules.

Nominal! Adj Nominalfλx Nominal:sem(x)^ Isa(x;Ad j:sem)g
Adj! cheap fCheapg

This solution modifies the semantics of the nominal by applying the predi-
cate provided by the adjective to the variable representingthe nominal. For
our cheap restaurant example, this yields the following fairly reasonable rep-
resentation.

λx Isa(x;Restaurant)^ Isa(x;Cheap)
This is an example of what is known asintersective semanticssince INTERSEC­

TIVE
SEMANTICS

the meaning of the phrase can be thought of as the intersection of the cate-
gory stipulated by the nominal and the category stipulated by the adjective.
In this case, this amounts to the intersection of the category of cheap things
with the category of restaurants.

Unfortunately, this solution often does the wrong thing. For example,
consider the following meaning representations for the phrasessmall ele-
phant, former friend, andfake gun.

λx Isa(x;Elephant)^ Isa(x;Small)
λx Isa(x;Friend)^ Isa(x;Former)
λx Isa(x;Gun)^ Isa(x;Fake)
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Each of these representations is peculiar in some way. The first one states
that this particular elephant is a member of the general category of small
things, which is probably not true. The second example is strange in two
ways: it asserts that the person in question is a friend, which is false, and it
makes use of a fairly unreasonable category offormer things. Similarly, the
third example asserts that the object in question is a gun despite the fact that
fakemeans it is not one.

As with compound nominals, there is no clever solution to these prob-
lems within the bounds of our current compositional framework. Therefore,
the best approach is to simply note the status of a specific kind of modifi-
cation relation and assume that some further procedure withaccess to addi-
tional relevant knowledge can replace this vague relation with an appropriate
representation (Alshawi, 1992).

Nominal! Adj Nominalfλx Nominal:sem(x)^AM(x;Ad j:sem)g
Applying this rule toa cheap restaurantresults in the following formula.9x Isa(x;Restaurant)^AM(x;Cheap)

Note that even this watered-down proposal produces representations
that are logically incorrect for thefakeandformerexamples. In both cases,
it asserts that the objects in question are in fact members oftheir stated cate-
gories. In general, the solution to this problem has to be based on the specific
semantics of the adjectives and nouns in question. For example, the seman-
tics of former has to involve some form of temporal reasoning, whilefake
requires the ability to reason about the nature of concepts and categories.

Verb Phrases

The general schema for computing the semantics of verb phrases relies on
the notion of function application. In most cases, theλ-expression attached
to the verb is simply applied to the semantic attachments of the verb’s ar-
guments. There are, however, a number of situations that force us to depart
somewhat from this general pattern.

Infinitive Verb Phrases

A fair number of English verbs take some form of verb phrase asone of their
arguments. This complicates the normal verb phrase semantic schema since
these argument verb phrases interact with the other other arguments of the
head verb in ways that are not completely obvious.
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I told Harry to go to Maharani

Figure 15.4 Parse tree forI told Harry to go to Maharani.

Consider the following example.

(15.13) I told Harry to go to Maharani.

The meaning representation for this example should be something like the
the following.9e; f ;x Isa(e;Telling)^ Isa( f ;Going)^Teller(e;Speaker)^Tellee(e;Harry)^ToldT hing(e; f )^Goer( f ;Harry)^Destination( f ;x)

There are two interesting things to note about this meaning representa-
tion: the first is that it consists of two events, and the second is that one of the
participants,Harry, plays a role in both of the two events. The difficulty in
creating this complex representation falls to the verb phrase dominating the
verbtell which will something like the following as its semantic attachment.

λx;y λz9e Isa(e;Telling)^Teller(e;z)^Tellee(e;x)^ToldT hing(e;y)
Semantically, we can interpret this subcategorization frame for Tell as pro-
viding three semantic roles: a person doing the telling, a recipient of the
telling, and the proposition being conveyed.

The difficult part of this example involves getting the meaning repre-
sentation for the main verb phrase correct. As shown in Figure 15.2,Harry
plays the role of both theTelleeof the Telling event and theGoer of the
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Goingevent. However,Harry is not available when theGoingevent is cre-
ated within the infinitive verb phrase.

Although there are several possible solutions to this problem, it is usu-
ally best to stick with a uniform approach to these problems.Therefore, we
will start by simply applying the semantics of the verb to thesemantics of
the other arguments of the verb as follows.

VP ! Verb NP VPto fVerb.sem(NP.sem, VPto.sem)g
Since theto in the infinitive verb phrase construction does not con-

tribute to its meaning, we simply copy the meaning of the child verb phrase
up to the infinitive verb phrase. Recall, that we are relying on the unseen
feature structures to ensure that only the correct verb phrases can with this
construction.

VPto ! to VP fVP.semg
In this solution, the verb’s semantic attachment has two tasks: incorpo-

rating theNP.sem, theGoer, into theVPto.sem, and incorporating theGoing
event as theToldThingof theTelling. The following attachment performs
both tasks.

Verb ! tellfλx;y
λz9e;y:variable Isa(e;Telling)^Teller(e;z)^Tellee(e;x)^ToldThing(e;y:variable)^y(x)

In this approach, theλ-variablex plays the role of theTelleeof the telling
and the argument to the semantics of the infinitive, which is now contained as
aλ-expression in the variabley. The expressiony(x) represents aλ-reduction
that insertsHarry into theGoingevent as theGoer. The notationy:variable,
is analogous to the notation used for complex-term variables, and gives us
access to the event variable representing theGoing event within the infini-
tive’s meaning representation.

Note that this approach plays fast and loose with the definition of λ-
reduction, in that it allowsλ-expressions to be passed as arguments to other
λ-expressions, when technically onlyFOPC terms can serve that role. This
technique is a convenience similar to the use of complex terms in that it al-
lows us to temporarily treat complex expressions as terms during the creation
of meaning representations.
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Prepositional Phrases

At a fairly abstract level, prepositional phrases serve twodistinct functions:
they assert binary relations between their heads and the constituents to which
they are attached, and they signal arguments to constituents that have an ar-
gument structure. These two functions argue for two distinct types of prepo-
sitional phrases that differ based on their semantic attachments. We will
consider three places in the grammar where prepositional phrases serve these
roles: modifiers of noun phrases, modifiers of verb phrases, and arguments
to verb phrases.

Nominal Modifier Prepositional Phrases

Modifier prepositional phrases denote a binary relation between the concept
being modified, which is external to the prepositional phrase, and the head of
the prepositional phrase. Consider the following example and its associated
meaning representation.

(1) A restaurant on Pearl9x Isa(x;Restaurant)^On(x;Pearl)
The relevant grammar rules that govern this example are the following.

NP! Det Nominal

Nominal! Nominal PP

PP! P NP

Proceeding in a bottom-up fashion, the semantic attachmentfor this
kind of relational preposition should provide a two-place predicate with its
arguments distributed over twoλ-expressions, as in the following.

P ! on fλyλx On(x;y)g
With this kind of arrangement, the first argument to the predicate is provided
by the head of prepositional phrase and the second is provided by the con-
stituent that the prepositional phrase is ultimately attached to. The following
semantic attachment provides the first part.

PP ! P NP fP.sem(NP.sem)g
This λ-application results in a newλ-expression where the remaining argu-
ment is the innerλ-variable.

This remaining argument can be incorporated using the following nom-
inal construction.

Nominal ! Nominal PP fλzNominal.sem(z)̂ PP.sem(z)g
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Verb Phrase Modifier Prepositional Phrases

The general approach to modifying verb phrases is similar tothat of modi-
fying nominals. The differences lie in the details of the modification in the
verb phrase rule; the attachments for the preposition and prepositional phrase
rules are unchanged. Let’s consider the phraseate dinner in a hurrywhich
is governed by the following verb phrase rule.

VP ! VP PP

The meaning representation of the verb phrase constituent in this con-
struction,ate dinner, is aλ-expression where theλ variable represents the as
yet unseen subject.

λx9e Isa(e;Eating)^Eater(e;x)^Eaten(e;Dinner)
The representation of the prepositional phrase is also aλ-expression

where theλ variable is the second argument in thePPsemantics.

λx In(x;< 9h Hurry(h)>)
The correct representation for the modified verb phrase should contain

the conjunction of these two representations with theEatingevent variable
filling the first argument slot of theIn expression. In addition, this modified
representation must remain aλ-expression with the unboundEatervariable
as the newλ-variable. The following attachment expression fulfills all of
these requirements.

VP! VP PP fλyVP.sem(y)̂ PP.sem(VP.sem.variable)g
There are two aspects of this attachment that require some elabora-

tion. The first involves the application of the constituent verb phrases’λ-
expression to the variabley. Binding the lowerλ-expression’s variable to
a new variable allows us tolift the lower variable to the level of the newly
createdλ-expression. The result of this technique is a newλ-expression with
a variable that, in effect, plays the same role as the original variable in the
lower expression. In this case, this allows aλ-expression to be modified
during the analysis process before the argument to the expression is actually
available.

The second new aspect in this attachment involves theVP:sem:variable
notation. This notation is used to access the event-variable representing the
underlying meaning of the verb phrase, in this case,e. This is analogous
to the notation used to provide access the various parts of complex-terms
introduced earlier.
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Applying this attachment to the current example yields the following
representation, which is suitable for combination with a subsequent subject
noun phrase.

λy9e Isa(e;Eating)^Eater(e;y)^Eaten(e;Dinner)^In(e;< 9hHurry(h)>)
Verb Argument Prepositional Phrases

The prepositional phrases is this category serve to signal the role an argument
plays in some larger event structure. As such, the preposition itself does not
actually modify the meaning of the noun phrase. Consider thefollowing
example of role signaling prepositional phrases.

(15.14) I need to go from Boston to Dallas.

In examples like this, the arguments togo are expressed as a prepositional
phrases. However, the meaning representations of these phrases should con-
sist solely of the unaltered representation of their head nouns. To handle
this, argument prepositional phrases are treated in the same way that non-
branching grammatical rules are; the semantic attachment of the noun phrase
is copied unchanged to the semantics of the larger phrase.

PP ! P NP fNP.semg
The verb phrase can then assign this meaning representationto the appro-
priate event role. A more complete account of how these argument bear-
ing prepositional phrases map to underlying event roles will be presented in
Chapter 16.

15.3 INTEGRATING SEMANTIC ANALYSIS INTO THE

EARLEY PARSER

In Section 15.1, we suggested a simple pipeline architecture for a semantic
analyzer where the results of a complete syntactic parse arepassed to a se-
mantic analyzer. The motivation for this notion stems from the fact that the
compositional approach requires the syntactic parse before it can proceed. It
is, however, also possible to perform semantic analysis in parallel with syn-
tactic processing. This is possible because in our compositional framework,
the meaning representation for a constituent can be createdas soon as all of
its constituent parts are present. This section describes just such an approach
to integrating semantic analysis into the Earley parser from Chapter 10.
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The integration of semantic analysis into an Earley parser is straight-
forward and follows precisely the same lines as the integration of unification
into the algorithm given in Chapter 11. Three modifications are required to
the original algorithm:� The rules of the grammar are given a new field to contain their semantic

attachments.� The states in the chart are given a new field to hold the meaningrepre-
sentation of the constituent.� The ENQUEUE function is altered so that when a complete state is en-
tered into the chart its semantics are computed and stored inthe state’s
semantic field.

procedure ENQUEUE(state, chart-entry)
if INCOMPLETE?(state) then

if stateis not already inchart-entrythen
PUSH(state, chart-entry)

else ifUNIFY-STATE(state) succeedsthen
if APPLY-SEMANTICS(state) succeedsthen

if stateis not already inchart-entrythen
PUSH(state, chart-entry)

procedure APPLY-SEMANTICS(state)
meaning-rep APPLY(state.semantic-attachment,state)
if meaning-repdoes not equalfailure then

state.meaning-rep meaning-rep

Figure 15.5 The ENQUEUE function modified to handle semantics. If
the state is complete and unification succeeds then ENQUEUE calls APPLY-
SEMANTICS to compute and store the meaning representation of completed
states.

Figure 15.5 shows the ENQUEUE and functions modified to create
meaning representations. When ENQUEUE is passed a complete state that
can successfully unify its unification constraints it callsAPPLY-SEMANTICS

to compute and store the meaning representation for this state. Note the im-
portance of performing feature-structure unification prior to semantic analy-
sis. This ensures that semantic analysis will be performed only on valid trees
and that features needed for semantic analysis will be present.
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The primary advantage of this integrated approach over the pipeline
approach lies in the fact that APPLY-SEMANTICS can fail in a manner similar
to the way that unification can fail. If a semantic ill-formedness is found in
the meaning representation being created, the corresponding state can be
blocked from entering the chart. In this way, semantic considerations can be
brought to bear during syntactic processing. Chapter 16 describes in some
detail the various ways that this notion of ill-formedness can be realized.

Unfortunately, this also illustrates one of the primary disadvantages of
integrating semantics directly into the parser — considerable effort may be
spent on the semantic analysis oforphanconstituents that do not in the end
contribute to a successful parse. The question of whether the gains made by
bringing semantics to bear early in the process outweigh thecosts involved
in performing extraneous semantic processing can only be answered on a
case by case basis.

15.4 IDIOMS AND COMPOSITIONALITY

Ce corps qui s’appelait et qui s’appelle encore le saint empire
romain n’était en aucune manière ni saint, ni romain, ni empire.

This body, which called itself and still calls itself the Holy Roman
Empire, was neither Holy, nor Roman, nor an Empire.

– Voltaire3, 1756.

As innocuous as it seems, the principle of compositionalityruns into trouble
fairly quickly when real language is examined. There are many cases where
the meaning of a constituent is not based on the meaning of itsparts, at least
not in the straightforward compositional sense. Consider the following WSJ
examples.

(15.15) Coupons are just the tip of the iceberg.

(15.16) The SEC’s allegations are only the tip of the iceberg.

(15.17) Coronary bypass surgery, hip replacement and intensive-care units
are but the tip of the iceberg.

The phrasethe tip of the icebergin each of these examples clearly doesn’t
have much to do with tips or icebergs. Instead, it roughly means something

3 Essai sur les moeurs et les esprit des nations.Translation by Y. Sills, as quoted in (Sills
and Merton, 1991).
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like the beginning. The most straightforward way to handle idiomatic con-
structions like these is to introduce new grammar rules specifically designed
to handle them. These idiomatic rules mix lexical items withgrammatical
constituents, and introduce semantic content that is not derived from any of
its parts.

Consider the following rule as an example of this approach.

NP ! the tip o f the icebergfBeginningg
The lower case items on the right-hand side of this rule are intended

to represent precisely words in the input. Although, the constantBeginning
should not be taken too seriously as a meaning representation for this idiom,
it does illustrate the idea that the meaning of this idiom is not based on
the meaning of any of its parts. Note that an Earley-style analyzer with
this rule will now produce two parses when this phrase is encountered: one
representing the idiom and one representing the compositional meaning.

Not surprisingly, as with the rest of the grammar, it may takea few tries
to get to these rules right. Consider the followingicebergexamples from the
WSJ corpus.

(15.18) And that’s but the tip of Mrs. Ford’s iceberg.
(15.19) These comments describe only the tip of a 1,000-pageiceberg.
(15.20) The 10 employees represent the merest tip of the iceberg.

The rule given above is clearly not general enough to handle these cases.
These examples indicate that there is a vestigial syntacticstructure to this
phrase that at permits some variation in the determiners used and also per-
mits some adjectival modification of both theicebergand thetip. A more
promising rule would be something along the following lines.

NP ! TipNP o f IcebergNPfBeginningg
Here the categoriesTipNP and IcebergNPcan be given an internal

nominal-like structure that permits some adjectival modification and some
variation in the determiners, while still restricting the heads of these noun
phrases to the lexical itemstip andiceberg. Note that this syntactic solution
ignores the thorny issue that the modifiersmereand1000-pageseem to in-
dicate that both thetip andicebergmay in fact play some compositional role
in the meaning of the idiom. We will return to this topic in Chapter 16, when
we take up the issue of metaphor.

To summarize, handling idioms requires at least the following changes
to the general compositional framework.



Section 15.5. Robust Semantic Analysis 571� Allow the mixing of lexical items with traditional grammatical con-
stituents.� Allow the creation of additional idiom-specific constituents needed to
handle the correct range of productivity of the idiom.� Permit semantic attachments that introduce logical terms and predi-
cates that are not related to any of the constituents of the rule.

This discussion is obviously only the tip of an enormous iceberg. Id-
ioms are far more frequent and far more productive than is generally rec-
ognized and pose serious difficulties for many applications, including as we
will see in Chapter 21, machine translation.

15.5 ROBUST SEMANTIC ANALYSIS

As we noted earlier, when syntax-driven semantic analysis is is applied in
practice, certain compromises have to be made to facilitatesystem develop-
ment and efficiency of operation. The following sections describe the two
primary ways of instantiating a syntax-driven approach in practical systems.

Semantic Grammars

When we first introduced Frege’s principle of compositionality in Section
15.1, we noted that the parts referred to in that principle are the constituents
provided by a syntactic grammar. Unfortunately, the syntactic structures
provided by such grammars are often not particularly well-suited for the
task of compositional semantic analysis. This is not particularly surpris-
ing since capturing elegant syntactic generalizations andavoiding overgen-
eration carry considerably more weight in the design of grammars than se-
mantic sensibility does. Thismismatchbetween the structures provided by
traditional grammars and those needed for compositional semantic analysis
typically manifests itself in the following three ways.� Key semantic elements are often widely distributed across parse trees,

thus complicating the composition of the required meaning represen-
tation.� Parse trees often contain many syntactically motivated constituents that
play essentially no role in semantic processing.� The general nature of many syntactic constituents results in semantic
attachments that create nearly vacuous meaning representations.
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I want to go to eat some Italian food today

Figure 15.6 Syntactic parse for Example 15.21. This parse demonstrates
the potentially wide distribution of content elements throughout a parse tree.

As an example of the first two problems, consider the parse tree shown
in Figure 15.6 for the followingBERPexample.

(15.21) I want to go to eat some Italian food today.

The branching structure of this tree distributes the key components of the
meaning representation widely throughout the tree. At the same time, most
of the nodes in the tree contribute almost nothing to the meaning of this
sentence. This structure requires threelambda-expressions and a complex
term to bring the few contentful elements together at the topof the tree.

The third problem arises from the need to have uniform semantic at-
tachments in the compositional rule-to-rule approach. This requirement of-
ten results in constituents that are at the right level of generality for the syn-
tax, but too high a level for semantic purposes. A good example of this is
the case of nominal compounds and adjective phrases, where the semantic
attachments are so general as to be nearly meaningless. Consider, for exam-
ple, the rule governing the phraseItalian food in our current example.

Nominal! Adj Nominalfλx Nominal.sem(x)̂ AM(x, Adj.sem)g
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Applying this attachment results in the following meaning representation.9x Isa(x;Food)^AM(x; Italian)
All nominals that fit this pattern receive the same vague interpretation that
roughly indicates that the nominal is modified by the adjective. This is a far
cry from what know that expressions likeItalian foodandItalian restaurant
mean; they denote food prepared in a particular way, and restaurants that
serve food prepared that way. Unfortunately, there is no wayto get this very
general rule to produce such an interpretation.

Both of these problems can be overcome through the use ofsemantic
grammars, which were originally developed for text-based dialog systems SEMANTIC

GRAMMARS

in the domains of question-answering and intelligent tutoring (Brown and
Burton, 1975). Semantic grammars that are more directly oriented towards
serving the needs of a compositional analysis. In this approach, the rules
and constituents of the grammar are designed to correspond directly to enti-
ties and relations from the domain being discussed. More specifically, such
grammars are constructed so that key semantic components can occur to-
gether within single rules, and rules are made no more general than is needed
to achieve sensible semantic analyses.

Let’s consider how these two general strategies might be applied in the
BERP domain. Consider the following candidate rule for the particular kind
of information request illustrated in Example 15.21.

InfoRequest! User want to go to eat FoodType TimeExpr

As with the rules introduced for idioms, rules of this type freely mix non-
terminals and terminals on their right-hand side. In this case,User, FoodType,
andTimeExprrepresent semantically motivated non-terminal categories for
this domain. Given this, the semantic attachment for this rule would have all
the information that it needs to compose the meaning representation for re-
quests of this type from the immediate constituents of the rule. In particular,
there is no need forλ-expressions, since this flat rule elevates all the relevant
arguments to the top of the tree.

Now consider the following rule that could be used to parse the the
phraseItalian food in our example.

FoodType! Nationality FoodType

The specific nature of this rule permits a far more useful semantic attachment
than is possible with the generic nominal rule given above. More specifically,
it can create a representation that states that the food specified by the con-
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stituentFoodTypeis to prepared in the style associated with theNationality
constituent.

One of the key motivations for the use of semantic grammars inthese
domains was the need to deal with various kinds of anaphor andellipsis. Se-
mantic grammars can help with these phenomena since by theirnature they
enable a certain amount ofprediction. More specifically, they allow parsers
to make highly specific predictions about upcoming input, based on the cat-
egories being actively predicted by the parser. Given this ability, anaphoric
references and missing elements can be associated with specific semantic
categories.

As an example of how this works consider the followingATIS exam-
ples.

(15.22) When does flight 573 arrive in Atlanta?

(15.23) When does it arrive in Dallas?

Sentences like these can be analyzed with a rule like the following, which
makes use of the domain specific non-terminalsFlight andCity.

InfoRequest! when does Flight arrive in City

A rule such as this gives far more information about the likely referent
of the it, than a purely syntactic rule that would simply restrict it to anything
expressible as a noun phrase. Operationally, such a system might search
back in the dialog for places where theFlight constituent has been recently
used to find candidate references for this pronoun. Chapter 18 discusses the
topic of anaphor resolution in more detail.

Not surprisingly, there are a number of drawbacks to basing asystem
on a semantic grammar. The primary drawback arises from an almost com-
plete lack ofreusein the approach. Combining the syntax and semantics ofREUSE

a domain into a single representation makes the resulting grammar specific
to that domain. In contrast, systems that keep their syntax and semantics
separate can, in principle, reuse their grammars in new domains. A second
lack of reuse arises as a consequence of eschewing syntacticgeneralizations
in the grammar. This results in an unavoidable growth in the size of the
grammar for a single domain. As an example of this, consider that whereas
our original noun phrase rule was sufficient to cover bothItalian restaurant
as well asItalian food, we now need two separate rules for these phrases.
In fact, inspection of theBERP corpus reveals that we would also need also
need additional rules forvegetarian restaurant, California restaurant, and
expensive restaurant.
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We should also note that semantic grammars are susceptible to a kind
of semantic overgeneration. As an example of this, considerthe phrase
Canadian restaurant. It matches the rule given above for ethnic restaurants,
and would result in a meaning representation that specifies arestaurant that
serves food prepared in the Canadian style. Unfortunately,this is almost
certainly an incorrect interpretation of this phrase; noneof the occurrences
of this phrase in the WSJ corpus had this meaning, all referring instead to
restaurants located within Canada. Dialog systems that usesemantic gram-
mars rely on the rarity of such uses in restricted domains.

Finally, we should note that semantic grammars probably should have
been called something else, since in practice the grammars themselves are
formally the same as any other grammar formalism we have discussed in
this book. Correspondingly, there are no special algorithms for syntactic
or semantic analysis specific to semantic grammars; they canuse whatever
algorithms are appropriate for the grammar formalism beingemployed, such
as Earley, or any other context-free parsing algorithm.

Information Extraction

In language processing tasks such question-answering, coming to a reason-
able understanding of each input sentence is vital since giving a user a wrong
answer can have serious consequences. For these tasks, the rule-to-rule ap-
proach with an eye towards semantics is a good way to build a complete
interpretation of an input sentence.

However, other tasks, like extracting information about joint ventures
from business news, understanding weather reports, or summarizing simple
information about what happened today on the stock market from a radio
report, do not necessarily require this kind of detailed understanding. Such
information extraction tasks are characterized by two properties: (1) theINFORMATION

EXTRACTION

desired knowledge can be described by a relatively simple and fixed tem-
plate, or frame, with slots that need to be filled in with material from the TEMPLATE

text, and (2) only a small part of the information in the text is relevant for
filling in this frame; the rest can be ignored.

For example, one of the tasks used in the fifthMessage Understand-
ing Conference(MUC-5) in 1993 (Sundheim, 1993), a U.S. Government-
organized information extraction conference, was to extract information about
international joint ventures from business news. Here are the first two sen-
tences of a sample article from (Grishman and Sundheim, 1995):

Bridgestone Sports Co. said Friday it has set up a joint venture in Tai-
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METHODOLOGY BOX: EVALUATING INFORMATION EX-
TRACTION SYSTEMS

The information extraction paradigm has much in common with
the field of information retrieval and has adapted several standard
evaluation metrics from information retrieval includingprecision,
recall, fallout , and a combined metric called anF-measure.

Recall is a measure of how much relevant information the sys-
tem has extracted from the text; it is thus a measure of the coverage
of the system. Recall is defined as follows:

Recall:= # of correct answers given by system
total # of possible correct answers in the text

Precision is a measure of how much of the information that the sys-
tem returned is actually correct, and is also known asaccuracy. Pre-
cision is defined as follows:

Precision:= # of correct answers given by system
# of answers given by system

Fallout is a measure of the systems ability to ignore spurious infor-
mation in the text. It is defined as follows:

Fallout: = # of incorrect answers given by system
# of spurious facts in the text

Note that recall and precision are antagonistic to one another
since a conservative system that strives for perfection in terms of
precision will invariably lower its recall score. Similarly, a system
that strives for coverage will get more things wrong, thus lowering
its precision score. This situation has led to the use of a combined
measure called theF-measurethat balances recall and precision by
using a parameterβ. The F-measure is defined as follows:

F = (β2+1)PR
β2P+R

Whenβ is one, precision and recall are given equal weight. Whenβ
is greater than one, precision is favored, and whenβ is less than one,
recall is favored.
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TIE-UP-1:
Relationship: TIE-UP
Entities: “Bridgestone Sports Co.”

“a local concern”
“a Japanese trading house”

Joint Venture Company “Bridgestone Sports Taiwan Co.”
Activity ACTIVITY-1
Amount NT$20000000

ACTIVITY-1 :
Company “Bridgestone Sports Taiwan Co.”
Product “iron and “metal wood” clubs”
Start Date DURING: January 1990

Figure 15.7 The templates produced by theFASTUS (Hobbset al., 1997)
information extraction engine given the input text on page 575.

wan with a local concern and a Japanese trading house to produce golf
clubs to be shipped to Japan.

The joint venture, Bridgestone Sports Taiwan Co., capitalized at 20
million new Taiwan dollars, will start production in January 1990 with
production of 20,000 iron and “metal wood” clubs a month.

The output of an information extraction system can be a single template
with a certain number of slots filled in, or a more complex hierarchically re-
lated set of objects. The MUC-5 task specified this latter more complex out-
put, requiring systems to produce hierarchically linked templates describing
the participants in the joint venture, the resulting company, and its intended
activity, ownership and capitalization. Figure 15.7 showsthe resulting struc-
ture produced by theFASTUS system (Hobbset al., 1997).

Many information extraction systems are built aroundcascadesof finite- CASCADES

state automata. TheFASTUS system, for example, produces the template
given above, based on a cascade in which each level of linguistic process-
ing extracts some information from the text, which is passedon to the next
higher level, as shown in Figure 15.8

Many systems base all or most of these levels on finite-automata, al-
though in practice most complete systems are not technically finite-state,
either because the individual automata are augmented with feature registers
(as inFASTUS), or because they are used only as preprocessing steps for full
parsers (e.g. Gaizauskaset al., 1995; Weischedel, 1995) indexGaizauskas,
R.), or are combined with other components based on decision-trees (Fisher
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No. Step Description
1 Tokens: Transfer an input stream of characters

into a token sequence.
2 Complex Words: Recognize multi-word phrases, numbers,

and proper names.
3 Basic phrases: Segment sentences into noun groups,

verb groups, and particles.
4 Complex phrases: Identify complex noun groups and com-

plex verb groups.
5 Semantic Patterns: Identify semantic entities and events and

insert into templates.
6 Merging: Merge references to the same entity or

event from different parts of the text.

Figure 15.8 Levels of processing inFASTUS(Hobbset al., 1997). Each
level extracts a specific type of information which is then passed on to the next
higher level.

et al., 1995).
Let’s sketch theFASTUS implementation of each of these levels, fol-

lowing Hobbset al. (1997) and Appeltet al. (1995). After tokenization, the
second level recognizes multiwords likeset up, andjoint venture, and names
like Bridgestone Sports Co.. The name recognizer is a transducer, composed
of a large set of specific mappings designed to handle locations, personal
names, and names of organizations, companies, unions, performing groups,
etc. The following are typical rules for modeling names of performing or-
ganizations likeSan Francisco Symphony Orchestraand Canadian Opera
Company. While the rules are written using a context-free syntax, there is
no recursion and therefore they can be automatically compiled into finite-
state transducers:

Performer-Org ! (pre-location) Performer-Noun+ Perf-Org-Suffix
pre-location ! locnamej nationality
locname ! city j region
Perf-Org-Suffix ! orchestra, company
Performer-Noun! symphony, opera
nationality ! Canadian, American, Mexican
city ! San Francisco, London

The second stage also might transduce sequences likeforty two into
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the appropriate numeric value (recall the discussion of this problem on page
124 in Chapter 5).

The third FASTUS stage produces a series ofbasic phrases, such as BASIC
PHRASES

noun groups, verb groups, etc., using finite-state rules of the sort shown on
page 386. The output of theFASTUS basic phrase identifier is shown in Fig-
ure 15.9; note the use of some domain-specific basic phrases like Company
andLocation.

Company Bridgestone Sports Co.
Verb Group said
Noun Group Friday
Noun Group it
Verb Group had set up
Noun Group a joint venture
Preposition in
Location Taiwan
Preposition with
Noun Group a local concern
Conjunction and
Noun Group a Japanese trading house
Verb Group to produce
Noun Group golf clubs
Verb Group to be shipped
Preposition to
Location Japan

Figure 15.9 The output of Stage 2 of the FASTUS basic-phrase extractor,
which uses finite-state rules of the sort described by Appeltand Israel (1997)
and shown on page 386.

Recall that Chapter 10 described how these basic phrases canbe com-
bined into complex noun groups and verb groups. This is accomplished in
Stage 4 ofFASTUS, by dealing with conjunction and with the attachment of
measure phrases as in the following.

20,000 iron and ”metal wood” clubs a month,

and preposition phrases:

production of 20,000 iron and ”metal wood” clubs a month,

The output of Stage 4 is a list of complex noun groups and verb groups.
Stage 5 takes this list, ignoring all input that has not been chunked into a
complex group, recognizes entities and events in the complex groups, and
inserts the recognized objects into the proper templates. The recognition of
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(1) Relationship: TIE-UP
Entities: “Bridgestone Sports Co.”

“a local concern”
“a Japanese trading house”

(2) Activity PRODUCTION
Product “golf clubs”

(3) Relationship: TIE-UP
Joint Venture Company “Bridgestone Sports Taiwan Co.”
Amount NT$20000000

(4) Activity PRODUCTION
Company “Bridgestone Sports Taiwan Co.”
Start Date DURING: January 1990

(5) Activity PRODUCTION
Product “iron and “metal wood” clubs”

Figure 15.10 The five partial templates produced by Stage 5 of theFASTUS

system. These templates will be merged by the Stage 6 Mergingalgorithm to
produce the final template shown in Figure 15.7 on page 577.

entities and events is done by hand-coded finite-state automata whose tran-
sitions are based on particular complex-phrase types annotated by particular
head words or particular features likecompany, currency, or date.

For example, the first sentence of the news story above realizes the
semantic patterns based on the following two regular expressions (where
NG indicates Noun-Group and VG Verb-Group).� NG(Company/ies) VG(Set-up) NG(Joint-Venture) with NG(Company/ies)� VG(Produce) NG(Product)

The second sentence realizes the second pattern above as well as the follow-
ing two patterns:� NG(Company) VG-Passive(Capitalized) at NG(Currency)� NG(Company) VG(Start) NG(Activity) in/on NG(Date)

The result of processing these two sentences is the set of fivedraft tem-
plates shown in Figure 15.10. These five templates must then be merged into
the single hierarchical structure shown in Figure 15.7. Themerging algo-
rithm decides whether two activity or relationship structures are sufficiently
consistent that they might be describing the same events, and merges them
if so. Since the merging algorithm must perform reference resolution (de-
ciding when it is the case that two descriptions refer to the same entity), we
defer description of this level to Chapter 18.
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Domain-specific templates of the kind we have described in this sec-
tion have also been used in many limited-domain semantic understanding
and discourse comprehension tasks, including managing mixed dialog in
question-answering systems (Bobrowet al., 1977).

15.6 SUMMARY

This chapter explores the notion of syntax-driven semanticanalysis. Among
the highlights of this chapter are the following topics.� Semantic analysis is the process whereby meaning representations are

created and assigned to linguistic inputs.� Semantic analyzers that make use of static knowledge from the lexicon
and grammar can create context independent literal, or conventional,
meanings.� ThePrinciple of Compositionalitystates that the meaning of a sentence
can be composed from the meanings of its parts.� In syntax-driven semantic analysis, the parts are the syntactic con-
stituents on an input.� Compositional creation ofFOPC formulas is possible with a few nota-
tional extensions includingλ-expressions and complex terms.� Natural language quantifiers introduce a kind of ambiguity that is dif-
ficult to handle compositionally. Complex terms can be used to com-
pactly encode this ambiguity.� Idiomatic language defies the principle of compositionality but can eas-
ily be handled by adapting the techniques used to design grammar rules
and their semantic attachments.� Practical semantic analysis systems adapt the strictly compositional
approach in a number of ways.

– Dialog systems based on semantic grammars rely on grammars
that have been written to serve the needs of semantics ratherthan
syntactic generality.

– Information extraction systems based on cascaded automatacan
extract pertinent information while ignoring irrelevant parts of the
input.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

As noted earlier, the principle of compositionality is traditionally attributed
to Frege; Janssen (1997) discusses this attribution. Usingthe categorial
grammar framework described in Chapter 12, Montague (1973)demonstrated
that a compositional approach could be systematically applied to an inter-
esting fragment of natural language. The rule-to-rule hypothesis was first
articulated by (Bach, 1976). On the computational side of things, Woods’s
LUNAR system (Woods, 1977) was based on a pipelined syntax-first com-
positional analysis. Schubert and Pelletier (1982) developed an incremental
rule-to-rule system based on Gazdar’s GPSG approach (Gazdar, 1981, 1982;
Gazdaret al., 1985). Main and Benson (1983) extended Montague’s ap-
proach to the domain of question-answering.

In one of the all too frequent cases of parallel development,researchers
in programming languages developed essentially identicalcompositional tech-
niques to aid in the design of compilers. Specifically, Knuth(1968) intro-
duced the notion of attribute grammars that associate semantic structures
with syntactic structures in a one to one correspondence. Asa consequence,
the style of semantic attachments used in this chapter will be familiar to users
of the YACC-style (Johnson and Lesk, 1978) compiler tools.

Semantic Grammars are due to Burton (Brown and Burton, 1975).
Similar notions developed around the same time included Pragmatic Gram-
mars (Woods, 1977), and Performance Grammars (Robinson, 1975). All
centered around the notion of reshaping syntactic grammarsto serve the
needs of semantic processing. It is safe to say that most modern systems
developed for use in limited domains make use of some form of semantic
grammar.

Most of the techniques used in the fragment of English presented in
Section 15.2 are adapted from SRI’s Core Language Engine (Alshawi, 1992).
Additional bits and pieces were adapted from (Woods, 1977; Schubert and
Pelletier, 1982; Gazdaret al., 1985). Of necessity, a large number of im-
portant topics were not covered in this chapter. See (Alshawi, 1992) for
the standard gap-threading approach to semantic interpretation in the pres-
ence of long-distance dependencies. ter Meulen (1995) presents an up to
date treatment of tense, aspect, and the representation of temporal informa-
tion. Extensive coverage of approaches to quantifier scoping can be found
in (Hobbs and Shieber, 1987; Alshawi, 1992). van Lehn (1978)presents a



Section 15.6. Summary 583

set of human preferences for quantifier scoping. Over the years, a consider-
able amount of effort has been directed toward the interpretation of nominal
compounds. Linguistic research on this topic can be found in(Lees, 1970;
Downing, 1977; Levi, 1978; Ryder, 1994), more computational approaches
are described in (Gershman, 1977; Finin, 1980; McDonald, 1982; Pierre,
1984; Arenset al., 1987; Wu, 1992; Vanderwende, 1994; Lauer, 1995).

There is a long and extensive literature on idioms. Fillmoreet al.
(1988) describe a general grammatical framework that places idioms at the
the center of its underlying theory. Makkai (1972) presentsan extensive
linguistic analysis of many English idioms. Hundreds of idiom dictionar-
ies for second language learners are also available. On the computational
side, Becker (1975) was among the first to suggest the use of phrasal rules
in parsers. Wilensky and Arens (1980) were among the first to successfully
make use of this notion. Zernik (1987) demonstrated a systemthat could
learn such phrasal idioms in context. A collection of paperson computa-
tional approaches to idioms appeared in (Fasset al., 1992).

The first work on information extraction was performed in thecontext
of the Frump system (DeJong, 1982). Later work was stimulated by the
U.S government sponsored MUC conferences (Sundheim, 1991,1992, 1993,
1995b). Chinchoret al. (1993) describes the evaluation techniques used in
the MUC-3 and MUC-4 conferences. Hobbs (1997) partially credits the
inspiration for FASTUS to the success of the University of Massachusetts
CIRCUS system (Lehnertet al., 1991) in MUC-3. TheSCISOR system is
another system based loosely on cascades and semantic expectations that
did well in MUC-3 (Jacobs and Rau, 1990). Due to the lack of reuse from
one domain to another in information extraction, a considerable amount of
work has focused on automating the process of knowledge acquisition in this
area. A variety of supervised learning approaches are described in (Cardie,
1993, 1994; Riloff, 1993; Soderlandet al., 1995; Huffman, 1996; Freitag,
1998).

Finally, we have skipped an entire branch of semantic analysis in which
expectations driven from deep meaning representations drive the analysis
process. Such systems avoid the direct representation and use of syntax,
rarely making use of anything resembling a parse tree. The earliest and most
successful efforts along these lines were developed by Simmons (1973b,
1978, 1983) and (Wilks, 1975a, 1975c). A series of similar approaches were
developed by Roger Schank and his students (Riesbeck, 1975;Birnbaum and
Selfridge, 1981; Riesbeck, 1986). In these approaches, thesemantic analysis
process is guided by detailed procedures associated with individual lexical
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items. The CIRCUS information extraction system (Lehnertet al., 1991)
traces its roots to these systems.

EXERCISES

15.1 The attachment given on page 560 to handle noun phrases with com-
plex determiners is not general enough to handle most possessive noun phrases.
Specifically, it doesn’t work for phrases like the following.

a. My sister’s flight

b. My fiance’s mother’s flight

Create a new set of semantic attachments to handle cases likethese.

15.2 Develop a set of grammar rules and semantic attachments to handle
predicate adjectives such as the one following.

a. Flight 308 from New York is expensive.

b. Murphy’s restaurant is cheap.

15.3 None of the attachments given in this chapter provide temporal infor-
mation. Augment a small number of the most basic rules to add temporal
information along the lines sketched in Chapter 14. Use yourrules to create
meaning representations for the following examples.

a. Flight 299 departed at 9 o’clock.

b. Flight 208 will arrive at 3 o’clock.

c. Flight 1405 will arrive late.

15.4 As noted in Chapter 14, the present tense in English can be used to
refer to either the present or the future. However, it can also be used to
express habitual behavior, as in the following.

Flight 208 leaves at 3 o’clock.

This could be a simple statement about today’s Flight 208, oralterna-
tively it might state that this flight leaves at 3 o’clock every day. Create a
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FOPC meaning representation along with appropriate semantic attachments
for this habitual sense.

15.5 Implement the Earley-based semantic analyzer described inSection
15.3.

15.6 It has been claimed that it is not necessary to explicitly list the seman-
tic attachment for most grammar rules. Instead, the semantic attachment for
a rule should be inferable from the semantic types of the rule’s constituents.
For example, if a rule has two constituents where one is a single argument
λ-expression and the other is a constant then the semantic attachment should
obviously apply theλ-expression to the constant. Given the attachments pre-
sented in this chapter, does thistype-driven semanticsseem like a reasonable
idea?

15.7 Add a simple type-driven semantics mechanism to the Earley analyzer
you implemented for Exercise 15.5

15.8 Using a phrasal search on your favorite Web search engine, collect a
small corpus ofthe tip of the icebergexamples. Be certain that you search
for an appropriate range of examples (ie. don’ just search of“the tip of the
iceberg”.) Analyze these examples and come up with a set of grammar rules
that correctly accounts for them.

15.9 Collect a similar corpus of examples for the idiommiss the boat. An-
alyze these examples and come up with a set of grammar rules that correctly
accounts for them.

15.10 There are now a fair number of Web-based natural language question
answering services that purport to provide answers to questions on a wide
range of topics (see this book’s Web page for pointers to current services.)
Develop a corpus of questions for some general domain of interest and use
it to evaluate one or more of these services. Report your results. What
difficulties did you encounter in applying the standard evaluation techniques
to this task?

15.11 Collect a small corpus of weather reports from your local newspaper
or the Web. Based on an analysis of this corpus, create a set offrames
sufficient to capture the semantic content of these reports.

15.12 Implement and evaluate a small information extraction system for
the weather report corpus you collected for the last exercise.





16 LEXICAL SEMANTICS

‘When I use a word,’ Humpty Dumpty said in rather a scornful
tone, ‘it means just what I choose it to mean – neither more nor
less.’

Lewis Carrol’s Alice in Wonderland

How many legs does a dog have if you call its tail a leg?
Four.
Calling a tail a leg doesn’t make it one.

Attributed to Abraham Lincoln

A revised version of this chapter will be available shortly.
The previous two chapters focused on representing and creating mean-

ing representations for entire sentences. In those discussions, we made min-
imal use of the notion of themeaning of a word. Words and their meanings
were of interest solely to the extent that they provided the appropriate bits
and pieces necessary to construct adequate meaning representations for en-
tire sentences. This general approach is motivated by the view that while
words may contribute content to the meanings of sentences, they do not
themselves have meanings. By this we mean that words, by themselves,
do not refer to the world, can not be judged to be true or false,or literal
or figurative, or a host of other things that are generally reserved to entire
sentences and utterances. This narrow conception of the role of words in a
semantic theory leads to a view of the lexicon as a simple listing of symbolic
fragments devoid of any systematic structure.
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The topics presented in this chapter serve to illustrate howmuch is
missed by this narrow view. As we will see, the lexicon has a highly system-
atic structure that governs what words can mean, and how theycan be used.
This structure consists of relations among words and their meanings, as well
as the internal structure of individual words. The study of this systematic,
meaning related, structure is calledLexical Semantics.LEXICAL

SEMANTICS

Before moving on, we will first introduce a few new terms, since the
ones we have been using thus far are entirely too vague. In particular, the
word word has by now been used in so many different ways that it will
prove difficult to make unambiguous use of it in this chapter.Instead, we
will focus on the notion of alexeme, an individual entry in the lexicon.LEXEME

A lexeme should be thought of as a pairing of a particular orthographic and
phonological form with some form of symbolic meaning representation. The
lexicon is therefore a finite list made up of lexemes. When appropriate, we
will use the terms orthographic form, and phonological form, to refer to the
appropriate form part of this pairing, and the termsenseto refer to a lexeme’sSENSE

meaning component. Note that these definitions will undergoa number of
refinements as needed in later sections.

Given this minimal nomenclature, let us return to the topic of what
facts we can discover about lexemes that are relevant to the topic of meaning.
A fruitful place to start such an exploration is a dictionary. Dictionaries are,
after all, nothing if not repositories of information aboutthe meanings of
lexemes. Within dictionaries, it turns out that the most interesting place to
look first is at the definitions of lexemes that no one ever actually looks up.
For example, consider the following fragments from the definitions of right,
left, red, blood from theAmerican Heritage Dictionary(Morris, 1985).

right adj located nearer the right hand esp. being on the right when facing
the same direction as the observer.

left adj located nearer to this side of the body than the right.

red n the color of blood or a ruby.

blood n the red liquid that circulates in the heart, arteries and veins of animals.

The first thing to note about these definitions is the surprising amount
of circularity in them. The definition ofright makes two direct references to
itself, while the entry forleft contains an implicit self-reference in the phrase
this side of the body, which presumably means theleft side. The entries for
red andbloodavoid this kind of direct self-reference by instead referencing
each other in their definitions. Such circularity is, of course, inherent in all
dictionary definitions, these examples are just extreme cases. In the end, all



589

definitions are stated in terms of lexemes that are, in turn, defined in terms
of other lexemes.

From a purely formal point of view, this inherent circularity is evidence
that what dictionaries entries provide are not, in fact, definitions at all. They
are simply descriptions of lexemes in terms of other lexemes, with the hope
being that the user of the dictionary has sufficient grasp of these other terms
to make the entry in question sensible. As is obvious with lexemes likered
and right, this approach will fail without some ultimate grounding inthe
external world.

Fortunately, even with this limitation, there is still a wealth of semantic
information contained in these kinds of definitions. For example, the above
definitions make it clear thatright andleft are similar kinds of lexemes that
stand in some kind of alternation, or opposition, to one another. Similarly,
we can glean thatred is a color, it can be applied to bothblood andrubies,
and thatblood is a liquid. As we will see in this chapter, given a sufficiently
large database of facts such as these, many applications arequite capable
of performing sophisticated semantic tasks (even if they donot really know
their right from their left.)

To summarize, we can capture quite a bit about the semantics of in-
dividual lexemes by analyzing and labeling their relationsto other lexemes
in various settings. We will, in particular, be interested in accounting for
the similarities and differences among different lexemes in similar settings,
and the nature of the relations among lexemes in a single setting. This lat-
ter topic will lead us to examine the idea that lexemes are notunanalyzable
atomic symbols, but rather have an internal structure that governs their com-
binatoric possibilities. Later, in Section 16.4, we will take a closer look at
the notion of creativity, or generativity, and the lexicon.There we will ex-
plore the notion that the lexicon should not be thought of as afinite listing,
but rather as a creative generator of infinite meanings.

Before proceeding, we should note that the view of lexical seman-
tics presented here is not oriented solely towards improving computational
applications of the more restrictive “only sentences have meaning” variety.
Rather, as we will see, it lends itself to a wide array of applications that in-
volve the use of words, and that could can be improved by some knowledge
of their meanings.
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16.1 RELATIONS AMONG LEXEMES AND THEIR SENSES

The section explores a variety of relations that hold among lexemes and
among their senses. The list of relations presented here is by no means
exhaustive; the emphasis is on those relations that have hadsignificant com-
putational implications. As we will see, the primary analytic tool we will
use involves the systematic substitution of one lexeme for another in some
setting. The results of such substitutions can reveal the presence or absence
of a specific relationship between the substituted lexemes.

Homonymy

We begin this section with a discussion ofhomonymy, perhaps the sim-HOMONYMY

plest, and semantically least interesting, relation to hold between lexemes.
Traditionally, homonymy is defined as a relation that holdsbetween words
that have the same form with unrelated meanings. The items taking part in
such a relation are calledhomonyms. A classic example of homonymy isHOMONYMS

bankwith its distinct financial institution and sloping mound meanings, as
illustrated in the following WSJ examples.

(16.1) Instead, abankcan hold the investments in a custodial account in the
client’s name.

(16.2) But as agriculture burgeons on the eastbank, the river will shrink
even more.

Loosely following lexicographic tradition, we will denotethis relationship
by placing a superscript on the orthographic form of the wordas inbank1

andbank2. This notation indicates that these are two separate lexemes, with
distinct and unrelated meanings, that happen to share an orthographic form.

It will come as little surprise that any definition this simple will prove
to be problematic and will need to be refined. In the followingdiscussion,
we will explore this definition by examining pairs of words that satisfy it,
but which for a number of reasons seem to be marginal examples. We will
begin by focusing solely on issues of form, returning later to the topic of
meaning Note that while this may seem like an odd choice giventhe topic of
this chapter, these discussions will serve to introduce a number of important
distinctions needed in later sections. In this discussion,we will be primarily
concerned with how well our definition of homonymy assists usin identify-
ing and characterizing those lexemes which will lead to ambiguity problems
for various applications.
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Returning to thebankexample, the first thing to note is thatbank1 and
bank2 are identical in both their orthographicand phonological forms. Of
course, there are also pairs of lexemes with distinct meanings which do not
shareboth forms. For example, pairs likewoodandwould, andbeandbee,
are pronounced the same but are spelled differently. Indeed, as we saw in
Chapter 5, when pronunciation in context is taken into account, the situation
is even worse. Recall, that the lexemesknee, need, neat, new, you, the, and
to can all be pronounced as [ni], given the right context. Clearly, if the notion
of form in our definition of homonymy includes a word’s phonological form
in context, there will are be a huge number of homonyms in English.

Of course, none of these examples are traditionally be considered good
candidates for homonymy. The notion of homonymy is most closely asso-
ciated with the field of lexicography, where normally only dictionary en-
tries with identicalcitation-forms are considered candidates for homonymy.CITATION­

FORMS

Citation-forms are the orthographic-forms that are used toalphabetically in-
dex words in a dictionary, which in English correspond to what we have been
calling the root form of a word. Under this view, words with the same pro-
nunciation but different spellings are not considered homonyms, but rather
homophones, distinct lexemes with a shared pronunciation. HOMO­

PHONES

Of course, there are also pairs of lexemes with identical orthographic
forms with different pronunciations. Consider, for example, the distinct fish
and music meanings associated with the orthographic formbassin the fol-
lowing examples.

(16.3) The expert angler from Dora, Mo., was fly-casting for bass rather
than the traditional trout.

(16.4) The curtain rises to the sound of angry dogs baying andominous
bass chords sounding.

While these examples more closely fit the traditional definition of homonymy,
they would only rarely appear in any traditional list of homonyms. Instead,
lexemes with the same orthographic form with unrelated meanings are called
homographs. HOMO­

GRAPHS

Finally, we should note that lexemes with different parts ofspeech are
also typically not considered to be good candidates for homonymy. This
restriction serves to rule out examples such aswouldandwood, on grounds
other than their orthography. The basis for this restriction is two-fold: first
as we saw when we discussed part-of-speech tagging, lexemeswith such
different parts of speech are easily distinguished based ontheir differing
syntactic environments, and secondly lexical items can take on many distinct
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forms based on their inflectional and derivational morphology, which is in
turn largely based on part-of-speech.

To complicate matters, the issue of differing morphology can also oc-
cur with lexemes that have the same part-of-speech. Consider the lexemes
find and found in their locating andcreating an institutionmeanings, as il-
lustrated in the following WSJ examples.

(16.5) He has looked at 14 baseball and football stadiums andfound that
only one - - private Dodger Stadium – brought more money into acity
than it took out.

(16.6) Culturally speaking, this city has increasingly displayed its
determination to found the sort of institutions that attract the esteem
of Eastern urbanites.

Here we have two lexemes with distinct root forms,find and found, that
nevertheless share the morphological variantfoundas the past tense of the
first, and the root of the second.

At this point, having raised all of these complexities, we might cre-
ate a more refined definition for homonymy as two lexemes with unrelated
meanings, the same part of speech, and identical orthographic and phonolog-
ical forms in all possible morphological derivations. Under this definition,
all homonyms would also be both homographs and homophones, with the
converse not necessarily being the case. Under this new definition, most of
the homographs and homophones presented earlier would be ruled out as
homonyms.

Such definitional exercises, however, merely obscure our reason for
raising the issue of homonymy in the first place; homonymy is of interest
computationally to the extent that it leads an application into dealing with
ambiguity. Whether or not a given pair of lexemes cause ambiguity to arise
in an application is entirely dependent on the nature of the application. As we
will see in the following discussion of various applications, distinguishing
perfect examples of homonymy from imperfect examples is of very little
practical value. The critical issue is whether the nature ofthe form overlap
is likely to cause difficulties for a given application.

In spelling correction, homophones can lead to real-word spelling er-
rors, or malapropisms, as when lexemes such asweatherandwhetherare
interchanged. Note that this is a case where a phonological overlap causes a
problem for a purely text-based system. Additional problems in spelling cor-
rection are caused by such imperfect homographs asfind andfound, which
have partially overlapping morphologies. In this case, a word-form like



Section 16.1. Relations Among Lexemes and Their Senses 593

foundedmay represent a correct use of the past tense, or an incorrectover-
application of the regular past tense rule to an irregular verb.

In speech recognition, homophones such asto, two andtoo cause ob-
vious problems. What is less clear, however, is that perfecthomonyms such
asbankare also problematic. Recall that speech recognition systems rely
on language models that are often based on tables of N-gram probabilities.
For perfect homonyms, the entries for all the distinct lexemes are conflated
despite the fact that the different lexemes occur in different environments.
This conflation results in inappropriately high probabilities to words that are
cohorts of the lexeme not in use, and lower than appropriate probabilities to
the correct cohorts.

Finally, text-to-speechsystems are vulnerable to homographs with
distinct pronunciations. This problem can be avoided to some extent with ex-
amples such asconductwhose different pronunciations are associated with
the distinct parts of speech through the use of part-of-speech tagging, How-
ever, for other examples likebassthe two lexemes must be distinguished
by some other means. Note that this situation is the reverse of the one we
had with spelling correction, here a fundamentally speech-oriented system
is being plagued by an orthographic problem.

Polysemy

Having muddied the waters discussing issues of form and homonymy, let
us return to the topic of what it means for two meanings to be related or
unrelated. Recall that the definition of homonymy requires that the lexemes
in question have distinct and unrelated meanings. This is the crux of the
matter; if the meanings in question are related in some way then we are
dealing with a single lexeme with more than one meaning, rather than two
separate lexemes. This phenomenon of a single lexeme with multiple related
meanings is known aspolysemy. Note that earlier we had defined a lexemePOLYSEMY

as a pairing between a surface form and a sense. Here we will expand that
notion to be a pairing of a form with a set of related senses.

To make this notion more concrete, consider the followingbankexam-
ple from the WSJ corpus.

(16.7) While somebanksfurnish sperm only to married women, others are
much less restrictive.

Although this is clearly not a use of the sloping mound meaning of bank,
it just as clearly is not a reference to a promotional giveaway at a financial
institution. One way to deal with this use would be to createbank3, yet
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another distinct lexeme associated with the formbank, and give it a mean-
ing appropriate to this use. Unfortunately, according to our definition of
homonymy, this would require us to say that the meaning ofbankin this ex-
ample is distinct and unrelated to the financial institutionsense, which seems
to be far too strong a statement. The notion of polysemy allows us to state
that this sense ofbankis related to, and possibly derived from, the financial
institution sense, without asserting that it is a distinct lexeme.

As one might suspect, the task of distinguishing homonyny from pol-
ysemy is not quite as straightforward as we made it seem with thesebank
examples. There are two criteria that are typically invokedto determine
whether or not the meanings of two lexemes are related or not:the history,
or etymology, of the lexemes in question, and how the words are conceivedETYMOLOGY

of by native speakers. In practice, an ill-defined combination of evidence
from these two sources is used to distinguish homonymous from polysemous
lexical entries. In the case ofbank, the etymology reveals thatbank1 has an
Italian origin, whilebank2 is of Scandinavian origin, thus encouraging us to
list them as distinct lexemes. On the other hand, our belief that the use of
bank in Example 16.7 is related tobank1 is based on introspection about the
similarities of their meanings, and the lack of any etymological evidence for
an independent third sense.

In the absence of detailed etymological evidence, a useful intuition to
use in distinguishing homonymy from polysemy is the notion of coincidence.
Cases of homonymy can usually be understood easily as accidents of history
– two lexemes which have coincidentally come to share the same form. On
the other hand, it is far more difficult to accept cases of polysemy as coinci-
dences. Returning again to ourbankexample, it is difficult to accept the idea
that the various uses ofbank in all of its various repository senses are only
coincidentally related to the savings institution sense.

Once we have determined that we are dealing with a polysemouslex-
eme, we are of course still left with the task of managing the potentially
numerous polysemous senses associated with it. In particular, for any given
singlelexeme we would like to be able to answer the following questions.� What distinct senses are there?� How are these senses related?� How can they be reliably distinguished?

The answers to these questions can have serious consequences for well how
semantic analyzers, search engines, generators, and machine translation sys-
tems perform their respective tasks. The first two questionswill be covered
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here and in Section 16.4, while the final question will be covered in depth in
Chapter 17.

The issue of deciding how many distinct senses should be associated
with a given polysemous lexeme is a task that has long vexed lexicographers,
who until recently have been the only people engaged in the creation of large
lexical databases. Most lexicographers take the approach of creating entries
with as many senses as necessary to account for all the fine distinctions in
meaning observed in some very large corpus of examples. Thisis a reason-
able approach given that the primary use for a traditional dictionary is to
assist users in learning the various uses of a word. Unfortunately, it tends to
err on the side of making more distinctions than are normallyrequired for
any reasonable computational application.

To make this notion of distinguishing distinct senses more concrete,
consider the following uses of the verbservefrom the WSJ corpus.

(16.8) They rarelyservered meat, preferring to prepare seafood, poultry or
game birds.

(16.9) Heservedas U.S. ambassador to Norway in 1976 and 1977.
(16.10) He might haveservedhis time, come out and led an upstanding life.

Reasonable arguments can be made that each of these examplesrep-
resents a distinct sense ofserve. For example, the implicit contrast be-
tweenserving red meatandpreparing seafoodin the first example indicates
a strong connection between this sense ofserveand the related notion of
food preparation. Since there is no similar component in anyof the other
examples, we can assume that this first use is distinct from the other two.
Next, we might note that the second example has a different syntactic sub-
categorization from the others since its first argument, which denotes the
role played by the subject, is a prepositional phrase. As will be discussed
in Section 16.3, such differing syntactic behaviors are often symptomatic of
differing underlying senses. Finally, the third example isspecific to the do-
main of incarceration. This is clear since this example provides almost no
specific information about prison, and yet has an obvious andclear meaning;
a meaning which plays no role in the other examples.

Another practical technique, for determining if two distinct senses are
present is to combine two separate uses of a lexeme into a single example
using a conjunction, a device has the rather improbable nameof zeugma. ZEUGMA

Consider the following ATIS examples.

(16.11) Which of those flights serve breakfast?
(16.12) Does Midwest express serve Philadelphia?
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(16.13) ?Does Midwest express serve breakfast and Philadelphia?

The oddness of invented third example indicates there is no sensible way to
make a single sense ofservework for both breakfast and Philadelphia. More
precisely, the underlying concepts invoked byservein the first example can
not be applied in any meaningful way toPhiladelphia. This is an instance
where we can make use of examples from a corpus along with our native
intuitions in a structured way to discover the presence or distinct senses.

The issue of discovering the proper set of senses for a given lexeme is
distinct from the process of determining which sense of a lexeme is being
used in a given example. This latter task is calledword sense disambigua-
tion, or word sense taggingby analogy to part-of-speech tagging, and isWORD SENSE

DISAMBIGUA­
TION

covered in detail in Chapter 17. As this analogy implies, thetask typically
presumes that afixedset of senses can be associated with each lexical item,
a dubious proposition that we will take up in Section 16.4.

Finally, let us turn briefly to the topic of relatedness amongthe various
senses of a single polysemous lexeme. Earlier, we made an appeal to the
intuition that the polysemous senses of a lexeme are unlikely to have come
about by coincidence. This raises the obvious question thatif they are not
related by coincidence, how are they related. This questionhas not received
much attention from those constructing large lexicons since as long as the
lexicon contains the correct senses, how they came to be there is largely
irrelevant. However, as soon as applications begin to deal with a wide variety
of inputs, they encounter novel uses that do not correspond to any of the
static senses in the system’s lexicon. By examining the systematic relations
among listed senses, we can gain insight into the meanings ofsuch novel
uses. These notions will be discussed in more detail in Section 16.4.

Synonymy

The phenomenon of synonymy is sufficiently widespread to account for the
popularity of both thesauri and crossword puzzles. As with homonymy, the
notion ofsynonymy, has a deceptively simple definition:different lexemesSYNONYMY

with the same meaning. Of course, this definition leaves open the question
of what it means for two lexemes to mean the same thing. Although Sec-
tion 16.3 will provide some answers to this question, we can make progress
without answering it directly by invoking the notion ofsubstitutability : twoSUBSTI­

TUTABILITY

lexemes will be considered synonyms if they can substitutedfor one another
in a sentence without changing either the meaning or the acceptability of
the sentence. The following ATIS examples illustrate this notion of substi-
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tutability.

(16.14) How big is that plane?

(16.15) Would I be flying on a large or small plane?

Exchangingbig and large in these examples has no noticeable effect
on either the meaning or acceptability of these sentences. We can take this
as evidence for the synonymy ofbig and large, at least for these examples.
Note that this is intended to be a very narrow statement. In particular, we are
not saying anything about the relative likelihood of occurrence ofbig and
large in contexts similar to these.

Not surprisingly, if we take the notion of substitutabilityto mean sub-
stitutable in all possible environments, then true synonyms in English are few
and far between, as it is almost always possible to find some sentence where
a purported synonym fails to substitute successfully. Given this, we will fall
back on a weaker notion that allows us to call two lexemes synonyms if they
are substitutable insomeenvironment. This is, for all practical purposes, the
notion of synonymy used in most dictionaries and thesauri.

The success or failure of the substitution of a given pair of candidate
synonyms in a given setting depends primarily on four influences: polysemy,
subtle shades of meaning, collocational constraints, and register. As we will
see, only the first two involve the notion of meaning.

To explore the effect of polysemy on substitutability, consider the fol-
lowing WSJ example where a substitution oflarge for big clearly fails.

(16.16) Miss Nelson, for instance, became a kind of big sister to Mrs. Van
Tassel’s son, Benjamin.

(16.17) ?Miss Nelson, for instance, became a kind of large sister to Mrs.
Van Tassel’s son, Benjamin.

The source of this failure is the fact that the lexemebig has as one of its
distinct polysemous senses the notion of being older, or grown up. Since
the lexemelarge lacks this sense among its many meanings, it is not sub-
stitutable forbig in those environments where this sense is required. In this
instance, the result is a sentence with a different meaning altogether. In other
cases, such a substitution may result in a sentence that is either odd or en-
tirely uninterpretable.

We referred to the next influence on synonymy asshades of mean-
ing. By this, we have in mind cases where two lexemes share a central core
meaning, but where additional ancillary facts are associated with one the
lexemes. Consider the use of the lexemesprice andfare in the ATIS corpus.
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Semantically, both have the notion of the cost for a service at the core of
their meanings. They are not, however, freely interchangeable. Consider the
following ATIS examples.

(16.18) What is the cheapest first class fare?

(16.19) ?What is the cheapest first class price?

Exchangingprice for fare in this example leads to a certain amount of
oddity. The source of this oddness is hard to pin down, butfare seems to be
better suited to the costs for various services (ie. coach, business and first
class fares), whileprice seems better applied to the tickets that represent
these services. Of course, a more complete account of how these lexemes
are used in this domain would require a systematic analysis of a corpus of
examples. The point is that although these terms share a coremeaning, there
are subtle meaning-related differences that influence how they can be used.

These two influences on substitutability clearly involve the meanings
of the lexical items. There are, however, other influences onthe success
or failure of a synonym substitution that are not based on meaning in any
direct way. Collocational constraints are one such influence. By a colloca-
tional constraint, we mean the kind of arbitrary associations, or attractions,
between lexical items that were captured using techniques such as N-grams
in Chapter 6.

Consider the following WSJ example.

(16.20) We frustrate ’em and frustrate ’em, and pretty soon they make a big
mistake.

(16.21) ?We frustrate ’em and frustrate ’em, and pretty soonthey make a
large mistake.

As this example illustrates, there is a preference for usingbig rather than
large when referring to mistakes of a critical or important nature. This is
not due to a polysemy difference, nor does it seem to be due to any subtle
shaded meaning difference betweenbig and large. Note also, that this is
clearly different than thelarge sisterexample in thata large mistakeis still
interpretable in the correct way; it just does not seem as natural to uselarge
asbig. Therefore, in this case, we must say that there is simply an arbitrary
preference forbig as opposed tolarge as applied tomistakes.

Finally, byregister, we mean the social factors that surround the use ofREGISTER

possible synonyms. Here we are referring to lexemes with essentially identi-
cal meanings that are not interchangeable in all environments due to factors
such as politeness, group status, and other similar social pressures. For ex-
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ample, multisyllabic lexemes with Latin or Greek origins are often used in
place of shorter lexemes when a technical or academic style is desired.

As was the case with homonymy, these influences on synonymy have
differing practical implications for computational applications. In Chapters
19 and 20, we will see that similarity of meaning, collocational constraints,
and appropriateness of use are of great importance in natural language gen-
eration and machine translation. On the other hand, in the domains of infor-
mation extraction and information retrieval, appropriateness of use is of far
less consequence than the notion of identity of meaning.

Hyponymy

In our discussion ofprice and fare, we introduced the notion of pairs of
lexemes with similar but non-identical meanings. The notion of hyponymy HYPONYMY

is based on a restricted class of such pairings:pairings where one lexeme
denotes a subclass of the other. For example, the relationship betweencar
andvehicleis one of hyponymy. Since this relation is not symmetric we will
refer to the more specific lexeme as ahyponym of the more general one,HYPONYM

and conversely to the more general term as ahypernym of the more specific HYPERNYM

one. We would therefore say thatcar is a hyponym ofvehicle, andvehicleis
hypernym ofcar.

As with synonymy, we can explore the notion of hyponymy by making
use of a restricted kind of substitution. Consider the following schema.

That is a x.) That is a y.
If x is a hyponym ofy, then in any situation where the sentence on the left
is true, the newly created sentence on the right must also be true, as in the
following example.

That is a car.) That is a vehicle.
There a number of important differences between this kind oflim-

ited substitution and the kind of substitutions discussed with respect to syn-
onymy. There the resulting sentence could plausibly serve as a substitute for
the original sentence. Here, the new sentence is not intended to be a sub-
stitution for the original, rather it is merely serves as diagnostic test for the
presence of hyponomy.

The concept of hyponymy is closely related to a number of other no-
tions that play central roles in biology, linguistic anthropology and computer
science.

The termontologyusually refers to an analysis of some domain, ormi- ONTOLOGY

croworld , into a set of distinct objects. Ataxonomy is a particular arrange- TAXONOMY
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ment of the elements of an ontology into a tree-like class inclusion structure.
Normally, there are a set of well-formedness constraints ontaxonomies that
go beyond their component class inclusion relations. For example, the lex-
emeshound, mutt, andpuppyare all hyponyms ofdog, but it would be odd
to construct a taxonomy from those pairs since the concepts motivating the
relations is different in each case. Finally, the computer science notion of
an object hierarchy is based the notion that objects from an ontology ar-OBJECT

HIERARCHY

ranged in a taxonomy, can receive, or inherit, features fromtheir ancestors
in a taxonomy. This, of course, only makes sense when the elements in the
taxonomy are in fact complex structured objects with features to be inherited.

Therefore, sets of hyponymy relations, by themselves, do not consti-
tute an ontology, category structure, taxonymy, or object hierarchy. They
have, however, proved to be useful as approximations to suchstructures. We
will return to the topic of hyponymy in Section 16.2 when we discuss the
WordNet database.

16.2 WORDNET: A DATABASE OF LEXICAL RELATIONS

The widespread use of lexical relations in linguistic, psycholinguistic, and
computational research has led to a number of efforts to create large elec-
tronic databases of such relations. These efforts have, in general, followed
one of two basic approaches: mining information from existing dictionaries
and thesauri, and handcrafting a database from scratch. Despite the obvious
advantages of reusing existing resources, WordNet, the most well-developed
and widely used lexical database for English, was developedusing the latter
approach (Beckwithet al., 1991).

WordNet consists of three separate databases, one each for nouns and
verbs, and a third for adjectives and adverbs; closed class lexical items are
not included in WordNet. Each of the three databases consists of a set of
lexical entries corresponding to unique orthographic forms, accompanied by
sets of senses associated with each form. Figure 16.1 gives some idea of the
scope of the current, WordNet 1.6, release. The databases can be accessed
directly with a browser (locally or over the Internet), or programmatically
through the use of a set of C library functions.

In their most complete form, WordNet’s sense entries consist of a set
of synonyms, a dictionary-style definition, or gloss, and some example uses.
Figure 16.2 shows an abbreviated version of the wordnet entry for the noun
bass. As this entry illustrates, there are several important differences be-
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tween WordNet entries and our notion of a lexeme. First, since WordNet
contains no phonological information, it makes no attempt to keep sepa-
rate lexemes with distinct pronunciations. For example, inthis entrybass4,
bass5, andbass8 all refer to the [b ae s] fish sense, while the others refer
to the [b ey s] musical sense. More generally, WordNet makes no attempt
to distinguish homonymy from polysemy. For example, as far as this en-
try is concerned,bass1 bears the same relationship tobass2 as it does to
bass4. This is a conservative strategy that reflects the fact that although
there are fairly reliable diagnostics for discriminating among distinct word
senses, systematically organizing the resulting polysemous senses is a much
more uncertain and subjective activity. Given this, the developers of Word-
Net have opted to simply list distinct senses, without attempting to explicitly
organize them in the hierarchical manner seen in many dictionaries.

Figures 16.3 and 16.4 give a rough idea of how these senses aredis-
tributed throughout the database. The distributions are extremely skewed,
with a small number of entries having a large number of senses, and a large

Category Unique Forms Number of Senses
Noun 94474 116317
Verb 10319 22066
Adjective 20170 29881
Adverb 4546 5677

Figure 16.1 Scope of the current WordNet 1.6 release in terms of unique
entries and total number of senses for the four databases.

The noun “bass” has 8 senses in WordNet.
1. bass - (the lowest part of the musical range)
2. bass, bass part - (the lowest part in polyphonic music)
3. bass, basso - (an adult male singer with the lowest voice)
4. sea bass, bass - (flesh of lean-fleshed saltwater fish of the family Serranidae)
5. freshwater bass, bass - (any of various North American lean-fleshed freshwater

fishes especially of the genus Micropterus)
6. bass, bass voice, basso - (the lowest adult male singing voice)
7. bass - (the member with the lowest range of a family of musical instruments)
8. bass - (nontechnical name for any of numerous edible marine and

freshwater spiny-finned fishes)

Figure 16.2 The WordNet 1.6 entry for the nounbass.
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number having a single sense. Distributions like this are ubiquitous when
dealing with the lexicon, and are referred to as Zipf distributions (Zipf,
1949). Note also that the degree of polysemy in the verb database is higher
than in the noun database. This is consistent with the fact that there are far
fewer verbs than nouns in English and their meanings are far more malleable.
Finally, we should note that these polysemy distributions correlate well with
actual word frequency and led the WordNet developers to use degree of pol-
ysemy as a proxy for frequency in the database.
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Figure 16.3 Distribution of senses among the nouns in WordNet.

Of course, a simple listing of lexical entries would not be much more
useful than an ordinary dictionary. The power of WordNet lies in its set
of domain-independent lexical relations. These relationscan hold among
WordNet entries, senses, or sets of synonyms. They are, for the most part,
restricted to items with the same part-of-speech, or more pragmatically, to
items within the same database. Figures 16.5, 16.6, and 16.7show a subset
of the relations associated with each of the three databases, along with a
brief explanation and an example. Since a full discussion ofthe contents
of WordNet is beyond the scope of this text, we will limit ourselves to a
discussion of two of its most useful and well-developed features: its sets of
synonyms, and its hyponymy relations.

The fundamental basis for synonymy in WordNet is the same as that
given on page 596. Two WordNet entries are considered synonyms if they



Section 16.2. WordNet: A Database of Lexical Relations 603

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000

N
um

be
r 

of
 S

en
se

s

Polysemy Rank

Figure 16.4 Distribution of senses among the verbs in WordNet.

Relation Definition Example
Hyperym From concepts to superordinates breakfast! meal
Hyponym From concepts to subtypes meal! lunch
Has-Member From groups to their members. faculty! professor
Member-Of From members to their groups. copilot! crew
Has-Stuff From things to what they’re made of.!
Stuff-Of From stuff to what it makes up. !
Has-Part From wholes to parts table! leg
Part-Of From parts to wholes. course! meal
Antonym Opposites leader! follower

Figure 16.5 Noun Relations in WordNet.

Relation Definition Example
Hypernym From events to superordinate eventsfly! travel
Troponym From events to their subtypes walk! stroll
Entails From events to the events they entailsnore! sleep
Antonym Opposites increase() decrease

Figure 16.6 Verb Relations in WordNet.
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Relation Definition Example
Antonym Opposite heavy() light
Adverb Opposite quickly() slowly

Figure 16.7 Adjective and Adverb Relations in WordNet.

can be successfully substituted in some context. The particular theory and
implementation of synonymy in WordNet is organized around the notion of
asynset, a set of synonyms. Consider the following example of a synset.SYNSET

{chump, fish, fool, gull, mark, patsy, fall guy,
sucker, schlemiel, shlemiel, soft touch, mug}

The dictionary-like definition, or gloss, of this synset describes it asa per-
son who is gullible and easy to take advantage of. Each of the lexical entries
included in the synset can, therefore, be used to express this notion in some
setting. In practice, synsets like this one actuallyconstitutethe senses asso-
ciated with many WordNet entries. Specifically, it is this exact synset, with
its associated definition and examples, that makes up one of the senses for
each of the entries listed in the synset.

Looking at this from a more theoretical perspective, each synset can
be taken to represent a concept that has become lexicalized in the language.
Synsets are thus somewhat analogous to the kinds of conceptswe discussed
in Chapter 14. Instead of representing concepts using logical terms, Word-
Net represents them as lists comprised of the lexical entries that can be used
to express the concept. This perspective motivates the factthat it is synsets,
not lexical entries or individual senses, that participatein most of the seman-
tic relations shown in Figures 16.5, 16.6, and 16.7.

The hyponymy relations in WordNet correspond directly to the notion
of immediate hyponymy discussed on page 599. Each synset is related to
its immediately more general and more specific synsets via direct hypernym
and hyponym relations. To find chains of more general or more specific
synsets, one can simply follow a transitive chain of hypernym and hyponym
relations. To make this concrete, consider the hypernym chains for bass3

andbass7 shown in Figure 16.8.
In this depiction of hyponymy, successively more general synsets are

shown on successive indented lines. The first chain starts from the concept
of a human bass singer. It’s immediate superordinate is a synset correspond-
ing to the generic notion of a singer. Following this chain leads eventually
to notions such as entertainer and person. The second chain,which starts
from the musical instrument notion, has a completely different chain leading
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Sense 3
bass, basso --
(an adult male singer with the lowest voice)
=> singer, vocalist

=> musician, instrumentalist, player
=> performer, performing artist

=> entertainer
=> person, individual, someone...

=> life form, organism, being...
=> entity, something

=> causal agent, cause, causal agency
=> entity, something

Sense 7
bass --
(the member with the lowest range of a family of
musical instruments)
=> musical instrument

=> instrument
=> device

=> instrumentality, instrumentation
=> artifact, artefact

=> object, physical object
=> entity, something

Figure 16.8 Hyponymy chains for two separate senses of the lexemebass.
Note that the chains are completely distinct, only converging atentity.

eventually such concepts as musical instrument, device andphysical object.
Both paths do eventually join at the synsetentitywhich basically serves as a
placeholder at the top of the hierarchy.

16.3 THE INTERNAL STRUCTURE OFWORDS

The approach to meaning spelled out in the last two chapters hinged on the
notion that there is a fundamental predicate-argument structure underlying
our meaning representations. In composing such representations, we as-
sumed that certain classes of lexemes tend to contribute thepredicate and
predicate-argument structure, while others contribute the arguments. This
section explores in more detail the systematic ways that themeanings of lex-
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emes are structured to support this notion. In particular, it explores the notion
that the meaning representations associated with lexemes have analyzable in-
ternal structures, and that it is these structures, combined with a grammar,
that determine the relations among lexemes in well-formed sentences.

Thematic Roles

Thematic roles, first proposed by Gruber (1965a) and Fillmore (1968)1 are
a set of categories which provide a shallow semantic language for charac-
terizing certain arguments of verbs. For example consider the following two
WSJ fragments:

(16.22) Houston’s Billy Hatcher broke a bat.

(16.23) He opened a drawer.

In the predicate calculus event representation of Chapter 14, part of the
representation of these two sentences would be the following:9e;x;y Isa(e;Breaking)^Breaker(e;BillyHatcher)^BrokenThing(e;y)^ Isa(y;BaseballBat)9e;x;y Isa(e;Opening)^Opener(e;he)^OpenedThing(e;y)^ Isa(y;Door)

In this representation, the roles of the subjects of the verbs breakand
openareBreakerand Openerrespectively. Thesedeep rolesare specificDEEP ROLES

to each possible kind of event;Breaking events haveBreakers, Opening
events haveOpeners, Eating events haveEaters, and so on. ButBreakers
andOpenershave something in common. The are both volitional actors, of-
ten animate, and they have direct causal responsibility fortheir events. A
thematic role is a way of expressing this commonality. We say that theTHEMATIC

ROLE

subjects of both these verbs areAGENTS. ThusAGENT is the thematic role
which represents an abstract idea such as volitional causation. Similar, the
direct objects of both these verbs, theBrokenThingandOpenedThing, are
both prototypically inanimate objects which are affected in some way by the
action. The thematic role for these participants is theTHEME.

As we will discuss below, while there is no standard set of thematic
roles, there are many roles that are commonly used by computational sys-
tems. For example, in any straightforward interpretation of Example 16.24,
Mr. Cockwell has had his collarbone broken, but there is no implication
that he was theAGENT of this unfortunate event. This kind of participant

1 Fillmore actually called themdeep cases, on the metaphor of morphological case.
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can be labeled anEXPERIENCER, while the directly effected participant, the
collarbone in this case, is again assigned theTHEME role.

(16.24) A company soccer game last year got so rough that Mr. Cockwell
broke his collarbone and an associate broke an ankle.

In Example 16.25, the earthquake is the direct cause of the glass break-
ing and hence might seem to be a candidate for anAGENT role. This seems
odd, however, since earthquakes are not the kind of participant that can inten-
tionally do anything. Examples such as this have been the source of consid-
erable debate over the years among the proponents of variousthematic role
theories. Two approaches are common: assign the earthquaketo theAGENT

role and assume that the intended meaning has some kind of metaphorical
connection to the core animate/volitional meaning ofAGENT, or add a role
calledFORCE that is similar toAGENT but lacks any notion of volitionality.
We will follow this latter approach and return to the notion of metaphor in
Section 16.4.

(16.25) The quake broke glass in several downtown skyscrapers.

Finally, in Example 16.26, the subject (it) refers to an event participant
(in this case, someone else’s elbow) whose role in the breaking event is as
the instrument of some other agent or force. Such participants are called
INSTRUMENTS.

(16.26) It broke his jaw.

Figure 16.9 presents a small list of commonly-used thematicroles
along with a rough description of the meaning of each. Figure16.10 pro-
vides representative examples of each of role. Note that this list of roles
is by no means definitive, and does not correspond to any single theory of
thematic roles.

Applications to Linking Theory and Shallow Semantic Interpretations

One common use thematic roles in computational systems is asa shallow
semantic language. For example, as Chapter 21 will describe, thematic roles
are sometimes used in machine translation systems as part ofa useful inter-
mediate language.

Another use of thematic roles, which was part of their original moti-
vation in Fillmore (1968), was as an intermediary between semantic roles in
conceptual structure or common-sense knowledge likeBreakerandDriven-
Thing and their more language-specific surface grammatical realization as
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Thematic Role Definition
AGENT The volitional causer of an event
EXPERIENCER The experiencer of an event
FORCE The non-volitional causer of the event
THEME The participant most directly affected by an event
RESULT The end product of an event
INSTRUMENT An instrument used in an event
BENEFICIARY The beneficiary of an event
SOURCE The origin of the object of a transfer event
GOAL The destination of an object of a transfer event

Figure 16.9 Some commonly-used thematic roles with their definitions.

Thematic Role Example
AGENT The waiterspilled the soup
EXPERIENCER Johnhas a headache
FORCE The windblows debris from the mall into our yards
THEME Only after Benjamin Franklin brokethe ice...
RESULT The French government has built aregulation-size base-

ball diamond...
INSTRUMENT He turned to poaching catfish, stunning themwith a shock-

ing device
BENEFICIARY Whenever Ann Callahan makes hotel reservationsfor her

boss...
SOURCE I flew in from Boston.
GOAL I drove to Portland.

Figure 16.10 Prototypical examples of various thematic roles.

subject and object. Fillmore noted that there are prototypical patterns gov-
erning which argument of a verb will become the subject of an active sen-
tence, proposing the following hierarchy (often now calleda thematic hier-
archy (Jackendoff, 1972)) for assigning the subject role:THEMATIC

HIERARCHY

AGENT � INSTRUMENT � THEME

Thus if the thematic description of a verb includes anAGENT, an IN-
STRUMENT, and aTHEME, it is the AGENT which will be realized as the
subject. If the thematic description only includes anINSTRUMENT and a
THEME, it is theINSTRUMENT which will become the subject. The thematic
hierarchy is used in reverse for determining the direct object of active sen-
tences, or the subject of passive sentences. Here are examples from Fillmore
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(1968) using the verbopen:

(16.27) John
AGENT

opened the door.
THEME

(16.28) John
AGENT

opened the door
THEME

with the key.
INSTRUMENT

(16.29) The key
AGENT

opened the door.
THEME

(16.30) The door
THEME

was opened by John.
AGENT

This approach led to a wide variety of work over the last thirty years
on the mapping between conceptual structure and grammatical function, in
an area generally referred to aslinking theory . For example many scholarsLINKING

THEORY

such as Talmy (1985), Jackendoff (1983b), and Levin (1993) show that se-
mantic properties of verbs help predict which surfacealternations they can ALTERNA­

TIONS

take. An alternation is a set of different mappings of conceptual (deep) roles
to grammatical function. For example Fillmore (1965) and very many subse-
quent researchers have studied thedative alternation, the phenomenon thatDATIVE

ALTERNATION

certain verbs likegive, send, or readwhich can take an AGENT, a THEME,
and a GOAL, allow the THEME to appear as object and the GOAL in a prepo-
sitional phrase (as in 16.31a), or the GOAL to appear as the object, and the
THEME as a sort of ‘second object’ (as in 16.31b):

(16.31) a.Doris
AGENT

gave/sent/read the book
THEME

to Cary.
GOAL

b. Doris
AGENT

gave/sent/read Cary
GOAL

the book.
THEME

Many scholars, including Green (1974), Pinker (1989), Gropen et al.
(1989), Goldberg (1995) and Levin (1993) (see Levin (1993, p. 45) for a full
bibliography), have argued this alternation occurs with particular semantic
classes of verbs, including (from Levin) ‘verbs of future having’ (advance,
allocate, offer, owe), ‘send verbs’ (forward, hand, mail), ‘verbs of throwing’
(kick, pass, throw, and many other classes.

Similarly, Talmy (1985), following Lakoff (1965, p.126), shows that
‘affect’ verbs such asfrighten, please, andexasperatecan appear with the
THEME as subject, as in (16.32), or with the EXPERIENCERas subject and
the THEME as a prepositional object, as in (16.33):

(16.32) a.That
THEME

frightens me.
EXPERIENCER

b. That
THEME

interests me.
EXPERIENCER
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c. That
THEME

surprises me.
AGENT

(16.33) a.I
EXPERIENCER

am frightened of that.
THEME

b. I
EXPERIENCER

am interested in that.
THEME

c. I
EXPERIENCER

am surprised at that.
THEME

Levin (1993) summarizes 80 of these alternations, including extensive
lists of the verbs in each semantic class, together with the semantic con-
straints, exceptions, and other idiosyncracies. This listhas been used in a
number of computational models (e.g. Danget al., 1998; Jing and McKe-
own, 1998)

While research of the type summarized above has shown a relation
between verbal semantic and syntactic realization, it is less clear that this re-
lation is mediated by a small set of thematic roles, with or without a thematic
hierarchy. For example, it turns out that semantic classes are insufficient to
define the set of verbs that participate in an alternation. For example many
verbs do not allow the dative alternation despite being in the proper semantic
class (e.g.donate, return, transfer). In addition, as shown above, many of
the verbal alternations violate any standard thematic hierarchy (dative alter-
nation sentences likeLing sent Mary the bookhave a GOAL as direct object
followed by an oblique THEME, when THEME should be the best direct ob-
ject). Furthermore, arguments about the appropriate set ofthematic roles
are legion. But an even greater problem is that thematic roles, however they
are defined, could only play a very small role in the general mapping from
semantics to syntax. This is because thematic roles are onlyrelevant to de-
termining the grammatical role of NP and PP arguments, and play no part
in the realization of other arguments of verbs and other predicates. Many
such possible arguments were described in Figure 11.3 on page 411, such as
sentential complements (Sfin, Swh-, Sforto), verb phrases (VPbrst, VPto,
etc), or quotations (Quo). Furthermore, thematic roles only are useful in
mapping the arguments of verbs; but nouns, for example, havearguments as
well (destruction of the city, father of the bride).

There are a number of possible responses to these problems with the-
matic roles. Many systems continue to use them for such practical purposes
as interlinguas in machine translation or as a convenient level of shallow
semantic interpretation. Other researchers have argued that thematic roles
should be considered an epiphenomenon, rather than a distinct represen-
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tational level. For example following Foley and van Valin (1984), Dowty
(1991) argues that rather than a discrete set of thematic roles there are only
two cluster-concepts, PROTO-AGENT and PROTO-PATIENT. Determining
whether an argument of a verb is a PROTO-AGENT is predictable from the
entailments of the deep conceptual structure meaning of theverb. The map-
ping from semantic role in conceptual structure to grammatical function pro-
ceeds via simple rules (the most PROTO-AGENT-like of the arguments is the
subject, the most PROTO-PATIENT-like is the object (or the subject of the
passive construction)). Dowty’s two rules make direct reference to the deep
conceptual structure of the verb; thus thematic roles do notappear at any
representational level at all.

One problem with Dowty’s model is that the choice of thematicroles
is not always predictable from the underlying conceptual structure of the
event and its participants. For example Fillmore (1977) pointed out that
the different verbs which can describe acommercial eventeach choose a
different way to map the participants of the event. For example, a transaction
between Amie and Benson involving three dollars and a sandwich can be
described in any of these ways:

(16.34) a. Amie bought the sandwich from Benson for three dollars.
b. Benson sold Amie the sandwich for three dollars.
c. Amie paid Benson three dollars for the sandwich.

Each of these verbsbuy, sell, andpay, chooses a differentperspective
on the commercial event, and realizes this perspective by choosing a different
mapping of underlying participants to thematic roles. The fact that these
three verbs have very different mappings suggests that the thematic roles for
a verb must be listed in the lexical entry for the verb, and arenot predictable
from the underlying conceptual structure.

This fact, together with the fact mentioned earlier that verb alternations
are not completely predictable semantically (e.g. exceptions likedonate) has
led many researchers to assume that any useful computational lexicon needs
to list for each verb (or adjective or other predicate) its syntactic and the-
matic combinatory possibilities. Another advantage of listing the combina-
tory possibilities for each verb is that the probability of each thematic frame
can also be listed.

One recent attempt to list these elements for a number of predicates of
English is theFRAMENET project (Bakeret al., 1998; Loweet al., 1997). A
FRAMENET entry for a word lists every set of arguments it can take, includ-
ing the possible sets of thematic roles, syntactic phrases,and their grammat-
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ical function. The thematic roles used inFRAMENET are much more specific
than the 9 examples we’ve been describing. EachFRAMENET thematic role
is defined as part of aframe, and eachframe as part of a domain. For exam-
ple theCognition domain has frames likestatic cognition (believe, think,
understand, etc),cogitation (brood, ruminate), judgment, (accuse, admire,
rebuke), etc. All of the cognition frames define the thematic roleCOGNIZER.
In thejudgment frame, theCOGNIZER is referred to as theJUDGE; the frame
also includes an EVALUEE, a REASON, and a ROLE; here are some examples
from (Johnson, 1998):

Judge Kim respects Pat for being so brave
Evaluee Kim respectsPat for being so brave
Reason Kim respects Patfor being so brave
Role Kim respects Patas a scholar

Each entry is also labeled by one of thephrase typesdescribed in
Figure 11.3 on page 411, and by a grammatical function (subject, object,
or complement). For example, here is part of theFRAMENET entry for the
judgment verbappreciate; we have shown only the active senses of the verb;
the full entry includes passives as well. Example sentencesare (sometimes
shortened) from the British National Corpus:
(16.35) a.JUDGE

NP/Subj
I still appreciate

REASON

NP/Obj
good manners

EVALUEE

PP(in)/Comp
in men.

b. JUDGE

NP/Subj
I could appreciate

EVALUEE

NP/Obj
it

REASON

PP(for)/Comp
for the music alone.

c. JUDGE

NP/Subj
I appreciate

REASON

NP/Obj
your kindness

d. JUDGE

NP/Subj
He did not appreciate

EVALUEE

NP/Obj
the artist

ROLE

PP(for)/Comp
as a dissenting voice.

By contrast, another sense of the verbappreciateis as a verb of static
cognition like understand; verbs of static cognition have roles like COG-
NIZER and CONTENT; here are some examples:
(16.36) a.COGNIZER

NP/Subj
They appreciate

CONTENT

Sfin/Comp
that communication is a two-way process.

b. COGNIZER

NP/Subj
She appreciated

CONTENT

Swh-/Comp
how far she had fallen from grace.



Section 16.3. The Internal Structure of Words 613

It should be clear from examining the example sentences thatsome
generalizations can be drawn about the realization of different thematic roles.
JUDGES, COGNIZERS, and AGENTS in general are often realized as subjects
of active sentences. ROLES are often realized as PPs with the preposition
as. CONTENT is often realized as some kind of S. Representing thematic
roles at this fine-grained level may thus make the mapping to syntax more
transparent. The problem with a scheme like FRAMENET is the extensive
human effort it requires in defining thematic roles for each domain and each
frame.

Selection Restrictions

The notion of aselection restrictioncan be used to augment thematic rolesSELECTION
RESTRICTION

by allowing lexemes to place certain semantic restrictionson the lexemes and
phrases that can accompany them in a sentence. More specifically, a selec-
tion restriction is a semantic constraint imposed by a lexeme on the concepts
that can fill the various argument roles associated with it. As with many
other kinds of linguistic constraints, selection restrictions can most easily
be observed in situations where they are violated. Considerthe following
example originally discussed in Chapter 14.

(16.37) I wanna eat someplace that’s close toICSI.

There are two possible parses for this sentence corresponding to the intransi-
tive and transitive versions of the verbeat. These two parses lead, in turn, to
two distinct semantic analyses. In the intransitive case, the phrasesomeplace
that’s close toICSI is an adjunct that modifies the event specified by the verb
phrase, while in the transitive case it provides a true argument to the eating
event. This latter case is similar in structure and interpretation to examples
such as the following, where the noun phrase specifies the thing to be eaten.

(16.38) I wanna eat some really cheap Chinese food right now.

Not surprisingly, attempting to analyze Example 16.37 along these
lines results in a kind of semantic ill-formedness. This ill-formedness signals
the presence of a selection restriction imposed byeaton itsPATIENT role: it
has to be something that is edible. Since the phrase being proposed as the
PATIENT in this scenario can not easily be interpreted as edible, theinter-
pretation exhibits the semantic analog of syntactic ungrammaticality. This
particular variety of ill-formedness arises from what is known as aselec-
tion restriction violation : a situation where the semantics of the filler of aSELECTION

RESTRICTION
VIOLATION
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thematic role is not consistent with a constraint imposed onthe role by the
predicate.

This rather informal description of selection restrictions needs to be
refined in a number of ways before it can be put to practical use. The first
refinement concerns the proper locus for stating the selection restrictions.
As discussed Section16.1, lexemes are often associated with a wide variety
of different senses and, not surprisingly, these senses canenforce differing
constraints on their arguments. Selection restrictions therefore are associated
with particular senses, not entire lexemes. Consider the following examples
of the lexemeserve.

(16.39) Well, there was the time they served green-lipped mussels from
New Zealand.

(16.40) Which airlines serve Denver?

(16.41) Which ones serve breakfast?

Example 16.39 illustrates the cooking sense ofserve, which ordinarily re-
stricts itsPATIENT to be some kind foodstuff. Example 16.40 illustrates the
provides a commercial service tosense ofserve, which constrains itsPA-
TIENT to be some type of identifiable geographic or political entity. The
sense shown in the third example is closely related to the first, and illustrates
a sense of serve that is restricted to specifications of particular meals. These
differing restrictions on the same thematic role of a polysemous lexeme can
be accommodated by associating them with distinct senses ofthe same lex-
eme. As we will discuss in Chapter 17, this strongly suggeststhat selection
restrictions can be used to discriminate these senses in context.

Note that the selection restrictions imposed by different lexemes, and
different senses of the same lexeme, may occur at widely varying levels
of specificity, with some lexemes expressing very general conceptual cat-
egories, and others expressing very specific ones indeed. Consider the fol-
lowing examples of the verbsimagine, lift anddiagonalize.

(16.42) In rehearsal, I often ask the musicians to imagine a tennis game.

(16.43) Others tell of jumping over beds and couches they can’t imagine
clearing while awake.

(16.44) I cannot even imagine what this lady does all day.

(16.45) Atlantis lifted Galileo from the launch pad at 12:54p.m. EDT and
released the craft from its cargo bay about six hours later.
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(16.46) When the battle was over, Mr. Kruger lifted the fish from the water,
gently removed the hook from its jaw, admired it, and eased itback
into the lake.

(16.47) To diagonalize a matrix, is to find its eigenvalues.

Given the meaning ofimagine, it is not surprising to find that it places few
semantic restrictions on the concepts that can fill itsPATIENT role. ItsAGENT

role, on the other hand, is restricted to humans and other animate entities.
In contrast, the sense oflift shown in Examples 16.45 and 16.46 limits its
PATIENT to be something liftable, which as these examples illustrate is a
notion that must cover both spacecraft and fish. For all practical purposes,
this notion is best captured by the fairly general notion such asphysical
object. Finally, we havediagonalizewhich imposes a very specific constraint
on the filler of itsPATIENT role: it has to be a matrix.

These examples serve to illustrate an important fact about selection re-
strictions: the concepts, categories, and features that are deployed by the
lexicon as selection restrictions are not a part of the finitelanguage capac-
ity. Rather, they are as open-ended as the lexicon itself. This distinguishes
selection restrictions from some of the other finite features of language that
are used to define lexemes including parts-of-speech, thematic roles, and se-
mantic primitives.

Before we move on, it is worth pointing out that verbs are not the
only part-of-speech that can impose selection restrictions on their arguments.
Rather, it appears to be the case that any predicate-bearinglexeme can im-
pose arbitrary semantic constraints on the concepts that fill its argument
roles. Consider the following examples, which illustrate the selection re-
strictions associated with some non-verb parts-of-speech.

(16.48) Radon is a naturally occurring odorless, tastelessgas that can’t be
detected by human senses.

(16.49) What is the lowest fare for United Airlines flight four thirty?

(16.50) Are there any restaurants open after midnight?

The adjectivesodorlessandtastelessin 16.48 are restricted to concepts that
can possess an odor or a taste. Similarly, as we discussed earlier in Section
16.1, the nounfare is restricted to various forms of public transportation. Fi-
nally, arguments to the prepositionaftermust directly or indirectly designate
points in time.
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Representing Selection Restrictions

The semantics of selection restrictions can be captured in astraightforward
way by extending the event-oriented meaning representations employed in
Chapter 14. Recall that the representation of an event consists of a single
variable that stands for the event, a predicate that denotesthe kind of event,
and a series of variables and relations that designate the roles associated
with the event. Ignoring the issue of theλ-structures, and using thematic
roles rather than deep event roles, the semantic contribution of a verb like
eatmight look like the following.9e;x;y Eating(e)^Agent(e;x)^Patient(e;y)
With this representation, all we know abouty, the filler of thePatient role,
is that it is associated with anEating event via thePatient relation. To
stipulate the selection restriction thaty must be something edible, we simply
add a new term to that effect, as in the following.9e;x;y Eating(e)^Eater(e;x)^Patient(e;y)^ Isa(y;EdibleT hing)
When a phrase likeate a hamburgeris encountered, a semantic analyzer can
form the following kind of representation.9e;x;y Eating(e)^Eater(e;x)^Patient(e;y)^ Isa(y;EdibleT hing)^Isa(y;Hamburger)
This representation is perfectly reasonable since the membership ofy in
the categoryHamburgeris consistent with its membership in the category
EdibleThing, assuming a reasonable set of facts in the knowledge base. Cor-
respondingly, the representation for a phrase such asate a takeoffwould be
ill-formed because membership in an event-like category such asTakeo f f
would be inconsistent with membership in the categoryEdibleThing.

While this approach adequately captures the semantics of selection re-
strictions, there are two practical problems with its direct use. First, using
the full power of First Order Logic to perform the simple taskof enforcing
selection restrictions is overkill. There are far simpler formalisms that can
do the job with far less computational cost. The second problem is that it
presupposes a large logical knowledge-base of facts about the concepts that
make up selection restrictions. Unfortunately, although such common sense
knowledge-bases are being developed, none are widely available and few
have the kind of scope necessary to the task.

A far more practical approach, at least for English, is to exploit the
hyponymy relations present in the WordNet database. In thisapproach, se-
lection restrictions on semantic roles are stated in terms of WordNet synsets,
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Sense 1
hamburger, beefburger --
(a fried cake of minced beef served on a bun)
=> sandwich

=> snack food
=> dish

=> nutriment, nourishment, sustenance...
=> food, nutrient

=> substance, matter
=> object, physical object

=> entity, something

Figure 16.11 Evidence from WordNet that hamburgers are edible.

rather than logical concepts. A given meaning representation can be judged
to be well-formed if the lexeme that fills a thematic role has as one of its
hypernyms, the synset specified by the predicate for that thematic role. Con-
sider how this approach would work with ourate a hamburgerexample.
Among its 60,000 synsets, WordNet includes the following one, which is
glossed asany substance that can be metabolized by an organism to give
energy and build tissue.ffood, nutrientg
Given this synset, we can specify it as the selection restriction on thePA-
TIENT role of the verbeat, thus limiting fillers of this role to lexemes in this
synsetand its hyponyms. Luckily, the chain of hypernyms forhamburger
shown in Figure 16.3, reveals that that hamburgers are indeed food.

Note that in this approach, the filler of a role does not have tomatch
the restriction synset exactly. Rather, a selection restriction is satisfied if the
filler has the restricting synset as one of its eventual hypernyms. Thus in the
hamburger example, the selection restriction synset is found five hypernym
levels up fromhamburger.

Of course, this approach also allows individual lexemes to satisfy re-
strictions at varying levels of specificity. For example, consider what hap-
pens when we apply this approach to thePATIENT roles of the verbsimagine,
lift anddiagonalize, discussed earlier. Let us restrict imagine’sPATIENT to
the synsetfentity, somethingg, lift’s PATIENT to fobject, physical objectg
anddiagonalizeto fmatrixg. This arrangement correctly permitsimagine a
hamburgerandlift a hamburger, while also correctly ruling outdiagonalize
a hamburger.
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Note that this approach relies on the presence in WordNet of exactly
those lexemes that specify exactly the concepts needed for all possible se-
lection restrictions. Unfortunately, there is no particular reason to believe
that the set of concepts used as selection restrictions in a language is exactly
subsumed by the lexemes in the language. This situation is accommodated
to some extent in WordNet through the use of collocations such asphysical
objectandsnack food.

To address this problem more directly, there are a number of linguistically-
oriented taxonomies that sit somewhere between common sense knowledge-
bases such as CYC, and lexical databases such WordNet. The objects con-
tained in these hybrid models do not have to correspond to individual lexical
items, but rather to those concepts that are known to be grammatically and
lexically relevant. In most cases, the upper portions of these taxonomies are
taken to represent domain and language-independent notions, such as phys-
ical objects, states, events and animacy. One of the most well-developed of
these ontologies is the thePENMAN Upper Model, discussed in more detail
in Chapter 20.

Primitive Decomposition

The theories of meaning representation presented here, andin the last few
chapters, have had a decidedly lexical flavor. The meaning representations
for sentences have been composed of atomic symbols that appear to cor-
respond very closely to individual lexemes. However, otherthan thematic
roles, these lexical representations have had not much of aninternal struc-
ture. The notion ofprimitive decomposition, or componential analysis, is
an attempt to supply such a structure.

To explore these notions, consider the following examples motivated
by the discussion in McCawley (1968).

(16.51) Jim killed his philodendren.

(16.52) Jim did something to cause his philodendren to become not alive.

One can make an argument that these two sentences mean the same thing.
However, this is not case of synonymy, sincekill is not synonymous with any
individual lexemes in 16.52. Instead, one can think ofkill as being equivalent
to the particular configuration ofmore fundamentalelements found in the
second sentence.

Taking this to the next logical step, we can invoke the notionof canon-
ical form and say that these two examples should have thesamemeaning



Section 16.3. The Internal Structure of Words 619

representation — the one underlying Example 16.52. Translating a simple
predicate likekill into a more complex set of predicates can be viewed as
breaking down, or decomposing, the meaning of words into combinations of
simpler, more primitive, parts. In this example, the more primitive, possibly
atomic, parts are the meaning representations associated with the lexemes
cause, become not, andalive.

While many such primitive sets of have been proposed, the approach
known as Conceptual Dependency (CD) (Schank, 1972) has been the most
widely used primitive-based representational system within natural language
processing. In this approach, eleven primitive predicatesare used to repre-
sent all predicate-like language expressions. Figure 16.12 shows the eleven
primitives with a brief explanation of their meaning.

As an example of this approach, consider the following sentence along
with its CD representation.

(16.53) The waiter brought Mary the check.9x;y Atrans(x)^Actor(x;Waiter)^Ob ject(x;Check)^To(x;Mary)^Ptrans(y)^Actor(y;Waiter)^Ob ject(y;Check)^To(y;Mary)
Here, the verbbrought is translated into the two primitivesATRANS and
PTRANS to indicate the fact that the waiter both physically conveyed the
check to Mary and passed control of it to here. Note that CD also associates
a fixed set of thematic roles with each primitive to representthe various
participants in the action.

Note that, in general, the compositional approach need not be limited to
the meanings of verbs. The same notion can be used to decompose nominals
into more primitive notions. Consider the following decompositions of the
lexemeskitten, puppy, andchild into more primitive elements.9xIsa(x;Feline)^ Isa(x;Youth)9xIsa(x;Canine)^ Isa(x;Youth)9xIsa(x;Human)^ Isa(x;Youth)
Here the primitives represent more primitive categories ofobjects, rather
than actions. Using these primitives, the close relationship between these
lexemes and the related termscat, dogandpersoncan then be captured with
the following similar formulas.9xIsa(x;Feline)^ Isa(x;Adult)9xIsa(x;Canine)^ Isa(x;Adult)9xIsa(x;Human)^ Isa(x;Adult)

The primary applications of primitives in natural languageprocessing
have been in semantic analysis and in machine translation. In semantic anal-
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Primitive Definition
ATRANS The abstract transfer of possession or control from one en-

tity to another.
PTRANS The physical transfer of an object from one location to

another
MTRANS The transfer of mental concepts between entities or within

an entity.
MBUILD The creation of new information within an entity.
PROPEL The application of physical force to move an object.
MOVE The integral movement of a body part by an animal.
INGEST The taking in of a substance by an animal.
EXPEL The expulsion of something from an animal.
SPEAK The action of producing a sound.
ATTEND The action of focusing a sense organ.

Figure 16.12 A set of conceptual dependency primitives

ysis, the principle use has been in organizing the inferenceprocess. Instead
of having to encode thousands of idiosyncratic meaning postulates with par-
ticular lexical items, inference rules can be associated with a small number
of primitives. We should note the use of primitive decomposition in the rep-
resentation on nominals has largely been supplanted by the use of inheritance
hierarchies. As we will see in Chapter 21, the emphasis in machine trans-
lation has been on the use of primitives as language independent meaning
representations, orinterlinguas.

Semantic Fields

The lexical relations described in Section 16.1 had a decidedly local char-
acter, and made no use of the internal structure of the lexemes taking part
in the relation. The notion of asemantic field is an attempt to capture aSEMANTIC

FIELD

more integrated, or wholistic, relationship among entire sets of words from a
single domain. Consider the following set of words extracted from the ATIS
corpus.

reservation, flight, travel, buy, price, cost, fare, rates,meal, plane

It is certainly possible to assert individual lexical relations between
many of the lexemes in this list. The resulting set of relations does not, how-
ever, add up to a complete account of how these lexemes are related. They
are clearly all defined with respect to a coherent chunk of common sense
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background information concerning air travel. Backgroundknowledge of
this kind has been studied under a variety of frameworks and is known var-
iously as a frame (Fillmore, 1985), model (Johnson-Laird, 1983), or script
(Schank and Albelson, 1977), and plays a central role in a number of com-
putational frameworks, some of which will be discussed in Chapter 18.

TheFrameNet project (Bakeret al., 1998) is a recent attempt to pro-FRAMENET

vide a robust resource for this kind of knowledge. In FrameNet, lexemes that
refer to actions, events, thematic roles, and objects belonging to a particular
domain are linked to concepts contained in frames that represent that partic-
ular domain. As in most current ontology efforts, these frames are arranged
in a hierarchy so that specific frames can inherit roles from more abstract
frames. The current FrameNet effort is directed at the creation of several
thousand frame-semantic lexical entries. The domains to becovered in-
clude:HEALTH CARE, CHANCE, PERCEPTION, COMMUNICATION, TRANS-
ACTION, TIME, SPACE, BODY, MOTION, LIFE STAGES, SOCIAL CONTEXT,
andCOGNITION.

16.4 CREATIVITY AND THE LEXICON

The approach we have presented thus far views the lexicon as astatic repos-
itory from which meaning representations are retrieved as needed. A more
realistic alternative view holds that the lexicon is closerto a generative de-
vice than a static repository. Rather than simply retrieving static senses, the
lexicongeneratesmeaning components appropriate to each situation on de-
mand. Under this view, much of the apparent polysemy in the lexicon is due
to this generative capacity. This capacity is, of course, not unlimited or un-
systematic. Rather, it is governed by a number of productive, or generative,
models that can systematically combine lexical, grammatical, contextual,
and common sense knowledge to create the novel meanings we see every
day.

To make this discussion more concrete, consider the following sen-
tence from the WSJ corpus.

(16.54) That doesn’t scare Digital, which has grown to be theworld’s
second-largest computer maker by poaching customers of IBM’s
mid-range machines.

Let’s consider the meanings ofscareandpoachin this example. The verb
scare in WordNet has two closely related senses: to cause fear in, and to
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cause to lose courage. Although it might be interesting to consider which
of these senses is the right one for this example, its even more interesting to
consider what it would mean for a corporation to lose courage, or even to
have it in the first place. For this sentence to make sense, it would appear to
be the case that corporations must be able to experience emotions like fear
or courage. Of course, they don’t but we certainly speak of them and often
reason about them as if they do.

The verbpoachin WordNet has acooking by boilingsense, and ail-
legal taking of gamesense. Intuitively, the use ofpoachin this example is
closer to the illegal taking meaning than the boiling one. Ofcourse, this is
clearly not a simple instance of this use; the poaching involved is not illegal,
and we can only hope that the poached things are not being killed. In this
case, the customers are being viewed as a kind of property belonging to the
company they do business with; and when they choose to do business with
another company they have been stolen.

This ability to talk about, and reason about, concepts in terms ofother
distinct kinds of conceptsis calledmetaphor and is pervasive in all lan-METAPHOR

guages. As a generative model, it is responsible for a large proportion of
the polysemy in the language, including many of the senses that are listed in
dictionaries as well as the more novel ones that are not.

Let’s now consider the following example from the WSJ.

(16.55) GM killed the Fiero because it had dedicated a full-scale factory
to...

The use ofkill in this example roughly means toput an end tosome kind
of ongoing effort, or activity. In this case, the ongoing activity of building,
marketing, and selling a particular kind of car. The metaphor underlying this
use views activities as living things, allowing the termination to be viewed
as a killing. Note, however, that this sentence does not say any of this. In
particular, thePATIENT of the killing is a definite referencethe Fiero. For
the metaphor to make sense, this phrase must refer not to a particular car, but
rather to an entire sales and production effort at GM. At a very high level,
this is a case where the result of an entire effort, or process, is being used
to refer to the process itself. This is an example ofmetonymy, referring
to a concept by mentioning a concept closely related to it. Like metaphor,
metonymy is pervasive and goes mostly unnoticed in natural settings.
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16.5 SUMMARY

This chapter has covered a wide range of issues concerning the meanings
associated with lexical items. The following are among the highlights:� Lexical semantics is the study of the systematic meaning-related con-

nections among lexemes, and the internal meaning-related structure of
individual lexemes.� Homonymy refers to lexemes with the same form but unrelated mean-
ings.� Polysemy refers to the notion of a single lexeme with multiple related
meanings.� Synonymy holds between different lexemes with the same meaning.� Hyponomy relations hold between lexemes that are in class-inclusion
relationship.� Semantic fields are used to capture semantic connections among groups
of lexemes drawn from a single domain.� WordNet is a large database of lexical relations for Englishwords.� Thematic roles abstract away from the specifics of deep semantic roles
by generalizing over similar roles across classes of verbs.� Semantic selection restrictions allow lexemes to post constraints on the
semantic properties of the constituents that accompany them in sen-
tences.� Primitive decomposition allows permits the representation of the mean-
ings of individual lexemes in terms of finite sets of sub-lexical primi-
tives.� Generative devices such as metaphor and metonymy are pervasive, and
produce novel meanings that can not in principle be capturedin a static
lexicon.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Lyons (1977) and Cruse (1986) are classic linguistics textson lexical seman-
tics. Collections describing computational work on lexical semantics can be
found in (Pustejovsky and Bergler, 1992; Saint-Dizier and Viegas, 1995;
Klavans, 1995).
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Martin (1986) and Copestake and Briscoe (1995) discuss computa-
tional approaches to the representation of polysemy. The most compre-
hensive collection of work concerning WordNet can be found in (Fellbaum,
1998). There have been many efforts to use existing dictionaries as lexical
resources. One of the earliest was Amsler’s (1980, 1981) useof the Mer-
riam Webster dictionary. More recently, the machine readable version of
Longman’s Dictionary of Contempory English has been used ina number of
systems (Boguraev and Briscoe, 1989).

Thematic roles, or case roles, can be traced back to work by Fillmore
(1968) and and (Gruber, 1965b). Fillmore’s work had an enormous and im-
mediate impact on work in natural language processing. For aconsiderable
period of time, nearly all work in natural language understanding used some
version of Fillmore’s case roles. Much of the early work in this vein was due
to Simmons (1973b, 1978, 1983).

Work on selection restrictions as a way of characterizing semantic
well-formedness began with (Katz and Fodor, 1963). McCawley (1968) was
the first to point out that selection restrictions could not be restricted to a
finite list of semantic features, but had to be drawn from a larger base of
unrestricted world knowledge

Lehrer (1974) is a classic text on semantic fields. More recent papers
addressing this topic can be found in (Lehrer and Kittay, 1992). Bakeret al.
(1998) describe ongoing work on the FrameNet project.

The use of primitives, components, and features to define lexical items
is ancient. Nida (1975) presents a comprehensive overview of work on com-
ponential analysis. Wierzbecka (Wierzbicka, 1996) has long been a major
advocate of the use of primitives in linguistic semantics. Another promi-
nent effort has been Jackendoff’s Conceptual Semantics (Jackendoff, 1983a,
1990) work which combines thematic roles and primitive decomposition. On
the computational side, Schank’s Conceptual Dependency Schank (1972) re-
mains the most widely used set of primitives in natural language processing.
Wilks (1975a) was an early promoter of the use of primitives in machine
translation, as well natural language understanding in general. More re-
cently, Dorr (1993, 1992) has made considerable computational use of Jack-
endoff’s framework in her work on machine translation.

An influential collection of papers on metaphor can be found in (Ortony,
1993). Lakoff and Johnson (1980) is the classic work on conceptual metaphor
and metonymy. Pustejovsky (1995) introduced the notion of the Gener-
ative Lexicon, a conceptual framework that rejects the notion of the lexi-
con as a static repository in favor of a more dynamic view. Russell (1976)
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presents one of the earliest computational approach to metaphor. Additional
early work can be found in (DeJong and Waltz, 1983; Wilks, 1978; Hobbs,
1979b). More recent computational efforts to analyze metaphor can be found
in (Fass, 1988, 1991; Martin, 1990; Veale and Keane, 1992; Iverson and
Helmreich, 1992; Chandler, 1991). Martin (1996) presents asurvey of com-
putational approaches to metaphor and other types of figurative language.

EXERCISES

16.1 Collect three definitions of ordinary non-technical English words from
a dictionary of your choice that you feel are flawed in some way. Explain
the nature of the flaw and how it might be remedied.

16.2 Download and install the current version of WordNet.

16.3 Give a detailed account of similarities and differences among the fol-
lowing set of lexemes:imitation, synthetic, artificial, fakeandsimulated.

Examine the entries for these lexemes in WordNet (or some dictionary
of your choice). How well does it reflect your analysis?

16.4 Consider the following examples from (McCawley, 1968).

My neighbor is a father of three.

?My buxom neighbor is a father of three.

What does the ill-formedness of the second example imply about how
constituents satisfy, or violate, selection restrictions?

16.5 Find some articles about business, sports, or politics fromyour daily
newspaper. Identify as many lexical metaphors and metonymies as you can
in these articles. How many of these uses have reasonably close entries in
either WordNet or your favorite dictionary?

16.6 [more to come ]





17
WORD SENSE
DISAMBIGUATION AND
INFORMATION
RETRIEVAL

Oh are you from Wales?
Do you know a fella named Jonah?
He used to live in whales for a while.

Groucho Marx

This chapter introduces a number of topics related tolexical semantic
processing. By this, we have in mind applications that make use of wordLEXICAL

SEMANTIC
PROCESSING

meanings, but which are to varying degrees decoupled from the more com-
plex tasks of compositional sentence analysis and discourse understanding.

The first topic we cover,word sense disambiguation, is of consider- WORD SENSE
DISAMBIGUA­
TION

able theoretical and practical interest. As we noted in Chapter 16, the task of
word sense disambiguation is to examine word tokens in context and spec-
ify which sense of each word is being used. As we will see in thenext two
sections, making this vague definition operational is a non-trivial — there is
no clear consensus as to exactly what the task is, or how it should be evalu-
ated. Nevertheless, there are robust algorithms that can achieve high levels
of accuracy under certain reasonable assumptions.

The second topic we cover,information retrieval , is an extremely INFORMATION
RETRIEVAL

broad field, encompassing a wide-range of topics pertainingto the storage,
analysis, and retrieval of all manner of media (Baeza-Yatesand Ribeiro-
Neto, 1999). Our concern in this chapter is solely with the storage and re-
trieval of text documents in response to users requests for information. We
are interested in approaches in which users’ needs are expressed as words,
and documents are represented in terms of the words they contain. Section
17.3 presents thevector space model, a well-established approach used in
most current systems, including most Web search engines.
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17.1 SELECTION RESTRICTION-BASED DISAMBIGUATION

For the most part, our discussions of compositional semantic analyzers in
Chapter 15 ignored the issue of lexical ambiguity. By now it should be clear
that this is not a reasonable approach. Without some means ofselecting cor-
rect senses for the words in the input, the enormous amount ofhomonymy
and polysemy in the lexicon will quickly overwhelm any approach in an
avalanche of competing interpretations. As with syntacticpart-of-speech
tagging, there are two fundamental approaches to handling this ambiguity
problem. In the first approach, the selection of correct senses occurs during
semantic analysis as a side-effect of the elimination of ill-formed represen-
tations composed from an incorrect combination of senses. In the second
approach, sense disambiguation is performed as a stand-alone task indepen-
dent of, and prior to, compositional semantic analysis. This section discusses
the role of selection restrictions in the former approach. The stand-alone ap-
proach is discussed in detail in 17.2.

Selection restrictions and type hierarchies are the primary knowledge-
sources used to perform disambiguation in most integrated approaches. In
particular, they are used to rule out inappropriate senses and thereby reduce
the amount of ambiguity present during semantic analysis. If we assume
an integrated rule-to-rule approach to semantic analysis,then selection re-
strictions can be used to block the formation of component meaning repre-
sentations that contain violations. By blocking such ill-formed components,
the semantic analyzer will find itself dealing with fewer ambiguous meaning
representations. This ability to focus on correct senses byeliminating flawed
representations that result from incorrect senses can be viewed as a form of
indirect word sense disambiguation. While the linguistic basis for this ap-
proach can be traced back to the work of Katz and Fodor (1963),the most
sophisticated computational exploration of it is due to Hirst (1987).

As an example of this approach, consider the following pair of WSJ
examples, focusing solely on their use of the lexemedish.

(17.1) “In our house, everybody has a career and none of them includes
washing dishes”, he says.

(17.2) In her tiny kitchen at home, Ms. Chen works efficiently, stir-frying
several simple dishes, including braised pig’s ears and chicken livers
with green peppers.

These examples make use of two polysemous senses of the lexemedish. The
first refers to the physical objects that we eat from, while the second refers to
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the actual meals or recipes. The fact that we perceive no ambiguity in these
examples can be attributed to the selection restrictions imposed bywashand
stir-fry on their PATIENT roles, along with the semantic type information
associated with the two senses ofdish. More specifically, the restrictions
imposed bywashconflict with the food sense of dish since it does not denote
something that is normally washable. Similarly, the restrictions onstir-fry
conflict with the artifact sense of dish, since it does not denote something
edible. Therefore, in both of these casesthe predicate selects the correct
senseof an ambiguous argument by eliminating the sense that failsto match
one of its selection restrictions.

Now consider the following WSJ and ATIS examples, focusing on the
ambiguous predicateserve.

(17.3) Well, there was the time they served green-lipped mussels from New
Zealand.

(17.4) Which airlines serve Denver?

(17.5) Which ones serve breakfast?

Here the sense ofservein 17.3 requires some kind of food as itsPATIENT,
the sense in 17.4 requires some kind of geographical or political entity, and
the sense in the last example requires a meal designator. If we assume that
mussels, Denverandbreakfastare unambiguous, then in it is the arguments
in these examples that select the appropriate sense of the verb.

Of course, there are also cases where both the predicate and the argu-
ment have multiple senses. Consider the following BERP example.

(17.6) I’m looking for a restaurant that serves vegetarian dishes.

Restricting ourselves to three senses ofserveand two senses ofdish yields
six possible sense combinations in this example. However, since only one
combination of the six is free from a selection restriction violation, determin-
ing the correct sense of bothserveanddish is straightforward. In particular,
the predicate and argument mutually select the correct senses.

Before moving on, we should note there will always be examples like
the following where the available selection restrictions are too general to
uniquely select a correct sense.

(17.7) What kind of dishes do you recommend?

In cases like this we either have to rely on the stand-alone methods discussed
in 17.2, or knowledge of the broader discourse context, as will be discussed
in Chapter 18.
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Although there are a wide variety of ways to integrate this style of
disambiguation into a semantic analyzer, the most straightforward approach
follows the rule-to-rule strategy introduced in Chapter 15. In this integrated
approach, fragments of meaning representations are composed and checked
for selection restriction violations as soon as their corresponding syntactic
constituents are created. Those representations that contain selection restric-
tion violations are eliminated from further consideration.

This approach requires two additions to the knowledge structures used
in our semantic analyzers: access to hierarchical type information about the
arguments, and semantic selection restriction information about the argu-
ments to predicates . Recall from Chapter 16, that both of these can be
encoded using knowledge from WordNet. The first is availablein form of
the hypernym information about the heads of the meaning structures being
used as arguments to predicates. Similarly, selection restriction information
about argument roles can be encoded by associating the appropriate WordNet
synsets with the arguments to each predicate-bearing lexical item. Exercise
?? asks you to explore this approach in more detail.

Limitations of Selection Restrictions

Not surprisingly, there are a number of practical and theoretical problems
with this use of selection restrictions. The first symptom ofthese problems
is the fact that there are many perfectly well-formed, interpretable, sentences
that contain obvious violations of selection restrictions. Therefore, any ap-
proach based on a stricteliminationof such interpretations is in serious trou-
ble.

Consider the following WSJ example.

(17.8) But it fell apart in 1931, perhaps because people realized you can’t
eat gold for lunch if you’re hungry.

The phraseeat goldclearly violates the selection restriction thateat places
on its PATIENT role. Nevertheless, this example is perfectly well-formed.
The key is the negative environment set up bycan’t prior to the violation of
the restriction. This example makes it clear that any purelylocal, or rule-to-
rule, analysis of selection restrictions will fail when a wider context makes
the violation of a selection restriction acceptable, as in this case.

A second problem with selection restrictions is illustrated by the fol-
lowing example.
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(17.9) In his two championship trials, Mr. Kulkarni ate glass on an empty
stomach, accompanied only by water and tea.

Although the event described in this example is somewhat unusual, the sen-
tence itself is not semantically ill-formed, despite the violation ofeat’s selec-
tion restriction. Examples such as this illustrate the factthat thematic roles
and selection restrictions are merely loose approximations of the deeper con-
cepts they represent. They can not hope to account for uses such as this that
require deeper commonsense knowledge about what eating is all about. At
best, they reflect the idea that the things that are eaten are normally edible.

Finally, as discussed in Chapter 16, metaphoric and metonymic uses
challenge this approach as well. Consider the following WSJexample.

(17.10) If you want to kill the Soviet Union, get it to try to eat Afghanistan.

Here the typical selection restrictions on thePATIENTS of both kill andeat
will eliminate all possible literal senses leaving the system with no possible
meanings. In many systems, such a situation serves to trigger alternative
mechanisms for interpreting metaphor and metonymy (Fass, 1997).

As Hirst (1987) observes, examples like these often result in the elim-
ination of all senses, bring semantic analysis to a halt. Oneapproach to
alleviating this problem is to adopt the view of selection restrictions as pref-
erences, rather than rigid requirements. Although there have been many
instantiations of this approach over the years (Wilks, 1975c, 1975b, 1978),
the one that has received the most thorough empirical evaluation is Resnik’s
(1998) work, which uses the notion of aselectional associationintroduced
on page??. Recall that this notion uses an empirically derived measure of
the strength of association between a predicate and a class dominating the
argument to the predicate.

A simplified version of Resnik’s disambiguation algorithm is shown in
Figure 17.1. The basic notion behind this algorithm is to select as the correct
sense for the argument, the one that has the highest selectional association
between one of its ancestor hypernyms and the predicate. Resnik (1998) re-
ports an average of 44% correct with this technique for verb-object relation-
ships, a result that is an improvement over a most frequent sense baseline.
A limitation of this approach is that it only addresses the case where the
predicate is unambiguous andselectsthe correct sense of the argument. A
more complex decision criteria would be needed for the more likely situation
where both the predicate and argument are ambiguous.
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function SA-WSD(pred, arg) returns sense

best-association Mininum possible selection association
for eachsensein senses ofarg do

for eachhypernymin hypernyms ofsensedo
new Selectional association betweenhypandpred
if new> best-associationthen

best-association new
best-sense sense

end
end
return best-sense

Figure 17.1 Resnik’s (1998) selectional association-based word sensedis-
ambiguation algorithm. The selection association betweenall the hypernyms
of all the senses of the target argument and the predicate arecomputed. The
sense with the most closely associated hypernym is selected.

17.2 ROBUST WORD SENSE DISAMBIGUATION

The selection restriction approach to disambiguation has too many require-
ments to be useful in large-scale practical applications. Even with the use
of WordNet, the requirements of complete selection restriction information
for all predicate roles, and complete type information for the senses of all
possible fillers are unlikely to be met. In addition, as we sawin Chapters 10,
12, and 15, the availability of a complete and accurate parsefor all inputs is
unlikely to be met in environments involving unrestricted text.

To address these concerns, a number of robust disambiguation systems
with more modest requirements have been developed over the years. As
with part-of-speech taggers, these systems are designed tooperate in a stand-
alone fashion and make minimal assumptions about what information will be
available from other processes.

Machine Learning Approaches

In machine learning approaches, systems aretrained to perform the task
of word sense disambiguation. In these approaches, what is learned is a
classifier that can be used to assign as yet unseen examples toone of a fixed
number of senses. As we will see, these approaches vary as to the nature
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of the training material, how much material is needed, the degree of human
intervention, the kind of linguistic knowledge used, and the output produced.
What they all share is an emphasis on acquiring the knowledgeneeded for
the task from data, rather than from human analysts. The principal question
to keep in mind as we explore these systems is whether the method scales;
that is, would it be possible to apply the method to a substantial part of the
entire vocabulary of a language?

The Inputs: Feature Vectors

Before discussing the algorithms, we should first characterize the kind of
inputs they expect. In most of these approaches, the initialinput consists of
the word to be disambiguated, which we will refer to as thetarget word,
along with a portion of the text in which it is embedded, whichwe will call
its context. This initial input is then processed in the following ways:� The input is normally part-of-speech tagged using one of thehigh ac-

curacy methods described in Chapter 8.� The original context may be replaced with larger or smaller segments
surrounding the target word.� Often some amount of stemming, or more sophisticated morphological
processing, is performed.� Less often, some form of partial parsing, or dependency parsing, is
performed to ascertain thematic or grammatical roles and relations.

After this initial processing, the input is then boiled downto a fixed set
of features that capture information relevant to the learning task. This task
consists of two steps: selecting the relevant linguistic features, and encoding
them in a form usable in a learning algorithm. Fortunately, asimplefeature
vector consisting of numeric or nominal values can easily encode the most FEATURE

VECTOR

frequently used linguistic information, and is appropriate for use in most
learning algorithms

The linguistic features used in training WSD systems can be roughly
divided into two classes: collocational features and co-occurrence features.
In general, the termcollocation refers to a quantifiable position-specific re-COLLOCATION

lationship between two lexical items. Collocational features encode infor-
mation about the lexical inhabitants ofspecificpositions located to the left
and right of the target word. Typical items in this category include the word,
the root form of the word, and the word’s part-of-speech. This type of fea-
ture is effective at encoding local lexical and grammaticalinformation that
can often accurately isolate a given sense.
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As an example of this type of feature-encoding, consider thesituation
where we need to disambiguate the lexemebassin the following example.

(17.11) An electric guitar andbassplayer stand off to one side, not really
part of the scene, just as a sort of nod to gringo expectationsperhaps.

A feature-vector consisting of the two words to the right andleft of the target
word, along with their respective parts-of-speech, would yield the following
vector.

[guitar, NN1, and, CJC, player, NN1, stand, VVB]

The second type of feature consists of co-occurrence data about neigh-
boring words, ignoring their exact position. In this approach, the words
themselves (or their roots) serve as features. The value of the feature is the
number of times the word occurs in a region surrounding the target word.
This region is most often defined as a fixed size window with thetarget word
at the center. To make this approach manageable, a small number of fre-
quently used content words are selected for use as features.This kind of
feature is effective at capturing the general topic of the discourse in which
the target word has occurred. This, in turn, tends to identify senses of a word
that are specific to certain domains.

For example, a co-occurrence vector consisting of the 12 most frequent
content words from a collection ofbasssentences drawn from the WSJ cor-
pus would have the words as features:fishing, big, sound, player, fly, rod,
pound, double, runs, playing, guitar, band. Using these words as features
with a window size of 10, Example 17.11 would be represented by the fol-
lowing vector.

[0,0,0,1,0,0,0,0,0,0,1,0]

As we will see, most robust approaches to sense disambiguation make
use of a combination of both collocational and co-occurrence features.

Supervised Learning Approaches

In supervised approaches, a sense disambiguation system islearned from a
representative set of labeled instances drawn from the samedistribution as
the test set to be used. This is a straightforward application of thesupervised
learning approach to creating a classifier. In such approaches, a learningSUPERVISED

LEARNING

system is presented with a training set consisting of feature-encoded inputs
along with their appropriate label, or category. The output of the system is a
classifier system capable of assigning labels to new feature-encoded inputs.
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METHODOLOGY BOX: EVALUATING WSD SYSTEMS

The basic metric used in evaluating sense disambiguation sys-
tems is simple precision: the percentage of words that are tagged
correctly. The primary baseline against which this metric is com-
pared is themost frequent sensemetric: how well would a system
do if it simply chose the most frequent sense of a word.

The use of precision requires access to the correct answers to the
words in a test set. Fortunately, two large sense-tagged corpora are
now available: theSEMCORcorpus (Landeset al., 1998), which con-
sists of a portion of the Brown corpus tagged with WordNet senses,
and theSENSEVAL corpus (Kilgarriff and Rosenzweig, 2000), which
is a tagged corpus derived from theHECTOR corpus and dictionary
project.

A number of issues must be taken into account in comparing
results across systems. The main issue concerns the nature of the
senses used in the evaluation. Two approaches have been followed
over the years: coarse distinctions among homographs, suchas the
musical and fish senses ofbass, and fine-grained sense distinctions
such as those found in traditional dictionaries. Unfortunately, there
is no standard way of comparing results across these two kinds of
efforts, or across efforts using different dictionaries.

Dictionary senses provide the opportunity for a more fine-
grained scoring metric than simple precision. For example,con-
fusing a particular musical sense ofbasswith a fish sense, is clearly
worse than confusing it with another musical sense. This observa-
tion gives rise to a notion ofpartial credit in evaluating these sys-
tems. With such a metric, an exact sense-match would receivefull
credit, while selecting a broader sense would receive partial credit.
Of course, this kind of scheme is entirely dependent on the organi-
zation of senses in the particular dictionary being used.

Standardized evaluation frameworks for word sense disam-
biguation systems are now available. In particular, theSENSEVAL

effort (Kilgarriff and Palmer, 2000), provides the same kind of eval-
uation framework for sense disambiguation, that the MUC (Sund-
heim, 1995b) and TREC (Voorhees and Harman, 1998) evaluations
have provided for information extraction and information retrieval.
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Bayesian classifiers (Duda and Hart, 1973), decision lists (Rivest, 1987),
decision trees (Quinlan, 1986), neural networks (Rumelhart et al., 1986),
logic learning systems (Mooney, 1995), and nearest neighbor methods(Cover
and Hart, 1967) all fit into this paradigm. We will restrict our discussion to
the naive Bayes and decision list approaches, since they have been the focus
of considerable work in word sense disambiguation.

Thenaive Bayesclassifier approach to WSD is based on the premiseNAIVE BAYES

that choosing the best sense for an input vector amounts to choosing the most
probable sense given that vector. In other words:

ŝ= argmax
s2S

P(sjV) (17.12)

In this formula,Sdenotes the set of senses appropriate for the target associ-
ated with this vector. As is almost always the case, it would be difficult to
collect statistics for this equation directly. Instead, werewrite it in the usual
Bayesian manner as follows:

ŝ= argmax
s2S

P(Vjs)P(s)
P(V) (17.13)

Of course, the data available that associates specific vectors with senses
is too sparse to be useful. What is provided in abundance in the training set
is information about individual feature-value pairs in thecontext of specific
senses. Therefore, we can make the same independence assumption that
has served us well in part-of-speech tagging, speech recognition, and prob-
abilistic parsing — assume that the features are independent of one another.
Making this assumption yields the following equation.

P(Vjs) = n

∏
j=1

P(v j js) (17.14)

Given this equation,training a Naive Bayes classifier amounts to col-
lecting counts of the individual feature-value statisticswith respect to each
sense of the target word. The termP(s) is the prior for each sense, which just
corresponds to the proportion of each sense in the training set. Finally, since
P(V) is the same for all possible senses it does not effect the finalranking of
senses, leaving us with the following.

ŝ= argmax
sinS

P(s) n

∏
j=1

P(v j js) (17.15)

Of course, all the issues discussed in Chapter 8 with respectto zero counts
and smoothing apply here as well.
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Rule Sense
fishwithin window ) bass1

striped bass ) bass1

guitar within window ) bass2

bass player ) bass2

pianowithin window ) bass2

tenorwithin window ) bass2

sea bass ) bass1

play/V bass ) bass2

river within window ) bass1

violin within window ) bass2

salmonwithin window ) bass1

on bass ) bass2

bass are ) bass1

Figure 17.2 An abbreviated decision list for disambiguating the fish sense
of bass from the music sense. (Adapted from (Yarowsky, 1996))

In a large experiment evaluating a number of supervised learning al-
gorithms, Mooney (1996) reports that a naive-Bayes classifier and a neural
network achieved the highest performance, both achieving around 73% cor-
rect in assigning one of 6 senses to a corpus of examples of theword line.

Decision list classifierscan be viewed as a simplified variant of deci-DECISION
LIST
CLASSIFIERS

sion trees. In a decision list classifier, a sequence of testsis applied to each
vector encoded input. If a test succeeds, then the sense associated with that
test is applied to the input and returned. If the test fails, then the next test
in the sequence is applied. This continues until the end of the list, where a
default test simply returns the majority sense. Figure 17.2shows a portion
of a decision list for the task of discriminating the fish sense ofbassfrom the
music sense.

Learning a decision list classifier consists of creating a good sequence
of tests based on the characteristics of the training data. There are wide
number of methods that can be used to create such lists. Yarowsky (1994)
employs an extremely simple technique that yields excellent results in this
domain. In this approach, all possible feature-value pairsare used to create
tests. These individual tests are then ordered according totheir individual
accuracy on the training set, where the accuracy of a test is based on its
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log-likelihood ratio:

Abs(Log

�
P(Sense1j fi = v j)
P(Sense2j fi = v j)�) (17.16)

The decision list is created from these tests by simplying ordering the tests
in the list according to this measure, with each test returning the appropriate
sense. Yarowsky (1996) reports that this technique consistently achieves
over 95% correct on a wide variety of binary decision tasks.

We should note that this training method differs quite a bit from the
standard decision list learning algorithm. For the detailsand theoretical mo-
tivation for that approach see (Rivest, 1987; Russell and Norvig, 1995).

Bootstrapping Approaches

Not surprisingly, a major problem with supervised approaches is the need
for a large sense-tagged training set. Thebootstrapping approach(Hearst,BOOTSTRAP­

PING
APPROACH

1991; Yarowsky, 1995) eliminates the need for a large training set by relying
on a relatively small number of instances of each sense for each lexeme of
interest. These labeled instances are used asseedsto train an initial classifier
using any of the supervised learning methods mentioned in the last section.
This initial classifier is then be used to extract a larger training set from
the remaining untagged corpus. Repeating this process results in a series of
classifiers with improving accuracy and coverage.

The key to this approach lies in its ability to create a largertraining set
from a small set of seeds. To succeed, it must include only those instances
in which the initial classifier has a high degree of confidence. This larger
training set is then used to create a new more accurate classifier with broader
coverage. With each iteration of this process, the trainingcorpus grows and
the untagged corpus shrinks. As with most iterative methods, this process
can be repeated until some sufficiently low error-rate on thetraining set is
reached, or until no further examples from the untagged corpus are above
threshold.

The initial seed set used in these bootstrapping methods canbe gen-
erated in a number of ways. Hearst (1991) generates a seed setby hand
labeling a small set of examples from the initial corpus. This approach has
three major advantages:� There is a reasonable certainty that the seed instances are correct, thus

ensuring that the learner does not get off on the wrong foot� The analyst can make some effort to choose examples that are not only
correct, but in some sense prototypical of each sense.
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Klucevsekplays Giulietti or Titano piano accordions with the more flexible, more
difficult free bassrather than the traditional Stradellabasswith its preset chords
designed mainly for accompaniment.

We need more good teachers – right now, there are only a half a dozen who can
play the freebasswith ease.

An electric guitar andbass player stand off to one side, not really part of the
scene, just as a sort of nod to gringo expectations perhaps.

When the New Jersey Jazz Society, in a fund-raiser for the American Jazz Hall of
Fame, honors this historic night next Saturday, Harry Goodman, Mr. Goodman’s
brother andbass player at the original concert, will be in the audience with other
family members.
The researchers said the worms spend part of their life cyclein suchfish as Pacific
salmon and stripedbassand Pacific rockfish or snapper.

Associates describe Mr. Whitacre as a quiet, disciplined and assertive manager
whose favorite form of escape isbass fishing.

And it all started whenfishermen decided the stripedbassin Lake Mead were too
skinny.

Though still a far cry from the lake’s record 52-poundbassof a decade ago, ”you
could fillet thesefish again, and that made people very, very happy,” Mr. Paulson
says.

Saturday morning I arise at 8:30 and click on ”America’s best-knownfisherman,”
giving advice on catchingbass in cold weather from the seat of a bass boat in
Louisiana.

Figure 17.3 Samples ofbasssentences extracted from the WSJ using the
simple correlatesplayandfish.� It is reasonably easy to carry out.

A remarkably effective alternative technique is to simply search for
sentences containing single words that are strongly correlated with the target
senses. Yarowsky (1995) calls this the One Sense per Collocation constraint
and presents results that show that it yields remarkably good results. For
example, Figure 17.3 shows a partial result of a such a searchfor the strings
“fish” and “play” in a corpus ofbassexamples drawn from the WSJ.

Yarowsky (1995) suggests two methods to select effective correlates:
deriving them from machine readable dictionary entries, and selecting seeds
using collocations statistics such as those described in Chapter 6. Putting all
of this to the test, Yarowsky (1995) reports an average performance of 96.5%
on a coarse binary sense assignment of 12 words.
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Unsupervised Methods: Discovering Word Senses

Unsupervised approaches to sense disambiguation eschew the use of sense
tagged data of any kind during training. In these approaches, feature-vector
representations of unlabeled instances are taken as input and are then grouped
into clusters according to a similarity metric. These clusters can then be rep-
resented as the average of their constituent feature-vectors, and labeled by
hand with known word senses. Unseen feature-encoded instances can be
classified by assigning them the word sense from the cluster to which they
are closest according to the similarity metric.

Fortunately, clustering is a well-studied problem with a wide number
of standard algorithms that can be applied to inputs structured as vectors of
numerical values (Duda and Hart, 1973). The most frequentlyused tech-
nique in language applications is known asagglomerative clustering. InAGGLOMERA­

TIVE
CLUSTERING

this technique, each of theN training instances is initially assigned to its
own cluster. New clusters are then formed in a bottom-up fashion by succes-
sively merging the two clusters that are most similar. This process continues
until a either a specified number of clusters is reached, or some global good-
ness measure among the clusters is achieved. In cases where the number of
training instances makes this method too expensive, randomsampling can
be used on the original training set (Cuttinget al., 1992b) to achieve similar
results.

Of course, the fact that these unsupervised methods do not make use
of hand-labeled data poses a number of challenges for evaluating the good-
ness of any clustering result. The following problems are among the most
important ones that have to be addressed in unsupervised approaches.� The correct senses of the instances used in the training datamay not be

known.� The clusters are almost certainly heterogeneous with respect to the
senses of the training instances contained within them.� The number of clusters is almost always different from the number of
senses of the target word being disambiguated.

Schütze’s experiments (Schütze, 1992, 1998) constitutethe most ex-
tensive application of unsupervised clustering to word sense disambiguation
to date. Although the actual technique is quite involved, unsupervised ag-
glomerative clustering is at the core of the method. As with the supervised
approaches, the bulk of this work is directed at coarse binary distinctions. In
this work, the first two problems are addressed through the use of pseudo-
words and a hand-labeling of a small subset of the instances in each cluster.
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The heterogeneity issue is addressed by assigning the majority sense to each
of the induced clusters. Given this approach, the last problem is not an is-
sue; the various discovered clusters are simply labeled with their majority
sense. The fact that there may be multiple clusters with the same sense is not
directly an issue in disambiguation.

Schütze’s results indicate that for coarse binary distinctions, unsuper-
vised techniques can achieve results approaching those of supervised and
bootstrap methods. In most instances approaching the 90% range. As with
most of the supervised methods, this method was tested on a small sample
of words (10 pseudowords, and 10 real words).

Dictionary-Based Approaches

A major drawback with all of the approaches described above is the problem
of scale. All require a considerable amount of work to createa classifier for
each ambiguous entry in the lexicon. For this reason, most ofthe experi-
ments with these methods report results ranging from 2 to 12 lexical items
(The work of Ng and Lee (1996) is a notable exception reporting results dis-
ambiguating 121 nouns and 70 verbs). Scaling up any of these approaches to
deal with all the ambiguous words in a language would be a large undertak-
ing. Instead, attempts to perform large-scale disambiguation have focused on
the use ofmachine readable dictionaries, of the kind discussed in Chap-
ter 16. In this style of approach, the dictionary provides both the means for
constructing a sense tagger, and the target senses to be used.

The first implementation of this approach is due to Lesk (1986). In
this approach, all the sense definitions of the word to be disambiguated are
retrieved from the dictionary. These senses are then compared to the dictio-
nary definitions of all the remaining words in the context. The sense with the
highest overlap with these context words is chosen as the correct sense. Note
that the various sense definitions of the context words are simply lumped to-
gether in this approach. Lesk reports accuracies of 50-70% on short samples
of text selected from Austen’sPride and Prejudiceand an AP newswire ar-
ticle.

The problem with this approach is that dictionary entries for the vari-
ous senses of target words are relatively short, and may not provide sufficient
material to create adequate classifiers.1 More specifically, the words used
in the context and their definitions must have direct overlapwith the words

1 Indeed, Lesk (Lesk, 1986) notes that the performance of his system seems to roughly
correlate with the length of the dictionary entries.
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contained in the appropriate sense definition in order to be useful. One way
to remedy this problem is to expand the list of words used in the classifier
to include words related to, but not contained in their individual sense def-
initions. This can be accomplished by including words whosedefinitions
make use of the target word. For example, the worddepositdoes not oc-
cur in the definition ofbank in the American Heritage Dictionary (Morris,
1985). However,bankdoes occur in the definition ofdeposit. Therefore, the
classifier forbankcan be expanded to includedepositas a relevant feature.

Of course, just knowing thatdepositis related tobankdoes not help
much since we don’t know to which ofbank’ssenses it is related. Specifi-
cally, to make use ofdepositas a feature we have to know which sense of
bank was being used in its definition. Fortunately, many dictionaries and
thesauri include tags known as subject codes in their entries that correspond
roughly to broad conceptual categories. For example, the entry for bank
in the Longman’s Dictionary of Contemporary English(LDOCE) (Procter,
1978) includes the subject codeEC (Economics) for the financial senses of
bank. Given such subject codes, we can guess that expanded terms with
the subject codeEC will be related to this sense of bank rather than any of
the others. Guthrieet al. (1991) report results ranging of 47% correct for
fine-grained LDOCE distinctions to 72% for more coarse distinctions.

Note that none of these techniques actually exploit the dictionary en-
triesas definitions. Rather, they can be viewed as variants of the supervised
learning approach, where the content of the dictionary is used to provide the
tagged training materials.

17.3 INFORMATION RETRIEVAL

The field of information retrieval is of interest to us here due to its widespread
adoption of word-based indexing and retrieval methods. Most current infor-
mation retrieval systems are based on an extreme interpretation of the princi-
ple of compositional semantics. In these systems, the meaning of documents
resides solely in the words that are contained within them. To revisit the
Mad Hatter’s quote from the beginning of Chapter 16, in thesesystemsI see
what I eatand I eat what I seemean precisely the same thing. The order-
ing and constituency of the words that make up the sentences that make up
documents play no role in determining their meaning. Because they ignore
syntactic information, these approaches are often referred to asbag of wordsBAG OF

WORDS

methods.
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Before moving on, we need to introduce some new terminology.In in-
formation retrieval, adocumentrefers generically to the unit of text indexedDOCUMENT

in the system and available for retrieval. Depending on the application, a
document can refer to anything from intuitive notions like newspaper arti-
cles, or encyclopedia entries, to smaller units such as paragraphs and sen-
tences. In Web-based applications, it can refer to a Web page, a part of a
page, or to an entire Web-site. Acollection refers to a set of documents be-COLLECTION

ing used to satisfy user requests. Aterm refers to a lexical item that occursTERM

in a collection, but it may also include phrases. Finally, aquery represents a QUERY

user’s information need expressed as a set of terms.
The specific information retrieval task that we will consider in detail is

known asad hoc retrieval. In this task, it is assumed that an unaided userAD HOC
RETRIEVAL

poses a query to a retrieval system, which then returns a possibly ordered
set of potentially useful documents. Several other related, lexically oriented,
information retrieval tasks will be discussed in Section 17.4.

The Vector Space Model

In thevector space modelof information retrieval, documents and queriesVECTOR
SPACE MODEL

are represented as vectors of features representing the terms that occur within
them (Salton, 1971). More properly, they are represented asvectors of fea-
tures consisting of the terms that occurwithin the collection, with the value
of each feature indicating the presence or absence of a giventerm in a given
document. These vectors can be denoted as follows:~d = (t1; t2; t3; � � � ; tN)~q= (t1; t2; t3; � � � ; tN)
In this notation, the varioust features represent theN terms that occur in the
collection. Let’s first consider the case where these features take on the value
of one or zero, indicating the presence or absence of a term ina document
or query. Given this approach, a simple way to compare a document to a
query, or another document, is to sum up the number of terms they have in
common, as in the following equation.

s(~qk; ~d j) = N

∑
i=1

ti;k� ti; j (17.17)

Of course, a problem with the use of binary values for features is that
it fails to capture the fact that some terms are more important to the meaning
of a document than others. A useful generalization is to replace the ones
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and zeroes with numericalweights that indicate the importance of the vari-
ous terms in particular documents and queries. We can thus generalize our
vectors as follows:~d j = (w1; j ;w2; j ;w3; j ; � � � ;wn; j)~qk = (w1;k;w2;k;w3;k; � � � ;wn;k)

This characterization of individual documents as vectors of term weights
allows us to view the document collection as a whole a matrix of weights,
wherewi; j represents the weight of termi in documentj. This weight ma-
trix is typically called aterm-by-document matrix. Under this view, theTERM­BY­

DOCUMENT

columns of the matrix represent the documents in the collection, and the
rows represent the terms.

A useful view of this model conceives of the features used to represent
documents (and queries) as dimensions in a multi-dimensional space. Corre-
spondingly, the weights that serve as values for those features serve to locate
documents in that space. When a user’s query is translated into a vector it
denotes a point in that space. Documents that are located close to the query
can then be judged as being more relevant than documents thatare farther
away.

This characterization of documents and queries as vectors,provides all
the basic parts for an ad hoc retrieval system. A document retrieval system
can simply accept a user’s query, create a vector representation for it, com-
pare it against the vectors representing all known documents, and sort the
results. The result is a list of documents rank ordered by their similarity to
the query.

Consider as an example of this approach, the space shown in Figure
17.4. This figure shows a simplified space consisting of the three dimensions
corresponding to the termsspeech, languageandprocessing. The three vec-
tors illustrated in this space represent documents derivedfrom the chapter
and section headings of Chapters 1, 7, and 13 of this text, which we’ll de-
note asDoc1, Doc7, andDoc13, respectively. If we identify term weights
with raw term frequency, thenDoc1 is represented by the vector(1;2;1),
Doc7 by (6;0;1), andDoc13by (0;5;1). As is clear from the figure, this
space captures certain intuitions about how these chaptersare related. Chap-
ter 1, being general, is fairly similar to both Chapters 7 and13. Chapters 7
and 13, on the other hand, are distant from one another since they cover a
different set of topics.

Unfortunately, this particular instantiation of a vector space places too
much emphasis on the absolute values of the various coordinates of each
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Language
Processing

Speech

Ch 1

Ch 13

Ch 7

Figure 17.4 A simple vector space representation of documents derived
from the text of the chapter and section headings of Chapters1, 7, and 13 in
three dimensions.

document. For example, what is important about thespeechdimension of
theDoc7, is not the value 6 but rather that it is the dominant contributor to
the meaning of that document. Similarly, the specific valuesof 1, 2, and 1
for Doc1 are not important, what is important is that the three dimensions
have roughly similar weights. It would be sensible, for example, to assume
that a new document with weights 3, 6, and 3 would be quite similar toDoc1
despite the magnitude differences in the term weights.

We can accomplish this effect bynormalizing the document vectors.
By normalizing, we simply mean converting all the vectors toa standard
length. Converting to a unit length can be accomplished by dividing each
of their dimensions by the overall length of the vector, which is defined as
∑N

i=1w2
i . This, in effect, eliminates the importance of the exact length of a
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document’s vector in the space, and emphasizes instead the direction of the
document vector with respect to the origin.

Applying this technique to our three sample documents results in the
following term-by-document matrix,A, where the columns representDoc1,
Doc7 and Doc13 and the rows represent the termsspeech, language, and
processing.

A=0@ :41 :81 :41:98 0 :16
0 :98 :19

1A
You should verify that with this scheme, the normalized vectors for Doc1
and our hypothetical(3;6;3) document end up as identical vectors.

Now let’s return now to the topic of determining the similarity between
vectors. Updating the similarity metric given earlier withnumerical weights
rather than binary values, gives us the following equation.

s(~qk; ~d j) =~qk � ~d j = N

∑
i=1

wi;k�wi; j (17.18)

This equation specifies what is known as thedot product between vectors.DOT
PRODUCT

Now, in general, the dot product between two vectors is not particularly use-
ful as a similarity metric, since it is too sensitive to the absolute magnitudes
of the various dimensions. However, the dot product betweenvectors that
have been normalized has a useful and intuitive interpretation: it computes
thecosineof the angle between two vectors. When two documents are iden-COSINE

tical they will receive a cosine of one; when they are orthogonal (share no
common terms) they will receive a cosine of zero.

Note that if for some reason the vectors are not stored in a normalized
form, then the normalization can be incorporated directly into the similarity
measure as follows.

s(~qk; ~d j) = ∑N
i=1 wi;k�wi; jq

∑N
i=1 w2

i;k�q∑N
i=1w2

i; j (17.19)

Of course, in situations where the document collection is relatively static and
many queries are being performed, it makes sense to normalize the document
vectors once and store them, rather than include the normalization in the
similarity metric.

Let’s consider how this similarity metric would work in the context
of some small examples. Consider the carefully selected query consisting
solely of the termsspeech, languageandprocessing. Converting this query
to a vector and normalizing it results in the vector(:57; :57; :57). Computing
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the cosines between this vector and our three document vectors shows that
Doc1 is closest with a cosine of .92, followed byDoc13with a cosine of
.67, and finallyDoc7with a cosine of .65. Not surprisingly, this ranking is
in close accord with our intuitions about the relationship between this query
and these documents.

Now consider a shorter query consisting solely of the termsspeechand
processing. Processing this query yields the normalized vector(:70;0; :70).
When the cosines are computed between this vector and our documents,
Doc7 is now the closest with a cosine of .80, followed byDoc1with a score
of .58, withDoc13coming in a distant third with a cosine of .13.

Term Weighting

In practice, the method used to assign terms weights in the document and
query vectors has an enormous impact on the effectiveness ofa retrieval
system. Two factors have proven to be critical in deriving effective term
weights: term frequency within a single document, and the distribution of
terms across a collection. We can begin with the simple notion that terms that
occur frequently within a document may reflect its meaning more strongly
than terms that occur less frequently and should thus have higher weights.
In its simplest form, this factor is calledterm frequency and is simply the TERM

FREQUENCY

raw frequency of a term within a document (Luhn, 1957).
The second factor to consider is the distribution of terms across the col-

lection as a whole. Terms that are limited to a few documents are useful for
discriminating those documents from the rest of the collection. On the other
hand, terms that occur frequently across the entire collection are less useful
in discriminating among documents. What is needed therefore is a measure
that favors terms that occur in fewer documents. The fraction N=ni, where
N is the total number of documents in the collection, andn is the number of
documents in which termi occurs, provides exactly this measure. The fewer
documents a term occurs in, the higher this weight. The lowest weight of 1
is assigned to terms that occur in all the documents. Due to the large num-
ber of documents in many collections, this measure is usually squashed with
a log function leaving us with the followinginverse document frequency INVERSE

DOCUMENT
FREQUENCY

term weight (Sparck Jones, 1972).

id fi = log(N
ni
) (17.20)

Combining the term frequency factor with this factor results in a scheme
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METHODOLOGY BOX: EVALUATING INFORMATION RE-
TRIEVAL SYSTEMS

Information retrieval systems are evaluated with respect to the
notion of relevance— a judgment by a humanthat a document is
relevant to a query. A system’s ability to retrieve relevantdocuments
is assessed with arecall measure, as in Chapter 15.

Recall= # of relevant documents returned
total # of relevant documents in the collection

Of course, a system can achieve 100% recall by simply return-
ing all the documents in the collection. A system’s accuracyis based
on how many of the documents returned for a given query are actu-
ally relevant, which can be assessed by aprecision metric.

Precision= # of relevant documents returned
# of documents returned

These measures are complicated by the fact that most systems
do not make explicit relevance judgments, but rather rank their col-
lection with respect to a query. To deal with this we can specify a
set of cutoffs in the output, and measure average precision for the
documents ranked above the cutoff. Alternatively, we can specify
a set of recall levels and measure average precision at thoselevels.
This latter method gives rise to what are known as precision-recall
curves as shown in Figure 17.5. As these curves show, comparing
the performance of two systems can be difficult. In this comparison,
one system is better at both high and low levels of recall, while the
other is better in the middle region. An alternative to thesecurves
are metrics that attempt to combine recall and precision into a single
value. TheF measure introduced on page 576 is one such measure.

The U.S. government sponsored TREC (Text REtrieval Confer-
ence) evaluations have provided a rigorous testbed for the evalua-
tion of a variety of information retrieval tasks and techniques. Like
the MUC evaluations, TREC provides large document sets for both
training and testing, along with a uniform scoring system. Train-
ing materials consist of sets of documents accompanied by sets of
queries (called topics in TREC) and relevance judgments. Voorhees
and Harman (1998) provides the details for the most recent meeting.
Details of all of the meetings can be found at the TREC page on the
National Institute of Standards and Technology Web site.
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Figure 17.5 Precision-recall curves for two hypothetical systems. These
curves plot the average precision of a set of returned documents at a given
level of recall. For example, with both of these systems drawing a cutoff in the
return set at the document where they achieve 30% recall, results in an average
precision of 55% for both systems.

known ast f � id f weighting.

wi; j = t fi; j � id fi (17.21)

That is, the weight of termi in the vector for documentj is the product of
its overall frequency inj with the log of its inverse document frequency in
the collection. With some minor variations, this weightingscheme is used to
assign term weights to documents in nearly all vector space retrieval models.

Despite the fact that we use the same representations for documents
and queries, it is not at all clear that the same weighting scheme should be
used for both. In many ad hoc retrieval settings such as Web search engines,
user queries are not very much like documents at all. For example, an analy-
sis of a very large set of queries (1,000,000,000 actually) from the AltaVista
search engine reveals that the average query length is around 2.3 words (Sil-
versteinet al., 1998). In such an environment, the raw term frequency in the
query is not likely to be a very useful factor. Instead, Salton and Buckley
(1988) recommend the following formula for weighting queryterms, where
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Max jt f j;k denotes the frequency of the most frequent term in documentk.

wi;k =�0:5+ 0:5t fi;k
Max jt f j;k�� id fi (17.22)

Term Selection and Creation

We have been assuming thus far that it is precisely the words that occur in
a collection that will be used to index the documents in the collection. Two
common variations on this assumption involve the use ofstemming, and a
stop list.

The notion ofstemmingtakes us back to Chapter 3 and the topic mor-STEMMING

phological analysis. The basic question addressed by stemming is whether
the morphological variants of a lexical item should be listed (and counted)
separately, or whether they should be collapsed into a single root form. For
example, without stemming, the termsprocess, processingand processed
will be treated as distinct items with separate term frequencies in a term-by-
document matrix; with stemming they will be conflated to the single term
processwith a single summed frequency count. The major advantage tous-
ing stemming is that it allows a particular query term to match documents
containing any of the morphological variants of the term. The Porter stem-
mer (Porter, 1980) described Chapter 3 is the system most-used for this pur-
pose retrieval from collections of English documents.

A significant problem with this approach is that it throws away useful
distinctions. For example, consider the use of the Porter stemmer on docu-
ments and queries containing the wordsstocksandstockings. In this case,
the Porter stemmer reduces these surface forms to the singletermstock. Of
course, the result of this is that queries concerningstock priceswill return
documents aboutstockings, and queries aboutstockingswill find documents
aboutstocks. 2 More technically, stemming may increase recall by find-
ing documents with terms that are morphologically related to queries, but it
may also reduce precision by returning semantically unrelated documents.
For this reason, few Web search engines currently make use ofstemming.
Frakes and Baeza-Yates (1992) presents results from a series of experiments
that explore the efficacy of stemming.

A second common technique is the use of stop lists, which address

2 This example is motivated by some bad publicity received by awell-known search engine,
when it returned some rather salacious sites containing extensive use of the termstockingsin
response to queries concerningstock prices. In response, a spokesman announced that their
engineers were working hard on a solution to this strange problem with words.
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the issue of what words should be allowed into the index. Astop list is STOP LIST

a list of high frequency words that are eliminated from the representation
of both documents and queries. Two motivations are normallygiven for
this strategy: high frequency, closed-class, terms are seen as carrying little
semantic weight and are thus unlikely to help with retrieval, and eliminating
them can save considerable space in the inverted index files used to map from
terms to the documents that contain them. The downside of using a stop list
is that it makes it difficult to search for phrases that contain words in the
stop list. For example, a common stop list derived from the Brown corpus
presented in (Frakes and Baeza-Yates, 1992), would reduce the phraseto be
or not to beto the phrasenot.

Homonymy, Polysemy and Synonymy

Since the vector space model is based solely on the use of simple terms, its
useful to consider the effect that various lexical semanticphenomena have on
the model. Consider a query containing the wordcaninewith its tooth and
dogsenses. A query containingcaninewill be judged similar to documents
making use of either of these senses. However, given that users are probably
only interested in one of these senses, the documents containing the other
sense will be judged non-relevant. Homonymy and polysemy, therefore,
have the effect ofreducing precisionby leading a system to return documents
irrelevant to the users information need.

Now consider a query consisting of the lexemedog. This query will
be judged close to documents that make frequent use of the term dog, but
may fail to match documents that use close synonyms likecanine, as well as
documents that use hyponyms such asmalamute. Synonymy and hyponymy,
therefore, have the effect ofreducing recallby causing the retrieval system
to miss relevant documents.

Note that it is inaccurate to state flatly that that polysemy reduces preci-
sion, and synonymy reduces recall since, as we discussed on page 648, both
measures are relative to a fixed cutoff. As a result, every non-relevant docu-
ment that rises above the cutoff due to polysemy takes up a slot in the fixed
size return set, and may thus push a relevant document below threshold thus
reducing recall. Similarly, when a document is missed due tosynonymy,
a slot is opened in the return set for a non-relevant document, potentially
reducing precision as well.

Not surprisingly, these issues lead to the question of whether or not
word sense disambiguation can help in information retrieval. The evidence



652 Chapter 17. Word Sense Disambiguation and Information Retrieval

on this point is mixed, with some experiments reporting a sizable gain using
disambiguation (Schütze and Pedersen, 1995), and others reporting either no
gain, or a degradation in performance (Krovetz and Croft, 1992; Voorhees,
1998).

Improving User Queries

One of the most effective ways to improve retrieval performance is to find a
way to improve user queries. The techniques presented in this section have
been shown to varying degrees to be effective at this task.

The single most effective way to improve retrieval performance in the
vector space model is the use ofrelevance feedback(Rocchio, 1971). InRELEVANCE

FEEDBACK

this method, a user presents a query to the system and is presented with a
small set of retrieved documents. The user is then asked to specify which
of these documents appears relevant to their need. The user’s original query
is then reformulated based on the distribution of terms in the relevant and
non-relevant documents that the user examined. This reformulated query is
then passed to the system as anewquery with the new results being shown to
the user. Typically an enormous improvement is seen after a single iteration
of this technique.

The formal basis for the implementation of this technique falls out di-
rectly from some of the basic geometric intuitions of the vector model. In
particular, we would like topush the vector representing the user’s origi-
nal query toward the documents that have been found to be relevant, and
away from the documents judged not relevant. This can be accomplished by
adding an averaged vector representing the relevant documents to the origi-
nal query, and subtracting an averaged vector representingthe non-relevant
queries.

More formally, let’s assume that~qi represents the user’s original query,
R is the number of relevant documents returned from the original query, and
N is the number of non-relevant documents. In addition, assume thatβ andγ
range from 0 to 1 and thatβ+γ = 1. Given these assumptions, the following
represents a standard relevance feedback update formula.~qi+1 =~qi + β

R

R

∑
j=1

~dir � γ
N

N

∑
k=1

~din

The factorsbeta and γ in this formula represent parameters that can
be adjusted experimentally. Intuitively, they represent how far the original
vector should be pushed towards the relevant documents or away from the
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non-relevant ones. Salton and Buckley (1990) report good results withβ =:75 andγ = :25.
We should note that evaluating systems that use relevance feedback is

rather tricky. In particular, an enormous improvement is often seen in the
documents retrieved by the first reformulated query. This should not be too
surprising since it includes the documents that the user hastold the system
were relevant. The preferred way to avoid this inflation is toonly compute
recall and precision measures for what is called theresidual collection, the RESIDUAL

COLLECTION

original collection without any of the documents shown to the user on any
previous round. This usually has the effect of driving the system’s raw per-
formance below that achieved with the first query, since the most highly rele-
vant documents have now been eliminated. Nevertheless, this is an effective
technique to use when comparing distinct relevance feedback mechanisms.

An alternative approach to query improvement focuses on theterms
that comprise the query vector, rather than the query vectoritself. In query
expansion, the users original query is expanded to include terms related to QUERY

EXPANSION

the original terms. This has typically been accomplished byadding adding
terms chosen from lists of terms that are highly correlated with the user’s
original terms in the collection. Such highly correlated terms are listed in
what is typically called athesaurus, although since it is based on correlation,THESAURUS

rather than synonymy, it is only loosely connected to the standard references
that carry the same name.

Unfortunately, it is usually the case that available thesaurus-like re-
sources are not suitable for most collections. Inthesaurus generation, a THESAURUS

GENERATION

correlation-based thesaurus is generated automatically from all or a portion
of the documents in the collection. Not surprisingly, one ofthe most popular
methods used in thesaurus generation involves the use ofterm clustering. TERM

CLUSTERING

Recall, from our characterization of the term-by-documentmatrix that the
columns in the matrix represent the documents and the rows represent the
terms. Therefore, in thesaurus generation, the rows can be clustered to form
sets of synonyms, which can then be added to the user’s original query to
improve its recall.

This technique is typically instantiated in one of two ways:a thesaurus
can be generated once from the document collection as a whole(Crouch and
Yang, 1992), or sets of synonym-like terms can be generated dynamically
from the returned set for the original query (Attar and Fraenkel, 1977). Note
that this second approach entails far more effort, since in effect a small the-
saurus is generated for the documents returned for every query, rather than
once for entire collection.
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17.4 OTHER INFORMATION RETRIEVAL TASKS

As noted earlier, ad-hoc retrieval is not the only word-based task in infor-
mation retrieval. Some of the other more important ones include document
categorization, document clustering, and text segmentation.

Thecategorization task is to assign a new document to one of a pre-CATEGORIZA­
TION

existing set of document classes. In this setting, the task of creating a clas-
sifier consists of discovering a useful characterization ofthe documents that
belong in each class. Although this can be done by hand, the principal way
to approach this problem is to use supervised machine learning. In particu-
lar, classifiers can be trained on a set of documents that havebeen labeled
with the correct class. Not surprisingly, all the supervised learning methods
introduced on page 634 for word sense disambiguation can be applied to this
task as well.

When categorization is performed with the intent of then transmitting
the document to a user or set of interested users it is usuallyreferred to as
filtering or routing . An interesting example of this is AT&T’s ’How MayFILTERING

ROUTING I Help You’ task where the goal is to classify a user’s utterance into one
of fifteen possible categories, such as third number billing, or collect call.
Once the system has classified the call, the system routes thecaller to an
appropriate human operator. This task provides a good example of the need
for in vivo evaluation mentioned earlier. The classification accuracyon this
task approaches 80 %, despite the fact that the speech recognizer has a word
accuracy rate of only around 50 % (Gorinet al., 1997).

The categorization task assumes an existing classification, or cluster-
ing, of documents. By contrast, the task ofdocument clusteringis to create,DOCUMENT

CLUSTERING

or discover, a reasonable set of clusters for a given set of documents. As was
the case word sense discovery, a reasonable cluster is defined as one that
maximizes the within-cluster document similarity, and minimizes between-
cluster similarity. There are two principal motivations for the use of this
technique in an ad hoc retrieval setting: efficiency, and thecluster hypothe-
sis.

The efficiency motivation arises from the enormous size of many mod-
ern document collections. Recall that the retrieval methoddescribed in the
last section requires every query to be compared against every document in
the collection. If a collection can be divided up into a set ofN conceptually
coherent clusters, then queries could first be compared against representa-
tions of each of theN clusters. Ordinary retrieval could then be applied only
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within the top cluster or clusters, thus saving the cost of comparing the query
to the documents in all of the other more distant clusters.

Thecluster hypothesis(Jardine and van Rijsbergen, 1971) takes thisCLUSTER
HYPOTHESIS

argument a step further by asserting that retrieval from a clustered collection
will not only be more efficient, but will in fact improve retrieval performance
in terms of recall and precision. The basic notion behind this hypothesis is
that by separating documents according to topic, relevant documents will
be found together in the same cluster, and non-relevant documents will be
avoided since they will be reside in clusters that are not used for retrieval.
Despite the plausibility of this hypothesis, there is only mixed experimental
support for it. Results vary considerably based on the clustering algorithm
and document collection in use (Willett, 1988; Shawet al., 1996).

Finally, in text segmentation, larger documents are automatically bro-TEXT SEG­
MENTATION

ken down into smaller semantically coherent chunks. This isuseful in do-
mains where there are a significant number of large documentsthat cover
a wide variety of topics. Text segmentation can be used to either perform
retrieval below the document level, or to visually guide theuser to relevant
parts of retrieved documents. Again, not surprisingly, segmentation algo-
rithms often make use of vector-like representations for the subparts of a
larger document. Adjacent subparts that have similar cosines are more likely
to about the same topic than adjacent segments with more distant cosines.
Roughly speaking, such discontinuities in the similarity between adjacent
text segments can be used to divide larger documents into subparts (Salton
et al., 1993; Hearst, 1997).

17.5 SUMMARY

This chapter has explored two major areas of lexical semantic processing:
word sense disambiguation and information retrieval.� Word sense disambiguation systems assign word tokens in context to

one of a pre-specified set of senses.� Selection restriction-based approaches can be used to disambiguate
both predicates and arguments.� Selection restriction-based methods require considerable information
about semantic roles restrictions and hierarchical type information about
role fillers.
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to automatically create robust sense disambiguation systems.� Supervised approaches use collections of texts annotated with their
correct senses to train classifiers.� Bootstrapping approaches permit the use of supervised methods with
far fewer resources.� Unsupervised, clustering-based, approaches attempt to discover repre-
sentations of word senses from unannotated texts.� Machine readable dictionaries facilitate the creation of broad-coverage
sense disambiguators.� The dominant models of information retrieval represent themeanings
of documents and queries as bags of words.� The vector space model views documents and queries as vectors in a
large multidimensional space.� The similarity between documents and queries, or other documents,
can be measured by the cosine of the angle between the vectors.� The values of the features of vectors is based on a combination of the
frequency of terms within a document and the distribution ofterms
across the document.� Polysemy and synonymy wreak havoc with word-based information
retrieval systems, reducing both precision and recall.� User queries can be improved through query reformulation using either
relevance feedback or thesaurus-based query expansion.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Word sense disambiguation traces its roots to some of the earliest applica-
tions of digital computers. The notion of disambiguating a word by looking
at small window around it was apparently first suggested by Warren Weaver
(1955b), in the context of machine translation. Among the notions first pro-
posed in this early period were the use of a thesaurus for disambiguation
(Masterman, 1957), supervised training of Bayesian modelsfor disambigua-
tion (Madhu and Lytel, 1965), and the use of clustering in word sense anal-
ysis (Sparck Jones, 1986).

An enormous amount of work on disambiguation has been conducted
within the context of AI-oriented natural language processing systems. It is
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fair to say that most natural language analysis systems of this type exhibit
some form of lexical disambiguation capability. However, anumber of these
efforts made word sense disambiguation a larger focus of their work. Among
the most influential efforts were the efforts of Quillian (1968) and Simmons
(1973b) with semantic networks, the work of Wilks withPreference Seman-
tics (Wilks, 1975c, 1975b, 1975a)ks75, and the work of Small and Rieger
(1982) and Riesbeck (1975) on word-based understanding systems. Hirst’s
ABSITY system (Hirst and Charniak, 1982; Hirst, 1986, 1988), whichused
a technique based on semantic networks called marker passing, represents
the most advanced system of this type. As with these largely symbolic ap-
proaches, most connectionist approaches to word sense disambiguation have
relied on small lexicons with hand-coded representations (Cottrell, 1985;
Kawamoto, 1988).

We should note that considerable work on sense disambiguation has
been conducted in the areas of Cognitive Science and psycholinguistics. Ap-
propriately enough, it is generally described using a different name: lexical
ambiguity resolution. Smallet al. (1988) present a variety of papers from
this perspective.

The earliest implementation of a robust empirical approachto sense
disambiguation is due to Kelly and Stone (1975) who directeda team of
that hand-crafted a set of disambiguation rules for 1790 ambiguous English
words. Lesk (1986) was the first to use a machine readable dictionary for
word sense disambiguation. The efforts at New Mexico State University
using LDOCE are among the most extensive explorations of theuse of ma-
chine readable dictionaries. Much of this work is describedin (Wilks et al.,
1996). The problem of dictionary senses being too fine-grained or lacking
an appropriate organization has been addressed in the work of (Dolan, 1994)
and (Chen and Chang, 1998).

Modern interest in supervised machine learning approachesto disam-
biguation began with Black (1988), who applied decision tree learning to the
task. The need for large amounts of annotated text in these methods led to in-
vestigations into the use of bootstrapping methods (Hearst, 1991; Yarowsky,
1995). The problem of how to weight and combine the disparatesources of
evidence used in many robust systems is explored in (Ng and Lee, 1996) and
(McRoy, 1992). There has been considerably less work in the area of unsu-
pervised methods. The earliest attempt attempt to use clustering in the study
of word senses is due to (Sparck Jones, 1986). Zernik (1991) successfully
applied a standard information retrieval clustering algorithm to the problem,
and provided an evaluation based on improvements in retrieval performance.
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More extensive recent work on clustering can be found in (Pedersen and
Bruce, 1997; Schütze, 1997, 1998).

Note that of all of these robust efforts, only three have attempted to ex-
ploit the power of mutually disambiguating all the words in asentence. The
system described in (Kelly and Stone, 1975) makes multiple passes over a
sentence to take later advantage of easily disambiguated words; Cowieet al.
(1992) use a simulated annealing model to perform a parallelsearch for a
desirable set of senses; Veronis and Ide (1990) use inhibition and excita-
tion in a neural network automatically constructed from a machine readable
dictionary.

Ide and Veronis (1998) provide a comprehensive review of thehistory
and current state of word sense disambiguation. (Ng and Zelle, 1997) pro-
vide a more focused review from a machine learning perspective. Wilks
et al. (1996) describe a wide array of dictionary and corpus-basedexperi-
ments, along with detailed descriptions of some very early work.

Luhn (1957) is generally credited with first advancing the notion of
fully automatic indexing of documents based on their contents. Over the
years Salton’s SMART project (Salton, 1971) at Cornell developed or eval-
uated many of the most important notions in information retrieval including
the vector model, term weighting schemes, relevance feedback, and the use
of cosine as a similarity metric. The notion of using inversedocument fre-
quency in term weighting is due to (Sparck Jones, 1972). The original notion
of relevance feedback is due to (Rocchio, 1971). An alternative to the vec-
tor model that we have not covered is theprobabilistic model. OriginallyPROBABILIS­

TIC
MODEL

shown effective by Robinson and Sparck Jones (1976), a Bayesian network
version of the probabilistic model is the basis for the widely usedINQUERY

system (Callanet al., 1992).
The cluster hypothesis was introduced in (Jardine and van Rijsber-

gen, 1971). Willett (1988) provides a critical review of themajor efforts
in this area. Mather (1998) presents an algorithm-independent clustering
metric that can be used to evaluate the performance of various clustering al-
gorithms. A collection of papers on document categorization and its close
siblings, filtering and routing, can be found in (Lewis and Hayes, 1994). Text
segmentation has generally been investigated from one of two perspectives:
approaches based on strong theories of discourse structure, and approaches
based on lexical text cohesion (Morris and Hirst, 1991). Hearst (1997) de-
scribes a robust technique based on a vector model of lexicalcohesion. Tech-
niques based on strong discourse-models are discussed in Chapter 18 and
Chapter 20.
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An important extension of the vector space model known asLatent
Semantic Indexing(LSI) (Deerwesteret al., 1990) uses the singular valueLATENT

SEMANTIC
INDEXING

decomposition method as means ofreducing the dimensionalityof vector
models with the intent of discovering higher-order regularities in the original
term-by-document matrix. Although LSI began life as a retrieval method, it
has been applied to a wide variety of applications includingmodels of lexical
acquisition (Landauer and Dumais, 1997), question answering (Jones, 1997),
and most recently, student essay grading (Landaueret al., 1997).

Baeza-Yates and Ribeiro-Neto (1999) is a comprehensive text cover-
ing many of newest advances and trends in information retrieval. Frakes
and Baeza-Yates (1992) is a more nuts and bolts text which includes a con-
siderable amount of useful C code. Older classic texts include (Salton and
McGill, 1983) and (van Rijsbergen, 1975). (Sparck Jones andWillett, 1997)
includes many of the classic papers in the field. Current workis often pub-
lished in the annual proceedings of the ACM Special InterestGroup on In-
formation Retrieval (SIGIR). The periodic TREC conferenceproceedings
contain results from standardized evaluations organized by the U.S. govern-
ment. The primary journals in the field are theJournal of the American
Society of Information Sciences, ACM Transactions on Information Systems,
Information Processing and Management, andInformation Retrieval.

EXERCISES





Part IV
PRAGMATICS

Pragmatics is the study of (some parts of) the relation between
language and context-of-use. Context-of-use includes such things as
the identities of people and objects, and so pragmatics includes stud-
ies of how language is used to refer (and re-refer) to people and things.
Context-of-use includes the discourse context, and so pragmatics in-
cludes studies of how discourses are structured, and how thelistener
manages to interpret a conversational partner in a conversation. This
section explores algorithms for reference resolution, computational
models for recovering the structure of monologue and conversational
discourse, and models of how utterances in dialog are interpreted.
This section also discusses the role of each of these models in build-
ing a conversational agent, as well as the design of the dialog manager
component of such an agent. Finally, the section introducesnatural
language generation, focusing especially on the function of discourse.





18 DISCOURSE�
Gracie: Oh yeah... And then Mr. and Mrs. Jones were having
matrimonial trouble, and my brother was hired to watch Mrs.
Jones.
George: Well, I imagine she was a very attractive woman.
Gracie: She was, and my brother watched her day and night for
six months.
George: Well, what happened?
Gracie: She finally got a divorce.
George: Mrs. Jones?
Gracie: No, my brother’s wife.

George Burns and Gracie Allen inThe Salesgirl

Up to this point of the book, we have focused primarily on language
phenomena that operate at the word or sentence level. Of course, language
does not normally consist of isolated, unrelated sentences, but instead of
collocated, related groups of sentences. We refer to such a group of sentences
as adiscourse. DISCOURSE

The chapter you are now reading is an example of a discourse. It is in
fact a discourse of a particular sort: amonologue. Monologues are charac-MONOLOGUE

terized by aspeaker(a term which will be used to include writers, as it is
here), and ahearer (which, analogously, includes readers). The communi-
cation flows in only one direction in a monologue, that is, from the speaker
to the hearer.

After reading this chapter, you may have a conversation witha friend
about it, which would consist of a much freer interchange. Such a discourse
is called adialogue. In this case, each participant periodically takes turnsDIALOGUE�This chapter by Andrew Kehler
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being a speaker and hearer. Unlike a typical monologue, dialogues generally
consist of many different types of communicative acts: asking questions,
giving answers, making corrections, and so forth.

Finally, computer systems exist and continue to be developed that al-
low for human-computer interaction, or HCI . HCI has properties that distin-HCI

guish it from normal human-human dialogue, in part due to thepresent-day
limitations on the ability of computer systems to participate in free, uncon-
strained conversation. A system capable of HCI will often employ a strategy
to constrain the conversation in ways that allow it to understand the user’s
utterances within a limited context of interpretation.

While many discourse processing problems are common to these three
forms of discourse, they differ in enough respects that different techniques
have often been used to process them. This chapter focuses ontechniques
commonly applied to the interpretation of monologues; techniques for dia-
logue interpretation and HCI will be described in Chapter 19.

Language is rife with phenomena that operate at the discourse level.
Consider the discourse shown in example (18.1).

(18.1) John went to Bill’s car dealership to check out an Acura Integra. He
looked at it for about an hour.

What do pronouns such ashe and it denote? No doubt that the reader had
little trouble figuring out thathedenotes John and not Bill, and thatit denotes
the Integra and not Bill’s car dealership. On the other hand,toward the end
of the exchange presented at the beginning of this chapter, it appears that
George had some trouble figuring out who Gracie meant when saying she.

What differentiates these two examples? How do hearers interpret dis-
course (18.1) with such ease? Can we build a computational model of this
process? These are the types of questions we address in this chapter. In Sec-
tion 18.1, we describe methods for interpretingreferring expressionssuch as
pronouns. We then address the problem of establishing thecoherenceof a
discourse in Section 18.2. Finally, in Section 18.3 we explain methods for
determining thestructureof a discourse.

Because discourse-level phenomena are ubiquitous in language, algo-
rithms for resolving them are essential for a wide range of language appli-
cations. For instance, interactions with query interfacesand dialogue inter-
pretation systems like ATIS (see Chapter 9) frequently contain pronouns and
similar types of expressions. So when a user spoke passage (18.2) to an ATIS
system,
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(18.2) I’d like to get from Boston to San Francisco, on eitherDecember 5th
or December 6th. It’s okay if itstops in another city along the way.

the system had to figure out thatit denotes the flight that the user wants to
book in order to perform the appropriate action.

Similarly, information extraction systems (see Chapter 15) must fre-
quently extract information from utterances that contain pronouns. For in-
stance, if an information extraction system is confronted with passage (18.3),

(18.3) First Union Corp is continuing to wrestle with severeproblems
unleashed by a botched merger and a troubled business strategy.
According to industry insiders at Paine Webber, their president, John
R. Georgius, is planning to retire by the end of the year.

it must correctly identifyFirst Union Corp as the denotation oftheir (as
opposed toPaine Webber, for instance) in order to extract the correct event.

Likewise, many text summarization systems employ a procedure for
selecting the important sentences from a source document and using them
to form a summary. Consider, for example, a news article thatcontains pas-
sage (18.3). Such a system might determine that the second sentence is
important enough to be included in the summary, but not the first. How-
ever, the second sentence contains a pronoun that is dependent on the first
sentence, so it cannot place the second sentence in the summary without first
determining the pronoun’s denotation, as the pronoun wouldotherwise likely
receive a different interpretation within the summary. Similarly, natural lan-
guage generation systems (see Chapter 20) must have adequate models for
pronominalization to produce coherent and interpretable discourse. In short,
just about any conceivable language processing application requires methods
for determining the denotations of pronouns and related expressions.

18.1 REFERENCERESOLUTION

In this section we study the problem ofreference, the process by which REFERENCE

speakers use expressions likeJohnandhe in passage (18.1) to denote a per-
son named John. Our discussion requires that we first define some termi-
nology. A natural language expression used to perform reference is called a
referring expression, and the entity that is referred to is called thereferent. REFERRING

EXPRESSION

REFERENTThus,Johnandhe in passage (18.1) are referring expressions, and John is
their referent. (To distinguish between referring expressions and their refer-
ents, we italicize the former.) As a convenient shorthand, we will sometimes
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speak of a referring expression referring to a referent, e.g., we might say
that he refers to John. However, the reader should keep in mind that what
we really mean is that the speaker is performing the act of referring to John
by utteringhe. Two referring expressions that are used to refer to the same
entity are said tocorefer, thusJohnandhecorefer in passage (18.1). ThereCOREFER

is also a term for a referring expression that licenses the use of another, in
the way that the mention ofJohnallows John to be subsequently referred to
usinghe. We call John the antecedentof he. Reference to an entity thatANTECEDENT

has been previously introduced into the discourse is calledanaphora, andANAPHORA

the referring expression used is said to beanaphoric. In passage (18.1), theANAPHORIC

pronounsheandit are therefore anaphoric.
Natural languages provide speakers with a variety of ways torefer to

entities. Say that your friend has an Acura Integra automobile and you want
to refer to it. Depending on the operativediscourse context, you mightDISCOURSE

CONTEXT

say it, this, that, this car, that car, the car, the Acura, the Integra, or my
friend’s car, among many other possibilities. However, you are not free to
choose between any of these alternatives in any context. Forinstance, you
cannot simply sayit or the Acuraif the hearer has no prior knowledge of your
friend’s car, it has not been mentioned before, and it is not in the immediate
surroundings of the discourse participants (i.e., thesituational context ofSITUATIONAL

CONTEXT

the discourse).
The reason for this is that each type of referring expressionencodes dif-

ferent signals about the place that the speaker believes thereferent occupies
within the hearer’s set of beliefs. A subset of these beliefsthat has a spe-
cial status form the hearer’s mental model of the ongoing discourse, which
we call adiscourse model(Webber, 1978). The discourse model containsDISCOURSE

MODEL

representations of the entities that have been referred to in the discourse and
the relationships in which they participate. Thus, there are two components
required by a system to successfully produce and interpret referring expres-
sions: a method for constructing a discourse model that evolves with the
dynamically-changing discourse it represents, and a method for mapping be-
tween the signals that various referring expressions encode and the hearer’s
set of beliefs, the latter of which includes this discourse model.

We will speak in terms of two fundamental operations to the discourse
model. When a referent is first mentioned in a discourse, we say that a rep-
resentation for it isevoked into the model. Upon subsequent mention, thisEVOKED

representation isaccessedfrom the model. The operations and relationshipsACCESSED

are illustrated in Figure 18.1.
We will restrict our discussion to reference to entities, although dis-
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a new Acura Integra
corefer
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(evoke)

refer
(access)

it

Entity: car
Brand: Acura
Model: Integra

Figure 18.1 Reference operations and relationships.THIS PICTURE TO
BE REPLACED.

courses include reference to many other types of referents.Consider the
possibilities in example (18.4), adapted from Webber (1991).

(18.4) According to John, Bob bought Sue an Integra, and Sue bought Fred
a Legend.

a. Butthat turned out to be a lie.
b. But that was false.
c. Thatstruck me as a funny way to describe the situation.
d. Thatcaused Sue to become rather poor.
e. Thatcaused them both to become rather poor.

The referent ofthat is a speech act (see Chapter 19) in (18.4a), a proposition
in (18.4b), a manner of description in (18.4c), an event in (18.4d), and a
combination of several events in (18.4e). The field awaits the development
of robust methods for interpreting these types of reference.

Reference Phenomena

The set of referential phenomena that natural languages provide is quite rich
indeed. In this section, we provide a brief description of several basic ref-
erence phenomena. We first survey five types of referring expression: in-
definite noun phrases, definite noun phrases, pronouns, demonstratives, and
one-anaphora. We then describe three types of referents that complicate the
reference resolution problem:inferrables, discontinuous sets, andgenerics.

Indefinite Noun Phrases Indefinite reference introduces entities that are
new to the hearer into the discourse context. The most commonform of
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indefinite reference is marked with the determinera (or an), as in (18.5),
but it can also be marked by a quantifier such assome(18.6) or even the
determinerthis (18.7).

(18.5) I saw an Acura Integra today.

(18.6) Some Acura Integras were being unloaded at the local dealership
today.

(18.7) I saw this awesome Acura Integra today.

Such noun phrases evoke a representation for a new entity that satisfies the
given description into the discourse model.

The indefinite determineradoes not indicate whether the entity is iden-
tifiable to the speaker, which in some cases leads to aspecific/non-specific
ambiguity. Example (18.5) only has the specific reading, since the speaker
has a particular Integra in mind, particularly the one she saw. In sentence
(18.8), on the other hand, both readings are possible.

(18.8) I am going to the dealership to buy an Acura Integra today.

That is, the speaker may already have the Integra picked out (specific), or
may just be planning to pick one out that is to her liking (nonspecific). The
readings may be disambiguated by a subsequent referring expression in some
contexts; if this expression is definite then the reading is specific (I hope
they still have it), and if it is indefinite then the reading is nonspecific (I
hope they have a car I like). This rule has exceptions, however; for instance
definite expressions in certain modal contexts (I will park it in my garage)
are compatible with the nonspecific reading.

Definite Noun Phrases Definite reference is used to refer to an entity that
is identifiable to the hearer, either because it has already been mentioned in
the discourse context (and thus is represented in the discourse model), it is
contained in the hearer’s set of beliefs about the world, or the uniqueness of
the object is implied by the description itself.

The case in which the referent is identifiable from discoursecontext is
shown in (18.9).

(18.9) I saw an Acura Integra today.The Integrawas white and needed to
be washed.

Examples in which the referent is either identifiable from the hearer’s
set of beliefs or is inherently unique are shown in (18.10) and (18.11) re-
spectively.

(18.10) The Indianapolis 500is the most popular car race in the US.
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(18.11) The fastest car in the Indianapolis 500was an Integra.

Definite noun phrase reference requires that an entity be accessed from either
the discourse model or the hearer’s set of beliefs about the world. In the latter
case, it also evokes a representation of the referent into the discourse model.

Pronouns Another form of definite reference is pronominalization, illus-
trated in example (18.12).

(18.12) I saw an Acura Integra today.It was white and needed to be
washed.

The constraints on using pronominal reference are strongerthan for full defi-
nite noun phrases, requiring that the referent have a high degree of activation
or saliencein the discourse model. Pronouns usually (but not always) refer SALIENCE

to entities that were introduced no further than one or two sentences back in
the ongoing discourse, whereas definite noun phrases can often refer further
back. This is illustrated by the difference between sentences (18.13d) and
(18.13d’).

(18.13) a. John went to Bob’s party, and parked next to a beautiful Acura
Integra.

b. He went inside and talked to Bob for more than an hour.

c. Bob told him that he recently got engaged.

d. ?? He also said that he boughtit yesterday.

d.’ He also said that he boughtthe Acurayesterday.

By the time the last sentence is reached, the Integra no longer has the degree
of salience required to allow for pronominal reference to it.

Pronouns can also participate incataphora, in which they are men- CATAPHORA

tioned before their referents are, as in example (18.14).

(18.14) Before he bought it, John checked over the Integra very carefully.

Here, the pronounsheandit both occurbeforetheir referents are introduced.
Pronouns also appear in quantified contexts in which they areconsid-

ered to bebound, as in example (18.15). BOUND

(18.15) Every woman bought her Acura at the local dealership.

Under the relevant reading,her does not refer to some woman in context,
but instead behaves like a variable bound to the quantified expressionevery
woman. We will not be concerned with the bound interpretation of pronouns
in this chapter.
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Demonstratives Demonstrative pronouns, likethisandthat, behave some-
what differently that simple definite pronouns likeit. They can appear either
alone or as determiners, for instance,this Acura, that Acura. The choice be-
tween two demonstratives is generally associated with somenotion of spa-
tial proximity: this indicating closeness andthat signaling distance. Spatial
distance might be measured with respect to the discourse participants’ situa-
tional context, as in (18.16).

(18.16) [John shows Bob an Acura Integra and a Mazda Miata]
Bob (pointing): I likethis better thanthat.

Alternatively, distance can be metaphorically interpreted in terms of con-
ceptual relations in the discourse model. For instance, consider example
(18.17).

(18.17) I bought an Integra yesterday. It’s similar to the one I bought five
years ago.That onewas really nice, but I likethis oneeven better.

Here, that onerefers to the Acura bought five years ago (greater temporal
distance), whereasthis onerefers to the one bought yesterday (closer tem-
poral distance).

One Anaphora One-anaphora, exemplified in (18.18), blends properties
of definite and indefinite reference.

(18.18) I saw no less than 6 Acura Integras today. Now I wantone.

This use ofonecan be roughly paraphrased byone of them, in which
themrefers to a plural referent (or generic one, as in the case of (18.18), see
below), andoneselects a member from this set. Thus,onemay evoke a new
entity into the discourse model, but it is necessarily dependent on an existing
referent for the description of this new entity.

This use ofoneshould be distinguished from the formal, non-specific
pronoun usage in (18.19), and its meaning as the number one in(18.20).

(18.19) One shouldn’t pay more than twenty thousand dollarsfor an Acura.
(18.20) John has two Acuras, but I only have one.

Inferrables Now that we have described several types of referring expres-
sions, we now turn our attention to a few interesting types ofreferents that
complicate the reference resolution problem. For instance, in some cases a
referring expression does not refer to an entity that has been explicitly evoked
in the text, but instead one that is inferentially related toan evoked entity.
Such referents are calledinferrables (Haviland and Clark, 1974; Prince,
1981). Consider the expressionsa doorandthe enginein sentence (18.21).
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(18.21) I almost bought an Acura Integra today, buta doorhad a dent and
the engineseemed noisy.

The indefinite noun phrasea doorwould normally introduce a new door into
the discourse context, but in this case the hearer is to infersomething more:
that it is not just any door, but one of the doors of the Integra. Similarly, the
use of the definite noun phrasethe enginenormally presumes that an engine
has been previously evoked or is otherwise uniquely identifiable. Here, no
engine has been explicitly mentioned, but the hearer infersthat the referent
is the engine of the previously mentioned Integra.

Inferrables can also specify the results of processes described by ut-
terances in a discourse. Consider the possible follow-ons (a-c) to sentence
(18.22) in the following recipe (from Webber and Baldwin (1992)):

(18.22) Mix the flour, butter, and water.
a. Kneedthe doughuntil smooth and shiny.
b. Spreadthe pasteover the blueberries.
c. Stir the batteruntil all lumps are gone.

Any of the expressionsthe dough(a solid), the batter(a liquid), andthe
paste(somewhere in between) can be used to refer to the result of the actions
described in the first sentence, but all imply different properties of this result.

Discontinuous Sets In some cases, references using plural referring ex-
pressions liketheyand them(see page 672) refer to sets of entities that are
evoked together, for instance, using another plural expression (their Acuras)
or a conjoined noun phrase (John and Mary):

(18.23) John and Mary love their Acuras. They drive them all the time.

However, plural references may also refer to sets of entities that have
been evoked by discontinuous phrases in the text:

(18.24) John has an Acura, and Mary has a Mazda. They drive them all the
time.

Here, they refers to John and Mary, and likewisethemrefers to the Acura
and the Mazda. Note also that the second sentence in this casewill gener-
ally receive what is called apairwiseor respectivelyreading, in which John
drives the Acura and Mary drives the Mazda, as opposed to the reading in
which they both drive both cars.

Generics Making the reference problem even more complicated is the ex-
istence ofgenericreference. Consider example (18.25).
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(18.25) I saw no less than 6 Acura Integras today.Theyare the coolest cars.

Here, the most natural reading is not the one in whichthey refers to the
particular 6 Integras mentioned in the first sentence, but instead to the class
of Integras in general.

Syntactic and Semantic Constraints on Coreference

Having described a variety of reference phenomena that are found in natu-
ral language, we can now consider how one might develop algorithms for
identifying the referents of referential expressions. Onestep that needs to be
taken in any successful reference resolution algorithm is to filter the set of
possible referents on the basis of certain relatively hard-and-fast constraints.
We describe some of these constraints here.

Number Agreement Referring expressions and their referents must agree
in number; for English, this means distinguishing betweensingularandplu-
ral references. A categorization of pronouns with respect to number is shown
in Figure 18.2.

Singular Plural Unspecified

she, her, he, him, his, it we, us, they, them you

Figure 18.2 Number agreement in the English pronominal system.

The following examples illustrate constraints on number agreement.

(18.26) John has a new Acura. It is red.

(18.27) John has three new Acuras. They are red.

(18.28) * John has a new Acura. They are red.

(18.29) * John has three new Acuras. It is red.

Person and Case Agreement English distinguishes between three forms
of person: first, second, and third. A categorization of pronoun types with
respect to person is shown in Figure 18.3.

The following examples illustrate constraints on person agreement.

(18.30) You and I have Acuras. We love them.

(18.31) John and Mary have Acuras. They love them.

(18.32) * John and Mary have Acuras. We love them. (whereWe=John and
Mary)

(18.33) * You and I have Acuras. They love them. (whereThey=You and I)
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First Second Third

Nominative I, we you he, she, they
Accusative me, us you him, her, them
Genitive my, our your his, her, their

Figure 18.3 Person and case agreement in the English pronominal system/

In addition, English pronouns are constrained by case agreement; dif-
ferent forms of the pronoun may be required when placed in subject position
(nominative case, e.g.,he, she, they), object position (accusative case, e.g.,
him, her, them), and genitive position (genitive case, e.g.,his Acura, her
Acura, their Acura). This categorization is also shown in Figure 18.3.

Gender Agreement Referents also must agree with the gender specified
by the referring expression. English third person pronounsdistinguish be-
tweenmale, female, andnonpersonalgenders, and unlike many languages,
the first two only apply to animate entities. Some examples are shown in
Figure 18.4.

masculine feminine nonpersonal

he, him, his she, her it

Figure 18.4 Gender agreement in the English pronominal system.

The following examples illustrate constraints on gender agreement.

(18.34) John has an Acura. He is attractive. (he=John, not the Acura)
(18.35) John has an Acura. It is attractive. (it=the Acura, not John)

Syntactic Constraints Reference relations may also be constrained by the
syntactic relationships between a referential expressionand a possible an-
tecedent noun phrase when both occur in the same sentence. For instance,
the pronouns in all of the following sentences are subject tothe constraints
indicated in brackets.

(18.36) John bought himself a new Acura. [himself=John]
(18.37) John bought him a new Acura. [him6=John]
(18.38) John said that Bill bought him a new Acura. [him6=Bill]
(18.39) John said that Bill bought himself a new Acura. [himself=Bill]
(18.40) He said that he bought John a new Acura. [He6=John;he6=John]

English pronouns such ashimself, herself, and themselvesare called
reflexives. Oversimplifying the situation considerably, a reflexive corefers REFLEXIVES
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with the subject of the most immediate clause that contains it (ex. 18.36),
whereas a nonreflexive cannot corefer with this subject (ex.18.37). That
this rule applies only for the subject of the most immediate clause is shown
by examples (18.38) and (18.39), in which the opposite reference pattern is
manifest between the pronoun and the subject of the higher sentence. On the
other hand, a full noun phrase likeJohncannot corefer with the subject of
the most immediate clause nor with a higher-level subject (ex. 18.40).

Whereas these syntactic constraints apply to a referring expression
and a particular potential antecedent noun phrase, these constraints actually
prohibit coreference between the two regardless of any other available an-
tecedents that denote the same entity. For instance, normally a nonreflexive
pronoun likehim can corefer with the subject of the previous sentence as
it does in example (18.41), but it cannot in example (18.42) because of the
existence of the coreferential pronounhe in the second clause.

(18.41) John wanted a new car. Bill bought him a new Acura. [him=John]

(18.42) John wanted a new car. He bought him a new Acura.
[he=John;him6=John]

The rules given above oversimplify the situation in a numberof ways,
and there are many cases that they do not cover. Indeed, upon further inspec-
tion the facts actually get quite complicated. In fact, it isunlikely that all of
the data can be explained using only syntactic relations (Kuno, 1987). For
instance, the reflexivehimselfand the nonreflexivehim in sentences (18.43)
and (18.44) respectively can both refer to the subjectJohn, even though they
occur in identical syntactic configurations.

(18.43) John set the pamphlets about Acuras next to himself.
[himself=John]

(18.44) John set the pamphlets about Acuras next to him. [him=John]

For the algorithms discussed later in this chapter, however, we will assume a
syntactic account of restrictions on intrasentential coreference.

Selectional Restrictions The selectional restrictions that a verb places on
its arguments (see Chapter 16) may be responsible for eliminating referents,
as in example (18.45).

(18.45) John parked his Acura in the garage. He had driven it around for
hours.

There are two possible referents forit, the Acura and the garage. The verb
drive, however, requires that its direct object denote somethingthat can be
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driven, such as a car, truck, or bus, but not a garage. Thus, the fact that the
pronoun appears as the object ofdrive restricts the set of possible referents
to the Acura. It is conceivable that a practical NLP system would include a
reasonably comprehensive set of selectional constraints for the verbs in its
lexicon.

Selectional restrictions can be violated in the case of metaphor (see
Chapter 16); for example, consider example (18.46).

(18.46) John bought a new Acura. It drinks gasoline like you would not
believe.

While the verbdrink does not usually take an inanimate subject, its metaphor-
ical use here allowsit to refer toa new Acura.

Of course, there are more general semantic constraints thatmay come
into play, but these are much more difficult to encode in a comprehensive
manner. Consider passage (18.47).

(18.47) John parked his Acura in the garage. It is incrediblymessy, with
old bike and car parts lying around everywhere.

Here the referent ofit is almost certainly the garage, but only because a car
is probably too small to have bike and car parts laying around‘everywhere’.
Resolving this reference requires that a system have knowledge about how
large cars typically are, how large garages typically are, and the typical types
of objects one might find in each. On the other hand, one’s knowledge about
Beverly Hills might lead one to assume that the Acura is indeed the referent
of it in passage (18.48).

(18.48) John parked his Acura in downtown Beverly Hills. It is incredibly
messy, with old bike and car parts lying around everywhere.

In the end, just about any knowledge shared by the discourse participants
might be necessary to resolve a pronoun reference. However,due in part to
the vastness of such knowledge, practical algorithms typically do not rely on
it heavily.

Preferences in Pronoun Interpretation

In the previous section, we discussed relatively strict constraints that algo-
rithms should apply when determining possible referents for referring ex-
pressions. We now discuss some more readily violatedpreferencesthat al-
gorithms can be made to account for. These preferences have been posited to
apply to pronoun interpretation in particular. Since the majority of work on
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reference resolution algorithms has focused on pronoun interpretation, we
will similarly focus on this problem in the remainder of thissection.

Recency Most theories of reference incorporate the notion that entities in-
troduced in recent utterances are more salient than those introduced from
utterances further back. Thus, in example (18.49), the pronoun it is more
likely to refer to the Legend than the Integra.

(18.49) John has an Integra. Bill has a Legend. Mary likes to drive it.

Grammatical Role Many theories specify a salience hierarchy of entities
that is ordered by the grammatical position of the expressions which denote
them. These invariably treat entities mentioned in subjectposition as more
salient than those in object position, which are in turn moresalient than those
mentioned in subsequent positions.

Passages such as (18.50) and (18.51) lend support for such a hierar-
chy. Although the first sentence in each case expresses roughly the same
propositional content, the preferred referent for the pronounhim varies with
the subject in each case – John in (18.50) and Bill in (18.51).In example
(18.52), the references to John and Bill are conjoined within the subject po-
sition. Since both seemingly have the same degree of salience, it is unclear
to which the pronoun refers.

(18.50) John went to the Acura dealership with Bill. He bought an Integra.
[ he = John ]

(18.51) Bill went to the Acura dealership with John. He bought an Integra.
[ he = Bill ]

(18.52) John and Bill went to the Acura dealership. He boughtan Integra.
[ he = ?? ].

Repeated Mention Some theories incorporate the idea that entities that
have been focused on in the prior discourse are more likely tocontinue to
be focused on in subsequent discourse, and hence referencesto them are
more likely to be pronominalized. For instance, whereas thepronoun in
example (18.51) has Bill as its preferred interpretation, the pronoun in the
final sentence of example (18.53) is more likely to refer to John.

(18.53) John needed a car to get to his new job. He decided thathe wanted
something sporty. Bill went to the Acura dealership with him. He
bought an Integra. [ he = John ]

Parallelism There are also strong preferences that appear to be induced by
parallelism effects, as in example (18.54).



Section 18.1. Reference Resolution 677

(18.54) Mary went with Sue to the Acura dealership. Sally went with her to
the Mazda dealership. [ her = Sue ]

The grammatical role hierarchy described above ranks Mary as more salient
than Sue, and thus should be the preferred referent ofher. Furthermore, there
is no semantic reason that Mary cannot be the referent. Nonetheless,her is
instead understood to refer to Sue.

This suggests that we might want a heuristic which says that non-
subject pronouns prefer non-subject referents. However, such a heuristic
may not work for cases that lack the structural parallelism of example (18.54),
such as example (18.55), in which Mary is the preferred referent of the pro-
noun instead of Sue.

(18.55) Mary went with Sue to the Acura dealership. Sally told her not to
buy anything. [ her = Mary ]

Verb Semantics Certain verbs appear to place a semantically-oriented em-
phasis on one of their argument positions, which can have theeffect of bi-
asing the manner in which subsequent pronouns are interpreted. Compare
sentences (18.56) and (18.57).

(18.56) John telephoned Bill. He lost the pamphlet on Acuras.

(18.57) John criticized Bill. He lost the pamphlet on Acuras.

These examples differ only in the verb used in the first sentence, yet the
subject pronoun in passage (18.56) is typically resolved toJohn, whereas
the pronoun in passage (18.57) is resolved to Bill. Some researchers have
claimed that this effect results from what has been called the ‘implicit causal-
ity’ of a verb: the implicit cause of a ‘criticizing’ event isconsidered to be
its object, whereas the implicit cause of a ‘telephoning’ event is considered
to be its subject. This emphasis results in a higher degree ofsalience for the
entity in this argument position, which leads to the different preferences for
examples (18.56) and (18.57).

Similar preferences have been articulated in terms of the thematic roles
(see Chapter 16) that the potential antecedents occupy. Forexample, most
hearers resolveHeto John in example (18.58) and to Bill in example (18.59).
Although these referents are evoked from different grammatical role po-
sitions, they both fill the Goal thematic role of their corresponding verbs,
whereas the other potential referent fills the Source. Likewise, hearers gen-
erally resolveHe to John and Bill in examples (18.60) and (18.61) respec-
tively, providing evidence that fillers of the Stimulus roleare preferred over
fillers of the Experiencer role.
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(18.58) John seized the Acura pamphlet from Bill. He loves reading about
cars. (Goal=John, Source=Bill)

(18.59) John passed the Acura pamphlet to Bill. He loves reading about
cars. (Goal=Bill, Source=John)

(18.60) The car dealer admired John. He knows Acuras inside and out.
(Stimulus=John, Experiencer=the car dealer)

(18.61) The car dealer impressed John. He knows Acuras inside and out.
(Stimulus=the car dealer, Experiencer=John)

An Algorithm for Pronoun Resolution

None of the algorithms for pronoun resolution that have beenproposed to
date successfully account for all of these preferences, letalone succeed in
resolving the contradictions that will arise between them.However, Lappin
and Leass (1994) describe a straightforward algorithm for pronoun inter-
pretation that takes many of these into consideration. The algorithm em-
ploys a simple weighting scheme that integrates the effectsof the recency
and syntactically-based preferences; no semantic preferences are employed
beyond those enforced by agreement. We describe a slightly simplified por-
tion of the algorithm that applies to non-reflexive, third person pronouns.

Broadly speaking, there are two types of operations performed by the
algorithm: discourse model update and pronoun resolution.First, when a
noun phrase that evokes a new entity is encountered, a representation for it
must be added to the discourse model and a degree of salience (which we
call a salience value) computed for it. The salience value is calculated asSALIENCE

VALUE

the sum of the weights assigned by a set ofsalience factors. The salienceSALIENCE
FACTORS

factors used and their corresponding weights are shown in Figure 18.5.

Sentence recency 100
Subject emphasis 80

Existential emphasis 70
Accusative (direct object) emphasis 50

Indirect object and oblique complement emphasis 40
Non-adverbial emphasis 50

Head noun emphasis 80

Figure 18.5 Salience factors in Lappin and Leass’s system.

The weights that each factor assigns to an entity in the discourse model
are cut in half each time a new sentence is processed. This, along with
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the added effect of the sentence recency weight (which initially assigns a
weight of 100, to be cut in half with each succeeding sentence), captures the
Recency preference described on page 676, since referents mentioned in the
current sentence will tend to have higher weights than thosein the previous
sentence, which will in turn be higher than those in the sentence before that,
and so forth.

Similarly, the next five factors in Figure 18.5 can be viewed as a way
of encoding a grammatical role preference scheme using the following hier-
archy:

subject> existential predicate nominal> object> indirect ob-
ject or oblique> demarcated adverbial PP

These five positions are exemplified by the position of the italicized phrases
in examples (18.62)–(18.66) respectively.

(18.62) An Acura Integrais parked in the lot. (subject)

(18.63) There isan Acura Integraparked in the lot. (existential predicate
nominal)

(18.64) John parkedan Acura Integrain the lot. (object)

(18.65) John gavehis Acura Integraa bath. (indirect object)

(18.66) Insidehis Acura Integra, John showed Susan his new CD player.
(demarcated adverbial PP)

The preference against referents in demarcated adverbial PPs (i.e., those sep-
arated by punctuation, as with the comma in example (18.66))is encoded as
a positive weight of 50 for every other position, listed as the non-adverbial
emphasis weight in Figure 18.5. This ensures that the weightfor any ref-
erent is always positive, which is necessary so that the effect of halving the
weights is always to reduce them.

The head noun emphasis factor penalizes referents which areembed-
ded in larger noun phrases, again by promoting the weights ofreferents that
are not. Thus, the Acura Integra in each of examples (18.62)–(18.66) will
receive 80 points for being denoted by a head noun, whereas the Acura Inte-
gra in example (18.67) will not, since it is embedded within the subject noun
phrase.

(18.67) The owner’s manual foran Acura Integrais on John’s desk.

Each of these factors contributes to the salience of a referent based on
the properties of the noun phrase that denotes it. Of course,it could be that
several noun phrases in the preceding discourse refer to thesame referent,
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each being assigned a different level of salience, and thus we need a way
in which to combine the contributions of each. To address this, Lappin and
Leass associate with each referent an equivalence class that contains all of
the noun phrases that have been determined to refer to it. Theweight that
a salience factor assigns to a referent is the highest of the weights it assigns
to the members of its equivalence class. The salience weightfor a refer-
ent is then calculated by summing these weights for each factor. The scope
of a salience factor is a sentence, so, for instance, if a potential referent is
mentioned in the current sentence as well as the previous one, the sentence
recency weight will be factored in for each. (On the other hand, if the same
referent is mentioned more than once in the same sentence, this weight will
be counted only once.) Thus, multiple mentions of a referentin the prior dis-
course can potentially increase its salience, which has theeffect of encoding
the preference for repeated mentions discussed on page 676.

Once we have updated the discourse model with new potential refer-
ents and recalculated the salience values associated with them, we are ready
to consider the process of resolving any pronouns that existwithin a new
sentence. In doing this, we factor in two more salience weights, one for
grammatical role parallelism between the pronoun and the potential refer-
ent, and one to disprefer cataphoric reference. The weightsare shown in
Figure 18.6. Unlike the other preferences, these two cannotbe calculated
independently of the pronoun, and thus cannot be calculatedduring the dis-
course model update step. We will use the terminitial salience valuefor the
weight of a given referent before these factors are applied,and the termfinal
salience valuefor after they have applied.

Role Parallelism 35
Cataphora -175

Figure 18.6 Per pronoun salience weights in Lappin and Leass’s system.

We are now ready to specify the pronoun resolution algorithm. Assum-
ing that the discourse model has been updated to reflect the initial salience
values of referents as described above, the steps taken to resolve a pronoun
are as follows:

1. Collect the potential referents (up to four sentences back).

2. Remove potential referents that do not agree in number or gender with
the pronoun.



Section 18.1. Reference Resolution 681

3. Remove potential referents that do not pass intrasentential syntactic
coreference constraints (as described on page 673).

4. Compute the total salience value of the referent by addingany appli-
cable values from Figure 18.6 to the existing salience valuepreviously
computed during the discourse model update step (i.e., the sum of the
applicable values in Figure 18.5).

5. Select the referent with the highest salience value. In the case of ties,
select the closest referent in terms of string position (computed without
bias to direction).

We illustrate the operation of the algorithm by stepping through exam-
ple (18.68).

(18.68) John saw a beautiful Acura Integra at the dealership. He showed it
to Bob. He bought it.

We first process the first sentence to collect potential referents and
compute their initial salience values. The following tableshows the con-
tribution to salience from each of the salience factors.

Rec Subj Exist Obj Ind-Obj Non-Adv Head N Total

John 100 80 50 80 310
Integra 100 50 50 80 280

dealership100 50 80 230

There are no pronouns to be resolved in this sentence, so we move
on to the next, degrading the above values by a factor of two asshown in
the following table. Thephrasescolumn shows the equivalence class of
referring expressions for each referent.

Referent Phrases Value
John f Johng 155

Integra f a beautiful Acura Integrag 140
dealership f the dealershipg 115

The first noun phrase in the second sentence is the pronounhe. Because
hespecifies male gender, Step 2 of the resolution algorithm reduces the set
of possible referents to include only John, so we can stop there and take this
to be the referent.



682 Chapter 18. Discourse

The discourse model must now be updated. First, the pronounhe is
added in the equivalence class for John. Sinceheoccurs in the current sen-
tence andJohn in the previous one, the salience factors do not overlap be-
tween the two. The pronoun is in the current sentence (recency=100), subject
position (=80), not in an adverbial (=50), and not embedded (=80), and so a
total of 310 is added to the current weight for John:

Referent Phrases Value
John f John, he1 g 465

Integra f a beautiful Acura Integrag 140
dealership f the dealershipg 115

The next noun phrase in the second sentence is the pronounit, which is
compatible with the Integra or the dealership. We first need to compute the
final salience values by adding the applicable weights from Figure 18.6 to
the initial salience values above. Neither referent assignment would result in
cataphora, so that factor does not apply. For the parallelism preference, both
it anda beautiful Acura Integraare in object position within their respective
sentences (whereasthe dealershipis not), so a weight of 35 is added to this
option. With the Integra having a weight of 175 and the dealership a weight
of 115, the Integra is taken to be the referent.

Again, the discourse model must now be updated. Sinceit is in a
nonembedded object position, it receives a weight of 100+50+50+80=280,
and is added to the current weight for the Integra.

Referent Phrases Value
John f John, he1 g 465

Integra f a beautiful Acura Integra, it1 g 420
dealership f the dealershipg 115

The final noun phrase in the second sentence isBob, which introduces
a new discourse referent. Since it occupies an oblique argument position, it
receives a weight of 100+40+50+80=270.

Referent Phrases Value
John f John, he1 g 465

Integra f a beautiful Acura Integra, it1 g 420
Bob f Bobg 270

dealership f the dealershipg 115

Now we are ready to move on to the final sentence. We again degrade
the current weights by one half.
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Referent Phrases Value
John f John, he1 g 232.5

Integra f a beautiful Acura Integra, it1 g 210
Bob f Bobg 135

dealership f the dealershipg 57.5

The reader can confirm that the referent ofhewill be resolved to John,
and the referent ofit to the Integra.

The weights used by Lappin and Leass were arrived at by experimenta-
tion on a development corpus of computer training manuals. This algorithm,
when combined with several filters not described here, achieved 86% accu-
racy when applied to unseen test data within the same genre. It is possible
that these exact weights may not be optimal for other genres (and even more
so for other languages), so the reader may want to experimentwith these on
training data for a new application or language.

In Exercise 18.7, we consider a version of the algorithm thatrelies
only on a noun phrase identifier (see also Kennedy and Boguraev (1996)). In
the next paragraphs, we briefly summarize two other approaches to pronoun
resolution.

A Tree Search Algorithm Hobbs (1978b) describes an algorithm for pro-
noun resolution which takes the syntactic representationsof the sentences up
to and including the current sentence as input, and performsa search for an
antecedent noun phrase on these trees. There is no explicit representation of
a discourse model or preferences as in the Lappin and Leass algorithm. How-
ever, certain of these preferences are approximated by the order in which the
search on syntactic trees is performed.

An algorithm that searches parse trees must also specify a grammar,
since the assumptions regarding the structure of syntactictrees will affect
the results. A fragment for English that the algorithm uses is given in Fig-
ure 18.7. The steps of the algorithm are as follows.

1. Begin at the noun phrase (NP) node immediately dominatingthe pro-
noun.

2. Go up the tree to the first NP or sentence (S) node encountered. Call
this node X, and call the path used to reach it p.

3. Traverse all branches below node X to the left of path p in a left-to-
right, breadth-first fashion. Propose as the antecedent anyNP node
that is encountered which has an NP or S node between it and X.

4. If node X is the highest S node in the sentence, traverse thesurface
parse trees of previous sentences in the text in order of recency, the
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S ! NP VP

NP ! 8<: (Det) Nominal

��
PP
Rel

���
pronoun

9=;
Det ! �

determiner
NP ’s

�
PP ! preposition NP
Nominal! noun(PP)�
Rel ! wh-word S
VP ! verb NP(PP)�

Figure 18.7 A grammar fragment for the Tree Search algorithm.

most recent first; each tree is traversed in a left-to-right,breadth-first
manner, and when an NP node is encountered, it is proposed as an-
tecedent. If X is not the highest S node in the sentence, continue to
step 5.

5. From node X, go up the tree to the first NP or S node encountered. Call
this new node X, and call the path traversed to reach it p.

6. If X is an NP node and if the path p to X did not pass through theNom-
inal node that X immediately dominates, propose X as the antecedent.

7. Traverse all branches below node X to theleft of path p in a left-to-
right, breadth-first manner. Propose any NP node encountered as the
antecedent.

8. If X is an S node, traverse all branches of node X to theright of path
p in a left-to-right, breadth-first manner, but do not go below any NP
or S node encountered. Propose any NP node encountered as thean-
tecedent.

9. Go to Step 4.

Demonstrating that this algorithm yields the correct coreference assignments
for example (18.68) is left as Exercise 18.3.

As stated, the algorithm depends on complete and correct syntactic
structures as input. Hobbs evaluated his approach manually(with respect
to both parse construction and algorithm implementation) on one hundred
examples from each of three different texts, reporting an accuracy of 88.3%.
(The accuracy increases to 91.7% if certain selectional restriction constraints
are assumed.) Lappin and Leass encoded a version of this algorithm within
their system, and reported an accuracy of 82% on their test corpus. Although
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this is less than the 86% accuracy achieved by their own algorithm, it should
be borne in mind that the test data Lappin and Leass used was from the same
genre as their development set, but different than the genres that Hobbs used
in developing his algorithm.

A Centering Algorithm As we described above, the Hobbs algorithm
does not use an explicit representation of a discourse model. The Lappin
and Leass algorithm does, but encodes salience as a weightedcombination
of preferences. Centering theory (Groszet al., 1995, henceforth GJW), also
has an explicit representation of a discourse model, and incorporates an ad-
ditional claim: that there is a single entity being ‘centered’ on at any given
point in the discourse which is to be distinguished from all other entities that
have been evoked.

There are two main representations tracked in the discoursemodel. In
what follows, takeUn andUn+1 to be two adjacent utterances. Thebackward
looking centerof Un, denoted asCb(Un), represents the entity currently be-
ing focused on in the discourse afterUn is interpreted. Theforward looking
centersof Un, denoted asCf (Un), form an ordered list containing the entities
mentioned inUn, all of which could serve as theCb of the following utter-
ance. In fact,Cb(Un+1) is by definition the most highly ranked element of
Cf (Un) mentioned inUn+1. (The Cb of the first utterance in a discourse is
undefined.) As for how the entities in theCf (Un) are ordered, for simplic-
ity’s sake we can use the grammatical role hierarchy encodedby (a subset
of) the weights in the Lappin and Leass algorithm, repeated below.1

subject> existential predicate nominal> object> indirect ob-
ject or oblique> demarcated adverbial PP

Unlike the Lappin and Leass algorithm, however, there are nonumerical
weights attached to the entities on the list, they are simplyordered relative to
each other. As a shorthand, we will call the highest-ranked forward-looking
centerCp (for ‘preferred center’).

We describe a centering-based algorithm for pronoun interpretation
due to Brennanet al.(1987, henceforth BFP). (See also Walkeret al.(1994);
for alternatives, see Kameyama (1986) and Strube and Hahn (1996), inter
alia.) In this algorithm, preferred referents of pronouns are computed from
relations that hold between the forward and backward looking centers in
adjacent sentences. Four intersentential relationships between a pair of ut-
terancesUn andUn+1 are defined depending on the relationship between

1 This is an extended form of the hierarchy used in Brennanet al. (1987), described below.
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Cb(Un+1), Cb(Un), andCp(Un+1); these are shown in Figure 18.8.

Cb(Un+1) =Cb(Un) Cb(Un+1) 6=Cb(Un)
or undefinedCb(Un)

Cb(Un+1) =Cp(Un+1) Continue Smooth-Shift
Cb(Un+1) 6=Cp(Un+1) Retain Rough-Shift

Figure 18.8 Transitions in the BFP algorithm.

The following rules are used by the algorithm.� Rule 1: If any element ofCf (Un) is realized by a pronoun in utterance
Un+1, thenCb(Un+1) must be realized as a pronoun also.� Rule 2: Transition states are ordered. Continue is preferred to Retain
is preferred to Smooth-Shift is preferred to Rough-Shift.

Having defined these concepts and rules, the algorithm is defined as
follows.

1. Generate possibleCb-Cf combinations for each possible set of refer-
ence assignments

2. Filter by constraints, e.g., syntactic coreference constraints, selectional
restrictions, centering rules and constraints

3. Rank by transition orderings

The pronominal referents that get assigned are those which yield the most
preferred relation in Rule 2, assuming that Rule 1 and other coreference
constraints (gender, number, syntactic, selectional restrictions) are not vio-
lated.

Let us step through passage (18.68), repeated below as (18.69), to il-
lustrate the algorithm.

(18.69) John saw a beautiful Acura Integra at the dealership. (U1)
He showed it to Bob. (U2)
He bought it. (U3)

Using the grammatical role hierarchy to order the Cf , for sentenceU1 we
get:

Cf (U1): fJohn, Integra, dealershipg
Cp(U1): John

Cb(U1): undefined
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SentenceU2 contains two pronouns:he, which is compatible with John, and
it, which is compatible with the Acura or the dealership. John is by definition
Cb(U2), because he is the highest ranked member ofCf (U1) mentioned in
U2 (again, he is the only possible referent forhe). We compare the resulting
transitions for each possible referent ofit. If we assumeit refers to the Acura,
the assignments would be:

Cf (U2): fJohn, Integra, Bobg
Cp(U2): John

Cb(U2): John

Result: Continue (Cp(U2)=Cb(U2); Cb(U1) undefined)

If we assumeit refers to the dealership, the assignments would be:

Cf (U2): fJohn, dealership, Bobg
Cp(U2): John

Cb(U2): John

Result: Continue (Cp(U2)=Cb(U2); Cb(U1) undefined)

Since both possibilities result in a Continue transition, the algorithm does
not say which to accept. For the sake of illustration, we willassume that ties
are broken in terms of the ordering on the previousCf list. Thus, we will
take it to refer to the Integra instead of the dealership, leaving the current
discourse model as represented in the first possibility above.

In sentenceU3, he is compatible with either John or Bob, whereasit
is compatible with the Integra. If we assumehe refers to John, then John is
Cb(U3) and the assignments would be:

Cf (U3): fJohn, Acurag
Cp(U3): John

Cb(U3): John

Result: Continue (Cp(U3)=Cb(U3)=Cb(U2))
If we assumeherefers to Bob, then Bob isCb(U3) and the assignments would
be:

Cf (U3): fBob, Acurag
Cp(U3): Bob

Cb(U3): Bob

Result: Smooth-Shift (Cp(U3)=Cb(U3); Cb(U3)6=Cb(U2))
Since a Continue is preferred to a Smooth-Shift per Rule 2, John is correctly
taken to be the referent.
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The main salience factors that the centering algorithm implicitly incor-
porates include the grammatical role, recency, and repeated mention pref-
erences. Unlike the Lappin and Leass algorithm, however, the manner in
which the grammatical role hierarchy affects salience is indirect, since it is
the resulting transition type that determines the final reference assignments.
In particular, a referent in a low-ranked grammatical role will be preferred to
one in a more highly ranked role if the former leads to a more highly ranked
transition. Thus, the centering algorithm may (often, but not always, incor-
rectly) resolve a pronoun to a referent that other algorithms would consider
to be of relatively low salience (Lappin and Leass, 1994; Kehler, 1997a). For
instance, in example (18.70),

(18.70) Bob opened up a new dealership last week. John took a look at the
Acuras in his lot. He ended up buying one.

the centering algorithm will assign Bob as the referent of the subject pronoun
he in the third sentence – since Bob isCb(U2), this assignment results in a
Continue relation whereas assigning John results in a Smooth-Shift relation.
On the other hand, the Hobbs and Lappin/Leass algorithms will assign John
as the referent.

Like the Hobbs algorithm, the centering algorithm was developed on
the assumption that correct syntactic structures are available as input. In
order to perform an automatic evaluation on naturally occurring data, the
centering algorithm would have to be specified in greater detail, both in terms
of how all noun phrases in a sentence are ordered with respectto each other
on theCf list (the current approach only includes nonembedded fillers of
certain grammatical roles, generating only a partial ordering), as well as how
all pronouns in a sentence can be resolved (e.g., recall the indeterminacy in
resolvingit in the second sentence of example (18.68)).

Walker (1989), however, performed a manual evaluation of the center-
ing algorithm on a corpus of 281 examples distributed over texts from three
genres, and compared its performance to the Hobbs algorithm. The evalua-
tion assumed adequate syntactic representations, grammatical role labeling,
and selectional restriction information as input. Furthermore, in cases in
which the centering algorithm did not uniquely specify a referent, only those
cases in which the Hobbs algorithm identified thecorrectone were counted
as errors. With this proviso, Walker reports an accuracy of 77.6% for cen-
tering and 81.8% for Hobbs. See also Tetreault (1999) for a comparison
between several centering-based algorithms and the Hobbs algorithm.
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18.2 TEXT COHERENCE

Much of the previous section focussed on the nature of anaphoric reference
and methods for resolving pronouns in discourse. Anaphoricexpressions
have often been calledcohesive devices(Halliday and Hasan, 1976), sinceCOHESIVE

DEVICES

the coreference relations they establish serve to ‘tie’ different parts of a dis-
course together, thus making it cohesive. While discoursesoften contain co-
hesive devices, the existence of such devices alone does notsatisfy a stronger
requirement that a discourse must meet, that of beingcoherent. In this sec-
tion, we describe what it means for a text to be coherent, and computational
mechanisms for determining coherence.

The Phenomenon

Assume that you have collected an arbitrary set of well-formed and inde-
pendently interpretable utterances, for instance, by randomly selecting one
sentence from each of the previous chapters of this book. Do you have a
discourse? Almost certainly not. The reason is that these utterances, when
juxtaposed, will not exhibitcoherence. Consider, for example, the differ-COHERENCE

ence between passages (18.71) and (18.72).

(18.71) John hid Bill’s car keys. He was drunk.

(18.72) ?? John hid Bill’s car keys. He likes spinach.

While most people find passage (18.71) to be rather unremarkable, they
find passage (18.72) to be odd. Why is this so? Like passage (18.71),
the sentences that make up passage (18.72) are well formed and readily
interpretable. Something instead seems to be wrong with thefact that the
sentences are juxtaposed. The hearer might ask, for instance, what hiding
someone’s car keys has to do with liking spinach. By asking this, the hearer
is questioning the coherence of the passage.

Alternatively, the hearer might try to construct an explanation that
makes it coherent, for instance, by conjecturing that perhaps someone of-
fered John spinach in exchange for hiding Bill’s car keys. Infact, if we con-
sider a context in which we had known this already, the passage now sounds
a lot better! Why is this? This conjecture allows the hearer to identify John’s
liking spinach as the cause of his hiding Bill’s car keys, which would explain
how the two sentences are connected. The very fact that hearers try to iden-
tify such connections is indicative of the need to establishcoherence as part
of discourse comprehension.
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The possible connections between utterances in a discoursecan be
specified as a set ofcoherence relations. A few such relations, proposedCOHERENCE

RELATIONS

by Hobbs (1979a), are given below. The termsS0 andS1 represent the mean-
ings of the two sentences being related.

Result: Infer that the state or event asserted byS0 causes or could cause the
state or event asserted byS1.

(18.73) John bought an Acura. His father went ballistic.

Explanation: Infer that the state or event asserted byS1 causes or could
cause the state or event asserted byS0.

(18.74) John hid Bill’s car keys. He was drunk.

Parallel: Infer p(a1;a2; :::) from the assertion ofS0 and p(b1;b2; :::) from
the assertion ofS1, whereai andbi are similar, for alli.

(18.75) John bought an Acura. Bill leased a BMW.

Elaboration: Infer the same propositionP from the assertions ofS0 andS1.

(18.76) John bought an Acura this weekend. He purchased a beautiful new
Integra for 20 thousand dollars at Bill’s dealership on Saturday
afternoon.

Occasion:A change of state can be inferred from the assertion ofS0, whose
final state can be inferred fromS1, or a change of state can be inferred from
the assertion ofS1, whose initial state can be inferred fromS0.

(18.77) John bought an Acura. He drove to the ballgame.

A mechanism for identifying coherence could support a number of nat-
ural language applications, including information extraction and summariza-
tion. For example, discourses that are coherent by virtue ofthe Elaboration
relation are often characterized by a summary sentence followed by one or
more sentences adding detail to it, as in passage (18.76). Although there
are two sentences describing events in this passage, the fact that we infer an
Elaboration relation tells us that the same event is being described in each.
A mechanism for identifying this fact could tell an information extraction
or summarization system to merge the information from the sentences and
produce a single event description instead of two.
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An Inference Based Resolution Algorithm

Each coherence relation described above is associated withone or more con-
straints that must be met for it to hold. How can we apply theseconstraints?
To do this, we need a method for performing inference. Perhaps the most
familiar type of inference isdeduction; recall from Section 14.3 that theDEDUCTION

central rule of deduction is modus ponens:

α) β
α
β

An example of modus ponens is the following:

All Acuras are fast.
John’s car is an Acura.

John’s car is fast.

Deduction is a form ofsound inference: if the premises are true, then theSOUND
INFERENCE

conclusion must be true.
However, much of language understanding is based on inferences that

are not sound. While the ability to draw unsound inferences allows for a
greater range of inferences to be made, it can also lead to false interpretations
and misunderstandings. A method for such inference is logical abduction ABDUCTION

(Pierce, 1955). The central rule of abductive inference is:

α) β
β
α

Whereas deduction runs an implication relation forward, abduction runs it
backward, reasoning from an effect to a potential cause. An example of
abduction is the following:

All Acuras are fast.
John’s car is fast.

John’s car is an Acura.

Obviously, this may be an incorrect inference: John’s car may be made by
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another manufacturer yet still be fast.
In general, a given effectβ may have many potential causesαi . We

generally will not want to merely reason from a fact to apossibleexplana-
tion of it, we want to identify thebestexplanation of it. To do this, we need a
method for comparing the quality of alternative abductive proofs. There are a
variety of strategies one could employ for doing this. One possibility is to use
a probabilistic model (Charniak and Goldman, 1988; Charniak and Shimony,
1990), although issues arise in choosing the appropriate space over which to
calculate these probabilities, and in finding a way to acquire them given the
lack of a corpus of events. Another method is to use a purely heuristic strat-
egy (Charniak and McDermott, 1985, Chapter 10) indexCharniak, E., such
as preferring the explanation with the smallest number of assumptions, or
choosing the explanation that uses the most specific characteristics of the in-
put. While such heuristics may be easy to implement, they generally prove
to be too brittle and limiting. Finally, a more general cost-based strategy can
be used which combines features (both positive and negative) of the proba-
bilistic and heuristic approaches. The approach to abductive interpretation
we illustrate here, due to Hobbset al. (1993), uses such a strategy. To sim-
plify the discussion, however, we will largely ignore the cost component of
the system, keeping in mind that one is nonetheless necessary.

Hobbset al. (1993) apply their method to a broad range of problems
in language interpretation; here we focus on its use in establishing discourse
coherence, in which world and domain knowledge are used to determine
the most plausible coherence relation holding between utterances. Let us
step through the analysis that leads to establishing the coherence of pas-
sage (18.71). First, we need axioms about coherence relations themselves.
Axiom (18.78) states that a possible coherence relation is the Explanation
relation; other relations would have analogous axioms.

(18.78) (8ei;ej)Explanation(ei ;ej)�CoherenceRel(ei ;ej)
The variablesei andej represent the events (or states) denoted by the two
utterances being related, and the� symbol is used to denote the implica-
tion relation. In this axiom and those given below, quantifiers always scope
over everything to their right. This axiom tells us that, given that we need
to establish a coherence relation between two events, one possibility is to
abductively assume that the relation is Explanation.

The Explanation relation requires that the second utterance express the
cause of the effect that the first sentence expresses. We can state this as
axiom (18.79).
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(18.79) (8ei;ej)cause(ej ;ei)� Explanation(ei ;ej)
In addition to axioms about coherence relations, we also need axioms

representing general knowledge about the world. The first axiom we use says
that if someone is drunk, then others will not want that person to drive, and
that the former causes the latter (for convenience, the state of not wanting is
denoted by thediswantpredicate).

(18.80) (8x;y;ei)drunk(ei ;x)�(9ej ;ek)diswant(ej ;y;ek)^drive(ek;x)^cause(ei ;ej)
Before we move on, a few notes are in order concerning this axiom and
the others we will present. First, axiom (18.80) is stated using universal
quantifiers to bind several of the variables, which essentially says that in
all cases in which someone is drunk, all people do not want that person
to drive. Although we might hope that this is generally the case, such a
statement is nonetheless too strong. The way in which this ishandled in
the Hobbs et al. system is by including an additional relation, called anetc
predicate, in the antecedent of such axioms. Anetcpredicate represents all
the other properties that must be true for the axiom to apply,but which are
too vague to state explicitly. These predicates therefore cannot be proven,
they can only be assumed at a corresponding cost. Because rules with high
assumption costs will be dispreferred to ones with low costs, the likelihood
that the rule applies can be encoded in terms of this cost. Since we have
chosen to simplify our discussion by ignoring costs, we willsimilarly ignore
the use ofetcpredicates.

Second, each predicate has what may look like an ‘extra’ variable in
the first argument position; for instance, thedrive predicate has two argu-
ments instead of one. This variable is used to reify the relationship denoted
by the predicate so that it can be referred to from argument places in other
predicates. For instance, reifying thedrive predicate with the variableek al-
lows us to express the idea of not wanting someone to drive by referring to
it in the final argument of thediswantpredicate.

Picking up where we left off, the second world knowledge axiom we
use says that if someone does not want someone else to drive, then they do
not want this person to have his car keys, since car keys enable someone to
drive.

(18.81) (8x;y;ej ;ek)diswant(ej ;y;ek)^drive(ek;x)�(9z;el ;em)diswant(el ;y;em)^have(em;x;z)^carkeys(z;x)^
cause(ej ;el )
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The third axiom says that if someone doesn’t want someone else to have
something, he might hide it from him.

(18.82) (8x;y;z;ei ;ej)diswant(el ;y;em)^have(em;x;z) �(9en)hide(en;y;x;z)^cause(el ;en)
The final axiom says simply that causality is transitive, that is, if ei causesej

andej causesek, thenei causesek.

(18.83) (8ei;ej ;ek)cause(ei ;ej)^cause(ej ;ek)� cause(ei ;ek)
Finally, we have the content of the utterances themselves, that is, that

John hid Bill’s car keys (from Bill),

(18.84) hide(e1; john;bill ;ck)^carkeys(ck;bill )
and that someone described using the pronoun ‘he’ was drunk;we will rep-
resent the pronoun with the free variablehe.

(18.85) drunk(e2;he)
We can now see how reasoning with the content of the utterances along

with the aforementioned axioms allows the coherence of passage (18.71) to
be established under the Explanation relation. The derivation is summarized
in Figure 18.9; the sentence interpretations are shown in boxes. We start by
assuming there is a coherence relation, and using axiom (18.78) hypothesize
that this relation is Explanation,

(18.86) Explanation(e1;e2)
which, by axiom (18.79), means we hypothesize that

(18.87) cause(e2;e1)
holds. By axiom (18.83), we can hypothesize that there is an intermediate
causee3,

(18.88) cause(e2;e3)^cause(e3;e1)
and we can repeat this again by expanding the first conjunct of(18.88) to
have an intermediate causee4.

(18.89) cause(e2;e4)^cause(e4;e3)
We can take thehidepredicate from the interpretation of the first sentence in
(18.84) and the secondcausepredicate in (18.88), and, using axiom (18.82),
hypothesize that John did not want Bill to have his car keys:

(18.90) diswant(e3; john;e5)^have(e5;bill ;ck)
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From this, thecarkeyspredicate from (18.84), and the secondcausepredi-
cate from (18.89), we can use axiom (18.81) to hypothesize that John does
not want Bill to drive:

(18.91) diswant(e4; john;e6)^drive(e6;bill )
From this, axiom (18.80), and the secondcausepredicate from (18.89), we
can hypothesize that Bill was drunk:

(18.92) drunk(e2;bill )
But now we find that we can ‘prove’ this fact from the interpretation of the
second sentence if we simply assume that the free variablehe is bound to
Bill. Thus, the establishment of coherence has gone through, as we have
identified a chain of reasoning between the sentence interpretations – one
that includes unprovable assumptions about axiom choice and pronoun as-
signment – that results incause(e2;e1), as required for establishing the Ex-
planation relationship.

CoherenceRel(e1,e2)

Explanation(e1,e2)

cause(e2,e1)

cause(e2,e3) cause(e3,e1) hide(e1,john,bill,ck)

cause(e4,e3) diswant(e3,j,e5) ^ have(e5,bill,ck) carkeys(ck,bill)

cause(e2,e4) diswant(e4,y,e6) ^ drive(e6,he)

drunk(e2,bill) (he=bill)

Figure 18.9 Establishing the coherence of passage (18.71).

This derivation illustrates a powerful property of coherence establish-
ment, namely its ability to cause the hearer to infer information about the
situation described by the discourse that the speaker has left unsaid. In this
case, the derivation required the assumption that John hid Bill’s keys be-
cause he did not want him to drive (presumably out of fear of him having
an accident, or getting stopped by the police), as opposed tosome other ex-
planation, such as playing a practical joke on him. This cause is not stated
anywhere in passage (18.71); it arises only from the inference process trig-
gered by the need to establish coherence. In this sense, the meaning of a



696 Chapter 18. Discourse

discourse is greater than the sum of the meanings of its parts. That is, a dis-
course typically communicates far more information than iscontained in the
interpretations of the individual sentences that compriseit.

We now return to passage (18.72), repeated below as (18.94),which
was notable in that it lacks the coherence displayed by passage (18.71), re-
peated below as (18.93).

(18.93) John hid Bill’s car keys. He was drunk.

(18.94) ?? John hid Bill’s car keys. He likes spinach.

We can now see why this is: there is no analogous chain of inference capable
of linking the two utterance representations, in particular, there is no causal
axiom analogous to (18.80) that says that liking spinach might cause some-
one to not want you to drive. Without additional informationthat can sup-
port such a chain of inference (such as the aforementioned scenario in which
someone promised John spinach in exchange for hiding Bill’scar keys), the
coherence of the passage cannot be established.

Because abduction is a form of unsound inference, it must be possible
to subsequently retract the assumptions made during abductive reasoning,
that is, abductive inferences aredefeasible. For instance, if passage (18.93)DEFEASIBLE

was followed by sentence (18.95),

(18.95) Bill’s car isn’t here anyway; John was just playing apractical joke
on him.

the system would have to retract the original chain of inference connecting
the two clauses in (18.93), and replace it with one utilizingthe fact that the
hiding event was part of a practical joke.

In a more general knowledge base designed to support a broad range
of inferences, we would probably want axioms that are more general that
those we used to establish the coherence of passage (18.93).For instance,
consider axiom (18.81), which says that if you do not want someone to drive,
then you do not want them to have their car keys. A more generalform of the
axiom would say that if you do not want someone to perform an action, and
an object enables them to perform that action, then you do notwant them
to have the object. The fact that car keys enable someone to drive would
then be encoded separately, along with many other similar facts. Likewise,
axiom (18.80) says that if someone is drunk, you don’t want them to drive.
We might replace this with an axiom that says that if someone does not want
something to happen, then they don’t want something that will likely cause
it to happen. Again, the facts that people typically don’t want other people
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to get into car accidents, and that drunk driving causes accidents, would be
encoded separately.

While it is important to have computational models that shedlight on
the coherence establishment problem, large barriers remain for employing
this and similar methods on a wide-coverage basis. In particular, the large
number of axioms that would be required to encode all of the necessary
facts about the world, and the lack of a robust mechanism for constraining
inference with such a large set of axioms, makes these methods largely im-
practical in practice. Such problems have come to be informally known as
AI-complete, a play on the termNP-completein computer science. An AI- AI­COMPLETE

complete problem is one that essentially requires all of theknowledge – and
abilities to utilize it – that humans have.

Other approaches to analyzing the coherence structure of a discourse
have also been proposed. One that has received broad usage isRhetorical
Structure Theory (RST) (Mann and Thompson, 1987a), which proposes a
set of 23rhetorical relationsthat can hold between spans of text within a
discourse. While RST is oriented more toward text description than inter-
pretation, it has proven to be a useful tool for developing natural language
generation systems. RST is described in more detail in Section 20.4.

Coherence and Coreference The reader may have noticed another inter-
esting property of the proof that passage (18.71) is coherent. While the
pronounhe was initially represented as a free variable, it got bound toBill
during the derivation. In essence, a separate procedure forresolving the
pronoun was not necessary; it happened as a side effect of thecoherence es-
tablishment procedure. In addition to the tree-search algorithm presented on
page 683, Hobbs (1978b) proposes this use of the coherence establishment
mechanism as a second approach to pronoun interpretation.

This approach provides an explanation for why the pronoun inpassage
(18.71) is most naturally interpreted as referring to Bill,but the pronoun in
passage (18.96) is most naturally interpreted as referringto John.

(18.96) John lost Bill’s car keys. He was drunk.

Establishing the coherence of passage (18.96) under Explanation requires an
axiom that says that being drunk could cause someone to lose something.
Because such an axiom will dictate that the person who is drunk must be
the same as the person losing something, the free variable representing the
pronoun will become bound to John. The only lexico-syntactic difference
between passages (18.96) and (18.71), however, is the verb of the first sen-
tence. The grammatical positions of the pronoun and potential antecedent
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noun phrases are the same in both cases, so syntactically-based preferences
do not distinguish between these.

Discourse Connectives Sometimes a speaker will include a specific cue,
called aconnective, that serves to constrain the set of coherence relations
that can hold between two or more utterances. For example, the connec-
tive becauseindicates the Explanation relationship explicitly, as in passage
(18.97).

(18.97) John hid Bill’s car keys because he was drunk.

The meaning ofbecausecan be represented ascause(e2;e1), which would
play a similar role in the proof as thecausepredicate that was introduced
abductively via axiom (18.79).

However, connectives do not always constrain the possibilities to a sin-
gle coherence relation. The meaning ofand, for instance, is compatible with
the Parallel, Occasion, and Result relations introduced onpage 690, as ex-
emplified in (18.98)–(18.100) respectively.

(18.98) John bought an Acura and Bill leased a BMW.

(18.99) John bought an Acura and drove to the ballgame.

(18.100) John bought an Acura and his father went ballistic.

However,and is not compatible with the Explanation relation; unlike pas-
sage (18.97), passage (18.101) cannot mean the same thing as(18.71).

(18.101) John hid Bill’s car keys and he was drunk.

While the coherence resolution procedure can use connectives to con-
strain the range of coherence relations that can be inferredbetween a pair of
utterances, they in and of themselves do notcreatecoherence. Any coher-
ence relation indicated by a connective must still be established. Therefore,
addingbecauseto example (18.72), for instance, still does not make it co-
herent.

(18.102) ?? John hid Bill’s car keys because he likes spinach.

Coherence establishment fails here for the same reason it does for example
(18.72), that is, the lack of causal knowledge explaining how liking spinach
would cause one to hide someone’s car keys.
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18.3 DISCOURSESTRUCTURE

In the previous section, we saw how the coherence of a pair of sentences can
be established. We now ask how coherence can be established for longer dis-
courses. Does one simply establish coherence relations between all adjacent
pairs of sentences?

It turns out that the answer is no. Just as sentences have hierarchical
structure (that is, syntax), so do discourses. Consider passage (18.103).

(18.103) � John went to the bank to deposit his paycheck. (S1)� He then took a train to Bill’s car dealership. (S2)� He needed to buy a car. (S3)� The company he works for now isn’t near any public
transportation. (S4)� He also wanted to talk to Bill about their softball league. (S5)

Intuitively, the structure of passage (18.103) is not linear. The discourse
seems to be primarily about the sequence of events describedin sentences
S1 and S2, whereas sentences S3 and S5 are related most directly to S2, and
S4 is related most directly to S3. The coherence relationships between these
sentences result in the discourse structure shown in Figure18.10.

Occasion (e1;e2)

S1 (e1) Explanation (e2)

S2 (e2) Parallel (e3;e5)

Explanation (e3) S5 (e5)

S3 (e3) S4 (e4)

Figure 18.10 The discourse structure of passage (18.103).

Each node in the tree represents a group of locally coherent utterances,
called adiscourse segment. Roughly speaking, one can think of discourseDISCOURSE

SEGMENT

segments as being analogous to intermediate constituents in sentence syntax.
We can extend the set of discourse interpretation axioms used in the

last section to establish the coherence of larger, hierarchical discourses such
as (18.103). The recognition of discourse segments, and ultimately discourse
structure, results as a by-product of this process.
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First, we add axiom (18.104), which states that a sentence isa dis-
course segment. Here,w is the string of words in the sentence, ande the
event or state described by it.

(18.104) (8w;e)sentence(w;e) � Segment(w;e)
Next, we add axiom (18.105), which says that two smaller segments can
be composed into a larger one if a coherence relation can be established
between the two.

(18.105) (8w1;w2;e1;e2;e) Segment(w1;e1) ^ Segment(w2;e2)^ CoherenceRel(e1;e2;e)� Segment(w1w2;e)
Note that extending our axioms for longer discourses has necessitated that
we add a third argument to theCoherenceRelpredicate (e). The value of
this variable will be a combination of the information expressed bye1 ande2

that represents the main assertion of the resulting segment. For our purposes
here, we will assume thatsubordinating relations such as Explanation passSUBORDINAT­

ING
RELATIONS

along only one argument (in this case the first, that is, the effect), whereas
coordinating relations such as Parallel and Occasion pass a combinationCOORDINAT­

ING
RELATIONS

of both arguments. These arguments are shown in parenthesesnext to each
relation in Figure 18.10.

Now, to interpret a coherent textW, one must simply prove that it is a
segment, as expressed by statement (18.106).

(18.106) (9e)Segment(W;e)
These two rules will derive any possible binary branching segmental struc-
ture for a discourse, as long as that structure can be supported by the estab-
lishment of coherence relations between the segments. Herein lies a differ-
ence between computing the syntactic structure of a sentence (see Chapter 9)
and that of a discourse. Sentence-level grammars are generally complex, en-
coding many syntactic facts about how different constituents (noun phrases,
verb phrases) can modify in each other and in what order. The ‘discourse
grammar’ above, on the contrary, is much simpler, encoding only two rules:
a segment rewrites to two smaller segments, and a sentence isa segment.
Which of the possible structures is actually assigned depends on how the
coherence of the passage is established.

Why would we want to compute discourse structure? Several appli-
cations could benefit from it. A summarization system, for instance, might
use it to select only the central sentences in the discourse,forgoing the in-
clusion of subordinate information. For instance, a systemfor creating brief
summaries might only include sentences S1 and S2 when applied to pas-
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sage (18.103), since the event representations for these were propagated to
the top level node. A system for creating more detailed summaries might
also include S3 and S5. Similarly, an information retrievalsystem might
weight information in sentences that are propagated to higher-level parts of
the discourse structure more heavily than information in ones that are not,
and generation systems need knowledge of discourse structure to create co-
herent discourse, as described in Chapter 20.

Discourse structure may also be useful for natural languagesubtasks
such as pronoun resolution. We already know from Section 18.1 that pro-
nouns display a preference for recency, that is, they have a strong tendency
to refer locally. But now we have two possible definitions forrecency: re-
cent in terms of the linear order of the discourse, or recent in terms of its
hierarchical structure. It has been claimed that the latterdefinition is in fact
the correct one, although admittedly the facts are not completely clear in all
cases.

In this section, we have briefly described one of several possible ap-
proaches to recovering discourse structure. A different approach, one typi-
cally applied to dialogues, will be described in Section 19.4.

18.4 PSYCHOLINGUISTICSTUDIES OFREFERENCE AND

COHERENCE

To what extent do the techniques described in this chapter model human
discourse comprehension? A substantial body of psycholinguistic research
has studied this question.

For instance, a significant amount of work has been concernedwith
the extent to which people use the preferences described in Section 18.1 to
interpret pronouns, the results of which are often contradictory. Clark and
Sengal (1979) studied the effects that sentence recency plays in pronoun in-
terpretation using a set ofreading time experiments. After receiving and READING

TIME EXPERI­
MENTS

acknowledging a three sentence context to read, human subjects were given
a target sentence containing a pronoun. The subjects pressed a button when
they felt that they understood the target sentence. Clark and Sengal found
that the reading time was significantly faster when the referent for the pro-
noun was evoked from the most recent clause in the context than when it
was evoked from two or three clauses back. On the other hand, there was no
significant difference between referents evoked from two clauses and three
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clauses back, leading them to claim that “the last clause processed grants the
entities it mentions a privileged place in working memory”.

Crawleyet al. (1990) compared the grammatical role parallelism pref-
erence with a grammatical role preference, in particular, apreference for ref-
erents evoked from the subject position of the previous sentence over those
evoked from object position. Unlike previous studies whichconflated these
preferences by considering only subject-to-subject reference effects, Craw-
ley et al. studied pronouns in object position to see if they tended to be as-
signed to the subject or object of the last sentence. They found that in two
task environments – aquestion answering taskwhich revealed how the hu-QUESTION

ANSWERING
TASK

man subjects interpreted the pronoun, and areferent naming task in whichREFERENT
NAMING TASK

the subjects identified the referent of the pronoun directly– the human sub-
jects resolved pronouns to the subject of the previous sentence more often
than the object.

However, Smyth (1994) criticized the adequacy of Crawley etal.’s data
for evaluating the role of parallelism. Using data that met more stringent re-
quirements for assessing parallelism, Smyth found that subjects overwhelm-
ingly followed the parallelism preference in a referent naming task. The
experiment supplied weaker support for the preference for subject referents
over object referents, which he posited as a default strategy when the sen-
tences in question are not sufficiently parallel.

Caramazzaet al. (1977) studied the effect of the ‘implicit causality’
of verbs on pronoun resolution. Verbs were categorized in terms of having
subject bias or object bias using asentence completion task. Subjects wereSENTENCE

COMPLETION
TASK

given sentence fragments such as (18.107).

(18.107) John telephoned Bill because he

The subjects provided completions to the sentences, which identified to the
experimenters what referent for the pronoun they favored. Verbs for which
a large percentage of human subjects indicated a grammatical subject or ob-
ject preference were categorized as having that bias. A sentence pair was
then constructed for each biased verb: a ‘congruent’ sentence in which the
semantics supported the pronoun assignment suggested by the verb’s bias,
and an ‘incongruent’ sentence in which the semantics supported the opposite
prediction. For example, sentence (18.108) is congruent for the subject-bias
verb ‘telephoned’, since the semantics of the second clausesupports assign-
ing the subjectJohnas the antecedent ofhe, whereas sentence (18.109) is
incongruent since the semantics supports assigning the objectBill .

(18.108) John telephoned Bill because he wanted some information.
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(18.109) John telephoned Bill because he withheld some information.

In a referent naming task, Caramazza et al. found that namingtimes were
faster for the congruent sentences than for the incongruentones. Perhaps
surprisingly, this was even true for cases in which the two people mentioned
in the first clause were of different genders (e.g., changeJohn to Sue in
examples (18.108) and (18.109)), thus rendering the reference unambiguous.

Garnhamet al.(1996) differentiated between two hypotheses about the
manner in which implicit causality might affect pronoun resolution: thefo-
cus hypothesis, which says, as might be suggested by the Caramazza et al.FOCUS

HYPOTHESIS

experiments, that such verbs have a priming effect on the filler of a particu-
lar grammatical role and thus contribute information that can be used at the
point at which the pronoun is interpreted, and theintegration hypothesis, in INTEGRATION

HYPOTHESIS

which this information is only used after the clause has beencomprehended
and is being integrated with the previous discourse. They attempted to de-
termine which hypothesis is correct using aprobing task. After sentences PROBING

TASK

were presented to establish a context, a sentence containing a pronoun was
presented one word at a time. At appropriate points during the presenta-
tion, the name of one of the possible referents was displayed, and the subject
asked whether that person has been mentioned in the sentenceso far. Gar-
nham et al. found that the implicit causality information bias was generally
not available right after the pronoun was given, but was utilized later in the
sentence.

Matthews and Chodorow (1988) analyzed the problem of intrasenten-
tial reference and the predictions of syntactically-basedsearch strategies. In
a question answering task, they found that subjects exhibited slower com-
prehension times for sentences in which a pronoun antecedent occupied an
early, syntactically deep position than for sentences in which the antecedent
occupied a late, syntactically shallow position. This result is consistent with
the search process used in Hobbs’s tree search algorithm.

There has also been psycholinguistic work concerned with testing the
principles of centering theory. In a set of reading time experiments, Gor-
don et al. (1993) found that reading times were slower when the current
backward-looking center was referred to using a full noun phrase instead
of a pronoun, even though the pronouns were ambiguous and theproper
names were not. This effect – which they called arepeated name penalty REPEATED

NAME
PENALTY

– was found only for referents in subject position, suggesting that theCb is
preferentially realized as a subject. Brennan (1995) analyzed how choice
of linguistic form correlates with centering principles. She ran a set of ex-
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periments in which a human subject watched a basketball gameand had to
describe it to a second person. She found that the human subjects tended to
refer to an entity using a full noun phrase in subject position before subse-
quently pronominalizing it, even if the referent had already been introduced
in object position.

Psycholinguistic studies have also addressed the processes people use
to establish discourse coherence. Some of this work has focussed on the
question ofinference control, that is, which of the potentially infinite num-INFERENCE

CONTROL

ber of possible inferences are actually made during interpretation (Singer,
1994; Garrod and Sanford, 1994). These can be categorized interms of be-
ing necessary inferences, those which are necessary to establish coherence,NECESSARY

INFERENCES

andelaborative inferences, those which are suggested by the text but notELABORATIVE
INFERENCES

necessary for establishing coherence. The position that only necessary infer-
ences are made during interpretation has been called thedeferred inference
theory(Garnham, 1985) and theminimalist position(McKoon and Ratcliff,
1992). As with pronoun interpretation, results of studies testing these ques-
tions have yielded potentially contradictory results. Indeed, the results in
each case depend to a large degree on the experimental setup and paradigm
(Keenanet al., 1990).

Johnsonet al. (1973), for instance, examined this question using a
recognition judgement task. They presented subjects with passages such

RECOGNI­
TION
JUDGEMENT
TASK as (18.110).

(18.110) When the man entered the kitchen he slipped on a wet spot and
dropped the delicate glass pitcher on the floor. The pitcher was very
expensive, and everyone watched the event with horror.

The subjects were subsequently presented either with a sentence taken di-
rectly from one of the passages, such as the first sentence of (18.110), or
one that included an elaborative inference in the form of an expected conse-
quence such as (18.111). The subjects were then asked if the sentence had
appeared verbatim in one of the passages.

(18.111) The man broke the delicate glass pitcher on the floor.

Both types of sentence received a recognition rate in the mid-60% range,
whereas control sentences that substantially altered the meaning were rec-
ognized much less often (about 22%). By running a similar experiment that
also measured subjects’ response times, Singer (1979) addressed the ques-
tion of whether these inferences were made at the time the original sentence
was comprehended (and thus truly elaborative), or at the time that the ex-
pected consequence version was presented. While Singer also found that the
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identical and expected consequence versions yield similarrates of positive
responses, the judgements about the consequence versions took 0.2-0.3 sec-
onds longer than for the identical sentences, suggesting that the inference
was not made at comprehension time.

Singer (1980) examined the question of when different typesof infer-
ences were made using passages such as (18.112)-(18.114).

(18.112) The dentist pulled the tooth painlessly. The patient liked the new
method.

(18.113) The tooth was pulled painlessly. The dentist used anew method.

(18.114) The tooth was pulled painlessly. The patient likedthe new
method.

Each of these passages was presented to the subject, followed by the test
sentence given in (18.115).

(18.115) A dentist pulled the tooth.

The information expressed in (18.115) is mentioned explicitly in (18.112), is
necessary to establish coherence in (18.113), and is elaborative in (18.114).
Singer found that subject verification times were approximately the same in
the first two cases, but 0.25 seconds slower in the elaborative case, adding
support to the deferred inference theory.

Kintsch and colleagues have proposed and analyzed a ‘construction-
integration’ model of discourse comprehension (Kintsch and van Dijk, 1978;
van Dijk and Kintsch, 1983; Kintsch, 1988). They defined the concept of a
text macrostructure, which is a hierarchical network of propositions thatTEXT

MACROSTRUC­
TURE

provides an abstract, semantic description of the global content of the text.
Guindon and Kintsch (1984) evaluated whether the elaborative inferences
necessary to construct the macrostructure accompany comprehension pro-
cesses, using alexical priming technique. Subjects read a passage and thenLEXICAL

PRIMING

were asked if a particular word pair was present in the text. Three types of
word pairs were used: pairs that were not mentioned in the text but were
related to the text macrostructure, pairs of ‘distractor words’ that were the-
matically related to the text but not the macrostructure, and pairs of themat-
ically unrelated distractor words. The number of ‘false alarms’ – in which a
subject erroneously indicated that the words appeared in the text – was sig-
nificantly higher for macrostructure pairs than for thematically related pairs,
which in turn was higher than for pairs of thematically unrelated words. In
the remaining cases – in which the subjects correctly rejected word pairs that
did not appear – response times were significantly longer formacrostructure
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words than thematically related pairs, which in turn were higher than for
thematically unrelated words.

Myerset al.(1987) considered the question of how the degree of causal
relatedness between sentences affects comprehension times and recall accu-
racy. Considering a target sentence such as (18.116).

(18.116) She found herself too frightened to move.

they designed four context sentences, shown in (18.117)–(18.120), which
form a continuum moving from high to low causal relatedness to (18.116).

(18.117) Rose was attacked by a man in her apartment.

(18.118) Rose saw a shadow at the end of the hall.

(18.119) Rose entered her apartment to find a mess.

(18.120) Rose came back to her apartment after work.

Subjects were presented with cause-effect sentence pairs consisting of a con-
text sentence and the target sentence. Myers et al. found that reading times
were faster for more causally related pairs. After the subjects had seen a
number of such pairs, Myers et al. then ran acued recall experiment, inCUED RECALL

which the subjects were given one sentence from a pair and asked to recall
as much as possible about the other sentence in the pair. Theyfound that the
subjects recalled more content for more causally related sentence pairs.

18.5 SUMMARY

In this chapter, we saw that many of the problems that naturallanguage pro-
cessing systems face operate between sentences, that is, atthe discourse
level. Here is a summary of some of the main points we discussed:� Discourse interpretation requires that one build an evolving represen-

tation of discourse state, called adiscourse model, that contains repre-
sentations of the entities that have been referred to and therelationships
in which they participate.� Natural languages offer many ways to refer to entities. Eachform of
reference sends its own signals to the hearer about how it should be
processed with respect to her discourse model and set of beliefs about
the world.� Pronominal reference can be used for referents that have an adequate
degree ofsaliencein the discourse model. There are a variety of lex-



Section 18.5. Summary 707

ical, syntactic, semantic, and discourse factors that appear to affect
salience.� These factors can be modeled and weighed against each other in a pro-
noun interpretation algorithm, due to Lappin and Leass (1994), that
achieves performance in the mid-80% range on some genres.� Discourses are not arbitrary collections of sentences; they must beco-
herent. Collections of well-formed and individually interpretable sen-
tences often form incoherent discourses when juxtaposed.� The process of establishing coherence, performed by applying the con-
straints imposed by one or morecoherence relations, often leads to the
inference of additional information left unsaid by the speaker. The
unsound rule of logicalabductioncan be used for performing such in-
ference.� Discourses, like sentences, have hierarchical structure.Intermediate
groups of locally coherent utterances are calleddiscourse segments.
Discourse structure recognition can be viewed as a by-product of dis-
course interpretation.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Building on the foundations set by early systems for naturallanguage under-
standing (Woodset al., 1972; Winograd, 1972b; Woods, 1978), much of the
fundamental work in computational approaches to discoursewas performed
in the late 70’s. Webber’s (1978, 1983) work provided fundamental insights
into how entities are represented in the discourse model andthe ways in
which they can license subsequent reference. Many of the examples she pro-
vided continue to challenge theories of reference to this day. Grosz (1977b)
addressed the focus of attention that conversational participants maintain as
the discourse unfolds. She defined two levels of focus; entities relevant to
the entire discourse were said to be inglobal focus, whereas entities that are
locally in focus (i.e., most central to a particular utterance) were said to be
in immediatefocus. Sidner (1979, 1983b) described a method for tracking
(immediate) discourse foci and their use in resolving pronouns and demon-
strative noun phrases. She made a distinction between the current discourse
focus and potential foci, which are the predecessors to the backward and
forward looking centers of centering theory respectively.
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The roots of the centering approach originate from papers byJoshi and
Kuhn (1979) and Joshi and Weinstein (1981), who addressed the relation-
ship between immediate focus and the inferences required tointegrate the
current utterance into the discourse model. Groszet al. (1983) integrated
this work with the prior work of Sidner and Grosz. This led to amanuscript
on centering which, while widely circulated since 1986, remained unpub-
lished until Groszet al.(1995). A series of papers on centering based on this
manuscript/paper were subsequently published (Kameyama,1986; Brennan
et al., 1987; Di Eugenio, 1990; Walkeret al., 1994; Di Eugenio, 1996; Strube
and Hahn, 1996; Kehler, 1997a, inter alia) indexDi Eugenio,B. indexStrube,
M.. A collection of more recent centering papers appears in Walker et al.
(1998).

Researchers in the linguistics community have proposed accounts of
the information statusthat referents hold in a discourse model (Chafe, 1976;
Prince, 1981; Ariel, 1990; Prince, 1992; Gundelet al., 1993; Lambrecht,
1994, inter alia). Prince (1992), for instance, analyzes information status
in terms of two crosscutting dichotomies:hearer statusanddiscourse sta-
tus, and shows how these statuses correlate with the grammatical position
of referring expressions. Gundelet al. (1993), on the other hand, posits a
unidimensional scale with six statuses (called thegivenness hierarchy), and
correlates them with the linguistic form of referring expressions.

Beginning with Hobbs’s (1978b) tree-search algorithm, researchers
have pursued syntax-based methods for identifying reference robustly in nat-
urally occurring text. Building on the work of Lappin and Leass (1994),
Kennedy and Boguraev (1996) describe a similar system that does not rely
on a full syntactic parser, but merely a mechanism for identifying noun
phrases and labeling their grammatical roles. Both approaches use Alshawi’s
(1987) framework for integrating salience factors. An algorithm that uses
this framework for resolving references in a multimodal (i.e., speech and
gesture) human-computer interface is described in Hulset al. (1995). A dis-
cussion of a variety of approaches to reference in operational systems can be
found in Mitkov and Boguraev (1997).

Recently, several researchers have pursued methods for reference res-
olution based on supervised learning (Connollyet al., 1994; Aone and Ben-
nett, 1995; McCarthy and Lehnert, 1995; Kehler, 1997b; Geet al., 1998,
inter alia). In these studies, machine learning methods such as Bayesian
model induction, decision trees, and maximum entropy modeling were used
to train models from corpora annotated with coreference relations. A discus-
sion of some issues that arise in annotating corpora for coreference can be
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found in Poesio and Vieira (1998).
The MUC-6 information extraction evaluation included a common eval-

uation on coreference (Sundheim, 1995a). The task includedcoreference
between proper names, aliases, definite noun phrases, bare nouns, pronouns,
and even coreference indicated by syntactic relations suchpredicate nomi-
nals (“The Integrais the world’s nicest looking car”) and appositives (“the
Integra, the world’s nicest looking car,”). Performance was evaluated by
calculating recall and precision statistics based on the distance between the
equivalence classes of coreferent descriptions produced by a system and
those in a human-annotated answer key. Five of the seven sites which partic-
ipated in the evaluation achieved in the range of 51%-63% recall and 62%-
72% precision. A similar evaluation was also included as part of MUC-7.

Several researchers have posited sets of coherence relations that can
hold between utterances in a discourse (Halliday and Hasan,1976; Hobbs,
1979a; Longacre, 1983; Mann and Thompson, 1987a; Polanyi, 1988; Hobbs,
1990; Sanderset al., 1992, inter alia). A compendium of over 350 rela-
tions that have been proposed in the literature can be found in Hovy (1990).
The Linguistic Discourse Model (Polanyi, 1988; Scha and Polanyi, 1988)
is a framework in which discourse syntax is more heavily emphasized; in
this approach, a discourse parse tree is built on a clause-by-clause basis in
direct analogy with how a sentence parse tree is built on a constituent-by-
constituent basis. A more recent line of work has applied a version of the
tree-adjoining grammar formalism to discourse parsing (Webberet al., 1999,
and citations therein). In addition to determining discourse structure and
meaning, theories of discourse coherence have been used in algorithms for
interpreting discourse-level linguistic phenomena, including pronoun resolu-
tion (Hobbs, 1979a; Kehler, 2000), verb phrase ellipsis andgapping (Prüst,
1992; Asher, 1993; Kehler, 1993, 1994a), and tense interpretation (Las-
carides and Asher, 1993; Kehler, 1994b, 2000). An extensiveinvestigation
into the relationship between coherence relations and discourse connectives
can be found in Knott and Dale (1994).

EXERCISES

18.1 Early work in syntactic theory attempted to characterize rules for
pronominalization through purely syntactic means. A rule was proposed in
which a pronoun was interpreted by deleting it from the syntactic structure
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of the sentence that contains it, and replacing it with the syntactic represen-
tation of the antecedent noun phrase.

Explain why the following sentences (called “Bach-Peters”sentences)
are problematic for such an analysis.

(18.121) The man who deserves it gets the prize he wants.

(18.122) The pilot who shot at it hit the MIG that chased him.

What other types of reference discussed on pages 667–672 areproblematic
for this type of analysis?

Now, consider the following example (Karttunen, 1969).

(18.123) The student who revised his paper did better than the student who
handed it in as is.

What is the preferred reading for the pronounit, and why is it different and
interesting? Describe why the syntactic account describedabove can be seen
to predict this reading. Is this type of reading common? Construct some
superficially similar examples that nonetheless appear notto have a similar
reading.

18.2 Webber (1978) offers examples in which the same referent appears to
support either singular or plural agreement:

(18.124) John gave Mary five dollars.It was more than he gave Sue.

(18.125) John gave Mary five dollars. One ofthemwas counterfeit.

What might account for this? Describe how representations of referents like
five dollarsin the discourse model could be made to allow such behavior.

Next, consider the following examples (from Webber and Baldwin
(1992)):

(18.126) John made a handbag from an inner tube.

a. He sold it for twenty dollars.
b. He had taken it from his brother’s car.
c. Neither of them was particularly useful.
d. * He sold them for fifty dollars.

Why is plural reference to the handbag and the inner tube possible in sen-
tence (18.126c), but not (18.126d)? Again, discuss how representations in
the discourse model could be made to support this behavior.

18.3 Draw syntactic trees for example (18.68) on page 681 and apply Hobbs’s
tree search algorithm to it, showing each step in the search.
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18.4 Recall that Hobbs’s algorithm does not have an explicit representa-
tion of a discourse model, salience, or preferences. Discuss which of the
preferences we have described are approximated by the search process over
syntactic representations as Hobbs has defined it, and how.

18.5 Hobbs (1977) cites the following examples from his corpus asbeing
problematic for his tree-search algorithm.

(18.127) The positions of pillars in one hall were marked by river boulders
and a shaped convex cushion of bronze that had served as their
footings.

(18.128) They were at once assigned an important place amongthe scanty
remains which record the physical developments of the humanrace
from the time of itsfirst appearance in Asia.

(18.129) Sites at which the coarse grey pottery of the Shang period has
been discovered do not extend far beyond the southernmost reach of
the Yellow river, or westward beyond itsjunction with the Wei.

(18.130) The thin, hard, black-burnished pottery, made in shapes of angular
profile, which archeologists consider as the clearest hallmark of the
Lung Shan culture, developed in the east. The site from whichit takes
its name is in Shantung. Itis traced to the north-east as far as
Liao-ning province.

(18.131) He had the duty of performing the national sacrifices to heaven
and earth: his role as source of honours and material rewardsfor
services rendered by feudal lords and ministers is commemorated in
thousands of inscriptions made by the recipients on bronze vessels
which were eventually deposited in theirgraves.

In each case, identify the correct referent of the underlined pronoun and the
one that the algorithm will incorrectly identify. Discuss any factors that come
into play in determining the correct referent in each case, and what types of
information might be necessary to account for them.

18.6 Consider the following passage, from Brennanet al. (1987):

(18.132) Brennan drives an Alfa Romeo.
She drives too fast.
Friedman races her on weekends.
She goes to Laguna Seca.

Identify the referent that the BFP algorithm finds for the pronoun in the final
clause. Do you agree with this choice, or do you find the example ambigu-
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ous? Discuss why introducing a new noun phrase in subject position, with
a pronominalized reference in object position, might lead to an ambiguity.
What preferences are competing here?

18.7 The approaches to pronoun resolution discussed in this chapter de-
pend on accurate parsing: Hobbs’s tree search algorithm assumes a full
syntactic tree, and Lappin and Leass’s algorithm and centering requires that
grammatical roles are assigned correctly. Given the current state of the art
in syntactic processing, highly accurate syntactic structures are currently not
reliably computable. Therefore, real-world algorithms must choose between
one of two options: (i) use a parser to generate (often inaccurate) syntactic
analyses and use them as such, or (ii) to eschew full syntactic analysis al-
together and base the algorithm on partial syntactic analysis, such as noun
phrase recognition. The Lappin and Leass system took the first option, us-
ing a highly developed parser. However, one could take the second option,
and augment their algorithm so that surface position is usedto approximate
a grammatical role hierarchy.

Design a set of preferences for the Lappin and Leass method that as-
sumes that only noun phrases are bracketed in the input. Construct six exam-
ples: (i) two that are handled by both methods, (ii) two examples that Lappin
and Leass handle but that are not handled by your adaptation,and (iii) two
that are not handled correctly by either algorithm. Make sure the examples
are nontrivially different.

18.8 Consider passages (18.133a-b), adapted from Winograd (1972b).

(18.133) The city council denied the demonstrators a permitbecause

a. they feared violence.
b. they advocated violence.

What are the correct interpretations for the pronouns in each case? Sketch
out an analysis of each in the interpretation as abduction framework, in
which these reference assignments are made as a by-product of establish-
ing the Explanation relation.

18.9 Coherence relations may also applytemporalconstraints to the events
or states denoted by sentences in a discourse. These constraints must be com-
patible with the temporal information indicated by the tenses used. Consider
the two follow-on sentences in example (18.134).

(18.134) John got in a car accident.

a. He drank a six-pack of beer.
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b. He had drunk a six-pack of beer.

In what order do the events occur in each case? What coherencerelation is
operative in each case? Discuss what might account for this difference given
the fact that causes precede effects.

18.10 The coherence relationsResultandExplanationare highly related,
in that Explanation is essentially the same as Result exceptwith the oppo-
site ordering of clauses. These two relations are exemplified in examples
(18.135) and (18.136).

(18.135) Bill was drunk. John hid his car keys.

(18.136) John hid Bill’s car keys. He was drunk.

Now consider the following examples:

(18.137) Bill was drunk, but John didn’t hide his car keys.

(18.138) John hid Bill’s car keys, even though he wasn’t drunk.

The coherence relations underlying examples (18.137) and (18.138) have
been called Violated Expectation and Denial of Preventer respectively.

Define the constraints that these two relations impose, using those for
Result and Explanation as a guide. Discuss how we might consider all four
relations to be parameterized versions of a single relation.

18.11 Select an editorial column from your favorite newspaper, and deter-
mine the discourse structure for a 10-20 sentence portion. What problems
did you encounter? Were you helped by superficial cues the speaker included
(e.g., discourse connectives) in any places?
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DIALOGUE AND
CONVERSATIONAL
AGENTS

C: I want you to tell me the names of the fellows on the St.
Louis team.

A: I’m telling you. Who’s on first, What’s on second, I Don’t
Know is on third.

C: You know the fellows’ names?
A: Yes.
C: Well, then, who’s playing first?
A: Yes.
C: I mean the fellow’s name on first.
A: Who.
C: The guy on first base.
A: Who is on first.
C: Well what are you askin’mefor?
A: I’m not asking you – I’m telling you. Who is on first.

Who’s on First– Bud Abbott and Lou Costello’s version
of an old burlesque standard.

The literature of the fantastic abounds in inanimate objects magically
endowed with sentience and the gift of speech. From Ovid’s statue of Pyg-
malion to Mary Shelley’s Frankenstein, Cao Xue Qin’s DivineLumines-
cent Stone-in-Waiting in the Court of Sunset Glow to Snow White’s mirror,
there is something deeply touching about creating something and then hav-
ing a chat with it. Legend has it that after finishing his sculpture ofMoses,
Michelangelo thought it so lifelike that he tapped it on the knee and com-
manded it to speak. Perhaps this shouldn’t be surprising. Language itself
has always been the mark of humanity and sentience, andconversationor CONVERSA­

TION

dialogueis the most fundamental and specially privileged arena of language. DIALOGUE

It is certainly the first kind of language we learn as children, and for most of
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us, it is the kind of language we most commonly indulge in, whether we are
ordering curry for lunch or buying postage stamps, participating in business
meetings or talking with our families, booking airline flights or complaining
about the weather.

This chapter introduces the fundamental structures and algorithms in
conversational agents, programs which communicate with users in natural
language in order to book airline flights, answer questions,or act as a tele-
phone interface to email. Many of these issues are also relevant forbusiness
meeting summarizationsystems and other spoken language understanding
systems which must transcribe and summarize structured conversations like
meetings. Section 19.1 begins by introducing some issues that make con-
versation different from other kinds of discourse, introducing the important
ideas ofturn-taking , grounding, andimplicature . Section 19.2 introduces
the speech actor dialogue act, and Section 19.3 gives two different algo-
rithms for automatic speech act interpretation. Section 19.4 describes how
structure and coherence in dialogue differ from the discourse structure and
coherence we saw in Chapter 18. Finally, Section 19.5 shows how each of
these issues must be addressed in choosing an architecture for a dialogue
manager as part of a conversational agent.

19.1 WHAT MAKES DIALOGUE DIFFERENT?

Much about dialogue is similar to other kinds of discourse like the text mono-
logues of Chapter 18. Dialogues exhibit anaphora and discourse structure
and coherence, although with some slight changes from monologue. For ex-
ample when resolving an anaphor in dialogue it’s important to look at what
the other speaker said. In the following fragment from the air travel conver-
sation in Figure 19.1 (to be discussed below), realizing that the pronounthey
refers tonon-stop flightsin C’s utterance requires looking atA’s previous
utterance.

A4: Right. There’s three non-stops today.
C5: What are they?

Dialogue does differ from written monologue in deeper ways,however.
The next few subsections highlight some of these differences.
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Turns and Utterances

One difference between monologue and dialogue is that dialogue is char-
acterized byturn-taking . Speaker A says something, then speaker B, thenTURN­TAKING

speaker A, and so on. Figure 19.1 shows a sample dialogue broken up into
labeled turns; we’ve chosen this human-human dialogue because it concerns
travel planning, a domain that is the focus of much recent human-machine
dialogue research.

C1: . . . I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the

15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05their

time. The second flight departs PGH at 5:55pm, arrives Seattle at
8pm. And the last flight departs PGH at 8:15pm arrives Seattleat
10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm,US

Air flight 115.
C7: OK.

Figure 19.1 A fragment from a telephone conversation between a speech
recognition researcher client (C) and a travel agent (A).

How do speakers know when is the proper time to contribute their turn?
Consider the timing of the utterances in conversations likeFigure 19.1. First,
notice that this dialogue has no noticeable overlap. That is, the beginning of
each speakers turn follows the end of the previous speaker’sturn (overlap
would have been indicated by surrounding it with the # symbol). The actual
amount of overlapped speech in American English conversation seems to be
quite small; Levinson (1983) suggests the amount is less than 5% in gen-
eral, and probably less for certain kinds of dialogue like the task-oriented
dialogue in Figure 19.1. If speakers aren’t overlapping, perhaps they are
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waiting a while after the other speaker? This is also very rare. The amount
of time between turns is quite small, generally less than a few hundred mil-
liseconds.even in multi-party discourse. In fact, it may take more than this
few hundred milliseconds for the next speaker to plan the motor routines for
producing their utterance, which means that speakers beginmotor planning
for their next utterance before the previous speaker has finished. For this to
be possible, natural conversation must be set up in such a waythat (most
of the time) people can quickly figure outwho should talk next, and ex-
actly when they should talk. This kind of turn-taking behavior is generally
studied in the field ofConversation Analysis(CA). In a key conversation-CONVERSA­

TION
ANALYSIS

analytic paper, Sackset al. (1974) argued that turn-taking behavior, at least
in American English, is governed by a set of turn-taking rules. These rules
apply at atransition-relevance place, or TRP; places where the structure
of the language allows speaker shift to occur. Here is a simplified version of
the turn-taking rules, grouped into a single three-part rule; see Sackset al.
(1974) for the complete rules:

(19.1) Turn-taking Rule. At each TRP of each turn:

a. If during this turn the current speaker has selected A as the next
speaker then A must speak next.

b. If the current speaker does not select the next speaker, any other
speaker may take the next turn.

c. If no one else takes the next turn, the current speaker may take
the next turn.

There are a number of important implications of rule (19.1) for di-
alogue modeling. First, subrule (19.1a) implies that thereare some utter-
ances by which the speaker specifically selects who the next speaker will
be. The most obvious of these are questions, in which the speaker selects
another speaker to answer the question. Two-part structures like QUESTION-
ANSWER are calledadjacency pairs (Schegloff, 1968); other adjacencyADJACENCY

PAIRS

pairs includeGREETING followed by GREETING, COMPLIMENT followed
by DOWNPLAYER, REQUEST followed by GRANT. We will see that these
pairs and the dialogue expectations they set up will play an important role in
dialogue modeling.

Subrule (19.1a) also has an implication for the interpretation of silence.
While silence can occur after any turn, silence which follows the first part of
an adjacency pair-part issignificant silence. For example (Levinson, 1983)SIGNIFICANT

SILENCE

notes the following example from Atkinson and Drew (1979); pause lengths
are marked in parentheses (in seconds):
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(19.2) A: Is there something bothering you or not?
(1.0)

A: Yes or no?
(1.5)

A: Eh?
B: No.

Since A has just asked B a question, the silence is interpreted as a
refusal to respond, or perhaps adispreferred response (a response, like say-DISPRE­

FERRED

ing ‘no’ to a request, which is stigmatized). By contrast, silence in other
places, for example a lapse after a speaker finishes a turn, isnot generally
interpretable in this way. These facts are relevant for userinterface design
in spoken dialogue systems; users are distributed by the pauses in dialogue
systems caused by slow speech recognizers (Yankelovichet al., 1995).

Another implication of (19.1) is that transitions between speakers don’t
occur just anywhere; thetransition-relevance placeswhere they tend to oc-
cur are generally atutterance boundaries. This brings us to the next differ-UTTERANCE

ence between spoken dialogue and textual monologue (of course dialogue
can be written and monologue spoken; but most current applications of di-
alogue involve speech): the spokenutterance versus the writtensentence.
Recall from Chapter 9 that utterances differ from written sentences in a num-
ber of ways. They tend to be shorter, are more likely to be single clauses, the
subjects are usually pronouns rather than full lexical nounphrases, and they
include filled pauses, repairs, and restarts.

One very important difference not discussed in Chapter 9 is that while
written sentences and paragraphs are relatively easy to automatically seg-
ment from each other, utterances and turns are quite complexto segment.
Utterance boundary detection is important since many computational dia-
logue models are based on extracting an utterance as a primitive unit. The
segmentation problem is difficult because a single utterance may be spread
over several turns, or a single turn may include several utterances. For ex-
ample in the following fragment of a dialogue between a travel agent and a
client, the agent’s utterance stretches over three turns:

(19.3) A: Yeah yeah the um let me see here we’ve got you on American
flight nine thirty eight

C: Yep.
A: leaving on the twentieth of June out of Orange County John

Wayne Airport at seven thirty p.m.
C: Seven thirty.
A: and into uh San Francisco at eight fifty seven.
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By contrast, the example below has three utterances in one turn:

(19.4) A: Three two three and seven five one. OK and then does he
know there is a nonstop that goes from Dulles to San Fran-
cisco? Instead of connection through St. Louis.

Algorithms for utterance segmentation are based on many boundary
cuessuch as:� cue words:Cue (or ‘clue’) words likewell, and, so, etc., tend to occurCUE WORDS

at the beginnings and ends of utterances (Reichman, 1985; Hirschberg
and Litman, 1993).� N-gram word sequences:Specific word sequences often indicate bound-
aries. N-gram grammars can be trained on a training set labeled with
special utterance-boundary tags, and then HMM decoding techniques
can be used to find the most likely utterance boundaries in a unlabeled
test set (Mastet al., 1996; Meteer and Iyer, 1996; Stolcke and Shriberg,
1996a).� prosody: Prosodic features like pitch, accent, phrase-final lengthening
and pause duration play a role in utterance/turn segmentation, as dis-
cussed in Chapter 4, although the relationship between utterances and
prosodic units like theintonation unit (Du Boiset al., 1983) orinto-
national phrase (Beckman and Pierrehumbert, 1986)) is complicated

INTONA­
TIONAL
PHRASE

(Ladd, 1996; Ford and Thompson, 1996; Fordet al., 1996, inter alia)
indexFord, C..

The relationship between turns and utterances seems to be more one-
to-one in human-machine dialogue than the human-human dialogues dis-
cussed above. Probably this is because the simplicity of current systems
causes people to use simpler utterances and turns. Thus while computational
tasks likemeeting summarizationrequire solving quite difficult segmenta-
tion problems, segmentation may be easier for conversational agents.

Grounding

Another important characteristic of dialogue that distinguishes it from mono-
logue is that it is a collective act performed by the speaker and the hearer.
One implication of this collectiveness is that, unlike in monologue, the speaker
and hearer must constantly establishcommon ground(Stalnaker, 1978), theCOMMON

GROUND

set of things that are mutually believed by both speakers. The need to achieve
common ground means that the hearer mustground or acknowledgetheGROUND

ACKNOWL­
EDGE speaker’s utterances, or else make it clear that the there was a problem in
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reaching common ground. For example, consider the role of the wordmm-
hmmin the following fragment of a conversation between a travelagent and
a client:

A: . . . returning on US flight one one one eight.
C: Mm hmm

The wordmm-hmmhere is acontinuer, also often called abackchan- CONTINUER

nel or anacknowledgement token. A continuer is a short utterance whichBACKCHAN­
NEL

acknowledges the previous utterance in some way, often cueing the other
speaker to continue talking (Jefferson, 1984; Schegloff, 1982; Yngve, 1970).
By letting the speaker know that the utterance has ‘reached’the addressee,
a continuer/backchannel thus helps the speaker and hearer achieve common
ground. Continuers are just one of the ways that the hearer can indicate
that she believes she understands what the speaker meant. Clark and Schae-
fer (1989) discuss five main types of methods, ordered from weakest to
strongest:

1. Continued attention: B shows she is continuing to attend and there-
fore remains satisfied with A’s presentation.

2. Relevant next contribution: B starts in on the next relevant contribu-
tion.

3. Acknowledgement: B nods or says a continuer likeuh-huh, yeah, or
the like, or anassessmentlike that’s great.

4. Demonstration: B demonstrates all or part of what she has under-
stood A to mean, for example by paraphrasing orreformulating A’s
utterance, or bycollaboratively completing A’s utterance.

5. Display: B displays verbatim all or part of A’s presentation.

The following excerpt from our sample conversation shows a display
of understanding by A’s repetition ofon the 11th:

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th?

Such repeats or reformulations are often done in the form of questions
like A6; we return to this issue on page 735.

Not all of Clark and Shaefer’s methods are available for telephone-
based conversational agents. Without eye-gaze as an visualindicator of at-
tention, for example,continued attention isn’t an option. In fact Stifelman
et al. (1993) and (Yankelovichet al., 1995) point out that users of speech-
based interfaces are often confused when the system doesn’tgive them an
explicit acknowledgement signal after processing the user’s utterances.
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In addition to these acknowledgement acts, a hearer can indicate that
there were problems in understanding the previous utterance, for example by
issuing arequest for repair like the following Switchboard example:REQUEST

FOR REPAIR

A: Why is that?
B: Huh?
A: Why is that?

Conversational Implicature

The final important property of conversation is the way the interpretation of
an utterance relies on more than just the literal meaning of the sentences.
Consider the client’s response C2 from the sample conversation above, re-
peated here:

A1: And, what day in May did you want to travel?

C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

Notice that the client does not in fact answer the question. The client
merely states that he has a meeting at a certain time. The semantics for this
sentence produced by a semantic interpreter will simply mention this meet-
ing. What is it that licenses the agent to infer that the client is mentioning
this meeting so as to inform the agent of the travel dates?

Now consider another utterance from the sample conversation, this one
by the agent:

A4: . . . There’s three non-stops today.

Now this statement would still be true if there were seven non-stops
today, since if there are seven of something, there are by definition also three.
But what the agent means here is that there are threeand not more than
three non-stops today. How is the client to infer that the agent meansonly
three non-stops?

These two cases have something in common; in both cases the speaker
seems to expect the hearer to draw certain inferences; in other words, the
speaker is communicating more information than seems to be present in the
uttered words. These kind of examples were pointed out by Grice (1975,
1978) as part of his theory ofconversational implicature. ImplicatureIMPLICATURE

means a particular class of licensed inferences. Grice proposed that what en-
ables hearers to draw these inferences is that conversationis guided by a set
of maxims, general heuristics which play a guiding role in the interpretationMAXIMS

of conversational utterances. He proposed the following four maxims:
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1. Make your contribution as informative as is required (forthe cur-
rent purposes of the exchange).

2. Do not make your contribution more informative than is required.� Maxim of Quality: Try to make your contribution one that is true: QUALITY

1. Do not say what you believe to be false.
2. Do not say that for which you lack adequate evidence.� Maxim of Relevance:Be relevant. RELEVANCE� Maxim of Manner: Be perspicuous: MANNER

1. Avoid obscurity of expression.
2. Avoid ambiguity.
3. Be brief (avoid unnecessary prolixity).
4. Be orderly.

It is the Maxim of Quantity (specifically Quantity 1) that allows the
hearer to know thatthree non-stopsdidn’t meanseven non-stops. This is
because the hearer assumes the speaker is following the maxims, and thus
if the speaker meant seven non-stops she would have said seven non-stops
(‘as informative as is required’). The Maxim of Relevance iswhat allows the
agent to know that the client wants to travel by the 12th. The agent assumes
the client is following the maxims, and hence would only havementioned
the meeting if it was relevant at this point in the dialogue. The most natural
inference that would make the meeting relevant is the inference that the client
meant the agent to understand that his departure time was before the meeting
time.

These three properties of conversation (turn-taking , grounding, and
implicature ) will play an important role in the discussion of dialogue acts,
dialogue structure, and dialogue managers in the next sections.

19.2 DIALOGUE ACTS

An important insight about conversation, due to Austin (1962), is that an
utterance in a dialogue is a kind ofaction being performed by the speaker.
This is particularly clear inperformative sentences like the following: PERFORMA­

TIVE

(19.5) I name this ship theTitanic.

(19.6) I second that motion.
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(19.7) I bet you five dollars it will snow tomorrow.

When uttered by the proper authority, for example, (19.5) has the effect of
changing the state of the world (causing the ship to have the nameTitanic)
just as any action can change the state of the world. Verbs like nameor
secondwhich perform this kind of action are called performative verbs, and
Austin called these kinds of actionsspeech acts. What makes Austin’s workSPEECH ACTS

so far-reaching is that speech acts are not confined to this small class of
performative verbs. Austin’s claim is that the utterance ofany sentence in a
real speech situation constitutes three kinds of acts:� locutionary act: the utterance of a sentence with a particular meaning� illocutionary act: the act of asking, answering, promising, etc., in

uttering a sentence.� perlocutionary act: the (often intentional) production of certain ef-
fects upon the feelings, thoughts, or actions of the addressee in uttering
a sentence.

For example, Austin explains that the utterance of (19.8) might have the
illocutionary force of protesting and the perlocutionary effect of stoppingILLOCUTION­

ARY
FORCE

the addressee from doing something, or annoying the addressee.

(19.8) You can’t do that.

The termspeech actis generally used to describe illocutionary acts
rather than either of the other two levels. Searle (1975b), in modifying a
taxonomy of Austin’s, suggests that all speech acts can be classified into one
of 5 major classes:� Assertives:committing the speaker to something’s being the case (sug-

gesting, putting forward, swearing, boasting, concluding).� Directives: attempts by the speaker to get the addressee to do some-
thing (asking, ordering, requesting, inviting, advising, begging).� Commissives:committing the speaker to some future course of action
(promising, planning, vowing, betting, opposing).� Expressives:expressing the psychological state of the speaker about a
state of affairsthanking, apologizing, welcoming, deploring.� Declarations: bringing about a different state of the world via the ut-
terance (including many of the performative examples above; I resign,
You’re fired.)
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While speech acts provide a useful characterization of one kind of
pragmatic force, more recent work, especially in building dialogue systems,
has significantly expanded this core notion, modeling more kinds of con-
versational functions that an utterance can play. The resulting enriched acts
are calleddialogue acts(?) orconversational moves(Power, 1979; Carletta DIALOGUE

ACTS

MOVESet al., 1997). A recent ongoing effort to develop dialogue act tagging scheme
is the DAMSL (Dialogue Act Markup in Several Layers) architecture (Allen
and Core, 1997; Walkeret al., 1996; Carlettaet al., 1997; Coreet al., 1999),
which codes various levels of dialogue information about utterances. Two
of these levels, theforward looking function and thebackward looking
function, are extensions of speech acts which draw on notions of dialogue
structure like the adjacency pairs mentioned earlier as well as notions of
grounding and repair. For example, the forward looking function of an utter-
ance corresponds to something like the Searle/Austin speech act, although
the DAMSL tag set is hierarchical, and is focused somewhat onthe kind of
dialogue acts that tend to occur in task-oriented dialogue:

STATEMENT a claim made by the speaker
INFO-REQUEST a question by the speaker

CHECK a question for confirming information
(see below)

INFLUENCE-ON-ADDRESSEE (=Searle’s directives)
OPEN-OPTION a weak suggestion or listing of options
ACTION-DIRECTIVE an actual command

INFLUENCE-ON-SPEAKER (=Austin’s commissives)
OFFER speaker offers to do something,

(subject to confirmation)
COMMIT speaker is committed to doing something

CONVENTIONAL other
OPENING greetings
CLOSING farewells
THANKING thanking and responding to thanks

The backward looking function of DAMSL focuses on the relationship
of an utterance to previous utterances by the other speaker.These include
accepting and rejecting proposals (since DAMSL is focused on task-oriented
dialogue), as well as grounding and repair acts discussed above.
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AGREEMENT speaker’s response to previous proposal
ACCEPT accepting the proposal
ACCEPT-PART accepting some part of the proposal
MAYBE neither accepting nor rejecting the proposal
REJECT-PART rejecting some part of the proposal
REJECT rejecting the proposal
HOLD putting off response, usually via subdialogue

ANSWER answering a question
UNDERSTANDING whether speaker understood previous

SIGNAL-NON-UNDER. speaker didn’t understand (usually = NTRI)
SIGNAL-UNDER. speaker did understand

ACK demonstrated via continuer or assessment
REPEAT-REPHRASE demonstrated via repetition or reformulation
COMPLETION demonstrated via collaborative completion

Figure 19.2 shows a labeling of our sample conversation using versions
of the DAMSL Forward and Backward tags.

19.3 AUTOMATIC INTERPRETATION OFDIALOGUE ACTS

The previous section introduced dialogue acts and other activities that ut-
terances can perform. This section turns to the problem of identifying or
interpreting these acts. That is, how do we decide whether a given input is a
QUESTION, a STATEMENT, a SUGGEST (directive), or an ACKNOWL-
EDGEMENT?

At first glance, this problem looks simple. We saw in Chapter 9that
yes-no-questions in English haveaux-inversion, statements have declarative
syntax (no aux-inversion), and commands have imperative syntax (sentences
with no syntactic subject), as in (19.9):

(19.9) YES-NO-QUESTION Will breakfast be served on USAir 1557?
STATEMENT I don’t care about lunch
COMMAND Show me flights from Milwaukee to Or-

lando on Thursday night.

It seems from (19.9) that the surface syntax of the input ought to tell us what
illocutionary act it is. Alas, as is clear from Abbot and Costello’s famous
Who’s on Firstroutine at the beginning of the chapter, things are not so sim-
ple. The mapping between surface form and illocutionary actis not obvious
or even one-to-one.
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[assert] C1: . . . I need to travel in May.
[info-
req,ack]

A1: And, what day in May did you want to travel?

[assert,
answer]

C2: OK uh I need to be there for a meeting that’s from the
12th to the 15th.

[info-
req,ack]

A2: And you’re flying into what city?

[assert,answer]C3: Seattle.
[info-
req,ack]

A3: And what time would you like to leave Pittsburgh?

[check,hold] C4: Uh hmm I don’t think there’s many options for non-
stop.

[accept,ack] A4: Right.
[assert] There’s three non-stops today.
[info-req] C5: What are they?
[assert,
open-option]

A5: The first one departs PGH at 10:00am arrives Seattle
at 12:05 their time. The second flight departs PGH
at 5:55pm, arrives Seattle at 8pm. And the last flight
departs PGH at 8:15pm arrives Seattle at 10:28pm.

[accept,ack] C6: OK I’ll take the 5ish flight on the night before on the
11th.

[check,ack] A6: On the 11th?
[assert,ack] OK. Departing at 5:55pm arrives Seattle at 8pm, US

Air flight 115.
[ack] C7: OK.

Figure 19.2 A potential DAMSL labeling of the conversation fragment in
Figure 19.1.

For example, the following utterance spoken to an ATIS system looks
like a YES-NO-QUESTION meaning something likeAre you capable of
giving me a list of. . . ?:

(19.10) Can you give me a list of the flights from Atlanta to Boston?

In fact, however, this person was not interested in whether the system
wascapableof giving a list; this utterance was actually a polite form ofa
DIRECTIVE or a REQUEST, meaning something more likePlease give me
a list of. . .. Thus what looks on the surface like a QUESTION can really be
a REQUEST.

Similarly, what looks on the surface like a STATEMENT can really be
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a QUESTION. A very common kind of question, called a CHECK question
(Carlettaet al., 1997; Labov and Fanshel, 1977), is used to ask

the other participant to confirm something that this other participant
has privileged knowledge about. These CHECKs are questions, but they
have declarative surface form, as the boldfaced utterance in the following
snippet from another travel agent conversation:

A OPEN-OPTION I was wanting to make some arrangements for
a trip that I’m going to be taking uh to LA uh
beginning of the week after next.

B HOLD OK uh let me pull up your profile and I’ll be
right with you here. [pause]

B CHECK And you said you wanted to travel next week?
A ACCEPT Uh yes.

Utterances which use a surface statement to ask a question, or a surface
question to issue a request, are calledindirect speech acts.How can a surfaceINDIRECT

SPEECH ACTS

yes-no-question likeCan you give me a list of the flights from Atlanta to
Boston?be mapped into the correct illocutionary act REQUEST. Solutions
to this problem lie along a continuum of idiomaticity. At oneend of the
continuum is theidiom approach, which assumes that a sentence structure
like Can you give me a list?or Can you pass the salt?is ambiguous between
a literal meaning as a YES-NO-QUESTION and an idiomatic meaning as
a request. The grammar of English would simply list REQUEST as one
meaning ofCan you X. One problem with this approach is that there are
many ways to make an indirect request, each of which has slightly different
surface grammatical structure (see below). The grammar would have to store
the REQUEST meaning in many different places. Furthermore,the idiom
approach doesn’t make use of the fact that there are semanticgeneralizations
about what makes something a legitimate indirect request.

The alternative end of the continuum is theinferential approach, first
proposed by Gordon and Lakoff (1971) and taken up by Searle (1975a).
Their intuition was that a sentence likeCan you give me a list of flights from
Atlanta? is unambiguous, meaning onlyDo you have the ability to give me
a list of flights from Atlanta?. The directive speech actPlease give me a list
of flights from Atlantais inferred by the hearer.INFERRED

The next two sections will introduce two models of dialogue act in-
terpretation: an inferential model called theplan inference model, and an
idiom-based model called thecuemodel.
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Plan-Inferential Interpretation of Dialogue Acts

The plan-inference approach to dialogue act interpretation was first proposed
by Gordon and Lakoff (1971) and Searle (1975a) when they noticed that
there was a structure to what kind of things a speaker could doto make an
indirect request. In particular, they noticed that a speaker could mention or
question various quite specific properties of the desired activity to make an
indirect request; here is a partial list with examples from the ATIS corpus:

1. The speaker can question the hearer’s ability to perform the activity� Can you give me a list of the flights from Atlanta to Boston?� Could you tell me if Delta has a hub in Boston?� Would you be able to, uh, put me on a flight with Delta?

2. The speaker can mention speaker’s wish or desire about theactivity� I want to fly from Boston to San Francisco.� I would like to stop somewhere else in between.� I’m looking for one way flights from Tampa to Saint Louis.� I need that for Tuesday.� I wonder if there are any flights from Boston to Dallas.

3. The speaker can mention the hearer’s doing the action� Would you please repeat that information?� Will you tell me the departure time and arrival time on this Amer-
ican flight?

4. The speaker can question the speaker’s having permissionto receive
results of the action� May I get a lunch on flight U A two one instead of breakfast?� Could I have a listing of flights leaving Boston?

Based on this realization, Searle (1975a, p. 73) proposed that the hearer’s
chain of reasoning upon hearingCan you give me a list of the flights from
Atlanta to Boston?might be something like the following (modified for our
ATIS example):

1. X has asked me a question about whether I have the ability togive a
list of flights.

2. I assume that X is being cooperative in the conversation (in the Gricean
sense) and that his utterance therefore has some aim.

3. X knows I have the ability to give such a list, and there is noalternative
reason why X should have a purely theoretical interest in my list-giving
ability.
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4. Therefore X’s utterance probably has some ulterior illocutionary point.
What can it be?

5. A preparatory condition for a directive is that the hearerhave the ability
to perform the directed action.

6. Therefore X has asked me a question about my preparedness for the
action of giving X a list of flights.

7. Furthermore, X and I are in a conversational situation in which giving
lists of flights is a common and expected activity.

8. Therefore, in the absence of any other plausible illocutionary act, X is
probably requesting me to give him a list of flights.

The inferential approach has a number of advantages. First,it explains
why Can you give me a list of flights from Boston?is a reasonable way of
making an indirect request andBoston is in New Englandis not: the former
mentions a precondition for the desired activity, and thereis a reasonable in-
ferential chain from the precondition to the activity itself. The inferential ap-
proach has been modeled by Allen, Cohen, and Perrault and their colleagues
in a number of influential papers on what have been calledBDI (belief, de-BDI

sire, and intention) models (Allen, 1995). The earliest papers, such as Cohen
and Perrault (1979), offered an AI planning model for how speech acts are
generated. One agent, seeking to find out some information, could use stan-
dard planning techniques to come up with the plan of asking the hearer to
tell the speaker the information. Perrault and Allen (1980)and Allen and
Perrault (1980) also applied this BDI approach tocomprehension, specifi-
cally the comprehension of indirect speech effects, essentially cashing out
Searle’s (1975) promissory note in a computational formalism.

We’ll begin by summarizing Perrault and Allen’s formal definitions of
belief and desire in the predicate calculus. We’ll represent “S believes the
propositionP” as the two-place predicateB(S;P). Reasoning about belief is
done with a number of axiom schemas inspired by Hintikka (1969b) (such as
B(A;P)^B(A;Q)) B(A;P^Q); see Perrault and Allen (1980) for details).
Knowledge is defined as ‘true belief’;S knows that Pwill be represented as
KNOW(S;P), defined as follows:

KNOW(S;P)� P^B(S;P)
In addition toknowing that, we need to defineknowing whether. S

knows whether(KNOWIF) a propositionP is true if SKNOWs thatP or S
KNOWs that:P:
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KNOWIF(S;P)� KNOW(S;P)_KNOW(S;:P)
The theory of desire relies on the predicate WANT. If an agentSwants

P to be true, we sayWANT(S;P), or W(S;P) for short. P can be a state
or the execution of some action. Thus if ACT is the name of an action,
W(S;ACT(H)) means thatSwantsH to do ACT. The logic of WANT relies
on its own set of axiom schemas just like the logic of belief.

The BDI models also require an axiomatization of actions andplan-
ning; the simplest of these is based on a set ofaction schemas similar to the ACTION

SCHEMA

AI planning model STRIPS (Fikes and Nilsson, 1971). Each action schema
has a set of parameters with constraints about the type of each variable, and
three parts:� Preconditions:Conditions that must already be true in order to suc-

cessfully perform the action.� Effects: Conditions that become true as a result of successfully per-
forming the action.� Body: A set of partially ordered goal states that must be achieved in
performing the action.

In the travel domain, for example, the action of agentA booking flightF1
for clientC might have the following simplified definition:

BOOK-FLIGHT(A,C,F) :
Constraints: Agent(A)̂ Flight(F)^ Client(C)
Precondition: Know(A,departure-date(F)) ^ Know(A,departure-

time(F)) ^ Know(A,origin-city(F)) ^
Know(A,destination-city(F))̂ Know(A,flight-type(F))^
Has-Seats(F)̂ W(C,(BOOK(A,C,F)))^ . . .

Effect: Flight-Booked(A,C,F)
Body: Make-Reservation(A,F,C)

Cohen and Perrault (1979) and Perrault and Allen (1980) use this kind
of action specification for speech acts. For example here is Perrault and
Allen’s definition for three speech acts relevant to indirect requests. IN-
FORM is the speech act of informing the hearer of some proposition (Austin/Searle’s
Assertive, or DAMSL’s STATEMENT). The definition of INFORM is based
on Grice’s (1957) idea that a speaker informs the hearer of something merely
by causing the hearer to believe that the speaker wants them to know some-
thing:
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INFORM(S,H,P):
Constraints: Speaker(S)̂Hearer(H)̂ Proposition(P)
Precondition: Know(S,P)̂ W(S, INFORM(S, H, P))
Effect: Know(H,P)
Body: B(H,W(S,Know(H,P)))

INFORMIF is the act used to inform the hearer whether a proposition
is true or not; like INFORM, the speaker INFORMIFs the hearerby causing
the hearer to believe the speaker wants them to KNOWIF something:

INFORMIF(S,H,P):
Constraints: Speaker(S)̂Hearer(H)̂ Proposition(P)
Precondition: KnowIf(S, P)̂ W(S, INFORMIF(S, H, P))
Effect: KnowIf(H, P)
Body: B(H, W(S, KnowIf(H, P)))

REQUEST is the directive speech act for requesting the hearer to per-
form some action:

REQUEST(S,H,ACT):
Constraints: Speaker(S)̂Hearer(H)̂ ACT(A) ^ H is agent of ACT
Precondition: W(S,ACT(H))
Effect: W(H,ACT(H))
Body: B(H,W(S,ACT(H)))

Perrault and Allen’s theory also requires what are called ‘surface-level
acts’. These correspond to the ‘literal meanings’ of the imperative, interroga-
tive, and declarative structures. For example the ’surface-level’ act S.REQUEST
produces imperative utterances:

S.REQUEST (S, H, ACT):
effect: B(H, W(S,ACT(H)))

The effects of S.REQUEST match the body of a regular REQUEST,
since this is the default or standard way of doing a request (but not the only
way). This ‘default’ or ‘literal’ meaning is the start of thehearer’s inference
chain. The hearer will be given an input which indicates thatthe speaker is
requesting the hearer to inform the speaker whether the hearer is capable of
giving the speaker a list:

S.REQUEST(S,H,InformIf(H,S,CanDo(H,Give(H,S,LIST))))

The hearer must figure out that the speaker is actually makinga re-
quest:

REQUEST(H,S,Give(H,S,LIST))
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The inference chain from the request-to-inform-if-cando to the request-
to-give is based on a chain ofplausible inference, based on heuristics called
plan inference(PI) rules. We will use the following subset of the rules thatPLAN

INFERENCE

Perrault and Allen (1980) propose:� (PI.AE) Action-Effect Rule: For all agents S and H, if Y is an effect
of action X and if H believes that S wants X to be done, then it is
plausible that H believes that S wants Y to obtain.� (PI.PA) Precondition-Action Rule: For all agents S and H, if X is a
precondition of action Y and if H believes S wants X to obtain,then it
is plausible that H believes that S wants Y to be done.� (PI.BA) Body-Action Rule: For all agents S and H, if X is part of the
body of Y and if H believes that S wants X done, then it is plausible
that H believes that S wants Y done.� (PI.KP) Know-Desire Rule: For all agents S and H, if H believes S
wants to KNOWIF(P), then H believes S wants P to be true:

B(H;W(S;KNOWIF(S;P))) plausible=) B(H;W(S;P))� (EI.1) Extended Inference Rule:if B(H;W(S;X)) plausible=) B(H;W(S;Y))
is a PI rule, then

B(H;W(S;B(H;(W(S;X))))) plausible=) B(H;W(S;B(H;W(S;Y))))
is a PI rule. (i.e. you can prefixB(H;W(S)) to any plan inference rule).

Let’s see how to use these rules to interpret the indirect speech act in
Can you give me a list of flights from Atlanta?. Step (0) in the table below
shows the speaker’s initial speech act, which the hearer initially interprets
literally as a question. Step (1) then uses Plan Inference rule Action-Effect,
which suggests that if the speaker asked for something (in this case infor-
mation), they probably want it. Step (2) again uses theAction-Effectrule,
here suggesting that if the Speaker want an INFORMIF, and KNOWIF is an
effect of INFORMIF, then the speaker probably also wants KNOWIF.

Rule Step Result
(0) S.REQUEST(S,H,InformIf(H,S,CanDo(H,Give(H,S,LIST))))

PI.AE (1) B(H,W(S,InformIf(H,S,CanDo(H,Give(H,S,LIST)))))
PI.AE/EI (2) B(H,W(S,KnowIf(H,S,CanDo(H,Give(H,S,LIST)))))
PI.KP/EI (3) B(H,W(S,CanDo(H,Give(H,S,LIST))))
PI.PA/EI (4) B(H,W(S,Give(H,S,LIST)))
PI.BA (5) REQUEST(H,S,Give(H,S,LIST))
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Step (3) adds the crucial inference that people don’t usually ask about
things they aren’t interested in; thus if the speaker asks whether something is
true (in this case CanDo), the speaker probably wants it (CanDo) to be true.
Step (4) makes use of the fact that CanDo(ACT) is a precondition for (ACT),
making the inference that if the speaker wants a precondition (CanDo) for
an action (Give), the speaker probably also wants the action(Give). Finally,
step (5) relies on the definition of REQUEST to suggest that ifthe speaker
wants someone to know that the speaker wants them to do something, then
the speaker is probably REQUESTing them to do it.

In giving this summary of the plan-inference approach to indirect speech
act comprehension, we have left out many details, includingmany necessary
axioms, as well as mechanisms for deciding which inference rule to apply.
The interested reader should consult Perrault and Allen (1980) and the other
literature suggested at the end of the chapter.

Cue-based interpretation of Dialogue Acts

The plan-inference approach to dialogue act comprehensionis extremely
powerful; by using rich knowledge structures and powerful planning tech-
niques the algorithm is designed to address even subtle indirect uses of dia-
logue acts. The disadvantage of the plan-inference approach is that it is very
time-consuming both in terms of human labor in development of the plan-
inference heuristics, and in terms of system time in runningthese heuristics.
In fact, by allowing all possible kinds of non-linguistic reasoning to play a
part in discourse processing, a complete application of this approach isAI-
complete. An AI-complete problem is one which cannot be truly solvedAI­COMPLETE

without solving the entire problem of creating a complete artificial intelli-
gence.

Thus for many applications, a less sophisticated but more efficient
data-driven method may suffice. One such method is a variant of the id-
iom method discussed above. Recall that in the idiom approach, sentences
like Can you give me a list of flights from Atlanta?have two literal mean-
ings; one as a question and one as a request. This can be implemented in the
grammar by listing sentence structures likeCan you Xwith two meanings.
Thecue-basedapproach to dialogue act comprehension we develop in this
section is based on this idiom intuition.

A number of researchers have used what might be called a cue-based
approach to dialogue act interpretation, although not under that name. What
characterizes a cue-based model is the use of different sources of knowledge
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(cues) for detecting a dialogue act, such as lexical, collocational, syntac-
tic, prosodic, or conversational-structure cues. The models we will describe
use (supervised) machine-learning algorithms, trained ona corpus of dia-
logues that is hand-labeled with dialogue acts for each utterance. Which
cues are used depends on the individual system. Many systemsrely on the
fact that individual dialogue acts often have what Goodwin (1996) called a
microgrammar ; specific lexical, collocation, and prosodic features which MICROGRAM­

MAR

are characteristic of them. These systems also rely on conversational struc-
ture. The dialogue-act interpretation system of Jurafskyet al. (1997), for
example, relies on 3 sources of information:

1. Words and Collocations: Pleaseor would youis a good cue for a
REQUEST,are youfor YES-NO-QUESTIONs.

2. Prosody: Rising pitch is a good cue for a YES-NO-QUESTION. Loud-
ness or stress can help distinguish theyeahthat is an AGREEMENT
from theyeahthat is a BACKCHANNEL

3. Conversational Structure: A yeahwhich follows a proposal is prob-
ably an AGREEMENT; ayeahwhich follows an INFORM is probably
a BACKCHANNEL.

The previous section focused on how the plan-based approachfigured
out that a surface question had the illocutionary force of a REQUEST. In this
section we’ll look at a different kind of indirect request; the CHECK, exam-
ining the specific cues that the Jurafskyet al. (1997) system uses to solve
this dialogue act identification problem. Recall that a CHECK is a subtype
of question which requests the interlocutor to confirm some information; the
information may have been mentioned explicitly in the preceding dialogue
(as in the example below), or it may have been inferred from what the inter-
locutor said:

A OPEN-OPTION I was wanting to make some arrangements for
a trip that I’m going to be taking uh to LA uh
beginning of the week after next.

B HOLD OK uh let me pull up your profile and I’ll be
right with you here. [pause]

B CHECK And you said you wanted to travel next week?
A ACCEPT Uh yes.

Examples of possible realizations of CHECKs in English include:

1. As tag questions:
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(19.11) From the Trains corpus (Allen and Core, 1997)

U and it’s gonna take us also an hour to load boxcars right?
S right

2. As declarative questions, usually with rising intonation (Quirk et al.,
1985b, p. 814)

(19.12) From the Switchboard corpus (Godfreyet al., 1992)

A and we have a powerful computer down at work.
B Oh (laughter)
B so, you don’t need a personal one (laughter)?
A No

3. As fragment questions (subsentential units; words, noun-phrases, clauses)
(Weber, 1993)

(19.13) From the Map Task corpus (Carlettaet al., 1997)

G Ehm, curve round slightly to your right.
F To my right?
G Yes.

Studies of checks have shown that, like the examples above, they are
most often realized with declarative structure (i.e. no aux-inversion), they are
most likely to have rising intonation (Shriberget al., 1998), and they often
have a followingquestion tag, oftenright, (Quirk et al., 1985b, 810-814), as
in (19.11) above. They also are often realized as ‘fragments’ (subsentential
words or phrases) with rising intonation (Weber, 1993). In Switchboard, the
REFORMULATION subtype of CHECKs have a very specific microgram-
mar, with declarative word order, oftenyou as subject (31% of the cases),
often beginning withso(20%) oroh, and sometimes ending withthen. Some
examples:

Oh so you’re from the Midwest too.
So you can steady it.
You really rough it then.

Many scholars, beginning with Nagata and Morimoto (1994), realized
that much of the structure of these microgrammars could be simply captured
by training a separate word-N-gram grammar for each dialogue act (see e.g.
Suhm and Waibel, 1994; Mastet al., 1996; Jurafskyet al., 1997; Warnke
et al., 1997; Reithinger and Klesen, 1997; Tayloret al., 1998). These sys-
tems create a separate mini-corpus from all the utterances which realize the
same dialogue act, and then train a separate word-N-gram language model
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on each of these mini-corpora. Given an input utteranceu consisting of a
sequence of wordsW, they then choose the dialogue actd whoseN-gram
grammar assigns the highest likelihood toW:

d� = argmax
d

P(djW) = argmax
d

P(d)P(Wjd) (19.14)

This simpleN-gram approach does indeed capture much of the micro-
grammar; for example examination of the high-frequency bigram pairs in
SwitchboardREFORMULATIONS shows that the most common bigrams in-
clude good cues forREFORMULATIONS like so you, sounds like, so you’re,
oh so, you mean, so they, andso it’s.

Prosodic models of dialogue act microgrammar rely on phonological
features like pitch or accent, or their acoustic correlateslike F0, duration, and
energy discussed in Chapter 4 and Chapter 7. For example manystudies have
shown that capturing the rise in pitch at the end of YES-NO-QUESTIONS
can be a useful cue for augmenting lexical cues (Sag and Liberman, 1975;
Pierrehumbert, 1980; Waibel, 1988; Daly and Zue, 1992; Kompe et al.,
1993; Tayloret al., 1998). Pierrehumbert (1980) also showed that declar-
ative utterances (like STATEMENTS) havefinal lowering: a drop in F0 at FINAL

LOWERING

the end of the utterance. One system which relied on these results, Shriberg
et al.(1998), trained CART-style decision trees on simple acoustically-based
prosodic features such as the slope of F0 at the end of the utterance, the av-
erage energy at different places in the utterance, and various duration mea-
sures. They found that these features were useful, for example, in distin-
guishing the four dialogue actsSTATEMENT (S), YES-NO QUESTION (QY),
DECLARATIVE-QUESTIONSlike CHECKS(QD) andWH-QUESTIONS(QW).
Figure 19.3 shows the decision tree which gives the posterior probability
P(dj f ) of a dialogue actd type given sequence of acoustic featuresF. Each
node in the tree shows four probabilities, one for each of thefour dialogue
acts in the order S, QY, QW, QD; the most likely of the four is shown as the
label for the node. Via the Bayes rule, this probability can be used to com-
pute the likelihood of the acoustic features given the dialogue act:P( f jd).

A final important cue for dialogue act interpretation is conversational
structure. One simple way to model conversational structure, drawing on
the idea of adjacency pairs (Schegloff, 1968; Sackset al., 1974) introduced
above, is as a probabilistic sequence of dialogue acts. The identity of the
previous dialogue acts can then be used to help predict upcoming dialogue
acts. Many studies have modeled dialogue act sequences as dialogue-act-N-
grams (Nagata and Morimoto, 1994; Suhm and Waibel, 1994; Warnkeet al.,
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S QY QW QD 
  0.25 0.25 0.25 0.25

QW 
 0.2561 0.1642 0.2732 0.3065

cont_speech_frames < 196.5

S 
 0.2357 0.4508 0.1957 0.1178

cont_speech_frames >= 196.5

QW 
 0.2327 0.2018 0.1919 0.3735

end_grad < 32.345

QY 
 0.2978 0.09721 0.4181 0.1869

end_grad >= 32.345

S 
 0.276 0.2811 0.1747 0.2683

f0_mean_zcv < 0.76806

QW 
 0.1859 0.116 0.2106 0.4875

f0_mean_zcv >= 0.76806

QW 
 0.2935 0.1768 0.2017 0.328

cont_speech_frames_n < 98.388

S 
 0.2438 0.4729 0.125 0.1583

cont_speech_frames_n >= 98.388

QW 
 0.2044 0.1135 0.1362 0.5459

utt_grad < -36.113

QD 
 0.3316 0.2038 0.2297 0.2349

utt_grad >= -36.113

QW 
 0.3069 0.08995 0.1799 0.4233

stdev_enr_utt < 0.02903

S 
 0.2283 0.5668 0.1115 0.09339

stdev_enr_utt >= 0.02903

S 
 0.2581 0.2984 0.2796 0.164

cont_speech_frames_n < 98.334

S 
 0.2191 0.5637 0.1335 0.08367

cont_speech_frames_n >= 98.334

S 
 0.3089 0.3387 0.1419 0.2105

norm_f0_diff < 0.064562

QY 
 0.1857 0.241 0.4756 0.09772

norm_f0_diff >= 0.064562

S 
 0.3253 0.4315 0.1062 0.137

f0_mean_zcv < 0.76197

QW 
 0.2759 0.1517 0.2138 0.3586

f0_mean_zcv >= 0.76197

Figure 19.3 Decision tree for the classification of STATEMENT (S), YES-NO QUES-
TIONS (QY), WH-QUESTIONS (QW) and DECLARATIVE QUESTIONS (QD), after
Shriberget al.(1998). Note that the difference between S and QY toward the right of the tree
is based on the featurenorm f0 diff (normalized difference between mean F0 of end and
penultimate regions), while the difference between WQ and QD at the bottom left is based
onutt grad , which measures F0 slope across the whole utterance.

1997; Chu-Carroll, 1998; Stolckeet al., 1998; Tayloret al., 1998)¡ often as
part of an HMM system for dialogue acts (Reithingeret al., 1996; Kitaet al.,
1996; Woszczyna and Waibel, 1994). For example Woszczyna and Waibel
(1994) give the dialogue HMM shown in Figure 19.4 for a Verbmobil-like
appointment scheduling task.

How does the dialogue act interpreter combine these different cues to
find the most likely correct sequence of correct dialogue acts given a con-
versation? Stolckeet al. (1998) and Tayloret al. (1998) apply the HMM
intuition of Woszczyna and Waibel (1994) to treat the dialogue act detection
process as HMM-parsing. Given all available evidenceE about a conversa-
tion, the goal is to find the dialogue act sequenceD = fd1;d2 : : : ;dNg that
has the highest posterior probabilityP(DjE) given that evidence (here we
are using capital letters to meansequencesof things). Applying Bayes’ Rule
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opening

suggest

accept

constraint

reject

closing

.23.76

.18

.46

.77

.22

.19

.63

.99

.18

.36

Figure 19.4 A dialogue act HMM (after Woszczyna and Waibel (1994))

we get

D� = argmax
D

P(DjE)= argmax
D

P(D)P(EjD)
P(E)= argmax

D
P(D)P(EjD) (19.15)

HereP(D) represents the prior probability of a sequence of dialogue actsD.
This probability can be computed by the dialogue actN-grams introduced
by Nagata and Morimoto (1994). The likelihoodP(EjD) can be computed
from the other two sources of evidence: the microsyntax models (for ex-
ample the different word-N-gram grammars for each dialogue act) and the
microprosody models (for example the decision tree for the prosodic fea-
tures of each dialogue act). The word-N-grams models for each dialogue act
can be used to estimateP(WjD), the probability of the sequence of wordsW.
The microprosody models can be used to estimateP(FjD), the probability
of the sequence of prosodic featuresF.

If we make the simplifying (but of course incorrect) assumption that
the prosody and the words are independent, we can estimate the evidence
likelihood for a sequence of dialogue actsD as follows:

P(EjD) = P(FjD)P(WjD) (19.16)

We can compute the most likely sequence of dialogue actsD� by sub-
stituting equation (19.16) into equation (19.15), thus choosing the dialogue
act sequence which maximizes the product of the three knowledge sources
(conversational structure, prosody, and lexical/syntactic knowledge):
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D� = argmax
D

P(D)P(FjD)P(WjD)
Standard HMM-parsing techniques (like Viterbi) can then beused to

search for this most-probable sequence of dialogue acts given the sequence
of input utterances.

The HMM method is only one way of solving the problem of data-
driven dialogue act identification. The link with HMM tagging suggests
another approach, treating dialogue acts astags, and applying other part-
of-speech tagging methods. Samuelet al. (1998b), for example, applied
Transformation-Based Learning to dialogue act tagging.

Summary

As we have been suggesting, the two ways of doing dialogue actinterpre-
tation (via inference and via cues) each have advantages anddisadvantages.
The cue-based approach may be more appropriate for systems which require
relatively shallow dialogue structure which can be trainedon large corpora.
If a semantic interpretation is required, the cue-based approach will still need
to be augmented with a semantic interpretation. The full inferential approach
may be more appropriate when more complex reasoning is required.

19.4 DIALOGUE STRUCTURE AND COHERENCE

Section 18.2 described an approach to determining coherence based on a set
of coherence relations. In order to determine that a coherence relation holds,
the system must reason about the constraints that the relation imposes on
the information in the utterances. We will call this view theinformational
approach to coherence. Historically, the informational approach has been
applied predominantly to monologues.

The BDI approach to utterance interpretation gives rise to another view
of coherence, which we will call theintentional approach. According to
this approach, utterances are understood as actions, requiring that the hearer
infer the plan-based speaker intentions underlying them inestablishing co-
herence. In contrast to the informational approach, intentional approach has
been applied predominantly to dialogue.

The intentional approach we describe here is due to Grosz andSidner
(1986), who argue that a discourse can be represented as a composite of three
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interacting components: alinguistic structure , an intentional structure , LINGUISTIC
STRUCTURE

INTENTIONAL
STRUCTUREand anattentional state. The linguistic structure contains the utterances in
ATTENTIONAL
STATEthe discourse, divided into a hierarchical structure of discourse segments.

(Recall the description of discourse segments in Chapter 18.) The atten-
tional state is a dynamically-changing model of the objects, properties, and
relations that are salient at each point in the discourse. This aligns closely
with the notion of a discourse model introduced in the previous chapter. Cen-
tering (see Chapter 18) is considered to be a theory of attentional state in this
approach.

We will concentrate here on the third component of the approach, the
intentional structure, which is based on the BDI model of interpretation de-
scribed in the previous section. The fundamental idea is that a discourse
has associated with it an underlying purpose that is held by the person who
initiates it, called thediscourse purpose(DP). Likewise, each discourse seg-DISCOURSE

PURPOSE

ment within the discourse has a corresponding purpose, called adiscourse
segment purpose(DSP). Each DSP has a role in achieving the DP of the dis-DISCOURSE

SEGMENT
PURPOSE

course in which its corresponding discourse segment appears. Listed below
are some possible DPs/DSPs that Grosz and Sidner give.

1. Intend that some agent intend to perform some physical task.

2. Intend that some agent believe some fact.

3. Intend that some agent believe that one fact supports another.

4. Intend that some agent intend to identify an object (existing physical
object, imaginary object, plan, event, event sequence).

5. Intend that some agent know some property of an object.

As opposed to the larger sets of coherence relations used in informa-
tional accounts of coherence, Grosz and Sidner propose onlytwo such re-
lations:dominanceandsatisfaction-precedence. DSP1 dominates DSP2 if
satisfying DSP2 is intended to provide part of the satisfaction of DSP1. DSP1

satisfaction-precedes DSP2 if DSP1 must be satisfied before DSP2.
As an example, let’s consider the dialogue between a client (C) and a

travel agent (A) that we saw earlier, repeated here in Figure19.5.
Collaboratively, the caller and agent successfully identify a flight that

suits the caller’s needs. Achieving this joint goal required that a top-level
discourse intention be satisfied, listed as I1 below, in addition to several in-
termediate intentions that contributed to the satisfaction of I1, listed as I2-I5.

I1: (Intend C (Intend A (A find a flight for C)))

I2: (Intend A (Intend C (Tell C A departure date)))
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C1: I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the

15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05their

time. The second flight departs PGH at 5:55pm, arrives Seattle at
8pm. And the last flight departs PGH at 8:15pm arrives Seattleat
10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm,US

Air flight 115.
C7: OK.

Figure 19.5 A fragment from a telephone conversation between a client (C)
and a travel agent (A) (repeated from Figure 19.1).

I3: (Intend A (Intend C (Tell C A destination city)))

I4: (Intend A (Intend C (Tell C A departure time)))

I5: (Intend C (Intend A (A find a nonstop flight for C)))

Intentions I2–I5 are all subordinate to intention I1, as they were all adopted
to meet preconditions for achieving intention I1. This is reflected in the
dominance relationships below.

I1 dominates I2

I1 dominates I3

I1 dominates I4

I1 dominates I5

Furthermore, intentions I2 and I3 needed to be satisfied before intention I5,
since the agent needed to know the departure date and destination city in
order to start listing nonstop flights. This is reflected in the satisfaction-
precedence relationships below.

I2 satisfaction-precedes I5
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I3 satisfaction-precedes I5

The dominance relations give rise to the discourse structure depicted
in Figure 19.6. Each discourse segment is numbered in correspondence with
the intention number that serves as its DP/DSP.

DS1

C1 DS2 DS3 DS4 DS5

A1–C2 A2–C3 A3 C4–C7

Figure 19.6 Discourse Structure of the Flight Reservation Dialogue

On what basis does this set of intentions and relationships between
them give rise to a coherent discourse? It is their role in theoverall plan
that the caller is inferred to have. There are a variety of ways that plans can
be represented; here we will use the simple STRIPS model described in the
previous section. We make use of two simple action schemas; the first is the
one for booking a flight, repeated from page 731.

BOOK-FLIGHT(A,C,F) :
Constraints: Agent(A)̂ Flight(F)^ Client(C)
Precondition: Know(A,departure-date(F)) ^ Know(A,departure-

time(F)) ^ Know(A,origin-city(F)) ^
Know(A,destination-city(F))̂ Know(A,flight-type(F))^
Has-Seats(F)̂ W(C,(BOOK(A,C,F)))^ . . .

Effect: Flight-Booked(A,C,F)
Body: Make-Reservation(A,F,C)

As can be seen, booking a flight requires that the agent know a variety
of parameters having to do with the flight, including the departure date and
time, origin and destination cities, and so forth. The utterance with which
the caller initiates the example dialogue contains the origin city and partial
information about the departure date. The agent has to request the rest; the
second action schema we use represents a simplified view of this action (see
Cohen and Perrault (1979) for a more in-depth discussion of planning wh-
questions):
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REQUEST-INFO(A,C,I) :
Constraints: Agent(A)̂ Client(C)
Precondition: Know(C,I)
Effect: Know(A,I)
Body: B(C,W(A,Know(A,I)))

Because the effects of REQUEST-INFO match each precondition of
BOOK-FLIGHT, the former can be used to serve the needs of the latter. Dis-
course segments DS2 and DS3 are cases in which performing REQUEST-
INFO succeeds for identifying the values of the departure date and desti-
nation city parameters respectively. Segment DS4 is also a request for a
parameter value (departure time), but is unsuccessful in that the caller takes
the initiative instead, by (implicitly) asking about nonstop flights. Segment
DS5 leads to the satisfaction of the top-level DP from the caller’s selection
of a nonstop flight from a short list that the agent produced.

Subsidiary discourse segments like DS2 and DS3 are also calledsub-
dialogues. The type of subdialogues that DS2 and DS3 instantiate are gener-SUBDIA­

LOGUES

ally calledknowledge preconditionsubdialogues (Lochbaumet al., 1990;
Lochbaum, 1998), since they are initiated by the agent to help satisfy pre-
conditions of a higher-level goal (in this case addressing the client’s request
for travel in May). They are also calledinformation-sharing subdialogues

INFORMATION­
SHARING
SUBDIA­
LOGUES (Chu-Carroll and Carberry, 1998).

Later on in a part of the conversation not given in Figure 19.5is another
kind of subdialogue, acorrection subdialogue(Litman, 1985; Litman andCORRECTION

SUBDIA­
LOGUE

Allen, 1987). Utterances C20 through C23a constitute a correction to the
previous plan of returning on May 15:

A17: And you said returning on May 15th?

C18: Uh, yeah, at the end of the day.

A19: OK. There’s #two non-stops . . . #

C20: #Act. . . actually#, what day of the week is the 15th?

A21: It’s a Friday.

C22: Uh hmm. I would consider staying there an extra day til Sunday.

A23a: OK... OK.

A23b: On Sunday I have . . .

Other kinds of subdialogues that have been addressed in the literature
include subtask subdialogues (Grosz, 1974), which are used to deal withSUBTASK

subtasks of the overall task in a task-oriented dialogue, and correction sub-
dialogues(or negotiation subdialogues) which are used to deal with con-CORRECTION

SUBDIA­
LOGUESNEGOTIATION
SUBDIA­
LOGUES
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flicts or collaborative negotiation between the participants (Chu-Carroll and
Carberry, 1998).

Determining Intentional Structure Algorithms for inferring intentional
structure in dialogue (and spoken monologue) work similarly to algorithms
for inferring dialogue acts. Many algorithms apply variants of the BDI
model (e.g. Litman, 1985; Grosz and Sidner, 1986; Litman andAllen, 1987;
Carberry, 1990; Passonneau and Litman, 1993; Chu-Carroll and Carberry,
1998). Others rely on similar cues to those described for utterance- and
turn-segmentation on page 720, including cue words and phrases (Reich-
man, 1985; Grosz and Sidner, 1986; Hirschberg and Litman, 1993), prosody
(Grosz and Hirschberg, 1992; Hirschberg and Pierrehumbert, 1986; Hirschberg
and Nakatani, 1996), and other cues. For example Pierrehumbert and Hirschberg
(1990) argue that certainboundary tonesmight be used to suggest a domi-BOUNDARY

TONES

nance relation between two intonational phrases.

Informational versus Intentional Coherence As we just saw, the key to
intentional coherence lies in the ability of the dialogue participants to rec-
ognize each other’s intentions and how they fit into the plansthey have. On
the other hand, as we saw in the previous chapter, informational coherence
lies in the ability to establish certain kinds of content-bearing relationships
between utterances. So one might ask what the relationship between these
are: does one obviate the need for the other, or do we need both?

Moore and Pollack (1992), among others, have argued that in fact both
levels of analysis must co-exist. Let us assume that after our agent and caller
have identified a flight, the agent makes the statement in passage (19.17).

(19.17) You’ll want to book your reservations before the endof the day.
Proposition 143 goes into effect tomorrow.

This passage can be analyzed either from the intentional or informational
perspective. Intentionally, the agent intends to convincethe caller to book
her reservation before the end of the day. One way to accomplish this is to
provide motivation for this action, which is the role servedby uttering the
second sentence. Informationally, the two sentences satisfy the Explanation
relation described in the last chapter, since the second sentence provides a
cause for the effect of wanting to book the reservations before the end of the
day.

Depending on the knowledge of the caller, recognition at theinforma-
tional level might lead to recognition of the speaker’s plan, or vice versa.
Say, for instance, that the caller knows that Proposition 143 imposes a new
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tax on airline tickets, but did not know the intentions of theagent in uttering
the second sentence. From the knowledge that a way to motivate an action is
to provide a cause that has that action as an effect, the caller can surmise that
the agent is trying to motivate the action described in the first sentence. Al-
ternatively, the caller might have surmised this intentionfrom the discourse
scenario, but have no idea what Proposition 143 is about. Again, knowing the
relationship between establishing a cause-effect relationship and motivating
something, the caller might be led to assume an Explanation relationship,
which would require that she infers that the proposition is somehow bad for
airline ticket buyers (e.g., a tax). Thus, at least in some cases, both levels of
analysis appear to be required.

19.5 DIALOGUE MANAGERS IN CONVERSATIONAL AGENTS

The idea of a conversational agent is a captivating one, and conversational
agents likeELIZA , PARRY, or SHRDLU have become some of the best-
known examples of natural language technology. Modern examples of con-
versational agents include airline travel information systems, speech-based
restaurant guides, and telephone interfaces to email or calendars. The dia-
logue manager is the component of such conversational agents that controls
the flow of the dialogue, deciding at a high level how the agents side of the
conversation should proceed, what questions to ask or statements to make,
and when to ask or make them.

This section briefly summarizes some issues in dialogue manager de-
sign, discussing some simple systems based on finite-state automata and pro-
duction rules, and some more complex ones based on more sophisticated
BDI-style reasoning and planning techniques.

The simplest dialogue managers are based on finite-state automata. For
example, imagine a trivial airline travel system whose job was to ask the user
for a departure city, a destination city, a time, and any airline preference. Fig-
ure 19.7 shows a sample dialogue manager for such a system. The states of
the FSA correspond to questions that the dialogue manager asks the user, and
the arcs correspond to actions to take depending on what the user responds.

Systems which completely control the conversation in this way are
calledsingle initiative or system initiative systems. While this simple di-SINGLE

INITIATIVE

SYSTEM
INITIATIVE alogue manager architecture is sufficient for some tasks (for example for

implementing a speech interface to an automatic teller machine or a simple
geography quiz), it is probably too restricted for a speech based travel agent
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is−yes(answer) is−no(answer)

"When would you like to leave?"

is−time(answer)

"What city are you leaving from?"

"Where are you going?"

is−city(answer)

"Do you want to specify a carrier?"

"Which carrier do you prefer?"

is−city(answer)

"Please say the name of a city"

not−city(answer)

not−city(answer)

"Please say the name of a city"

is−city(answer)

not−city(answer)

not−city(answer)

is−city(answer)

is−time(answer)

not−time(answer)

"Please say ‘morning’ or ‘evening’"

not−time(answer)

not−yes−or−no(answer)

"Please say ‘yes’ or ‘no’"

not−yes−or−no(answer)

is−yes(answer) is−no(answer)

Figure 19.7 A simple finite-state automaton architecture for a dialogue
manager.

system (see the discussion in McTear (1998)). One reason is that it is con-
venient for users to use more complex sentences that may answer more than
one question at a time, as in the following ATIS example:

I want a flight from Milwaukee to Orlando one way leaving after
five pm on Wednesday.

Many speech-based question answering systems, beginning with the
influential GUS system for airline travel planning (Bobrowet al., 1977), and
including more recent ATIS systems and other travel and restaurant guides,
areframe- or template-based. For example, a simple airline system mightFRAME

TEMPLATEhave the goal of helping a user find an appropriate flight. It might have a
frame or template with slots for various kinds of information the user might
need to specify. Some of the slots come with prespecified questions to ask
the user:

Slot Optional Question
From Airport “From what city are you leaving?”
To Airport “Where are you going?”
Dep time “When would you like to leave?”
Arr time “When do you want to arrive?”
Fareclass
Airline
Oneway
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Such a simple dialogue manager may just ask questions of the user,
filling out the template with the answers, until it has enoughinformation to
perform a data base query, and then return the result to the user. Not every
slot may have a associated question, since the dialogue designer may not
want the user deluged with questions. Nonetheless, the system must be able
to fill these slots if the user happens to specify them.

Even such simple domains require more than this single-template ar-
chitecture. For example, there is likely to be more than one flight which
meet the user’s constraints. This means that the user will begiven a list of
choices, either on a screen or, for a purely telephone interface, by listing
them verbally. A template-based system can then have another kind of tem-
plate which has slots for identifying elements of lists of flights (How much
is the first one?or Is the second one non-stop?). Other templates might have
general route information (for questions likeWhich airlines fly from Boston
to San Francisco?), information about airfare practices (for questions like
Do I have to stay a specific number of days to get a decent airfare?) or about
car or hotel reservations. Since users may switch from template to template,
and since they may answer a future question instead of the onethe system
asked, the system must be able to disambiguate which slot of which tem-
plate a given input is supposed to fill, and then switch dialogue control to
that template. A template-based system is thus essentiallya production rule
system. Different types of inputs cause different productions to fire, each of
which can flexibly fill in different templates. The production rules can then
switch control based on factors such as the the user’s input and some simple
dialogue history like the last question that the system asked.

The template or production-rule dialogue manager architecture is often
used when the set of possible actions the user could want to take is relatively
limited, but where the user might want to switch around a bit among these
things.

The limitations of both the template-based and FSA-based dialogue
managers are obvious. Consider the client’s utterance C4 in the fragment of
sample dialogue of Figure 19.5 on page 742, repeated here:

A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?

A5: The first one departs PGH at 10:00am . . .

What the client is doing in C4 is taking control orinitiative of theINITIATIVE
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dialogue. C4 is an indirect request, asking the agent to check on non-stop
flights. It would not be appropriate for the system to just setthe WANTS

NON-STOPfield in a template and ask the user again for the departure time.
The system needs to realize that the user has indicated that anon-stop flight
is a priority and that the system should focus on that next.

Conversational agents also need to use thegrounding acts described
on page 721. For example, when the user makes a choice of flights, it’s
important for the agent to indicate to the client that it has understood this
choice. Repeated below is an example of such grounding excerpted from
our sample conversation:

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK.

It is also important for a computational conversational agent to use
requests for repairs, since given the potential for errors in the speech recog-
nition or the understanding, there will often be times when the agent is con-
fused or does not understand the user’s request.

In order to address these and other problems, more sophisticated dia-
logue managers can be built on the BDI (belief, desire, intention) architec-
ture described on page 730. Such systems are often integrated with logic-
based planning models, and treat a conversation as a sequence of actions to
planned.

Let’s consider the dialogue manager of the TRAINS-93 system; the
system is described in Allenet al. (1995), the dialogue manager in Traum
and Allen (1994). The TRAINS system is a spoken-language conversational
planning agent whose task is to assist the user in managing a railway trans-
portation system in a microworld. For example, the user and the system
might collaborate in planning to move a boxcar of oranges from one city to
another. The TRAINS dialogue manager maintains the flow of conversation
and addresses the conversational goals (such as coming up with a operational
plan for achieving the domain goal of successfully moving oranges). To do
this, the manager must model the state of the dialogue, its own intentions,
and the user’s requests, goals, and beliefs. The manager uses a conversation
act interpreter to semantically analyze the user’s utterances, a domain plan-
ner and executer to solve the actual transportation domain problems, and a
generator to generate sentences to the user. Figure 19.8 shows an outline of
the TRAINS-93 dialogue manager algorithm.

The algorithm keeps a queue of conversation acts it needs to generate.
Acts are added to the queue based ongrounding, dialogue obligations, or
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DIALOGUE MANAGER

while conversation is not finished
if user has completed a turn
then interpret user’s utterance
if system has obligations
then address obligations
else ifsystem has turn
then if system has intended conversation acts

then call generator to produce NL utterances
else ifsome material is ungrounded
then address grounding situation
else ifhigh-level goals are unsatisfied
then address goals
elserelease turn or attempt to end conversation

else ifno one has turn
then take turn
else if long pause
then take turn

Figure 19.8 A dialogue manager algorithm, slightly modified from Traum
and Allen (1994).

the agent’sgoals. Let’s examine each of these sources. Grounding acts were
discussed on page 720; recall that a previous utterance can be grounded by an
explicit backchannel (e.g.uh-huh, yeah, or under certain circumstancesok),
or by repeating back part of the utterance. Utterances can also be grounded
implicitly by ‘taking up’ the utterance, i.e. continuing ina way which makes
it clear that the utterance was understood, such as by answering a question.

Obligations are used in the TRAINS system to enable the system to
correctly produce the second-pair part of an adjacency pair. That is, when a
user REQUESTs something of the system (e.g. REQUEST(Give(List)), or
REQUEST(InformIf(NonStop(FLIGHT-201)))), the REQUEST sets up an
obligation for the system to address the REQUEST either by accepting it,
and then performing it (giving the list or informing whetherflight 201 is
non-stop), or by rejecting it.

Finally, the TRAINS dialogue manager must reason about its own
goals. For the travel agent domain, the dialogue manager’s goal might be
to find out the client’s travel goal and then create an appropriate plan. Let’s
pretend that the human travel agent for the conversation in Figure 19.5 was
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METHODOLOGY BOX: DESIGNING DIALOGUE SYSTEMS

How does a dialogue system developer choose dialogue strategies,
architectures, prompts, error messages, and so on? The three design
principles of Gould and Lewis (1985) can be summarized as

Key Concept #8. User-Centered Design: Study the user
and task, build simulations and prototypes, and iteratively test
them on the user and fix the problems.

1. Early Focus on Users and Task:Understand the potential
users and the nature of the task, via interviews with users and in-
vestigation of similar systems. Study of related human-human dia-
logues can also be useful, although the language in human-machine
dialogues is usually simpler than in human-human dialogues(for
example pronouns are rare in human-machine dialogue and arevery
locally bound when they do occur – Guindon, 1988).

2. Build Prototypes: In the children’s bookThe Wizard of
Oz (Baum 1900), the Wizard turned out to be just a simulation
controlled by a man behind a curtain. In Wizard-of-Oz (WOZ) or
PNAMBIC (Pay No Attention to the Man BehInd the Curtain) sys-
tems, the users interact with what they think is a software system,
but is in fact a human operator (‘wizard’) behind some disguising
interface software (e.g. Gouldet al., 1983; Goodet al., 1984; Fraser
and Gilbert, 1991) indexGood, M. D.. A WOZ system can be used
to test out an architecture without implementing the complete sys-
tem; only the interface software and databases need to be in place. It
is difficult for the wizard to exactly simulate the errors, limitations,
or time constraints of a real system; results of WOZ studies are thus
somewhat idealized.

3. Iterative Design: An iterative design cycle with embedded
user testing is essential in system design (Nielsen, 1992; Coleet al.,
1994, 1997; Yankelovichet al., 1995; Landauer, 1995). For example
Stifelmanet al.(1993) and Yankelovichet al.(1995) found that users
of speech systems consistently tried to interrupt the system (barge
in), suggesting a redesign of the system to recognized overlapped
speech. Kamm (1994) and Coleet al. (1993) found thatdirective
prompts (‘Say yesif you accept the call, otherwise, sayno’) or the
use of constrained forms (Oviattet al., 1993) produced better results
than open-ended prompts like ‘Will you accept the call?’.
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a system and explore what the state of a TRAINS-style dialogue manager
would have to be to act appropriately. Let’s start with the state of the dia-
logue manager (formatted following Traum and Allen (1994))after the first
utterances in our sample conversation (repeated here):

C1: I want to go to Pittsburgh in May.

The client/user has just finished a turn with anINFORM speech act.
The system has the discourse goal of finding out the user’s travel goal (e.g.
‘Wanting to go to Pittsburgh on may 15 and returning. . . ’), and creating
a travel plan to accomplish that goal. The following table shows the five
parameters of the system state: the list of obligations, thelist of intended
speech acts to be passed to the generator, the list of the user’s speech acts
that still need to be acknowledged, the list of discourse goals, and whether
the system or the user holds the turn:

Discourse obligations: NONE
Turn holder: system
Intended speech acts: NONE
Unacknowledged speech acts: INFORM-1
Discourse goals: get-travel-goal, create-travel-plan

After the utterance, the dialogue manager decides to add twoconver-
sation acts to the queue; first, to acknowledge the user’sINFORM act (via
‘address grounding situation’), and second, to ask the nextquestion of the
user (via ‘address goals’). This reasoning would be worked out by the sys-
tem’s STRIPS-style planner as described on page 743; given the goalget-
travel-goal, the REQUEST-INFO action schema tells the system that asking
the user something is one way of finding it out. The result of adding these
two conversation acts is

Intended speech acts: REQUEST-INFORM-1, ACKNOWLEDGE-1

These would be combined by a very clever generator into the single
utterance:

A2: And, what day in May did you want to travel?

Note that the grounding function was achieved both by beginning with the
discourse markerand and by repeating back the month nameMay. The
request for information is achieved via the wh-question.

Let’s skip ahead to the client’s utterance C4. Recall that C4 is an indi-
rect request, asking the agent to check on non-stop flights.

A3: And what time would you like to leave Pittsburgh?
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C4: Uh hmm I don’t think there’s many options for non-stop.

Let’s assume that our dialogue act interpreter correctly interprets C4 as
REQUEST-INFORM-3. The state of the agent after client utterance C4 is then:

Discourse obligations: address(REQUEST-INFORM-3)
Turn holder: system
Intended speech acts: NONE
Unacknowledged speech acts: REQUEST-INFORM-3
Discourse goals: get-travel-goal, create-travel-plan

The dialogue manager will first address the discourse obligation of re-
sponding to the user’s request by calling the planner to find out how many
non-stop flights there are. The system must now answer the question, but
must also ground the user’s utterance. For a direct request,the response is
sufficient grounding. For an indirect request, an explicit acknowledgement
is an option; since the indirect request was in the form of anegativecheck
question, the form of acknowledgement will beright (no would have also
been appropriate for acknowledging a negative. These two acts will then be
pulled off the queue and passed to the generator:

A4: Right. There’s three non-stops today.

Dialogue managers also will need to deal with the kind of dialogue
structure discussed in Section 19.4, both to recognize whenthe user has
started a subdialogue, and to know when to initiate a subdialogue itself.

19.6 SUMMARY

Dialogue is a special kind of discourse which is particularly relevant to
speech processing tasks likeconversational agentsand automatic meet-
ing summarization.� Dialogue differs from other discourse genres in exhibitingturn-taking ,

grounding, andimplicature .� An important component of dialogue modeling is the interpretation of
dialogue acts. We introducedplan-basedandcue-basedalgorithms
for this.� Dialogue exhibitsintentional structure in addition to theinforma-
tional structure , including such relations asdominanceandsatisfaction-
precedence.
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METHODOLOGY BOX: EVALUATING DIALOGUE SYSTEMS

Many of the metrics that have been proposed for evaluating di-
alogue systems can be grouped into the following three classes:
1. User Satisfaction: Usually measured by interviewing users
(Stifelmanet al., 1993; Yankelovichet al., 1995) or having them
fill out questionnaires asking e.g. (Shriberget al., 1992; Polifroni
et al., 1992):� Were answers provided quickly enough?� Did the system understand your requests the first time?� Do you think a person unfamiliar with computers could use the

system easily?

2. Task Completion Cost:� completion time in turns or seconds (Polifroniet al., 1992).� number of queries (Polifroniet al., 1992).� number of system non-responses (Polifroniet al., 1992) or
‘turn correction ratio’: the number of system or user turns that
were used solely to correct errors, divided by the total num-
ber of turns (Danieli and Gerbino, 1995; Hirschman and Pao,
1993).� inappropriateness (verbose or ambiguous) of system’s ques-
tions, answers, and error messages (Zueet al., 1989).

3. Task Completion Success:� percent of subtasks that were completed (Polifroniet al.,
1992).� correctness (or partial correctness) of each question, answer,
error message (Zueet al., 1989; Polifroniet al., 1992).� correctness of the total solution (Polifroniet al., 1992).

How should these metrics be combined and weighted? The
PARADISE algorithm (Walkeret al., 1997) (PARAdigm for DIa-
logue System Evaluation) applies multiple regression to this prob-
lem. The algorithm first uses questionnaires to assign each dialogue
a user satisfaction rating. A set of cost and success factorslike those
above is then treated as a set of independent factors; multiple regres-
sion is used to train a weight (coefficient) for each factor, measuring
its importance in accounting for user satisfaction. The resulting met-
ric can be used to compare quite different dialogue strategies.
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or frame-basedproduction systemsto completeBDI (belief-desire-
intention) models.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Early work on speech and language processing had very littleemphasis on
the study of dialogue. One of the earliest conversational systems, ELIZA,
had only a trivial production system dialogue manager; if the human user’s
previous sentence matched the regular-expression precondition of a possible
response, ELIZA simply generated that response (Weizenbaum, 1966). The
dialogue manager for the simulation of the paranoid agent PARRY (Colby
et al., 1971), was a little more complex. Like ELIZA, it was based ona pro-
duction system, but where ELIZA’s rules were based only on the words in the
user’s previous sentence, PARRY’s rules also rely on globalvariables indi-
cating its emotional state. Furthermore, PARRY’s output sometimes makes
use of script-like sequences of statements when the conversation turns to its
delusions. For example, if PARRY’sanger variable is high, he will choose
from a set of ‘hostile’ outputs. If the input mentions his delusion topic, he
will increase the value of hisfear variable and then begin to express the
sequence of statements related to his delusion.

The appearance of more sophisticated dialogue managers awaited the
better understanding of human-human dialogue. Studies of the properties
of human-human dialogue began to accumulate in the 1970’s and 1980’s.
The Conversation Analysis community (Sackset al., 1974; Jefferson, 1984;
Schegloff, 1982) began to study the interactional properties of conversation.
Grosz’s (1977c) dissertation significantly influenced the computational study
of dialogue with its introduction of the study of substructures in dialogues
(subdialogues), and in particular with the finding that “task-oriented dia-
logues have a structure that closely parallels the structure of the task being
performed.” (p. 27). The BDI model integrating earlier AI planning work
(Fikes and Nilsson, 1971) with speech act theory (Austin, 1962; Gordon and
Lakoff, 1971; Searle, 1975a) was first worked out by Cohen andPerrault
(1979), showing how speech acts could be generated, and Perrault and Allen
(1980) and Allen and Perrault (1980), applying the approachto speech-act
interpretation.

The cue-based model of dialogue act interpretation was inspired by
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Hinkelman and Allen (1989), who showed how lexical and phrasal cues
could be integrated into the BDI model, and by the work on microgram-
mar in the Conversation Analysis literature (e.g. Goodwin,1996). It was
worked out at a number of mainly speech recognition labs around the world
in the late 1990’s (e.g. Nagata and Morimoto, 1994; Suhm and Waibel, 1994;
Mastet al., 1996; Jurafskyet al., 1997; Warnkeet al., 1997; Reithinger and
Klesen, 1997; Tayloret al., 1998).

Models of dialogue as collaborative behavior were introduced in the
late 1980’s and 1990’s, including the ideas of reference as acollaborative
process (Clark and Wilkes-Gibbs, 1986), and models ofjoint intentions
(Levesqueet al., 1990), andshared plans(Grosz and Sidner, 1980)). Re-
lated to this area is the study ofinitiative in dialogue, studying how theINITIATIVE

dialogue control shifts between participants Walker and Whittaker (1990),
Smith and Gordon (1997).

EXERCISES

19.1 List the dialogue act misinterpretations in theWho’s On Firstroutine
at the beginning of the chapter.

19.2 Write a finite-state automaton for a dialogue manager for checking
your bank balance and withdrawing money at an automated teller machine.

19.3 Dispreferred responses (for example turning down a request) are usu-
ally signaled by surface cues, such as significant silence. Try to notice the
next time you or someone else utters a dispreferred response, and write down
the utterance. What are some other cues in the response that asystem might
use to detect a dispreferred response? Consider non-verbalcues like eye-
gaze and body gestures.

19.4 When asked a question to which they aren’t sure they know the an-
swer, people use a number of cues in their response. Some of these cues
overlap with other dispreferred responses. Try to notice some unsure an-
swers to questions. What are some of the cues? If you have trouble doing
this, you may instead read Smith and Clark (1993) which listssome such
cues, and try instead to listen specifically for the use of these cues.

19.5 The sentenceDo you have the ability to pass the salt?is not generally
interpretable as a question. Why is this a problem for the BDImodel?
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19.6 Most universities require Wizard-of-Oz studies to be approved by a
human subjects board, since they involve deceiving the subjects. It is a good
idea (indeed it is often required) to ‘debrief’ the subjectsafterwards and tell
them the actual details of the task. Discuss your opinions ofthe moral issues
involved in the kind of deceptions of experimental subjectsthat take place in
Wizard-of-Oz studies.

19.7 Implement a small air-travel help system. Your system should get
constraints from the user about a particular flight that theywant to take,
expressed in natural language, and display possible flightson a screen. Make
simplifying assumptions. You may build in a simple flight database or you
may use an flight information system on the web as your backend.

19.8 Augment your previous system to work over the phone (or alterna-
tively, describe the user interface changes you would have to make for it to
work over the phone). What were the major differences?

19.9 Design a simple dialog system for checking your email over the tele-
phone. Assume that you had a synthesizer which would read outany text
you gave it, and a speech recognizer which transcribed with perfect accu-
racy. If you have a speech recognizer or synthesizer, you mayactually use
them instead.

19.10 Test your email-reading system on some potential users. If you don’t
have an actual speech recognizer or synthesizer, simulate them by acting as
the recognizer/synthesizer yourself. Choose some of the metrics described
in the Methodology Box on page 754 and measure the performance of your
system.





20 GENERATION�
hello, world

Kernighan & Ritchie,The C Programming Language

... you, MR KEITH V LINDEN, will be a millionaire
January 31!

From a junk mailing

In one sense, language generation is the oldest subfield of language
processing. When computers were able to understand only themost unnat-
ural of command languages, they were spitting out natural texts. For exam-
ple, the oldest and most famous C program, the “hello, world”program, is
a generation program. It produces useful, literate Englishin context. Unfor-
tunately, whatever subtle or sublime communicative force this text holds is
produced not by the program itself but by the author of that program. This
approach to generation, calledcanned text, is easy to implement, but is un-CANNED TEXT

able to adapt to new situations without the intervention of aprogrammer.
Language generation is also the most pervasive subfield of language

processing. Who of us has not received a form letter with our name carefully
inserted in just the right places, along with eloquent appeals for one thing or
another. This sort of program is easy to implement as well, but I doubt
if many are fooled into thinking that such a letter is hand-written English.
The inflexibility of the mechanism is readily apparent when our names are
mangled, as mine is in the junk mailing shown above, or when other obvious�This chapter by Keith Vander Linden
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mistakes are made.1 This approach, calledtemplate filling, is more flexibleTEMPLATE
FILLING

than canned text and has been used in a variety of applications, but is still
limited. For example, Weizenbaum’s use of templates in ELIZA worked
well in some situations, but produced nonsense in others.2

The success of simple generation mechanisms indicates that, to a first
approximation, language generation is easier than language understanding.
A language understanding system cannot generally control the complexity
of the language structures it receives as input, while a generation system can
limit the complexity of the structure of its output. Becauseof this, work in
language processing initially focussed on language understanding, assuming
that any generation that needed to be done could easily be handled with
canned text or template filling mechanisms. Unfortunately,these simple
mechanisms are not flexible enough to handle applications with any real-
istic variation in the information being expressed and in the context of its
expression. Even the generation used in the limited domain of the “hello,
world” program could use more flexibility. It might be more appropriate for
the program to produce:

(20.1) Congratulations, you’ve just compiled and run a simple C program
which means that your environment is configured properly.

This text is more complex than the original and we can see a number of po-
tential variations. If the readers are experienced systemsengineers, then we
might choose not to congratulate them on compiling a program. Doing so
might insult them. In addition, there are a number of other ways of referring
to the program in question, including “the program”, “your first C program”,
“it” and “that lame excuse for code”, each of which might or might not be
appropriate in a given situation. Note also that we didn’t need to conjoin
“compiled and run” and we could have expressed the conclusion (“your en-
vironment is configured properly”) and then the evidence (“you’ve compiled
and run a simple C program”). These variations are not necessarily synony-
mous. Language has evolved a variety of ways of expressing things, all of

1 A recent example of this arose when parents of a college-bound student received an accep-
tance letter that read “Congratulations on 987-65-4321’s admission ... as a parent you will be
a partner with the university in encouraging 987-65-4321 tosucceed.” (from the Associated
Press, March 26, 1999).
2 It’s not difficult to “trick” ELIZA into producing nonsense,as shown in the following dia-
log with ELIZA 4.3: HUMAN : “Let’s talk just about you — not me. Can you think?”ELIZA :
“You like to think I — not you — don’t you” . . .HUMAN : “I think you are an extremely stupid
program.” ELIZA : “Perhaps you would like to be an extremely stupid program” (Copeland,
1993, page 40).
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which are useful for expressing certain things in certain contexts. Therefore,
to be useful in more complex environments, a generation system must be
capable of: (1) producing an appropriate range of forms, and(2) choosing
among those forms based on the intended meaning and the context. In this
chapter, we will study the basic language generation techniques used to solve
these problems, ignoring canned text and template-based mechanisms.

20.1 INTRODUCTION TO LANGUAGE GENERATION

Language understanding is somewhat like counting from one to
infinity; language generation is like counting from infinityto one.

Yorick Wilks, quoted in (Daleet al., 1998a, page 352)

Generationfrom what?!
attributed to Christopher Longuet-Higgins

Natural Language Generation(NLG) is the process of constructingNATURAL
LANGUAGE
GENERATION

natural language outputs from non-linguistic inputs. The goal of this process
can be viewed as the inverse of that ofnatural language understanding

NATURAL
LANGUAGE
UNDER­
STANDING(NLU) in that NLG maps from meaning to text, while NLU maps from text

to meaning. In doing this mapping, generation visits many ofthe same lin-
guistic issues discussed in the previous chapters, but the inverse orientation
distinguishes its methods from those of NLU in two importantways.

First, the nature of the input to the generation process varies widely
from one application to the next. Although the linguistic input to NLU sys-
tems may vary from one text type to another, all text is governed by relatively
common grammatical rules. This is not the case for the input to generation
systems. Each generation system addresses a different application with a dif-
ferent input specification. One system may be explaining a complex set of
numeric tables while another may be documenting the structure of an object-
oriented software engineering model. As a result, generation systems must
extract the information necessary to drive the generation process.

Second, while both NLU and NLG must be able to represent a range
of lexical and grammatical forms required for the application domain, their
use of these representations is different. NLU has been characterized as a
process ofhypothesis managementin which the linguistic input is sequen-
tially scanned as the system considers alternative interpretations. Its domi-
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nant concerns include ambiguity, under-specification, andill-formed input.
These concerns are not generally addressed in generation research because
they don’t arise. The non-linguistic representations input to an NLG sys-
tem tend to be relatively unambiguous, well-specified, and well-formed. In
contrast, the dominant concern of NLG ischoice. Generation systems must
make the following choices:� Content selection— The system must choose the appropriate content

to express from a potentially over-specified input, basing its decision
on a specific communicative goal. For example, we noted that some of
the content included in example 20.1 might not be appropriate for all
readers. If the goal was to indicate that the environment is set up, and
the reader was a systems engineer, then we’d probably express only the
last clause.� Lexical selection— The system must choose the lexical item most
appropriate for expressing particular concepts. In example 20.1, for
instance, it must choose between the word “configured” and other po-
tential forms including “set up”.� Sentence structure

– Aggregation — The system must apportion the selected content
into phrase, clause, and sentence-sized chunks. Example 20.1
combined the actions of compiling and running into a single phrase.

– Referring expressions— The system must determine how to re-
fer to the objects being discussed. As we saw, the decision on
how to refer to the program in example 20.1 was not trivial.� Discourse structure— NLG systems frequently deal with multi-sentence

discourse, which must have a coherent, discernible structure. Exam-
ple 20.1 included two propositions in which it was clear thatone was
giving evidence for the other.

These issues of choice, taken together with the problem of actually putting
linear sequences of words on paper, form the core of the field of NLG.
Though it is a relatively young field, it has begun to develop abody of work
directed at this core. This chapter will introduce this work. It will begin by
presenting a simple architecture for NLG systems and will then proceed to
discuss the techniques commonly used in the components of that architec-
ture.
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Natural Language Output

Communicative Goal Knowledgebase

Discourse Planner

Surface Realizer

Discourse Specification

Figure 20.1 A reference architecture for NLG systems

20.2 AN ARCHITECTURE FORGENERATION

The nature of the architecture appropriate for accomplishing the tasks listed
in the previous section has occasioned much debate. Practical considera-
tions, however, have frequently led to the architecture shown in Figure 20.1.
This architecture contains two pipelined components:� Discourse Planner– This component starts with a communicativeDISCOURSE

PLANNER

goal and makes all the choices discussed in the previous section. It
selects the content from the knowledge base and then structures that
content appropriately. The resulting discourse plan will specify all the
choices made for the entire communication, potentially spanning mul-
tiple sentences and including other annotations (including hypertext,
figures, etc.).� Surface Realizer— This component receives the fully specified dis-SURFACE

REALIZER

course plan and generates individual sentences as constrained by its
lexical and grammatical resources. These resources define the real-
izer’s potential range of output. If the plan specifies multiple-sentence
output, the surface realizer is called multiple times.
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This is by no means the only architecture that has been proposed for NLG
systems. Other potential mechanisms include AI-style planning and black-
board architectures. Neither is this architecture withoutits problems. The
simple pipeline, for example, doesn’t allow decisions madein the planner to
be reconsidered during surface realization. Furthermore,the precise bound-
ary between planning and realization is not altogether clear. Nevertheless,
we will use it to help organize this chapter. We’ll start by discussing the sur-
face realizer, the most developed of the two components, andthen proceed
to the discourse planner.

20.3 SURFACE REALIZATION

The surface realization component produces ordered sequences of words as
constrained by the contents of a lexicon and grammar. It takes as input
sentence-sized chunks of the discourse specification. Thissection will in-
troduce two of the most influential approaches used for this task: Systemic
Grammar and Functional Unification Grammar. Both of these approaches
will be used to generate the following example:

(20.2) The system will save the document.

There is no general consensus as to the level at which the input to
the surface realizer should be specified. Some approaches specify only the
propositional content, so in the case of example 20.2, the discourse plan
would specify a saving action done by a system entity to a document entity.
Other approaches go so far as to include the specification of the grammatical
form (in this case, a future tense assertion) and lexical items (in this case,
“save”, “system”, and “document”).

As we will see, systems using the two approaches discussed inthis sec-
tion take input at different levels. One thing they have in common, however,
is that they take input that is functionally specified ratherthan syntactically
specified. This fact, which is typical of generation systems, has tended to
preclude the use of the syntactic formalisms discussed earlier in this book.
Generation systems start with meaning and context, so it is most natural to
specify the intended output in terms offunction rather than ofform . Ex-FUNCTION

FORM ample 20.2, for instance, could be stated in either active orpassive form.
Discourse planners tend not to work with these syntactic terms. They are
more likely to keep track of the focus or local topic of the discourse, and
thus it is more natural to specify this distinction in terms of focus. So in
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the example, if the document is the local topic of the discourse, it would be
marked as the focus which could trigger the use of the passive. As we will
see, both of the approaches discussed here categorize grammar in functional
terms.

Systemic Grammar

Systemic grammar is part ofSystemic-Functional linguistics, a branch of SYSTEMIC­
FUNCTIONAL
LINGUISTICS

linguistics that views language as a resource for expressing meaning in con-
text (Halliday, 1985b). Systemic grammars represent sentences as collec-
tions of functions and maintain rules for mapping these functions onto ex-
plicit grammatical forms. This approach is well-suited to generation and has
thus been widely influential in NLG. This section will start with an example
of systemic sentence analysis. It will then discuss a simplesystemic gram-
mar and apply it to the running example.

Systemic sentence analyses organize the functions being expressed in
multiple “layers”, as shown in this analysis of example 20.2:

Mood

Transitivity

Theme theme               rheme

subject             finite   predicator         object

The system      will       save            the document

actor                 process                        goal

Here, the mood layer indicates a simple declarative structure with subject, fi-
nite (auxiliary), predicator (verb) and object. The transitivity layer indicates
that the “system” is the actor, or doer, of the process of “saving”, and that the
goal, or object acted upon, is the “document”.3 The theme layer indicates
that the “system” is the theme, or focus of attention, of the sentence.4 Notice
that the three layers deal with different sets of functions.These three sets,
calledmeta-functions, represent three fundamental concerns in generation:META­

FUNCTIONS� The interpersonal meta-function groups those functions that estab-
INTERPER­
SONAL
META­
FUNCTIONlish and maintain the interaction between the writer and thereader. It

is represented here by the mood layer, which determines whether the
writer is commanding, telling, or asking.� The ideational meta-function is concerned with what is commonlyIDEATIONAL

META­
FUNCTION

3 These thematic roles are discussed in Chapter 16.
4 The concepts of theme and rheme were developed by the Prague school of linguistics
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called the “propositional content” of the expression. Here, the transi-
tivity layer determines the nature of the process being expressed and
the variety of case roles that must be expressed. Note that this meta-
function covers much of what is commonly termed “semantics”.� Thetextual meta-function is concerned with the way in which the ex-

TEXTUAL
META­
FUNCTION

pression fits into the current discourse. This includes issues of thema-
tization and reference. In our example, the theme layer represents this
in that it explicitly marks “the system” as the theme of the sentence.

This explicit concern for interpersonal and textual issuesas well as tradi-
tional semantics is another feature of systemic linguistics that is attractive
for NLG. Many of the choices that generation systems must make depend on
the context of communication, which is formalized by the interpersonal and
textual metafunctions.

A systemic grammar is capable of building a sentence structure such
as the one just shown. The grammar is represented using a directed, acyclic,
and/or graph called asystem network. Figure 20.2 illustrates a simple sys-SYSTEM

NETWORK

tem network. Here, the large curly brace indicates “and” (i.e., parallel) sys-
tems, while the straight vertical lines represent “or” (i.e., disjoint) systems.
Thus, every clause (represented as the highest level feature on the far left)
will simultaneously have a set of features for mood, transitivity and theme,
but will either be indicative or imperative but not both. Although the sys-
tem network formalism doesn’t require the use of systemic theory, we will
loosely base this sample grammar on systemic categorizations. With respect
to this grammar, example 20.2 is an indicative, declarativeclause expressing
an active material process with an unmarked theme.

A systemic grammar usesrealization statements to map from theREALIZATION
STATEMENTS

features specified in the grammar (e.g., Indicative, Declarative) to syntac-
tic form. Each feature in the network can have a set of realization statements
specifying constraints on the final form of the expression. These are shown
in Figure 20.2 as a set of italicized statements below each feature. Realiza-
tion statements allow the grammar to constrain the structure of the expres-
sion as the system network is traversed. They are specified using a simple
set of operators shown here:+X Insert the functionX. For example, the grammar in Figure 20.2 speci-

fies that all clauses will have a predicator.

X=Y Conflate the functionsX andY. This allows the grammar to build a

(Firbas, 1966).
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.
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.

.

Theme

Mood

Transitivity

+theme  +rheme

Indicative

+subject

+finite

finite > predicator

subject > predicator

Material Process
+goal+predicator

Clause

Imperative

predicator / infinitive

Voice

Passive
goal = subject

predicator / past-participle

theme = subject

rheme = predicator, object

finite / be

Marked Theme

predicator / verb

Active
+actor

actor = subject

+object

object = goal

predicator > object

finite / auxiliary

subject / noun phrase

object / noun phrase
+process
process = finite, predicator

Indicative

     Type

Declarative

Interrogative

finite > subject

subject > finite

Interrogative

     Type

Wh-

Polar

+question

question > finite

question / Wh-

Relational Process

Unmarked Theme

Figure 20.2 A simple systemic grammar

layered function structure by assigned different functions to the same
portion of the expression. For example, active clauses conflate the
actor with the subject, while passive clauses conflate the goal with the
subject.

XˆY Order functionX somewhere before functionY. For example, indica-
tive sentences place the subject before the predicator.

X : A Classify the functionX with the lexical or grammatical featureA. These
classifications signal a recursive pass through the grammarat a lower
level. The grammar would include other networks similar to the clause
network that apply to phrases, lexical items, and morphology. As an
example, note that the indicative feature inserts a subjectfunction that
must be a noun phrase. This phrase will be further specified byanother
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pass through the grammar.

X!L Assign functionX the lexical itemL. In Figure 20.2, the finite element
of the passive is assigned the lexical item “be”.

Given a fully specified system network, the procedure for generation is to:

1. Traverse the network from left to right, choosing the appropriate fea-
tures and collecting the associated realization statements;

2. Build an intermediate expression that reconciles the constraints set by
the realization statements collected during this traversal;

3. Recurse back through the grammar at a lower level for any function
that is not fully specified;

To illustrate this process, we will use the sample grammar togenerate exam-
ple 20.2 (“The system will save the document”). We will use the following
specification as input:5

(
:process save-1
:actor system-1
:goal document-1
:speechact assertion
:tense future
)

Here, thesave-1 knowledge base instance is identified as the process of
the intended expression. We will assume all knowledge base objects to
be KLONE-styled instances (Brachman, 1979) for which proper lexical en-
tries exist. The actor and goal are similarly specified assystem-1 and
document-1 respectively. The input also specifies that the expression be
in the form of an assertion in the future tense.

The generation process starts with the clause feature in Figure 20.2, in-
serting a predicator and classifying it as a verb. It then proceeds to the mood
system. The correct option for a system is chosen by a simple query or de-
cision network associated with that system. The query or decision network
bases its decision on the relevant information from the input specification
and from the knowledge base. In this case, the mood system chooses the
indicative and declarative features because the input specifies an assertion.

5 This input specification is loosely based on the spl-constructor interface to thePENMAN

system (Mann, 1983), a systemic generation system. The Sentence Planning Language
(SPL), a more flexible input language, is discussed in the bibliographical notes below.
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The realization statements associated with the indicativeand declarative fea-
tures will insert subject and finite functions, and order them as subject then
finite then predicator. The resulting function structure would be as follows:

Mood subject             finite   predicator 


We will assume that thesave-1 action is marked as a material process
in the knowledge base, which causes the transitivity systemto choose the
material process feature. This inserts the goal and processfunctions, and
conflates the process with the finite/predicator pair. Because there is no indi-
cation in either the input or the knowledge base to use a passive, the system
chooses the active feature, which: (1) inserts the actor andconflates it with
the subject, and (2) inserts the object, conflating it with the goal and ordering
it after the predicator. This results in:

Mood

Transitivity

subject             finite   predicator         object

actor                 process                        goal

Finally, because there is no thematic specification in the input, the theme
network chooses unmarked theme, which inserts theme and rheme, conflat-
ing theme with subject and conflating rheme with the finite/predicator/object
group. This results in the full function structure discussed above (repeated
here):

Mood

Transitivity

Theme theme               rheme

subject             finite   predicator         object

actor                 process                        goal

At this point, the generation process recursively enters the grammar a num-
ber of times at lower levels to fully specify the phrases, lexical items, and
morphology. The noun phrase network will use a process like the one shown
here to create “the system” and “the document”. Systems in the auxiliary
network will insert the lexical item “will”. The choice of the lexical items
“system”, “document”, and “save” can be handled in a number of ways, most
typically by retrieving the lexical item associated with the relevant knowl-
edge base instances.
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Functional Unification Grammar

Functional Unification Grammar uses unification (discussedin Chapter 11)
to manipulate and reason about feature structures (Kay, 1979). With a few
modifications, this technique can be applied to NLG. The basic idea is to
build the generation grammar as a feature structure with lists of potential al-
ternations, and then to unify this grammar with an input specification built
using the same sort of feature structure. The unification process then takes
the features specified in the input and reconciles them with those in the gram-
mar, producing a full feature structure which can then belinearizedto form
sentence output.

In this section we will illustrate this mechanism by generating exam-
ple 20.2 again. We will use the simple functional unificationgrammar shown
in Figure 20.3. This grammar, expressed as an attribute-value matrix (cf.
Chapter 11), supports simple transitive sentences in present or future tense
and enforces subject-verb agreement on number. We’ll now walk through
the structure, explaining the features.

At its highest level, this grammar provides alternatives for sentences
(cat s), noun phrases (cat np) and verb phrases (cat vp). Thisalternation
is specified with the alt feature on the far left. We use the curly braces to
indicate that any one of the three enclosed alternatives maybe followed. This
level also specifies a pattern that indicates the order of thefeatures specified
at this level, in this case, actor, process, then goal.

At the sentence level, this grammar supports actor, process, and goal
features which are prespecified as NP, VP and NP respectively. Subject-verb
agreement on number is enforced using the number feature inside the process
feature. Here we see that the number of the process must unifywith the pathfactor numberg. A path is a list of features specifying a path from the root to
a particular feature. In this case, the number of the processmust unify with
the number of the actor. While this path is given explicitly,we can also have
relative paths such as the number feature of the head featureof the NP. The
path here,f" " numberg, indicates that the number of the head of the noun
phrase must unify with the number of the feature 2 levels up. We’ll see how
this is useful in the example below.

The VP level is similar in nature to the NP level except that ithas its
own alternation between present and future tense. Given thetense, which we
will see specified in the input feature structure, the unification will select the
alternation that matches and then proceed to unify the associated features. If
the tense is present, for example, the head will be single verb. If, on the other
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Figure 20.3 A simple FUF grammar.
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hand, the tense is future, we will insert the modal auxiliary“will” before the
head verb.

This grammar is similar to the systemic grammar from the previous
section in that it supports multiple levels that are enteredrecursively during
the generation process. We now turn to the input feature structure, which
specifies the details of the particular sentence we want to generate. The
input structure, called afunctional description (FD), is a feature structureFUNCTIONAL

DESCRIPTION

just like the grammar. An FD for example 20.2 is as follows:26666666666664
CAT S

ACTOR

�
HEAD

h
LEX SYSTEM

i�
PROCESS

24HEAD
h

LEX SAVE
i

TENSE FUTURE

35
GOAL

�
HEAD

h
LEX DOCUMENT

i�
37777777777775

Here we see a sentence specification with a particular actor,the system, and
a particular goal, the document. The process is the saving ofthe document
by the system in the future. The input structure specifies theparticular verbs
and nouns to be used as well as the tense. This differs from theinput to
the systemic grammar. In the systemic grammar, the lexical items were re-
trieved from the knowledge base entities associated with the actor and goal.
The tense, though not included in the example systemic grammar, would
be determined by a decision network that distinguishes the relative points
in time relevant to the content of the expression. This unification grammar,
therefore, requires that more decisions be made by the discourse planning
component.

To produce the output, this input is unified with the grammar shown in
Figure 20.3. This requires multiple passes through the grammar. The pre-
liminary unification unifies the input FD with the “S” level inthe grammar
(i.e., the first alternative at the top level). The result of this process is as
follows:



Section 20.3. Surface Realization 77326666666666666666666666666664

CAT S

ACTOR

24CAT NP

HEAD
h

LEX SYSTEM
i35

PROCESS

26666664CAT VP

NUMBER
n

ACTOR NUMBER
o

HEAD
h

LEX SAVE
i

TENSE FUTURE

37777775
GOAL

24CAT NP

HEAD
h

LEX DOCUMENT
i35

PATTERN (ACTOR PROCESS GOAL)

37777777777777777777777777775
Here we see that the features specified in the input structurehave been
merged and unified with the features at the top level of the grammar. For
example, the features associated with “actor” include the lexical item “sys-
tem” from the input FD and the category “np” from the grammar.Similarly,
the process feature combines the lexical item and tense fromthe input FD
with the category and number features from the grammar.

The generation mechanism now recursively enters the grammar for
each of the sub-constituents. It enters the NP level twice, once for the actor
and again for the goal, and it enters the VP level once for the process. The
FD that results from this is shown in Figure 20.4. There we seethat every
constituent feature that is internally complex has a pattern specification, and
that every simple constituent feature has a lexical specification. The system
now uses the pattern specifications to linearize the output,producing “The
system will save the document.”

This particular example did not specify that the actor be plural. We
could do this by adding the feature-value pair “number plural” to the actor
structure in the input FD. Subject-verb agreement would then be enforced
by the unification process. The grammar requires that numberof the heads
of the NP and the VP match with the number of the actor that was specified
in the input FD. The details of this process are left as an exercise.
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Figure 20.4 The fully unified FD
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Summary

The two surface generation grammars we’ve seen in this section illustrate the
nature of computational grammars for generation. Both usedfunctional cat-
egorizations. One might wonder if it would be possible to usea single gram-
mar for both generation and understanding. These grammars,calledbidi-
rectional grammars, are currently under investigation but have not foundBIDIREC­

TIONAL
GRAMMARS

widespread use in NLG (cf. Chapter 21). This is largely due tothe additional
semantic and contextual information required as input to the generator.

20.4 DISCOURSEPLANNING

The surface realization component discussed in the previous section takes
a specified input and generates single sentences. Thus, it has little or no
control over either the discourse structure in which the sentence resides or the
content of the sentence itself. These things are controlledby the discourse
planner. This section will introduce the two predominant mechanisms for
building discourse structures: text schemata and rhetorical relations.

The focus on discourse rather than just sentences has been a key fea-
ture of much work done in NLG. Many applications require thatthe system
produce multi-sentence or multi-utterance output. This can be done by sim-
ply producing a sentence for each component of the intended meaning, but
frequently more care is required in selecting and structuring the meaning in
an appropriate way. For example, consider the following alternate revision
of the “hello, world” output discussed in the introduction:

(20.3) You’ve just compiled a simple C program. You’ve just run a simple
C program. Your environment is configured properly.

These sentences are fine in isolation, but the text is more disjointed than the
one given in example 20.1 and is probably harder to understand. Although
it orders the sentences in a helpful way, it doesn’t give any indication of the
relationship between them. These are the sorts of issues that drive discourse
planning.

This section will also discuss the closely related problem of content
selection, which, as we saw earlier, is the process of selecting propositional
content from the input knowledge base based on a communicative goal. Be-
cause the form of this knowledge base and the nature of the communicative
goal varies widely from one application to another, it is difficult to make
general statements about the content selection process. Tomake things
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Procedural Sequence

Side-effect

System saves
the document

Figure 20.5 A portion of the saving procedure knowledge base

more concrete, therefore, this section will focus on the task of generating
instructions for a simple word-processing application. We’ll assume that
the knowledge base, whatever its underlying structure, canbe viewed as a
KLONE-styled knowledge base. We’ll also assume that the communicative
goal is to explain the represented procedure to a new user of the system.
The knowledge base will represent the procedure for saving afile as a sim-
ple procedural hierarchy, as shown in Figure 20.5. The procedure specified
there requires that the user choose the save option from the file menu, se-
lect the appropriate folder and file name, and then click on the save button.
As a side-effect, the system automatically displays and removes the save-as
dialog box in response to the appropriate user actions. Thisrepresentation
gives the procedural relationships between the basic actions but it doesn’t
show any of the domain knowledge concerning the structure ofthe interface
(e.g., which choices are on which menus) or the particular entities that are
used in the procedure (e.g., the document, the user). We’ll assume that these
are accessible in the knowledge base as well.

Text Schemata

Apart from the rigidly structured canned texts and slot-filler templates dis-
cussed in the opening of this chapter, the simplest way to build texts is to
key the text structure to the structure of the input knowledge base. For ex-
ample, we might choose to describe a game of tic-tac-toe or checkers by
reviewing the moves in the sequence in which they were taken.This strategy
soon breaks down, however, when we have a large amount of information
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that could potentially be expressed in order to achieve a variety of commu-
nicative goals. The knowledge base that contains the fragment shown in
Figure 20.5, for example, could be expressed as a sequence ofinstructions
such as one might find in a tutorial manual, or it could be expressed as an
alphabetized set of program functions such as one might find in a reference
manual.

One approach to this problem rests on the observation that texts tend
to follow consistent structural patterns. For example, written directions ex-
plaining how to carry out an activity typically express the required actions
in the order of their execution. Any preconditions of these actions are men-
tioned before the appropriate action. Similarly, side-effects of these actions
are mentioned after the appropriate action. In some domains, patterns such
as these are rarely broken. Armed with this information, we can build a
schemarepresenting this structure, such as the one shown in Figure20.6. SCHEMA

This schema is represented as anaugmented transition network (ATN) in AUGMENTED
TRANSITION
NETWORK

which each node is a state and each arc is an optional transition (see Chap-
ter 10). Control starts in the small black node in the upper left and proceeds
to follow arcs as appropriate until execution stops in the terminal node of the
lower left. Node S0 allows the expression of any number of preconditions.
Transitioning to S1 forces the expression of the action itself. S1 allows re-
cursive calls to the network to express any sub-steps. The transition to S2
requires no action, and S2 allows any number of side-effectsto be expressed
before halting execution.

We can use this schema to plan the expression of the example proce-
dure shown in Figure 20.5. When the system is asked to describe how to
save a document, the procedure schema can be activated. We’ll assume that
the knowledge base specifies no preconditions for the actionof saving a file,
so we proceed directly to state S1, forcing the expression ofthe main action:
“Save the document”. In state S2, we recursively call the network for each
of the four sub-steps specified in the input. This expresses the first sub-step,
“choose the save option”, along with its side-effect, “thiscauses the system
to display the save-as dialog box”. The first sub-step has no preconditions
or sub-steps. Each of the other sub-steps is done in the same manner and
execution finally returns to the main action execution in step S2 which ex-
presses the result of the whole process, “this causes the system to save the
document” and then terminates. Depending on the details of the planning,
the final text might be as follows:

Save the document: First, choose the save option from the
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S0
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Add Precondition

Express the Action

Recursively Add Sub-StepAdd Side-Effect

Figure 20.6 A schema for expressing procedures

file menu. This causes the system to display the Save-As dialog
box. Next, choose the destination folder and type the filename.
Finally, press the save button. This causes the system to save the
document.

Each one of these sentences can be generated using one of the surface realiz-
ers discussed in the previous section. As we can see, the schema mechanism
is more flexible than templates or canned text. It structuresthe output accord-
ing to known patterns of expression, but, with appropriate constraints, is able
to insert optional material collected from the knowledge base in a variety of
orders. In addition, it is not required to express everything in the knowledge
base; the side-effect of the “click save button” action, forexample, was not
included.

This schema mechanism produced only a high-level discoursestruc-
ture. The problem of specifying of the detailed form of each of the sentences,
commonly called microplanning, is discussed in Section 20.5.
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Rhetorical Relations

Schemata are useful for discourse planning provided a discrete set of consis-
tent patterns of expression can be found and encoded. However, they suffer
from two basic problems. First, they become impractical when the text be-
ing generated requires more structural variety and richness of expression.
For example, we may find that certain conditions dictate thatwe format our
procedural instructions in a different manner. Some contexts may dictate that
we explicitly enumerate the steps in the procedure, or that we express cer-
tain segments of the text in a different manner or in a different order. While
in principle these variations could be supported either by adding constraints
and operational code to the schema or by adding new schemata,the more
variations that are required, the more difficult the schema-based approach
becomes.

The second problem with schema-based mechanisms is that thedis-
course structure they produce is a simple sequence of sentence generation
requests. It includes no higher-level structure relating the sentences together.
In some domains, particularly in interactive ones (cf. Chapter 19), the struc-
ture of the previous discourse is relevant for future planning. For example,
if we have explained a process in some detail, we might not want to do it
again. It’s easier to do these things when there is a record ofthe structure of
previous discourse.

A useful approach here is to take a look under the hood of the schema in
order to discover the more fundamental rhetorical dynamicsat work in a text.
A system informed by these dynamics could develop its own schemata based
on the situations it confronts. A number of theories that attempt to formalize
these rhetorical dynamics have been proposed, as discussedin some detail
in Chapter 18. One such theory,Rhetorical Structure Theory (RST), is a RHETORICAL

STRUCTURE
THEORY

descriptive theory of text organization based on the relationships that hold
between parts of the text (Mann and Thompson, 1987b). As an example,

consider the following two texts:

(20.4) I love to collect classic automobiles. My favorite car is my 1899
Duryea.

(20.5) I love to collect classic automobiles. My favorite car is my 1999
Toyota.

The first text makes sense. The fact that the writer likes the 1899 Duryea
follows naturally from the fact that they like classic automobiles. The sec-
ond text, however, is problematic. The problem is not with the individual
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sentences, they work perfectly well in isolation. Rather, the problem is with
their combination. The fact that the two sentences are in sequence implies
that there is some coherent relationship between them. In the case of the
first text, that relationship could be characterized as one of elaboration (cf.
Chapter 19). The second text could be characterized as one ofcontrast and
would thus be more appropriately expressed as:

(20.6) I love to collect classic automobiles. However, my favorite car is my
1999 Toyota.

Here, the “however”, overtly signals the contrast relationto the reader.RST

claims that an inventory of 23 rhetorical relations, including ELABORATION

andCONTRAST, is sufficient to describe the rhetorical structure a wide vari-
ety of texts. In practice, analysts tend to make use of a subset of the relations
that are appropriate for their domain of application.

Most RST relations designate a central segment of text (“I love to col-
lect. . . ”), called thenucleus, and a more peripheral segment (“My favoriteNUCLEUS

car is. . . ”), called thesatellite. This encodes the fact that many rhetorical re-SATELLITE

lations are asymmetric. Here the second text is being interpreted in terms of
the first, and not vice-versa. As we will see below, not all rhetorical relations
are asymmetric.RST relations are defined in terms of the constraints they
place on the nucleus, on the satellite, and on the combination of the nucleus
and satellite. Here are definitions of some commonRST relations:

ELABORATION — The satellite presents some additional detail concerning
the content of the nucleus. This detail may be of many forms:� a member of a given set� an instance of a given abstract class� a part of a given whole� a step of a given process� an attribute of a given object� a specific instance of a given generalization

CONTRAST — The nuclei present things that, while similar in some re-
spects, are different in some relevant way. This relation ismulti-nuclear inMULTI­

NUCLEAR

that it doesn’t distinguish between a nucleus and a satellite.

CONDITION — The satellite presents something that must occur before the
situation presented in the nucleus can occur.

PURPOSE — The satellite presents the goal of performing the activitypre-
sented in the nucleus.
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SEQUENCE — This relation is multi-nuclear. The set of nuclei are realized
in succession.

RESULT — The situation presented in the nucleus results from the onepre-
sented in the satellite.

RST relations are typically graphed as follows:

My favorite car

is my 1899 Duryea.

Elaboration

I love to collect 

classic automobiles.

Here we see a graphical representation of the rhetorical relation from exam-
ple 20.4. The segments of text are ordered sequentially along the bottom of
the diagram with the rhetorical relations built above them.The individual
text segments are usually clauses.

Rhetorical structure analyses are built up hierarchically, so we may
use one pair of related texts as a satellite or nucleus in another higher-level
relation. Consider the following three-sentence structure:

My favorite car

is my 1899 Duryea.

Elaboration

I love to collect 

classic automobiles.

However, I prefer to

drive my 1999 Toyota.

Contrast

Here we see that the first two clauses are related to one another via an elabo-
ration relationship, and are related, as a pair, to the thirdclause via a contrast
relationship. Note also how the multi-nuclear contrast relation is depicted.
Recursive structuring such as this allowsRST to build a single analysis tree
for extended texts.

AlthoughRST was originally proposed as a descriptive tool, it can also
be used as a constructive tool for NLG. In order to do this, therhetorical
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relations are typically recast as operators for an AI-styleplanner. As an
example of this, we will look at a general-purpose, top-down, hierarchical
planner that can be used for rhetorically-based text planning.6

The basic approach with this sort of planner is for the generation sys-
tem to post a high level communicative goal stated in terms ofthe effect that
the text should have on the reader. For our instructional text example, we will
request that the planner build a structure to achieve the goal of making the
reader competent to save a file. The highest level plan operator that achieves
this goal will insert a rhetorical node appropriate for the goal and insert sub-
goals for the nucleus and satellite of that rhetorical relation. These sub-goals
will then be recursively expanded until the planning process reaches the bot-
tom of the rhetorical structure tree, inserting a node that can be expressed as
a simple clause.

For our example, we would post the goal:

(COMPETENT hearer (DO-ACTION<some-action>))

Here, the communcative goal is to make the hearer competent to do some
action. The action would be represented as an instance in theknowledge
base, in this case, as the root node from the procedural hierarchy shown in
Figure 20.5. A text plan operator that would fire for this goalwould be as
follows:

Name: Expand Purpose
Effect:

(COMPETENT hearer (DO-ACTION ?action))
Constraints:

(AND
(c-get-all-substeps ?action ?sub-actions)
(NOT (singular-list? ?sub-actions))

Nucleus:
(COMPETENT hearer (DO-SEQUENCE ?sub-actions))

Satellites:
(((RST-PURPOSE (INFORM s hearer (DO ?action)))

*required*))

The basic idea of this plan operator is to explain how to do a particular action
(“?action”) by explaining how to do its substeps (“?substeps”). Note that the
effect field matches the goal we posted earlier. An operator is applicable
6 This text planner is adapted from the work of Moore and Paris (1993).
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when its constraints hold. In this case, the main action (“?action”) must have
more than one sub-action. Because this is true in the currentexample (see
Figure 20.5), the operator inserts a rhetorical purpose node into the discourse
structure along with the goal specifications for its satellite and nucleus. The
satellite informs the hearer of the purpose of performing the main action,
and the nucleus lists the sub-actions required to achieve this goal. Note that
the effect, constraints, nucleus and satellite fields of theoperator make use
of variables (identifiers starting with “?”) that are unifiedwhen the operator
is applied. Thus, the goal action is bound to “?action” and can be accessed
throughout the rest of the plan operator.

One other thing to notice about the plan operator is the way inwhich
content selection is done. The constraint field specifies that there must be
substeps and that there must be more than one of them. Determining whether
the first constraint holds requires that the system retrievethe sub-steps from
the knowledge base. These sub-steps are then used as the content of the
nucleus node that is constructed. Thus, the plan operators themselves do the
content selection as required by the discourse planning process.

The full text structure produced by the planner is shown in Figure 20.7.
The root node of this tree (i.e., the horizontal line at the very top) is the node
produced by the previous plan operator. The first nucleus node in Figure 20.7
is the multi-nuclear node comprising all the sub-actions. The plan operator
that produces this node is as follows:

Name: Expand Sub-Actions
Effect:

(COMPETENT hearer (DO-SEQUENCE ?actions))
Constraints:

NIL
Nucleus:

(foreach ?actions (RST-SEQUENCE
(COMPETENT hearer (DO-ACTION ?actions))))

Satellites:
NIL

This operator achieves the nucleus goal posted by the previous operator. It
posts a rhetorical node with multiple nuclei, one for each sub-action required
to achieve the main goal. With an appropriate set of plan operators, this
planning system can produce the discourse structure shown in Figure 20.7,
which could then be linearized into the following text:
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Figure 20.7 The full rhetorical structure for the example text

To save a new file

1. Choose the save option from the file menu.
The system will display the save-file dialog box.

2. Choose the folder.
3. Type the file name.
4. Click the save button.

The system will save the document.

All of these sentences can be generated by a surface realizer. The last
one, in particular, was identified as example 20.2 in the previous sections. As
mentioned in the section on schema-based discourse planning, the problem
of microplanning has been deferred to Section 20.5.

Summary

In this section, we have seen how schema-based mechanisms can take ad-
vantage of consistent patterns of discourse structure. Although this approach
has proven effective in the many contexts, it is not flexible enough to handle
more varied generation tasks. Discourse planning based on rhetorical rela-
tions was introduced to add the flexibility required to handle these sorts of
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tasks.

20.5 OTHER ISSUES

This section introduces issues that were not discussed in detail in the previ-
ous sections.

Microplanning

The previous sections did not detail the process of mapping from the dis-
course plans described in the examples to the inputs to the surface realizers.
The discourse structures, such as the one shown in Figure 20.7, specified
the high-level or macro structure of the text, but few of the details expected
as input to the surface realizers. The problem of doing this more detailed
planning is calledmicroplanning. MICROPLAN­

NING

In most generation applications, microplanning is simply hard-wired.
For example, in instruction generation systems, objects can be referred to in
the same way in all cases, and user actions can be expressed asseparate im-
perative sentences. This greatly simplifies the problem, but tends to produce
monotonous texts such as the one shown in example 20.3. This illustrates
two of the primary areas of concern in microplanning:referring expres-
sionsandaggregation. REFERRING

EXPRES­
SIONS
AGGREGA­
TIONPlanning a referring expression requires that we determinethose as-

pects of an entity that should be used when referring to that entity in a par-
ticular context. If the object is the focus of discussion andhas just been
mentioned, we might be able to use a simple “it”, whereas introducing a new
entity may require more elaborate expressions like “a new document to hold
your term paper”. These issues are discussed in some detail in Chapter 18.

Aggregation is the problem of apportioning the content fromthe knowl-
edge base into phrase, clause, and sentence-sized chunks. We saw an exam-
ple of this in the introduction where two of the actions mentioned in exam-
ple 20.1 were conjoined within the first clause as “you’ve just compiled and
run a simple C program”. This is more readable than the non-aggregated
version given in example 20.3 (“You’ve just compiled a simple C program.
You’ve just run a simple C program”).

Microplanning is frequently seen as an intermediate pipelined mod-
ule placed between the discourse planner and the surface realizer (see Fig-
ure 20.1) (Reiter and Dale, 2000). Indeed, more recent work has emphasized
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microplanning to the point that it is viewed as a task of importance equal to
that of discourse planning and surface realization. It is also possible to add
planning operators to theRST-based planning mechanism described in the
chapter in order to perform microplanning tasks. However the microplan-
ning is done, it serves to map from the output of the discourseplanner to the
input of the surface realizer.

Lexical Selection

Lexical selection refers to the general problem of choosingthe appropriate
words with which to express the chosen content. The surface realizers dis-
cussed in this chapter explicitly inserted closed-class lexical items as they
were required, but deferred the choice of the content words to the discourse
planner. Many planners simplify this issue by associating asingle lexical
item with each entity in the knowledge base.

Handling lexical selection in a principled way requires that the gener-
ation system deal with two issues. First, it must be able to choose the appro-
priate lexical item when more than one alternative exists. In the document-
saving text from the previous section, for instance, the system generated
“Click the save button”. There are alternatives to the lexical item “click”,
including “hit” and “press mouse left on”. The choice between these alterna-
tives could consider: (1) style — in this case “hit” is perhaps more informal
that “click”, (2) collocation — in this case “click” probably co-occurs with
buttons more often in this domain, and (3) user knowledge — inthis case a
novice computer user might need the more fully specified “press mouse left
on”.

Second, the generation system must be able to choose the appropriate
grammatical form for the expression of the concept. For example, the system
could title the section “Saving a new file” rather than “To save a new file”.
This choice between the participle and the infinitive form isfrequently made
based on the forms most commonly employed in a corpus of instructions.

Evaluating Generation Systems

In early work on NLG, the quality of the output of the system was assessed
by the system builders themselves. If the output sounded good, then the sys-
tem was judged a success. Because this is not a very effectivetest of system
quality, much recent interest has been focussed on the rigorous evaluation of
NLG systems. Several techniques have emerged.
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One technique is to statistically compare the output of the generator
with the characteristics of a corpus of target text. If the form chosen by
the generator matches the form most commonly used in the corpus, it is
judged as correct. The danger with this approach is that the corpus is usually
produced by writers that may make errors, thus skewing the corpus statistics.
The assumption is that, as Tolstoy put it (Tolstoy, 1977), “All happy families
are alike, but an unhappy family is unhappy after its own fashion.” In other
words, good text displays a consistent set of characteristics that arise again
and again, while bad text displays idiosycratic characteristics that will not
accumulate statistically.

Another technique is to convene a panel of experts to judge the output
of the generator in comparison with text produced by human authors. In this
variation of the Turing test, the judges do not know which texts were gen-
erated by the system and which were written by human authors.Computer
generated text typically scores lower than human written text, but its quality
approaches that of human authors in some restricted domains.

A final technique is to judge how effective the generated textis at
achieving its goal. For example, if the text is intended to describe some
object, its quality can be measured in terms of how well readers score on
a content quiz given after reading the output text. If the text is intended to
explain how to perform some process, its quality can be measured in terms
of the number of procedural errors made by the reader after reading the text.

Generating Speech

This chapter has focussed on generating text rather than on generating speech.
There are, however, many situations in which speech output is preferable if
not absolutely necessary. These include situations where there is no textual
display, such as when the user is using a telephone, and situations where the
users are unable to look at a textual display, such as when theuser is driving
or when the user is disabled.

A simplistic approach might be to pass the word string that isproduced
by a generation system to a text-to-speech synthesizer of the sort described
in Chapter 4, Chapter 5, and Chapter 7. One problem with this approach was
already discussed on page 120 and page 601: text-to-speech systems must
then deal withhomographs(i.e., words with the same spelling but differentHOMO­

GRAPHS

pronunciations). Consider the following example:

(20.7) Articulatepeople can clearlyarticulate the issues.

Here, the two instances of the spelling “articulate” must bepronounced dif-
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ferently. Another problem is the treatment ofprosody, which requires that
appropriate pitch contours and stress patterns be assignedto the speech being
produced.

The simplistic approach requires the text-to-speech system to solve
both of these problems by analyzing the input text. Homographs can fre-
quently be distinguished using part-of-speech tagging (the adjective and verb
forms of “articulate” are pronounced differently) or by theword-sense dis-
ambiguation algorithms of Chapter 17. As Chapter 4 (page??) suggests,
automatic generation of prosody is a much harder problem. Some prosodic
information can be deduced by distinguishing questions from non-questions,
and by looking for commas and periods. In general, however, it is not easy
to extract the required information from the input text.

An alternative to the simplistic approach is to pass a richerrepresenta-
tion from the NLG system to the speech synthesizer. A typicalNLG system
knows the semantics and part of speech of the word it intends to generate,
and can annotate the word with this information to help select the proper
word pronunciation. The system could also annotate the output with dis-
course structure information to help synthesize the properprosody. To date,
there has been very little work on this area in NLG.

20.6 SUMMARY

Language Generation is the process of constructing naturallanguage outputs
from non-linguistic inputs. As a field of study, it usually does not include the
study of simpler generation mechanisms such ascanned textandtemplate
filling .� Language generation differs from language understanding in that it fo-

cuses on linguisticchoice rather than on resolving ambiguity. Issues
of choice in generation includecontent selection, lexical selection,
aggregation, referring expression generation, anddiscourse struc-
turing .� Language generation systems include a component that plansthe struc-
ture of the discourse, called adiscourse planner, and one that gener-
ates single sentences, called asurface realizer. Approaches for dis-
course planning includetext schemataandrhetorical relation plan-
ning. Approaches for surface realization includeSystemic Grammar
andFunctional Unification Grammar .
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ator input, which includes the fine-grained tasks ofreferring expres-
sion generation,aggregation, andlexical selection.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Excluding canned text and template filling mechanisms, natural language
generation is a young field relative to the rest of language processing. Some
minor forays into the field occurred in the 50’s and 60’s, mostly in the con-
text of machine translation, but work focusing on generation didn’t arise until
the 70’s. Simmons and Slocum’s system (1972) used ATN’s to generate dis-
course from semantic networks, Goldman’sBABEL (1975) used decision net-
works to perform lexical choice, and Davey’sPROTEUS(1979) produced de-
scriptions of tic-tac-toe games. The 80’s saw the establishment of generation
as a distinct field of research. Influential contributions onsurface realization
were made by McDonald (1980) and thePENMAN project (Mann, 1983), and
on text planning by McKeown (1985) and Appelt (1985). The 90’s have seen
continuing interest with the rise of generation-focussed workshops, both Eu-
ropean and international, and organizations (cf. the Special Interest Group
on language GENeration, http://www.aclweb.org/siggen).Kukich (1988)
and Reiter and Dale (2000) have discussed the uses and limitations of canned
text and template mechanisms.

As of this writing, no textbooks on generation exist. However, a text
on applied generation is in press (Reiter and Dale, 2000), and a number of
survey papers have been written (Daleet al., 1998a; Uszkoreit, 1996; Mc-
Donald, 1992; Bateman and Hovy, 1992; McKeown and Swartout,1988). A
number of these references discuss the history of NLG and itsrelationship to
the rest of language processing. McDonald (1992) introduces the distinction
between hypothesis management and choice.

Generation architectures have typically pipelined the tasks of planning
and realization. The pipelining is used to constrain the search space within
each of the modules and thus to make the generation task more tractable (Re-
iter and Dale, 2000; McDonald, 1988; Thompson, 1977). However, these
architectures have the well-known problem that decisions made by the dis-
course planner cannot easily be undone by the realizer (Meteer, 1992). Ap-
pelt’s KAMP (1985) employed a unified architecture for planning and realiza-
tion based on AI planning. This approach, however, has proven computation-
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ally impractical in larger domains. Blackboard architectures have also been
proposed for language generation systems (Nirenburget al., 1989). The var-
ious concerns of microplanning itself have been the subjectof considerable
interest, including work on referring expressions (Dale, 1992; Appelt, 1985),
aggregation (Dalianis, 1999; Mann and Moore, 1981), and other grammat-
ical issues (Vander Linden and Martin, 1995; Meteer, 1992).The related
issues of lexical selection (Stede, 1998; Reiter, 1990; Goldman, 1975) and
tailoring the output text to particular audiences (Paris, 1993; Hovy, 1988a)
have also received attention.

The late 80’s and early 90’s saw the construction of several reusable
NLG systems, including two that have been distributed publicly: KPML

(Bateman, 1997) andFUF (Elhadad, 1993). These tools can be downloaded
through the SIGGEN web site. Most of this work was done in Lisp, but
recent efforts have been made to port the systems to other languages and
platforms.

Systemic functional linguistics (SFL) was developed by Halliday (1985b).
It has remained largely independent of generative linguistics and is relatively
unknown in the language processing community as a whole. Attempts to
use it in parsing have had limited success (O’Donnell, 1994;Kasper, 1988).
However, it has had a deep impact on NLG, being used in one formor an-
other by a number of generation systems, including Winograd’s SHRDLU

(1972b), Davey’sPROTEUS, Patten’sSLANG (1988),PENMAN (Mann, 1983),
FUF (Elhadad, 1993) andILEX (Daleet al., 1998b). The example systemic
grammar in this chapter is based in part on Winograd’s discussion (1972b).
SFL’s most complete computational implementation is the Komet-Penman
MultiLingual development environment (KPML), which is a descendent of
PENMAN. KPML is packaged withNIGEL, a large English generation gram-
mar, as well as an environment for developing multilingual grammars. It
also includes a Sentence Planning Language (SPL) that forms a more usable
interface to the systemic grammar itself.SPL specifications are considerably
simpler to build than specifications that must include all the information re-
quired to make all the choices in the system network, but are more flexible
that the spl-constructor example given in the chapter. Consider the following
SPL specification:

(s1 / save
:actor (a1 / system

:determiner the)
:actee (a2 / document
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:determiner the)
:tense future
)

The SPL interpreter will expand this into the series of feature choices re-
quired for the Nigel grammar to generate example 20.2 (“The system will
save the document.”). Each term in this specification gives the role of the
entity (e.g., actor, actee) as well as the semantic type (e.g., save, system,
document). The semantic types areKLONE-styled concepts subordinated to
a general ontology (cf. Chapter 16) of concepts called theupper model UPPER

MODEL

(Batemanet al., 1990). This ontology, which represents semantic distinc-
tions that have grammatical consequences, is used bySPL to determine the
type of entity being expressed and thus to reduce the amount of information
explicitly contained in theSPL specification. This example leaves out the
:speechact assertion term included in the example in the chapter
becauseSPL uses this as a default value if left unspecified.

Functional Unification Grammar was developed by Kay (1979),see
Chapter 11. Its most influential implementation for generation is the Func-
tional Unification Formalism (FUF) developed by Elhadad (Elhadad, 1993,
1992). It is distributed with the English grammarSURGE. Although the
example given in the chapter used a simple phrase-structureapproach to
grammatical categorization (cf. (Elhadad, 1992)), theSURGEgrammar uses
systemic categorizations.

Another linguistic theory that has been influential in language gener-
ation is Mel’čuk’s Meaning Text Theory (MTT) (1988). MTT postulates a
number of levels ranging from deep syntax all the way to surface structure.
Surface realizers that use it, including CoGenTex’sREALPRO (Lavoie and
Rambow, 1997) and ERLI’s AlethGen (Coch, 1996b), start withthe deep
levels and map from level to level until they reach the surface level.

Discourse generation has been a concern of NLG from the beginning.
Davey’s PROTEUS, for example, produced paragraph-length summaries of
tic-tac-toe games. His system structured its output based heavily upon the
structure of the trace of the game which the application system recorded.
Schema-based text structuring, pioneered by McKeown (1985), is more flex-
ible and has been used in a number of applications (Milosavljevic, 1997;
Paris, 1993; McCoy, 1985). The schema-based example presented in this
chapter is based on theCOMET instruction generation system (McKeown
et al., 1990). Although other theories of discourse structure (cf. Chapter 18)
have influenced NLG, including theories by Grosz and Sidner (1986), Hobbs
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(1979a), and Kamp’sDRT (1981), Rhetorical Structure Theory (RST), devel-
oped by Mann and Thompson (1987b), has had the most influence (Marcu,
1998; Scott and Souza, 1990; Hovy, 1988b). The classic automobile exam-
ple in ths chapter is adapted from Mann and Thompson (Mann andThomp-
son, 1986), and theRST-based planning example is based on Moore and
Paris’ text planner (Moore and Paris, 1993) as it was used in the DRAFTER

(Paris and Vander Linden, 1996; Pariset al., 1995), ISOLDE (Pariset al.,
1998) andWIP (Wahlsteret al., 1993) projects. The use of this planner in
the context of an interactive dialog system is described by Moore and Paris
(1993). A more recent alternative to this approach has been developed by
Marcu (1998).

Applications of NLG tend to focus on relatively restricted sublanguages
(cf. Chapter 21), including weather reports (Coch, 1998; Goldberg et al.,
1994), instructions (Pariset al., 1998; Paris and Vander Linden, 1996; Wahlster
et al., 1993), encyclopedia-like descriptions (Milosavljevic,1997; Daleet al.,
1998b), and letters (Reiteret al., 1999). The output can be delivered as sim-
ple text or hypertext (Lavoieet al., 1997; Paris and Vander Linden, 1996),
dynamically generated hypertext (Daleet al., 1998b), multimedia presen-
tation (Wahlsteret al., 1993), and speech (Van Deemter and Odijk, 1997).
Information on a number of these systems is available on-line at the SIGGEN
web site.

The evaluation of NLG systems has received much recent attention.
Evaluations have assessed the similarity of the output witha representative
corpus (Yeh and Mellish, 1997; Vander Linden and Martin, 1995), convened
panels of experts to review the text (Lester and Porter, 1997; Coch, 1996a),
and tested how effective the text was at achieving its communicative purpose
(Reiteret al., 1999). It is also becoming more common for the usability of
the NLG system itself to be evaluated.

Other issues of interest in NLG include the use of connectionist and
statistical techniques (Langkilde and Knight, 1998; Ward,1994), and the
viability of multilingual generation as an alternative to machine translation
(Hartley and Paris, 1997; Goldberget al., 1994).

EXERCISES

20.1 Use the systemic grammar given in the chapter to build a multiple-
layer analysis of the following sentences:
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a. The document will be saved by the system.

b. Will the document be saved by the system?

c. Save the document.

20.2 Extend the systemic grammar given in the chapter to handle the fol-
lowing sentences:

a. The document is large. (a “relational process”)

b. Give the document to Mary.

c. Is the document saved? (a “polar interrogative”)

20.3 Use the FUF grammar given in the chapter to build a fully unified FD
for the following sentences:

a. The system saves the document.

b. The systems save the document.

c. The system saves the documents.

20.4 Extend the FUF grammar given in the chapter to handle the following
sentences:

a. The document will be saved by the system. (i.e., the passive)

b. Will the document be saved by the system? (i.e., wh- questions)

c. Save the document. (i.e., imperative commands)

20.5 Select a restricted sublanguage (cf. Chapter 21) and build either a sys-
temic orFUF generation grammar for it. The sublanguage should be subset
of a restricted domain such as weather reports, instructions, or responses to
simple inquires. As a test, you can download eitherFUF or KPML, whichever
is appropriate, and implement your grammar. Both systems can be found
through the SIGGEN web site. (Note that it is much easier to build test
grammars withFUF than withKPML.)

20.6 Compare and contrast theSPL input toKPML (discussed in the biblio-
graphical and historical notes) and theFD input toFUF. What decisions are
required of the discourse planner for each of them? What are their relative
strengths and weaknesses?

20.7 (Adapted from McKeown (1985)) Build an ATN appropriate for struc-
turing a typical encyclopedia entry. Would it be in any way different from
an ATN for a dictionary entry, and if so, could you adapt the same ATN for
both purposes?
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20.8 (Adapted from Bateman (1997)) Build a system network for using
“dr”, “mr”, “ms”, “mrs”, “miss” in expressions like “Miss. Jones” and “Mr.
Smith”. What information would the knowledge base need to contain to
make the appropriate choices in your network?

20.9 Do anRST analysis for the following text:

Temperature Adjustment
Before you begin, be sure that you have administrator access

to the system. If you do, you can perform the following steps:

a. From the EMPLOYEE menu select the Adjust Temperature
item. The system displays the Adjust Temperature dialog
box.

b. Select the room. You may either type the room number or
click on the appropriate room’s icon.

c. Set the temperature. In general you shouldn’t change the
temperature too drastically.

d. Click the ok button. The system sets the room temperature.

By entering a desired temperature, you are pretending that
you just adjusted the thermostat of the room that you are in.

The chapter lists a subset of theRST relations. Does it give you all the
relations you need? How do you think your analysis would compare with
the analyses produced by other analysts?

20.10 How doesRST compare with Grosz and Sidner’s theory of discourse
presented in Chapter 18? Does one encompass the other or do they address
different issues? Why do you think thatRST has had a greater influence on
NLG?

20.11 Would RST be useful for interactive dialog? If so, how would you
use it? If not, what changes would you make to get it to work

20.12 (Adapted fromISOLDE (Pariset al., 1998)) Speculate on how you
would enhance anRST-based discourse planner to plan multi-modal dis-
course, which would include diagrams and formatting (such as html for-
matting).

20.13 (Adapted fromSTOP (Reiter et al., 1999)). This chapter did not
discuss template generators in any detail, it simply mentioned that they are
easy to implement but inflexible. Try writing a simple template generator
that produces persuasive letters addressed to people trying to convince them
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to stop smoking. The letter should include the standard elements of a letter
as well as a discussion of the dangers of smoking and the advantages of
quitting. For ideas, you can visit theSTOP web site, available through the
SIGGEN web site.

How flexible can you make the mechanism within the confines of tem-
plate generation? Can you extend the system to take a case fileon a partic-
ular patient that contains their medical history and produces a customized
letter?

20.14 (Adapted fromPEBA (Milosavljevic, 1997)). In the manner dis-
cussed in exercise 20.13, write a template generator that produces encyclopedia-
like descriptions of animals. For ideas, you can visit thePEBA II web site,
available through the SIGGEN web site.





21
MACHINE
TRANSLATION�

. . . Translation is a fine and exacting art, but there is much about
it that is mechanical and routine Kay (1997)

This chapter introduces techniques formachine translation (MT ), the MACHINE
TRANSLATION

MTuse of computers to automate some or all of the process of translating from
one language to another. Translation, in its full generality, is a difficult,
fascinating, and intensely human endeavor, as rich as any other area of hu-
man creativity. Consider the following passage from the endof Chapter
45 of the 18th-century novelThe Story of the Stone, also calledDream of
the Red Chamber, by Cao Xue Qin (Cao, 1973), with the Chinese original
transcribed in the Mandarin dialect, and the English translation by David
Hawkes:

As she lay there alone, Dai-yu’s thoughts turned to Bao-chai. . . Then she lis-
tened to the insistent rustle of the rain on the bamboos and plantains outside
her window. The coldness penetrated the curtains of her bed.Almost without
noticing it she had begun to cry.

dai yu
Dai-yu

zi
alone

zai
on

chuang
bed

shang
top

gan nian
think-of-with-gratitude

bao chai. . .
Bao-chai

you
again

ting jian
listen to

chuang
window

wai
outside

zhu
bamboo

shao
tip

xiang
plantain

ye
leaf

zhe
of

shang,
on-top,

yu
rain

sheng
sound

xi
sigh

li,
drip,

qing
clear

han
cold

tou
penetrate

mu,
curtain,

bu
not

jue
feeling

you
again

di
fall

xia
down

lei
tears

lai.
come.

Consider some of the issues involved in this kind of literarytransla-
tion. First, there is the problem of how to translate the Chinese names,�This chapter mostly by Nigel Ward
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complicated by Cao’s frequent use of names involving wordplay. Hawkes
chose to use transliterations for the names of the main characters but to
translate names of servants by their meanings (Aroma, Skybright). Chinese
rarely marks verbal aspect or tense; Hawkes thus had to decide to translate
Chinesetou as penetrated, rather than saywas penetratingor had pene-
trated. Hawkes also chose the possessive pronounher to makeher window
more appropriate for the mood of a quiet bedroom scene thanthe window,
To make the image clear for English readers unfamiliar with Chinese bed-
curtains, Hawkes translatedma (‘curtain’) ascurtains of her bed. Finally,
the phrasebamboo tip plantain leaf, although elegant in Chinese, where such
four-character phrases are a hallmark of literate prose, would be awkward if
translated word-for-word into English, and so Hawkes used simply bamboos
and plantains.

Translation of this sort clearly requires a deep and rich understanding
of the source language and the input text, and a sophisticated, poetic, and
creative command of the target language. The problem of automatically
producing a high-quality translation of an arbitrary text from one language
to another is thus far too hard to automate completely. But certain simpler
translation tasks can be addressed with current computational models. In
particular, machine translation system often focus on (1) tasks for which
a rough translation is adequate, (2) tasks where a human post-editor can
be used to improve MT output, and (3) tasks limited to smallsublanguage
domains in which fully automatic high quality translation is achievable.

Information acquisition on the Web is the kind of ‘information pull’
task where readers may be willing to settle for a very rough translation. Con-
sider these extracts from a French web page and a machine translation:

Nous sommes une association type Loi de 1901, et notre raisond’être
est de practiquer, de promouvoir, de faire découvrir le Paintball, et le
cas échéant de supporter nos équipes de compétition: . .. Si vous avez
des questions, des envies d’organisation de parties, des envies de jouer
tout courte et des envies de découvrir, n’hésitez pas à nous contacter
par courrier ou par téléphone ou bien encore par eMail. . . .Au sortir de
la saison 97/98 et surtout au début de cette saison 98/99, les effectifs
des HORS-TAXE sont modifiés.

We are a standard association Loi of 1901, and our raison d’ecirc;tre is to
practice, promote, make discover Paintball, and to supportour teams of com-
petition if necessary: . . . If you have questions, desires oforganization of
parts, desires for playing very short and desires for discovering, do not hes-
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itate to contact us by mail or telephone or even by eMail. . . . With leaving
season 97/98 and especially at the beginning of this season 98/99, manpower
of the HORS-TAXE are modified!

This is good enough to figure out that we have the found the home
page of a paintball team, and one that seems friendly and perhaps willing to
accept new members. Armed with this information, we can thentry to find
someone to properly translate it for us, or perhaps just go ahead and send
e-mail to the organizer to ask if we can play. Incidentally, the use of MT for
such document-finding purposes can sometimes be avoided or made more
efficient by usingcross-language information retrievaltechniques, which

CROSS­
LANGUAGE
INFORMATION
RETRIEVALfocus on the retrieval of documents in a language other than that used for the

query terms (Oard, 1997).
Rough translation is also useful as the first stage in a complete trans-

lation process. An MT system can produce a draft translationthat can be
fixed up in apost-editing process by a human translator. Even a roughPOST­EDITING

draft can sometimes speed up the overall translation process. Strictly speak-
ing, systems used in this way are doingcomputer-aided human transla-
tion (CAHT or CAT) rather than (fully automatic) machine translation. This COMPUTER­

AIDED HUMAN
TRANSLATION

model of MT usage is effective especially for high volume jobs and those
requiring quick turn-around. The most familiar example is perhaps the trans-
lation of software manuals forlocalization to reach new markets. AnotherLOCALIZA­

TION

effective application is the translation of market-movingfinancial news, for
example from Japanese to English for use by stock traders.

Weather forecasting is an example of asublanguagedomain that can SUBLAN­
GUAGE

be modeled completely enough to use raw MT output even without post-
editing. Weather forecasts consist of phrases likeCloudy with a chance of
showers today and Thursday., Low tonight 4, high Thursday 10.andOut-
look for Friday: sunny.This domain has a limited vocabulary and only a
few basic phrase types. Ambiguity is rare, and the senses of ambiguous
words are distinct and easily disambiguated based on local context, using
word classes and semantic features such asMONTH, PLACE, DIRECTION,
TIME POINT, TIME DURATION , DEGREE-OF-POSSIBILITY. Other domains
that are sublanguage-like include equipment maintenance manuals, air travel
queries, appointment scheduling, and restaurant recommendations.

This chapter breaks with the pattern of previous chapters inthat the
focus is less on introducing new techniques than on showing how the tech-
niques presented earlier are used in practice. One of the themes of this chap-
ter is that there are often trade-offs and difficult choices among alternative
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approaches and techniques.
Section 21.1 gives some simple illustrations of the ways in which lan-

guages differ. The following four sections are organized four basic mod-
els for doing MT: Section 21.2 introduces the use of syntactic transforma-
tions for overcoming differences in grammar, as well as sometechniques for
choosing target language words. Section 21.3 introduces some ways of ex-
ploiting meaning during translation, in particular the useof thematic roles
and primitive decomposition. Section 21.4 presents the minimalist ‘direct’
approach. Section 21.5 discusses the use of statistical techniques to improve
various aspects of MT. Finally, Section 21.6 discusses reasons for the gap
between expectations and performance, and discusses strategies for meeting
users’ needs despite finite development resources.

21.1 LANGUAGE SIMILARITIES AND DIFFERENCES

When you accidentally pick up a radio program in some foreignlanguage it
seems like chaos, completely unlike the familiar languagesof your everyday
life. But there are patterns in this chaos, and indeed, some aspects of human
language seem to beuniversal, holding true for every language. Many uni-UNIVERSAL

versals arise from the functional role of language as a communicative system
by humans. Every language, for example, seems to have words for referring
to people, for talking about women, men, and children, eating and drink-
ing, for being polite or not. Other universals are more subtle; for example
Chapter 8 mentioned that every language seems to have nouns and verbs.

Even when languages differ, these differences often have systematic
structure. The study of systematic cross-linguistic similarities and differ-
ences is calledtypology (Croft (1990), Comrie (1989)). This section sketchesTYPOLOGY

some typological facts about crosslinguistic similarity and difference. This
bears on our main topic, MT, in that the difficulty of translating from one
language to another depends a great deal on how similar the languages are
in their vocabulary, grammar, and conceptual structure.

Morphologically, languages are often characterized alongtwo dimen-
sions of variation. The first is the number of morphemes per word, rang-
ing from isolating languages like Vietnamese and Cantonese, in which eachISOLATING

word generally has one morpheme, topolysynthetic languages like SiberianPOLYSYN­
THETIC

Yupik (Eskimo), in which a single word may have very many morphemes,
corresponding to a whole sentence in English. The second dimension is the
degree to which morphemes are segmentable, ranging fromagglutinativeAGGLUTINA­

TIVE
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languages like Turkish (discussed in Chapter 3), in which morphemes have
relatively clean boundaries, tofusion languages like Russian, in which aFUSION

single affix may conflate multiple morphemes, like-om in the wordstolom,
(table-SG-INSTR-DECL1) which fuses the distinct morphological categories
instrumental, singular, and first declension.

Syntactically, languages are perhaps most saliently different in the ba-
sic word order of verbs, subjects, and objects in simple declarative clauses.
German, French, English, and Mandarin, for example, are allSVO lan- SVO

guages, meaning that the verb tends to come between the subject and object.
Hindi and Japanese, by contrast, areSOV languages, meaning that the verbSOV

tends to come at the end of basic clauses, while Irish, Classical Arabic, and
Biblical Hebrew areVSO languages. Two languages that share their basicVSO

word-order type often have other similarities. For exampleSVO languages
generally haveprepositionswhile SOV languages generally havepostposi-
tions; English hasto Yurikowhere Japanese hasYuriko ni.

Another important syntactico-morphological distinctionis between
head-marking and dependent-marking languages (Nichols, 1986). Head-
marking languages tend to mark the relation between the headand its depen-
dents on the head. Dependent-marking languages tend to markthe relation
on the non-head. Nichols (1986) for example, notes that Hungarian marks
the possessive relation with an affix (A) on the head noun (H),where English
marks it on the (non-head) possessor:

(21.1) English
Hungarian

the
az
the

man-A’s
ember
man

Hhouse
Hház-Aa
house-his

This syntactic distinction is related to a semantic distinction in how
languages map conceptual notions onto words. Talmy (1985) and (1991)
noted that languages can be characterized by whether direction of motion
and manner of motion are marked on the verb or on the ‘satellites’: particles,
prepositional phrases, or adverbial phrases. For example abottle floating out
of a cave would be described in English with the direction marked on the
particleout as:

(21.2) The bottle floated out.

but in Spanish with the direction marked on the verb as

(21.3) La
The

botella
bottle

salió
exited

flotando.
floating.
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Languages that mark the direction of motion on the verb (leaving the
satellites to mark the manner of motion) Talmy called verb-framed; Slobin
(1996) gives examples like Spanishacercarse‘approach’,alcanzar‘reach’,
entrar ‘enter’, salir ‘exit’. Languages that mark the direction of motion on
the satellite (leaving the verb to mark the manner of motion)Talmy called
satellite-framed; Slobin (1996) gives examples like Englishcrawl out, float
off, jump down, walk over to, run after. Talmy (1991) noted that verb-
framed languages include Romance, Semitic, Japanese, Tamil, Polynesian,
most Bantu, most Mayan, Nez Perce, and Caddo, while satellite-framed lan-
guages include most Indo-European minus Romance, Finno-Ugric, Chinese,
Ojibwa, and Warlpiri.

In addition to such properties that systematically vary across large
classes of languages, there are many specific characteristics, more or less
unique to single languages. English, for example, has an idiosyncratic syn-
tactic construction involving the wordtherethat is often used to introduce a
new scene in a story, as inthere burst into the room three men with guns.

To give an idea of how trivial, yet crucial, these differences can be,
think of dates. Dates not only appear in various formats — typically YYM-
MDD in Japanese, MM-DD-YY in American English, and DD/MM/YYin
British English — the calendars themselves may differ, for example dates in
Japanese often are relative to the start of the current Emperor’s reign rather
than to the start of the Christian Era.

Turning now to the question of lexical organization, here too there
are interesting patterns. Many words can be translated relatively directly
into other languages. Englishdog, for example, translates to Mandaringǒu.
Where English haschocolate, Italian hascioccolatoand Japanese haschoko-
reeto.1

Sometimes, rather than a single word, there is a fixed phrase in the
target language; Frenchinformatique thus translates to Englishcomputer
science. In more difficult cases, however, a word in one language doesnot
map so simply to a word or phrase in another language.

Grammatically, for example, a word may translate best to a word of an-
other part of speech in the target language. Many English sentences involv-
ing the verblike must be translated into German using the adverbialgern;
thusshe likes to singmaps tosie singt gerne, where the syntactic structure is
also affected.

1 althoughchokoreetoin Japanese is perforce more formal than Englishchocolate, since
Japanese also has the informal short formchoko.
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Sometimes one language places more grammatical constraints on word
choice than another. English, for example, distinguishes gender in pronouns
where Mandarin does not; thus translating a third-person singular pronoun
from Mandarin to English requires deciding whether the original referent
was masculine or feminine. The same is true when translatingfrom the
English pronoun pluralthey, unspecified for gender, into French (masculine
ils, feminineelles). In Japanese, there is no single word foris, speakers must
choose betweeniru or aru, based on whether the subject is animate2 or not.

Such differences in specificity also occur on the semantic side: one lan-
guage may divide up a particular conceptual domain in more detail than an-
other. English, for example, has a particularly impoverished kinship vocab-
ulary; the single wordbrothercan indicate either a younger or older brother.
Japanese and Chinese, by contrast, both distinguish seniority in sibling rela-
tions. Figure 21.1 gives some further examples.

English brother Japanese otooto(younger)
Japanese oniisan(older)
Mandarin gege(older)
Mandarin didi (older)

English wall German Wand(inside)
German Mauer(outside)

English know French connâitre (be acquainted with)
French savoir (know a proposition)

English they French ils (masculine)
French elles(feminine)

German berg English hill
English mountain

Mandarin tā English he, she, or it

Figure 21.1 Differences in specificity.

The way that languages differ in lexically dividing up conceptual space
may be more complex than this one-to-many translation problem, leading to
many-to-many mappings. For example Figure 21.2 summarizessome of the
complexities discussed by Hutchins and Somers (1992) in relating English
leg, foot, andpaw, to the Frenchjambe, pied, patte, etc.

Further, one language may have alexical gap, where no word or phrase,LEXICAL GAP

short of an explanatory footnote, can express the meaning ofa word in the

2 Taxis and buses in service sometimes count as animate for this purpose.
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leg
animal
leg

   bird
foot

animal
   pawpatte

foot

paw

jambe

human
leg

pied

chair
leg human

    foot

etape
journey
leg

Figure 21.2 The complex overlap between Englishleg, foot, etc, and vari-
ous French translations.

other language. For example, Japanese does not have a word for privacy,
and English does not have a word for Japaneseoyakoko(we make do with
filial piety).

Moreover, dependencies on cultural context, as manifest inthe back-
ground and expectations of the readers of the original and translation, further
complicate matters. A number of translation theorists (Steiner, 1975; Barn-
stone, 1993; Hofstadter, 1997) refer to a clever story by Jorge Luis Borges
showing that even two linguistic texts with the same words and grammar may
have different meanings because of their different cultural contexts. Borges
invents Menard, a French author in the 1930’s whose aim was torecreate
Cervantes’Don Quixoteword for word:

The text of Cervantes and that of Menard are verbally identical, but the sec-
ond is almost infinitely richer. (More ambiguous, his detractors will say; but
ambiguity is a richness.) It is a revelation to compare theDon Quijoteof
Menard with that of Cervantes. The latter, for instance, wrote:

. . . la verdad, cuya madre es la historia,émula del tiempo, depósito de
las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, ad-
vertencia de lo por venir.

Menard, on the other hand, writes:

. . . la verdad, cuya madre es la historia,émula del tiempo, depósito de
las acciones, testigo de lo pasado, ejemplo y aviso de lo presente, ad-
vertencia de lo por venir.
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Equally vivid is the contrast in styles. The archaic style ofMenard – in the
last analysis, a foreigner — suffers from a certain affectation. Not so that of
his precursor, who handles easily the ordinary Spanish of his time.

These last points suggest a more general question about cultural dif-
ferences and the possibility (or impossibility) of translation. A theoretical
position sometimes known as theSapir-Whorf hypothesissuggests that lan-

SAPIR­
WHORF
HYPOTHESIS

guage may constrain thought — that the language you speak mayaffect the
way you think. To the extent that this hypothesis is true, there can be no per-
fect translation, since speakers of the source and target languages necessarily
have different conceptual systems. In any case it is clear that the differences
between languages run deep, and that the process of translation is not going
to be simple.

21.2 THE TRANSFERMETAPHOR

As the previous section illustrated, languages differ. Onestrategy for doing
MT is to translate by a process of overcoming these differences, altering the
structure of the input to make it conform to the rules of the target language.
This can be done by applyingcontrastive knowledge, that is, knowledge CON­

TRASTIVE
KNOWLEDGE

about the differences between the two languages. Systems that use this strat-
egy are sometimes said to be based on thetransfer model. TRANSFER

MODEL

Since this requires some representation of the structure ofthe input,
transfer presupposes a parse of some form. Moreover, since transfer only
results in a structure for the target language, it must be followed by a gener-
ation phase to actually create the output sentence. Thus, onthis model, MT
involves three phases:analysis, transfer, andgeneration, where transfer
bridges the gap between the output of the source language parser and the
input to the target language generator. Figure 21.3 shows a sketch of this
transfer architecture.

It is worth noting that a parse for MT may differ from parses required
for other purposes. For example, suppose we need to translate John saw the
girl with the binocularsinto French. The parser does not need to bother to
figure out where the prepositional phrase attaches, becauseboth possibilities
lead to the same French sentence. However this is not true forall prepo-
sitional phrase attachments, and so a MT system needs also tobe able to
represent disambiguated parses, while still being able to work with ambigu-
ous ones (Emele and Dorna, 1998).
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transfer

parsing generation

source language
parse tree

target language
parse tree

source language words target language words

Figure 21.3 The transfer architecture for Machine Translation.

Syntactic Transformations

Let us begin by considering syntactic differences. The previous section noted
that in English the unmarked order in a noun-phrase had adjectives precede
nouns, but in French adjectives follow nouns.3 Temporarily postponing the
question of how to translate the words, let’s consider how anMT system can
overcome such differences.

noun phrase

adjective noun

noun phrase

adjectivenoun

Figure 21.4 A simple transformation that reorders adjectives and nouns

Figure 21.4 suggests the basic idea. Here we transform one parse tree,
suitable for describing an English phrase, into another parse tree, suitable
for describing a French sentence. In general,syntactic transformations areSYNTACTIC

TRANSFOR­
MATIONS

operations that map from one tree structure to another.
Now let’s illustrate how roughly how such transformations can restruc-

ture an entire sentence, using a simplified sentence:

(21.4) There was an old man gardening.

We will assume that the parser has given us a structure like the follow-
ing. We will also assume that the system starts performing transformations
3 There are exceptions to this generalization, such asgalore in English andgros in French;
furthermore in French some adjectives can appear before thenoun with a different meaning;
route mauvaise‘bad road, badly-paved road’ versusmauvaise route‘wrong road’ (Waugh,
1976).
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at the top node of the tree and works its way down:

Existential-There-Sentence

there was an old man gardening

Since this sentence involves an “existentialthereconstruction”, which
has no analog in Japanese, we immediately have to apply a transformation
that deletes the sentence-initialthereand converts the fourth constituent to
a relative clause modifying the noun, producing something like following
structure:

Intermediate-Representation

an old man gardening was

The resulting structure is thus something more like the structure of a
pseudo-English sentence:an old man, who was gardening, was.

Next, another transformation applies to reverse the order of the noun
phrase and the relative clause, giving something like the following structure:

Intermediate-Representation-2

gardening an old man was

At this point all relevant transformations have applied, and lexical
transfer takes place, substituting Japanese words for the English ones, as
discussed in the next section. This gives the final structurebelow:

Japanese-S

niwa no teire o suru ojiisan ita

After this, a little more syntactic work is required to produce an actual
Japanese sentence, including: 1. adding the wordga, which is required in
Japanese to mark the subject, 2. choosing the verb that agrees with the sub-
ject in terms of animacy, namelyiru, notaru, and 3. inflecting the verbs. The
final generation step traverses or otherwise linearizes thetree to produce a
string of words. Although these generation tasks can be doneby the tech-
niques of Chapter 20, practical systems usually do them directly with simple
procedures. In any case, the final output will be:



808 Chapter 21. Machine Translation

niwa
garden

no
GEN

teire
upkeep

o
OBJ

shite
do

ita
PAST-PROG

ojiisan
old man

ga
SUBJ

ita.
was

Table 21.5 shows a rough representation of the transformations we
have discussed. Such transformations can be implemented aspattern-rewrite
rules: if the input matches the left side of a transformation, it is rewritten
according to the right side.

English to French:

1. NP! Adjective1 Noun2)
NP! Noun2 Adjective1

Japanese to English:

2. Existential-There-Sentence! There1 Verb2 NP3 Postnominal4)
Sentence! (NP! NP3 Relative-Clause4) Verb2

3. NP! NP1 Relative Clause2)
NP! Relative-Clause2 NP1

Figure 21.5 An informal description of some transformations.

Transformations in MT systems also may have more complex condi-
tions for when they apply, and may include a “trigger”, that is, a specific
word that is used to index the pattern, for efficiency. One wayto formalize
transformations is with unification-based models; indeed as Chapter 11 dis-
cussed, the need for a reversible operation for MT was the original motiva-
tion for both feature-structure unification (Kay, 1984) andterm-unification
(Colmerauer and Roussel, 1996). However, unification is computationally
expensive and is not commonly used.

Lexical Transfer

Some of the output words are determined in the course of syntactic transfer
or generation. In the example above, the function wordsgaandita are mostly
grammatically controlled. Content words are another matter. The process of
finding target language equivalents for the content words ofthe input,lexical
transfer, is difficult for the reasons introduced in Section 21.1.LEXICAL

TRANSFER

The foundation of lexical transfer is dictionary lookup in acrosslan-
guage dictionary. As was discussed earlier, the translation equivalent may
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be a single word or it may be a phrase, as in this example wheregardening
becomesniwa no teire o suru(‘do garden upkeep’). Furthermore, sometimes
a generation process must subsequently inflect words in suchphrases, as in
this case.

Section 21.1 also discussed the problem of words that have several pos-
sible translations. In the exampleman is such a word. The correct choice
here wasojiisan (‘old man’), but if the input had beenman is the only linguis-
tic animal, the translation ofmanwould have beenningen(‘human being,
man, men’); in most other caseshito (‘person, persons, man, men’) or re-
lated words would have been appropriate. Fortunately thereare at least two
ways to tackle this problem: in the parsing or in the generation stage. The
first method is to treat words likemanas if they were ambiguous. That is, we
assume thatmancan correspond to two more more concepts (perhapsHU-
MAN andADULT MALE ) and that choosing the correct Japanese word is like
disambiguating between these concepts. This way of treating lexical transfer
lets us apply all the standard techniques for lexical disambiguation (Chap-
ter 16). A second way is to treat such words as having only one meaning,
and to handle the selection among multiple possible translations (ningen,
hito, ojiisan and so on) by using constraints imposed by the target language
during generation (Whitelock, 1992). In practice, these cases are more of-
ten dealt with in the parsing stage, as the algorithms for lexical choice dur-
ing generation are high-overhead (Ward, 1994), especiallyfor content words
(but see Section 21.5).

In this specific example, however, the choice of how to translateman
is easy. Because the previous word isold, the correct translation isojiisan
(‘old man’). Such inputs, where multiple source language words must be
expressed with a single target language word, can be difficult to handle, re-
quiring inference in the general case. But many such cases, including this
one, can be treated simply as idioms, with their own entries in the bilingual
dictionary.

21.3 THE INTERLINGUA IDEA: USING MEANING

One problem with the transfer model is that it requires a distinct set of trans-
fer rules for each pair of languages. This is clearly suboptimal for translation
systems employed in multilingual environments like the European Union,
where eleven official languages need to be intertranslated.

This suggests a different perspective on the nature of translation. The
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transfer model treats translation as a process of altering the structure and
words of an input sentence to arrive at a valid sentence of thetarget language.
An alternative to is to treat translation as a process of extracting the meaning
of the input and then expressing that meaning in the target language. If this
can be done, a MT system can do without contrastive knowledge, merely re-
lying on the same syntactic and semantic rules used by a standard interpreter
and generator for the language. The amount of knowledge needed is then
proportional to the number of languages the system handles,rather than to
the square, or so the argument goes.

This scheme presupposes the existence of a meaning representation,
or interlingua , in a language-independent canonical form, like the semanticINTERLINGUA

representations we saw in Chapter 14. The idea is for the interlingua to rep-
resent all sentences that mean the ‘same’ thing in the same way, regardless
of the language they happen to be in. Translation in this model proceeds
by performing a semantic analysis on the input from languageX into the
interlingual representation and generating from the interlingua to language
Y.

A frequently used element in interlingual representationsis the notion
of a small fixed set of thematic roles, as discussed in Chapter16. When used
in an interlingua, these thematic roles are taken to be language universals.
Figure 21.6 shows a possible interlingual representation for there was an old
man gardeningas a unification-style feature structure4. We saw in Chap-
ter 15 how asemantic analyzercan produce such a structure with aAGENT

relation betweenmanandgardening. Note that since the interlingua requires
such semantic interpretation in addition to syntactic parsing, it requires more
analysis work than the transfer model, which only required syntactic pars-
ing. But generation can now proceed directly from the interlingua with no
need for syntactic transformations.

Note that the representation in Figure 21.6 includes the value GAR-
DENING as the value for theEVENT feature, and, although such cases are
familiar from Chapter 14, one might object that this looks more like an En-
glish word than it does an an element in a truly interlingual representation.
There is a deeper question here, that of the appropriate inventory of concepts
and relations for an interlingua; that is whatontology to use. Certainly aONTOLOGY

meaning representation designer has a lot of freedom when selecting a set

4 Of course this is seriously inadequate as an account of the meaning of the existential-there
construction. In fact, the currently least incomplete account of the syntax and semantics of
thereconstructions in English takes 124 pages (Lakoff, 1987).
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EVENT GARDENING

AGENT

264MAN

NUMBER SG

DEFINITENESS INDEF

375
ASPECT PROGRESSIVE

TENSE PAST

37777777775
Figure 21.6 Interlingual representation ofthere was an old man gardening.

of tokens and ascribing meanings to them. However, choice ofan ontology
for MT is not to be undertaken lightly, since it constrains the architecture
of the system as a whole. For example, recall from Chapter 16 the discus-
sion of two possible inventories of thematic roles, one containing AGENT

andFORCE, and one includingAGENT only. The choice of which to adopt
affects, for example, the way that the system will translatethe quake broke
glass(Chapter 16) into Japanese, wherequakeneeds to be marked withde,
not the usual subject markerga, because the earthquake is not animate. If
we design our interlingua using the smaller inventory that only usesAGENT,
then the representation for this sentence will place thequakein the AGENT

role, and the problem ofdeversusga will fall to the generator. If, however,
we use the expanded inventory of Figure 16.9, then the representation will
include theFORCE role, with the work needed to make that decision being
performed by the semantic analyzer.

The interlingua idea has implications not only for syntactic transfer
but also for lexical transfer. The idea is to avoid explicit descriptions of
the relations between source language words and target language words, in
favor of mapping via concepts, that is, language-independent elements of
the ontology. Recalling our earlier problem of whether to translatemanas
otoko, ningen, ojiisan, etc. it is clear that most of the processing involved is
not specific to the goal of translating into Japanese; there is a more general
problem of disambiguatingman into concepts such asGENERIC-HUMAN

andMALE -HUMAN . If we commit to using such concepts in an interlingua,
then a larger part of the translation process can be done withgeneral lan-
guage processing techniques and modules, and the processing specific to the
English-to-Japanese translation task can be eliminated orat least reduced.

Some interlinguas, and some other representations, go further and use
lexical decomposition, that is, the disassembly of words into their component
meanings. We saw a form of this in Figure 21.6, wherewasmaps toPASTand
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PROGRESSIVE, anda maps toSINGULAR and INDEFINITE. Decomposition
of content words is also possible: the worddrink can be represented by
(INGEST, FLUID, BY-MOUTH)5. Representing a sentence by breaking down
the words in such ways does seem to be actually capturing something about
meaning, rather than being just a rearrangement of tokens that look like the
English words of the input. Moreover, such representationsare potentially
useful for inference-based disambiguation. For example, it is possible to use
the meanings of the words to infer what the prepositional phrase is modifying
in the policeman saw the man with a telescope, versusthe policeman shot
the man with a telescope.It is, however, difficult to get inference of this
sort to work for more than a few examples except in very small domains.
In general, such high-powered interlingua-based techniques are not used in
practice.

transfer

parsing generation

source language
parse tree

target language
parse tree

source language words target language words

Interlingua

interpretation generation

Figure 21.7 Diagram Suggesting the Relation Between the Transfer and
Interlingua Models, generally credited to Vauqois.

Brushing over numerous important details, we can now contrast the
transfer model with the interlingua model. The key implication for process-

5 This use of semantic decomposition makes it clear which elements of meaningdrink
shares witheatand which it does not share. But as Chapter 16 discusses, lexical semantics is
not so easy in general. For example, how does one express in a formal language the meaning
of heftand the way it differs fromweight, or the meanings ofsporadicandintermittent?
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ing is that, by making the parser/interpreter and/or the generator do a little
more work, we can eliminate the need for contrastive knowledge, as sug-
gested in Figure 21.7.

Doing the extra work involved by the interlingua commitment, how-
ever, is not always easy. It requires the system designer to perform exhaus-
tive analysis of the semantics of the domain and formalize that in an ontol-
ogy (Levinet al., 1998). Today this is more an art than a science, although
it is relatively tractable in sublanguage domains. In some cases the seman-
tics can mostly be captured by a database model, as in the air travel, hotel
reservation, or restaurant recommendation domains. In cases like these, the
database definition determines the possible entities and relations; and the
MT system designer’s task is largely one of determining how these map to
the words and structures of the two languages.

Another problem with the interlingua idea is that, in its pure form, it
requires the system to fully disambiguate at all times. For atrue universal
interlingua, this may require some unnecessary work. For example, in order
to translate from Japanese to Chinese the interlingua must include concepts
such asELDER-BROTHER andYOUNGER-BROTHER. However, to use those
same concepts in the course of translating from German-to-English would
require a parser to perform more disambiguation effort thanis unnecessary;
and will further require the system to include techniques for preserving am-
biguity , to ensure that the output is ambiguous or vague in exactly the same PRESERVING

AMBIGUITY

way as the input. Even discounting the Sapir-Whorf idea, theidea of a uni-
versal meaning underlying all languages is clearly not without problems.

21.4 DIRECT TRANSLATION

These models are all very nice, but what happens if the analysis fails? Users
do not like to receive an output of “nil” due to “no parse tree found”; in gen-
eral, they would rather get something imperfect than nothing at all. This is a
challenge especially for interlingua-based models, wherethe system should
not fail to translateit broke the glassbecause it can not figure out whetherit
is aFORCEor AGENT.

Several approaches are available. One is to use the robust parsing tech-
niques discussed in Chapter 15, which sometimes amounts to translating by
fragments. Another is to give up on producing elaborate structural analyses
at all, and just do simple operations that can be done reliably. More radically,
we could adopt the principle that a MT system should do as little work as
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possible. Systems built according to this philosophy are sometimes called
direct MT systems. Typically such systems are built with only one languageDIRECT

pair in mind, and the only processing done is that needed to get from one
specific source language to one specific target language.

A direct MT system is typically composed of several stages, each fo-
cused on one type of problem. For example, we can rewrite a Japanese
sentence as an English one in six stages, as seen in Figure 21.8. Figure 21.9

Stage Action
1. morphological analysis
2. lexical transfer of content words
3. various work relating to prepositions
4. SVO rearrangements
5. miscellany
6. morphological generation

Figure 21.8 Six Stages for a Direct MT System for Japanese to English

illustrates how this might work for a simple example.
Stage 1 in Figure 21.9 segments the input string into words (recall that

Japanese, like Chinese, does not use spaces as word boundarymarkers), and
does morphological analysis of complex verb forms. These can be done
using the finite-state techniques of Chapter 3 and segmentation algorithms
like the probabilistic one described in Chapter 5.

Stage 2 chooses translation equivalents for the content words. This is
done using a bilingual dictionary, or procedures that choose the correct trans-
lation based on the local context and on the target language words already
chosen. Figure 21.10 illustrates such a procedure.

In this example lexical transfer is trivial. In general, though, there may
be interdependencies among target-language words, and so lexical trans-

Input: watashihatsukuenouenopenwojonniageta.
After stage 1: watashi ha tsukue no ue no pen wo jon ni ageru PAST.
After stage 2: I ha desk no ue no pen wo John ni give PAST.
After stage 3: I ha pen on desk wo John to give PAST.
After stage 4: I give PAST pen on desk John to.
After stage 5: I give PAST the pen on the desk to John.
After stage 6: I gave the pen on the desk to John.

Figure 21.9 An Example of Processing in a Direct System
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fer this may be done in sub-stages, for example, verbs beforenouns be-
fore adjectives. For example, consider the problem of translating nomufrom
Japanese to English, where this must become eitherdrink or take(medicine).
This decision must be made before translations for modifiersare chosen, to
allow translations such asdrinking heavilyandtaking a lot of medicine, but
not a scramble of the two. In general the problem of the best order in which
to make decisions is a tricky one, although there are some standard solutions,
as seen in Chapter 20.

Stage 3 chooses to translateno ue no(‘at top of’) to on, and reverses
the two associated noun phrases (deskandpen), since English prepositional
phrases follow, not precede, the word they modify. In accordance with the
dictionary entry forgave, which specifies subcategorization facts, it chooses
to translateni asto.

Stage 4 invokes a procedure to move the verb from the end of thesen-
tence to the position after the subject, and removes case marking from sub-
jects and direct objects.

Stage 5 handles things like moving case markers before nounsand in-
serting articles.

Finally Stage 6 inflects the verbs.

function DIRECTLY TRANSLATE MUCH/MANY (Russian word)returns

if preceding word ishow
return skol’ko

else if preceding word isas
return stol’ko zhe

else if word is much
if preceding word isvery

return nil (not translated)
else if following word is a noun

return mnogo
else /* word is many */

if preceding word is a preposition and following word is a noun
return mnogii

else returnmnogo

Figure 21.10 A procedure for translatingmuchand many into Russian,
adapted from Hutchins’ (1986, pg. 133) discussion of Panov 1960.

There are several ways in which this approach differs from the ap-
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proaches seen earlier. One is that it is a new way of modularizing the MT
task, orthogonal to the types of modularity seen in the transfer and interlin-
gua models in Figure 21.7. In the direct model, all the processing involving
analysis of one specific problem (prepositions for example)is handled in one
stage, including analysis, transfer, and generation aspects. The advantage of
this is that solving specific problems one at a time may be moretractable.
On the other hand, it can be advantageous to organize processing into larger
modules (analysis, transfer, synthesis) if there is synergy among all the var-
ious individual analysis problems, or among all the individual generation
problems, etc.

A second characteristic of direct systems is that lexical transfer may
be more procedural. Lexical transfer procedures may eclectically look at the
syntactic classes and semantic properties of neighboring words and depen-
dents and heads, as seen in the decision-tree-like procedure for translating
muchandmanyinto Russian in Figure 21.10.

A third characteristic of direct models is that they tend to be conser-
vative, to only reorder words when required by obvious ungrammaticality in
the result of direct word-for-word substitution. In particular, direct systems
generally do lexical transfer before syntactic processing.

Perhaps the key characteristic of direct models is that theydo with-
out complex structures and representations. In general, they treat the input
as a string of words (or morphemes), and perform various operations di-
rectly on it — replacing source language words with target language words,
re-ordering words, etc. — to end up with a string of symbols inthe target
language.

In practice, of course, working MT systems tend to be combinations of
the direct, transfer, and interlingua methods. But of course syntactic process-
ing is not an all-or-nothing thing. Even if the system does not do a full parse,
it can adorn its input with various useful syntactic information, such as part
of speech tags, segmentation into clauses or phrases, dependency links, and
bracketings. Many systems that are often characterized as direct translation
systems also adopt various techniques generally associated with the transfer
and interlingua approaches (Hutchins and Somers, 1992).

21.5 USING STATISTICAL TECHNIQUES

The three architectures for MT introduced in previous sections, the transfer,
interlingua, and direct models, all provide answers to the questions of what



Section 21.5. Using Statistical Techniques 817

representations to use and what steps to perform to translate. But there is
another way to approach the problem of translation: to focuson the result,
not the process. Taking this perspective, let’s consider what it means for a
sentence to be a translation of some other sentence.

This is an issue to which philosophers of translation have given a lot of
thought. The consensus seems to be, sadly, that it is impossible for a sentence
in one language to be a translation of a sentence in other, strictly speaking.
For example, one cannot really translate Hebrewadonai roi(‘the Lord is my
shepherd’) into the language of a culture that has no sheep. On the one hand,
we can write something that is clear in the target language, at some cost in
fidelity to the original, something likethe Lord will look after me. On the
other hand, we can be faithful to the original, at the cost of producing some-
thing obscure to the target language readers, perhaps likethe Lord is for me
like somebody who looks after animals with cotton-like hair. As another ex-
ample, if we translate the Japanese phrasefukaku hansei shite orimasu, as
we apologize, we are not being faithful to the meaning of the original, butif
we producewe are deeply reflecting (on our past behavior, and what we did
wrong, and how to avoid the problem next time), then our output is unclear
or awkward. Problems such as these arise not only for culture-specific con-
cepts, but whenever one language uses a metaphor, a construction, a word,
or a tense without an exact parallel in the other language.

So, true translation, which is both faithful to the source language and
natural as an utterance in the target language, is sometimesimpossible. If
you are going to go ahead and produce a translation anyway, you have to
compromise. This is exactly what translators do in practice: they produce
translations that do tolerably well on both criteria.

This provides us with a hint for how to do MT. We can model the
goal of translation as the production of an output that maximizes some value
function that represents the importance of both faithfulness and fluency. If
we chose the product of fluency and faithfulness as our quality metric, we
can formalize the translation problem as:

best-translation̂T = argmaxT fluency(T) faithfulness(T,S)

where T is the target-language-sentence and S the source-language-sentence.
This model of translation was first described by researcherscoming

from speech recognition (Brownet al., 1990a, 1993), and this model clearly
resembles the Bayesian models we’ve used for speech recognition in Chap-
ter 7 and for spell checking in Section 5.4. We can make the analogy perfect
and apply the noisy channel model of Section 5.4 if we think ofthings back-
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wards: thus we pretend that the input we must translate is a corrupted version
of some target language sentence, and that our task is to discover that target
language sentence:

best-translation̂T = argmaxT P(T) P(SjT)
To implement this, we need to do three things: quantify fluency, P(T),

quantify faithfulness,P(SjT) and create an algorithm to find the sentence
that maximizes the product of these two things.

There is an innovation here. In the transfer, interlingua, and direct
models, each step of the process made some adjustment to the input sentence
to make it closer to a fluent TL sentence, while obeying the constraint of not
changing the meaning too much. In those models the process isfixed, in that
there is no flexibility to trade-off a modicum of faithfulness for a smidgeon of
naturalness, or conversely, based on the specific input sentence at hand. This
new model, sometimes called thestatistical model of translation allows
exactly that.

Quantifying Fluency

Fortunately, we already have some useful metrics for how likely a sentence
is to be a real English sentence: the language models from Chapters 6 and
8. These allow us to distinguish things that are readable butnot really En-
glish (such asthat car was almost crash onto me) from things that are more
fluent (that car almost hit me). This is especially valuable for word order
and collocations, and as such can be a useful supplement to the generation
techniques of Chapter 20.

Fluency models can be arbitrarily sophisticated; any technique that can
assign a better probability to a target language string is appropriate, including
the more sophisticated probabilistic grammars of Chapter 12 or the statistical
semantic techniques of Chapter 17.

Of course, the idea of using monolingual language knowledgeto im-
prove MT output is independent of the decision to model that knowledge
statistically. Indeed, many MT systems, especially directones, have a final
phase, in which the system uses local considerations to revise word choices
in the output. For example, capitalizing every occurrence of white house
that occurs as the subject of a verb (the white house announced today) is a
reasonable heuristic.
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Quantifying Faithfulness

Given the French sentenceca me plâıt (that me pleases) and some conceiv-
able English equivalentsthat pleases me, I like it, andI’ll take that one, and
yes, good, it is intuitively clear that the first is more faithful.

Although it is hard to quantify this intuition, one basic factor often used
in metrics for fidelity is the degree to which the words in one sentence are
plausible translations of the words of the other. Thus we canapproximate
the probability of a sentence being a good translation as theproduct of the
probabilities that each target language word is an appropriate translation of
some source language word. For this we need to know, for everysource
language word, the probability of it mapping to each possible target language
word.

Where do we get these probabilities? Standard bilingual dictionaries
do not include such information, but they can be computed from bilingual
corpora, that is, parallel texts in two languages. This is not trivial, since
bilingual corpora do not come with annotations specifying which word maps
to which. Solving this problem requires first solving the problem of sen-
tence alignmentin a bilingual corpus, determining which source languageSENTENCE

ALIGNMENT

sentence maps to which target language sentence, which can be done with
reasonable accuracy (Kay and Röscheisen, 1993; Gale and Church, 1993;
Melamed, 1999; Manning and Schütze, 1999). The second problem, word
alignment, that is, determining which word(s) of the target correspond to WORD

ALIGNMENT

each source language word or phrase, is rather more difficult(Melamed,
pear), and is often addressed with EM methods (cf. Chapter 7). From bilin-
gual corpora aligned in these ways it is possible to count howmany times a
word, phrase, or structure gets mapped to each of its possible translations.
Such alignments are potentially useful not only for MT but also for auto-
matic generation of bilingual dictionary entries for use byhuman translators
(Dagan and Church, 1997; Fung and McKeown, 1997).

Let’s now consider an example. Suppose we want to translate the two-
word Japanese phrase2000nen taiointo English. The most probable transla-
tion for the first word is, we will assume,2000, followed byyear 2000, Y2K,
2000 years, 2000 yearand some other possibilities. The most probable trans-
lation for the second word is, we will assume,correspondence, followed by
corresponding, equivalent, tackle, deal with, dealing with, countermeasures,
respond, response, counterpart, antithesisand so on. Thus, according to the
translation model alone, the most highly ranked candidate will be the com-
position of the most highly ranked words, namely2000 countermeasures.
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But, when the contribution of the fluency model, perhaps a bigram model, is
factored in, the candidate translationdealing with Y2Kwill have the highest
overall score.

Of course, more complex translations models are possible: anything
that generates multiple translations with a ranking associated with each. It
is even possible to do “multi-engine” translation, where several translation
models (for example a powerful but brittle interlingua-based one and a robust
but low-quality direct one) are run in parallel to generate various translations
and translation fragments, with the final output determinedby assembling
the pieces which have highest confidence scores (Brown and Frederking,
1995).

Search

So far we have a theory of which sentence is best, but not of howto find it.
Since the number of possible translations is enormous, we must find the best
output without actually generating the infinite set of all possible translations.
But this is just a decoding problem, of the kind we have seen how to solve via
the pruned Viterbi (beam-search) and A� algorithms of Chapter 7. For MT
this decoding is done in the usual way: outputs (translations) are generated
incrementally, and evaluated at each point. If at any point the probability
drops below some criterion that line of attack is pruned. Generation can be
left to right or outward from heads.

Good introductions to statistical MT include (Brownet al., 1990b) and
(Knight, 1997). One of the most influential recent systems isdescribed in
(Knight et al., 1994).

21.6 USABILITY AND SYSTEM DEVELOPMENT

Since MT systems are generally run by human operators, the human is avail-
able to help the machine. One way to use human intervention isinterac-
tively; that is, when the system runs into a problem, it can ask the user.
For example, a system given the inputthe chicken are ready to eatcould
generate paraphrases of both possible meanings, and present the user with
those alternatives, for example, asking her to decide whether the sentence
meansthe chicken are ready to be eatenor the chicken are ready to eat
something. It turns out that this is incredibly annoying — users do not like
to have to answer questions from a computer, or to feel that they exist to help
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the computer get its work done (Cooper, 1995). On the other hand, people
are comfortable with the job of fixing up poorly-written sentences, and so
post-editing is the normal mode of human interaction with MTsystems.

People are also able to edit sentences of the source language, and this
ability can be exploited as way to improve the translatability of the input by
simplifying it in various ways. Suchpre-editing can be more cost-effectivePRE­EDITING

than post-editing if a single document needs to be translated into several lan-
guages, since the cost of pre-editing can then be amortized over many output
languages — as is often the case for companies which sell things complete
with documentation, in many countries (Mitamura and Nyberg, 1995). In
order to decide what needs pre-editing, one way is to apply MTand see
what comes out wrong, and then go back and rewrite those sentences in the
original. Another way is to have a model of what MT ought to handle, and
require input sentences to be rewritten in that sublanguage, for example, by
disallowing PPs which could attach ambiguously. If such a model exists, the
pre-editing phase can actually be dispensed with, by training the technical
writers to only write in simple, unambiguouscontrolled language, a version CONTROLLED

LANGUAGE

of English that passes the constraints of the sublanguage grammar checker.
Doing so may also make the source language text more understandable. This
is interesting as a case where focusing on the larger task (getting information
from tech writers to customers), rather than the problem as originally posed
(to translate some existing documents), leads to improvements of the entire
process.

In general, user satisfaction is vital for MT systems. Various evaluation
metrics are used to predict acceptability. Evaluation metrics for MT intended
to be used raw (for information acquisition) include the percentage of sen-
tences translated correctly, or nearly correctly, where correctness depends on
both fidelity and fluency. The typical evaluation metric for MT output to be
post-edited isedit cost, either relative to some standard translation via some
automatic measure of edit-distance, similar to those seen in Chapter 7 for
evaluating speech recognition, or measured directly as theamount of time
(or number of keystrokes) required to correct the output to an acceptable
level.

In general the content words are crucial; users can generally recover
from scrambled syntax, but having the words translated properly is vital. In
practice, one of the major advantages of using a MT system is that it handles
most of the tedious work of looking up words in bilingual dictionaries.6 As a

6 MT systems can also save time typing in the target language word, especially for transla-



822 Chapter 21. Machine Translation

result, professional MT users put great value on dictionarysize and quality.
Such users typically augment the basic system dictionary with the purchase
of a domain-specific dictionary designed for the type of translation work
they do: medical, electronic, financial, military intelligence etc. But no off-
the-shelf dictionary, even one developed from a corpus of texts in the proper
domain area, is more than an approximation to the dictionaryneeded by
a specific customer, and so established translation bureaustypically invest
substantial effort in augmenting the system dictionaries with entries of their
own. The structure of these dictionaries is simple because the specialist
terminology of any field is generally unambiguous — a photon is a photon isTERMINOL­

OGY

a photon, no matter what context it comes up in — and because terminology
is almost invariably open-class words, with no syntactic idiosyncrasies.

It has also become apparent that MT systems do better if the dictionar-
ies include not only words but also idioms, fixed phrases, andeven frequent
clauses and sentences. Such data can sometimes be extractedautomatically
from corpora. Moreover, in some situations it may be valuable to do this
on-line, at translation time, rather than saving the results in a dictionary —
this is they key idea behindExample-based Machine Translation(Sumita

EXAMPLE­
BASED
MACHINE
TRANSLATION and Iida, 1991; Brown, 1996).

User satisfaction also turns out to depend on factors other than the ac-
tual quality of the translation. Many users care less about output quality than
other factors, such as cost, speed, storage requirements, the ability to run
transparently inside their favorite editor, the ability topreserve SGML tags,
and so on.Translation memory, the ability to store and recall previouslyTRANSLATION

MEMORY

corrected translations, is also a big selling point.
Although for expository purposes the previous sections have focussed

on a few basic problems that arise in translation, it is important to realize
that these far from exhaust the things that MT systems have toworry about.
As Section 21.1 may have suggested, language differences are a virtually
inexhaustible source of complexity; and if you were readingthe footnotes in
the previous sections, you may have been annoyed that every “fact” we men-
tioned about a language was actually an oversimplification.Indeed, much of
the work developing a MT system is down in the weeds, dealing with details
like this, regardless of the overall system architecture chosen. Furthermore,
adding more knowledge does not always help, since a working MT system,
like any huge software system, is a large, delicate piece of code. Improve-
ment to the treatment of one phenomenon, or a correction of a bug in the

tions into Chinese and Japanese, where it is time-consumingto enter characters.
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translation of one sentences, can cause other sentences, previously translated
correctly, to go awry.

Given all this, it is surprising that MT systems so as well as they do.
One development technique of proven value is iterative development: build
it, evaluate it in actual use, improve it, and repeat. In the course of this
process the MT system is adapted to a domain, to the working habits of its
users, and to the needs of the consumers of the output.

21.7 SUMMARY� Although MT systems exploit many standard language-processing tech-
niques, there are also some MT-specific ones, including notably syn-
tactic transformations.� We have presented four models for MT, thetransfer, interlingua , di-
rect, andstatistical approaches. Practical MT systems today, how-
ever, typically combine ideas from several of these models;while MT
research systems are probing other niches in the design space.� MT system design is hard work, requiring careful selection of models
and algorithms and combination into a useful system. Today this is
more a craft than a science, especially since this must be done while
minimizing development cost.� While MT system design today is thus fairly ad hoc, there are ongoing
efforts to develop useful formal models of translation (Alshawi et al.,
1998; Knight and Al-Onaizan, 1998; Wu and Wong, 1998).� While the possibilities for improvement for MT is truly impressive,
the output of today’s systems is acceptable forrough translations
for information-acquisition purposes,draft translations intended to
be post-edited by a human translator, and translation forsublanguage
domains.� As for many software tasks, user interface issues in MT are crucial; the
value of MT systems to users is not directly related to the sophistication
of their algorithms or representations, nor even necessarily to output
quality.� Despite half a century of research, MT is far from solved. Human
language is a rich and fascinating area whose treasures haveonly begun
to be explored.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

Work on models of the process and goals of translation goes back at least to
Saint Jerome in the fourth century (Kelley, 1979). The development of log-
ical languages, free of the imperfections of human languages, for reasoning
correctly and for communicating truths and thereby also fortranslation, has
been pursued at least since the 1600s (Hutchins, 1986).

By the late 1940s, scant years after the birth of the electronic computer,
the idea of MT was raised seriously (Weaver, 1955a). In 1954 the first public
demonstration of a MT system prototype (Dostert, 1955) led to great excite-
ment in the press (Hutchins, 1997). The next decade saw a great flowering of
ideas, prefiguring most subsequent developments. But this work was ahead
of its time — implementations were limited by, for example, the fact that
pending the development of disks there was no good way to store dictionary
information.

As high quality MT proved elusive (Bar-Hillel, 1960), a growing con-
sensus on the need for more basic research in the new fields of formal and
computational linguistics led in the mid 1960s to a dramaticcut in fund-
ing for MT research. As MT research lost academic respectability, the As-
sociation for Machine Translation and Computational Linguistics dropped
MT from its name. Some MT developers, however, persevered, slowly
and steadily improving their systems, and slowly garneringmore customers.
Systran in particular, developed initially by Peter Toma, has been contin-
uously improved over 40 years. Its earliest uses were for information ac-
quisition, for example by the US Air Force for Russian documents; and in
1976 an English-French edition was adopted by the European Community
for creating rough and post-editable translations of various administrative
documents. Our translation example in the introduction wasproduced using
the free Babelfish version of Systran on the Web. Another early successful
MT system was Météo, which translated weather forecasts from English to
French; incidentally, its original implementation (1976), used “Q-systems”,
an early unification model.

The late 1970s saw the birth of another wave of academic interest in
MT. One source of excitement was the possibility of using Artificial Intel-
ligence techniques ideas, originally developed for story understanding and
knowledge engineering (Carbonellet al., 1981). This interest in meaning-
based techniques was also a reaction to the dominance of syntax in computa-
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tional linguistics at that time. Another motivation for theuse of interlingual
models was their introspective plausibility: the idea thatMT systems should
translate as people do (presuming that people translate by using their abil-
ity to understand). Introspection here may be misleading, since the process
of human translation is enormously complex and furthermorethe relevance
for machine translation is unclear. Concerns about such issues were much
discussed in the late 1980s and early 1990s Tsujii (1986), Nirenburget al.
(1992), Ward (1994), Carbonellet al. (1992). Meanwhile MT usage was
increasing, fueled by the increase in international trade and the growth of
governments with policies requiring the translation of alldocuments into
multiple official languages, and enabled by the proliferation of word proces-
sors, and then personal computers, and then the World Wide Web.

The 1990s saw the application of statistical methods, enabled by the
development of large corpora. Excitement was provided by the “grand chal-
lenge” of building speech-to-speech translation systems (Kay et al., 1992;
Bubet al., 1997; Frederkinget al., pear) where MT catches up with the mod-
ern vision of computers being embedded, ubiquitous and interactive. On the
practical side, with the growth of the user population, user’s needs have had
an increasing effect on priorities for MT research and development.

Good surveys of the early history of MT are Hutchins (1986) and
(1997). The textbook by Hutchins and Somers (1992) includesa wealth
of examples of language phenomena that make translation difficult, and ex-
tensive descriptions of some historically significant MT systems.

Academic papers on machine translation appear in the journal Machine
Translationand in the proceedings of the biennial (odd years) Conferences
on Theoretical and Methodological Issue in Machine Translation.

Reports on systems, markets, and user experiences can be found inMT
News International, the newsletter of the International Association for Ma-
chine Translation, which is the umbrella organization for the three regional
MT societies: the Association for MT in the Americas, the Asian-pacific
Association for MT, and the European Association for MT. These societies
have annual meetings which bring together developers and users. The pro-
ceedings of the biennial MT Summit (odd years) are also oftenpublished.
The mainstream computational linguistics journals and conferences also oc-
casionally report work in machine translation.
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EXERCISES

21.1 Select at random a paragraph of Chapter 9 which describes a fact
about English syntax. a) Describe and illustrate how your favorite foreign
language differs in this respect. b) Explain how a MT system could deal
with this difference.

21.2 Go to the literature section of the library, and find a foreignlanguage
novel in a language you know. Copy down the shortest sentenceon the first
page. Now look up the rendition of that sentence in an Englishtranslation of
the novel. a) For both original and translation, draw parse trees. b) For both
original and translation, draw dependency structures. c) Draw a case struc-
ture representation of the meaning which the original and translation share.
d) What does this exercise suggest to you regarding intermediate representa-
tions for MT?

21.3 Pick a word from the first sentence of the top article of today’s news-
paper. a) List the possible equivalents found in a bilingualdictionary. b)
Sketch out how a MT system could choose the appropriate translation to use
based on the context of occurrence. c) Sketch out how this could be done
without using contrastive knowledge.

21.4 The idea of example-based MT can be extended to “translationby
analogy” (Sato and Nagao, 1990). a) Given the bilingual datain Figure 21.11,
what Japanese word do you think would be appropriate as a translation ofon
in research on gastropods? b) Specify an algorithm for doing lexical transfer
in this way. c) How is your approach similar to choice of TL words by using
a TL language model (Section 21.5)? d) How is it similar to disambiguation
using semantic features as in Chapter 16?

the caton the mat no ue no
more noteson decision making ni tsuite
pink frostingon the cake no
see boatson the pond no, ni
always readingon the bus de

Figure 21.11 A mini-corpus of made-up phrases involvingon and their
Japanese translations

21.5 Type a sentence into a MT system (perhaps a free demo on the Web)
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and see what it outputs. a) List the problems with the translation. b) Rank
these problems in order of severity. c) For the two most severe problems,
suggest the probable root cause.

21.6 Since natural languages are hard to deal with, due to ambiguities, ir-
regularities, and other complexities, it is much nicer to work with something
with is more logical: something that does not have these ‘flaws’ of natu-
ral language. As a result, various notations which are (in some ways) less
ambiguous or more regular than English have been proposed. In addition
to various meaning representation schemes, natural languages such as Es-
peranto and Sanskrit, have also been proposed for use as interlinguas for
machine translation. Is this a good idea? Why or why not?

21.7 Consider the types of ‘understanding’ needed: 1. for a natural lan-
guage interface to a database, as seen in Chapter 15. 2. for aninformation
extraction program, as seen in Chapter 15. 3. for a MT system.Which of
these requires a deeper understanding? In what way?

21.8 Choose one of the generation techniques introduced in Chapter 20
and explain why it would or would not be useful for MT.

21.9 Version 1 (for native English speakers): Consider the following sen-
tence:

These lies are like their father that begets them; gross as a mountain,
open, palpable.

Henry IV, Part 1, act 2, scene 2

Translate this sentence into some dialect of modern vernacular English.
For example, you might translate it into the style of a New York Times edi-
torial or an Economist opinion piece, or into the style of your favorite tele-
vision talk-show host.

Version 2 (for native speakers of other languages): Translate the fol-
lowing sentence into your native language.

One night my friend Tom, who had just moved into a new apartment,
saw a cockroach scurrying about in the kitchen.

For either version, now:
a) Describe how you did the translation: What steps did you perform?

In what order did you do them? Which steps took the most time? b) Could
you write a program that would translate using the same methods that you
did? Why or why not? c) What aspects were hardest for you? Would they
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be hard for a MT system? d) What aspects would be hardest for a MT sys-
tem? are they hard for people too? e) Which models are best fordescribing
various aspects of your process (direct, transfer, interlingua or statistical)? f)
Now compare your translation with those produced by friendsor classmates.
What is different? Why were the translations different?

21.10 Newspaper reports of MT systems invariably include an example of
a sentence, typically a proverb, that when translated from English to lan-
guage X, and then back to English, came out funny. a) Is this evidence that
at least one of the two MT systems was bad? b) Why does this problem not
arise with human translators? or does it? c) On the other hand, does a suc-
cessful translation to a foreign language and back indicatethat the system is
doing well?

21.11 Set yourself an information acquisition task: for example,to find a
World-Wide Web page in your favorite foreign language reviewing a recent
movie, and discover what the reviewer thought. Accomplish this task using
one or two of the Web’s machine translation providers. a) Give two exam-
ples each of correct and incorrect translations you encountered. b) Come up
with a simple quality metric for rating the MT output, and useit to evalu-
ate the MT systems you tried. c) Were you able to find a page of the kind
you wanted? d) Were you able to figure out whether the reviewerliked the
movie? e) Were the scores on your quality metric predictive of your answers
to (c) and (d)?

21.12 Consider each of the following as an application for machinetrans-
lation. Rank the difficulty of each from 1 (easy) to 4 (very very hard). Also,
for each task, say briefly what makes it easy or hard.

a. letters between an American girl and her Chinese pen-pal
b. electronic junk mail
c. articles in chemistry journals
d. magazine advertisements
e. children’s storybooks
f. history books
g. an English-speaker wanting to read articles in Japanese newsgroups
h. an English-speaker wanting to post articles to a Japanese newsgroup



A
REGULAR EXPRESSION
OPERATORS

Perl grep MS Word Description

Single character expressions
\ . . . \ . . . \ . . . a special character
. . ? any single character
[ . . .] [ . . .] [ . . .] any single character listed
[ . . .- . . .] [ . . .- . . .] [ . . .- . . .] any single character in the range
[ˆ . . .] [ˆ . . .] [! . . .] any single character not listed
[ˆ . . .- . . .] [ˆ . . .- . . .] [! . . .- . . .] any single character not in the range

Anchors/Expressions which match positions
ˆ ˆ ˆ beginning of line
$ $ $ end of line
\b - - word boundary
\B - - word non-boundary
- \< < start of word
- \> > end of word

Counters/Expressions which quantify previous expressions
* * - zero or more of previous r.e.
+ - @ one or more of previous r.e.
? - - exactly one or zero of previous r.e.
{n} \{n\} {n} n of previous r.e.
{n,m} \{n,m\} {n,m} from n to mof previous r.e.
{n,} \{n,\} {n,} at leastn of previous r.e.

Figure A.1 Basic regular expressions
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Perl grep MS Word Description

Other
.* .* * any string of characters
. . .| . . . - - or – matches either r.e.
( . . .) \( . . .\) ( . . .) grouping, memory

Shortcuts
\d [0-9] [0-9] any digit
\D [ˆ0-9] [ˆ0-9] any non-digit
\w [a-zA-Z0-9 ] [a-zA-Z0-9 ] any alphanumeric/space
\W [ˆa-zA-Z0-9 ] [ˆa-zA-Z0-9 ] any non-alphanumeric
\s [ \r\t\n\f] - whitespace (space, tab)
\S [ˆ \r\t\n\f] - non-whitespace

Figure A.2 More regular expressions



B
THE PORTER STEMMING
ALGORITHM

For the purposes of the Porter (1980) algorithm we define aconsonantas a
letter other than A, E, I, O, and U, and other than Y preceded bya consonant.
Any other letter is avowel. (This is of course just an orthographic approxi-
mation.) Let c denote a consonant and v denote a vowel. C will stand for a
string of one or more consonants, and V for a string of one or more vowels.
Any written English word or word part can be represented by the follow-
ing regular expression (where the parentheses () are used tomark optional
elements):(C)(VC)m(V)
For example the wordtroublesmaps to the following sequence:

troubles
C V C VC

with no final V. We call the Kleene operatorm themeasureof any word or
word part; the measure correlates very roughly with the number of syllables
in the word or word part. Some examples:

m=0 TR, EE, TREE, Y, BY
m=1 TROUBLE, OATS, TREES, IVY
m=2 TROUBLES, PRIVATE, OATEN, ORRERY

The rules that we will present below will all be in the following format:

(condition) S1 ! S2

meaning “if a word ends with the suffix S1, and the stem before S1 satisfies
the condition, S1 is replaced by S2”. Conditions include thefollowing and
any boolean combinations of them:
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m the measure of the stem
*S the stem ends with S (and similarly for other letters)
*v* the stem contains a vowel
*d the stem ends with a double consonant (e.g. -TT, -SS)
*o the stem ends CVC, where the second c is

not W, X, or Y (e.g. -WIL, -HOP)

The Porter algorithm consists of seven simple sets of rules,applied in
order. Within each step, if more than one of the rules can apply, only the one
with the longest matching suffix (S1) is followed.

Step 1: Plural Nouns and Third Person Singular Verbs

The rules in this set do not have conditions:

SSES! SS caresses! caress
IES ! I ponies ! poni

ties ! ti
SS ! SS caress ! caress
S ! ε cats ! cat

Step 2a: Verbal Past Tense and Progressive Forms

(m> 1) EED ! EE feed ! feed
agreed ! agree

(*v*) ED ! ε plastered! plaster
bled ! bled

(*v*) ING ! ε motoring ! motor
sing ! sing

Step 2b: Cleanup

If the second or third of the rules in 2a is successful, we run the following
rules (that remove double letters and put the E back on -ATE/-BLE)
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AT ! ATE conflat(ed)! conflate
BL ! BLE troubl(ing) ! trouble
IZ ! IZE siz(ed) ! size

(*d & !(*L or *S or *Z)) ! single letter hopp(ing) ! hop
tann(ed) ! tan
fall(ing) ! fall
hiss(ing) ! hiss
fizz(ed) ! fizz

(m=1 & *o) ! E fail(ing) ! fail
fil(ing) ! file

Step 3: Y! I

(*v*) Y ! I happy ! happi
sky ! sky

Step 4: Derivational Morphology I: Multiple suffixes

(m> 0) ATIONAL ! ATE relational ! relate
(m> 0) TIONAL ! TION conditional ! condition

rational ! rational
(m> 0) ENCI ! ENCE valenci ! valence
(m> 0) ANCI ! ANCE hesitanci ! hesitance
(m> 0) IZER ! IZE digitizer ! digitize
(m> 0) ABLI ! ABLE conformabli ! conformable
(m> 0) ALLI ! AL radicalli ! radical
(m> 0) ENTLI ! ENT differentli ! different
(m> 0) ELI ! E vileli ! vile
(m> 0) OUSLI ! OUS analogousli ! analogous
(m> 0) IZATION ! IZE vietnamization! vietnamize
(m> 0) ATION ! ATE predication ! predicate
(m> 0) ATOR ! ATE operator ! operate
(m> 0) ALISM ! AL feudalism ! feudal
(m> 0) IVENESS ! IVE decisiveness ! decisive
(m> 0) FULNESS ! FUL hopefulness ! hopeful
(m> 0) OUSNESS! OUS callousness ! callous
(m> 0) ALITI ! AL formaliti ! formal
(m> 0) IVITI ! IVE sensitiviti ! sensitive
(m> 0) BILITI ! BLE sensibiliti ! sensible
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Step 5: Derivational Morphology II: More multiple suffixes

(m > 0) ICATE ! IC triplicate ! triplic
(m > 0) ATIVE ! ε formative ! form
(m > 0) ALIZE ! AL formalize ! formal
(m > 0) ICITI ! IC electriciti ! electric
(m > 0) FUL ! ε hopeful ! hope
(m > 0) NESS ! ε goodness! good

Step 6: Derivational Morphology III: single suffixes

(m> 1) AL ! ε revival ! reviv
(m> 1) ANCE ! ε allowance ! allow
(m> 1) ENCE ! ε inference ! infer
(m> 1) ER ! ε airliner ! airlin
(m> 1) IC ! ε gyroscopic ! gyroscop
(m> 1) ABLE ! ε defensible ! defens
(m> 1) ANT ! ε irritant ! irrit
(m> 1) EMENT ! ε replacement! replac
(m> 1) MENT ! ε adjustment ! adjust
(m> 1) ENT ! ε dependent ! depend
(m> 1) (*S or *T) & ION ! ε adoption ! adopt
(m> 1) OU ! ε homologou ! homolog
(m> 1) ISM ! ε communism! commun
(m> 1) ATE ! ε activate ! activ
(m> 1) ITI ! ε angulariti ! angular
(m> 1) OUS ! ε homologous! homolog
(m> 1) IVE ! ε effective ! effect
(m> 1) IZE ! ε bowdlerize ! bowdler

Step 7a: Cleanup

(m > 1) E ! ε probate! probat
rate ! rate

(m = 1 & ! *o) E ! ε cease ! ceas

Step 7b: Cleanup

(m > 1 & *d *L) ! [single letter] controll ! control
roll ! roll



C C5 AND C7 TAGSETS

Tag Description Example
AJ0 adjective (unmarked) good, old
AJC comparative adjective better, older
AJS superlative adjective best, oldest
AT0 article the, a, an
AV0 adverb (unmarked) often, well, longer, furthest
AVP adverb particle up, off, out
AVQ wh-adverb when, how, why
CJC coordinating conjunction and, or
CJS subordinating conjunction although, when
CJT the conjunctionthat
CRD cardinal numeral (exceptone) 3, twenty-five, 734
DPS possessive determiner your, their
DT0 general determiner these, some
DTQ wh-determiner whose, which
EX0 existentialthere
ITJ interjection or other isolate oh, yes, mhm
NN0 noun (neutral for number) aircraft, data
NN1 singular noun pencil, goose
NN2 plural noun pencils, geese
NP0 proper noun London, Michael, Mars
ORD ordinal sixth, 77th, last
PNI indefinite pronoun none, everything
PNP personal pronoun you, them, ours
PNQ wh-pronoun who, whoever

Figure C.1 First half of UCREL C5 Tagset for the British National Corpus
(BNC) after Garsideet al. (1997).
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Tag Description Example
PNX reflexive pronoun itself, ourselves
POS possessive’s or ’
PRF the prepositionof
PRP preposition (exceptof) for, above, to
PUL punctuation – left bracket ( or [
PUN punctuation – general mark . ! , : ; - ? ...
PUQ punctuation – quotation mark ‘ ’ ”
PUR punctuation – right bracket ) or ]
TO0 infinitive markerto
UNC unclassified items (not English)
VBB base forms ofbe(except infinitive) am, are
VBD past form ofbe was, were
VBG -ing form of be being
VBI infinitive of be
VBN past participle ofbe been
VBZ -s form ofbe is, ’s
VDB base form ofdo(except infinitive) does
VDD past form ofdo did
VDG -ing form of do doing
VDI infinitive of do to do
VDN past participle ofdo done
VDZ -s form ofdo does
VHB base form ofhave(except infinitive) have
VHD past tense form ofhave had, ’d
VHG -ing form of have having
VHI infinitive of have
VHN past participle ofhave had
VHZ -s form ofhave has, ’s
VM0 modal auxiliary verb can, could, will, ’ll
VVB base form of lexical verb (except infin.) take, live
VVD past tense form of lexical verb took, lived
VVG -ing form of lexical verb taking, living
VVI infinitive of lexical verb take, live
VVN past participle form of lex. verb taken, lived
VVZ -s form of lexical verb takes, lives
XX0 the negativenot or n’t
ZZ0 alphabetical symbol A, B, c, d

Figure C.2 The rest of UCREL’s C5 Tagset (Garsideet al., 1997).
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Tag Description Example
! punctuation tag - exclamation mark
” punctuation tag - quotation marks
( punctuation tag - left bracket
) punctuation tag - right bracket
, punctuation tag - comma
- punctuation tag - dash
—– new sentence marker
. punctuation tag - full-stop
... punctuation tag - ellipsis
: punctuation tag - colon
; punctuation tag - semi-colon
? punctuation tag - question-mark
APPGE possessive pronoun, prenominal my, your, our etc.
AT article the, no
AT1 singular article a, an, every
BCL before-clause marker in order [that]
CC coordinating conjunction and, or
CCB coordinating conjunction but
CS subordinating conjunction if, because, unless
CSA asas a conjunction
CSN thanas a conjunction
CST thatas a conjunction
CSW whetheras a conjunction
DA post-determiner/pronoun such, former, same
DA1 singular after-determiner little, much
DA2 plural after-determiner few, several, many
DAR comparative after-determiner more, less
DAT superlative after-determiner most, least
DB pre-determiner/pronoun all, half
DB2 plural pre-determiner/pronoun both
DD determiner/pronoun any, some
DD1 singular determiner this, that, another
DD2 plural determiner these, those
DDQ wh-determiner which, what
DDQGE wh-determiner, genitive whose
DDQV wh-ever determiner whichever, whatever
EX existentialthere
FO formula
FU unclassified

Figure C.3 First part of UCREL C7 Tagset for the British National Corpus
(BNC) from (Garsideet al., 1997).
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Tag Description Example
FW foreign word
GE germanic genitive marker - ’ or ’s
IF for as a preposition
II preposition in, on, to
IO of as a preposition
IW with; withoutas preposition
JJ general adjective big, old
JJR general comparative adjective older, better, bigger
JJT general superlative adjective oldest, best, biggest
JK adjective catenative ablein be able to

willing in be willing to
MC cardinal number (neutral for number) two, three...
MC1 singular cardinal number one
MC2 plural cardinal number tens, twenties
MCMC hyphenated number 40-50, 1770-1827
MD ordinal number first, 2nd, next, last
ND1 singular noun of direction north, southeast
NN common noun (neutral for number) sheep, cod
NN1 singular common noun book, girl
NN2 plural common noun books, girls
NNA following noun of title M.A.
NNB preceding noun of title Mr, Prof
NNL1 singular locative noun street, Bay
NNL2 plural locative noun islands, roads
NNO numeral noun (neutral for number) dozen, thousand
NNO2 plural numeral noun hundreds, thousands
NNT temporal noun (neutral for number) no known examples
NNT1 singular temporal noun day, week, year
NNT2 plural temporal noun days, weeks, years
NNU unit of measurement in., cc.

(neutral for number)
NNU1 singular unit of measurement inch, centimetre
NNU2 plural unit of measurement inches, centimetres
NP proper noun (neutral for number) Phillipines, Mercedes
NP1 singular proper noun London, Jane, Frederick
NP2 plural proper noun Browns, Reagans, Koreas
NPD1 singular weekday noun Sunday
NPD2 plural weekday noun Sundays

Figure C.4 More of UCREL’s C7 Tagset (Garsideet al., 1997).
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Tag Description Example
NPM1 singular month noun October
NPM2 plural month noun Octobers
PN indefinite pronoun (neutral for number) none
PN1 singular indefinite pronoun one, everything, nobody
PNQO whom
PNQS who
PNQV whoever, whomever

whomsoever, whosoever
PNX1 reflexive indefinite pronoun oneself
PPGE nominal possessive personal pronoun mine, yours
PPH1 it
PPHO1 him, her
PPHO2 them
PPHS1 She, she
PPHS2 they
PPIO1 me
PPIO2 us
PPIS1 I
PPIS2 we
PPX1 singular reflexive personal pronoun yourself, itself
PPX2 plural reflexive personal pronoun yourselves, ourselves
PPY you
RA adverb, after nominal head else, galore
REX adverb introducing namely, viz, eg.

appositional constructions
RG degree adverb very, so, too
RGQ wh- degree adverb how
RGQV wh-ever degree adverb however
RGR comparative degree adverb more, less
RGT superlative degree adverb most, least
RL locative adverb alongside, forward
RP prepositional adverb; particle in, up, about
RPK prepositional adverb, catenative aboutin be about to
RR general adverb actually
RRQ wh- general adverb where, when, why, how
RRQV wh-ever general adverb wherever, whenever
RRR comparative general adverb better, longer
RRT superlative general adverb best, longest
RT nominal adverb of time now, tommorow

Figure C.5 More of UCREL’s C7 Tagset (Garsideet al., 1997).
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Tag Description Example
TO infinitive marker to
UH interjection oh, yes, um
VB0 be
VBDR were
VBDZ was
VBG being
VBI infinitive be
VBM am
VBN been
VBR are
VBZ is
VD0 do
VDD did
VDG doing
VDI infinitive do
VDN done
VDZ does
VH0 have
VHD past tensehad
VHG having
VHI infinitive have
VHN past participlehad
VHZ has
VM modal auxiliary can, will , wouldetc.
VMK modal catenative ought, used
VV0 base form of lexical verb give, work etc.
VVD past tense form of lexical verb gave, workedetc.
VVG -ing form of lexical verb giving, workingetc.
VVGK -ing form in a catenative verb goingin be going to
VVI infinitive of lexical verb [to] give, [to] work etc.
VVN past participle form of lexical verb given, workedetc.
VVNK past part. in a catenative verb boundin be bound to
VVZ -s form of lexical verb gives, worksetc.
XX not, n’t
ZZ1 singular letter of the alphabet A, a, B, etc.
ZZ2 plural letter of the alphabet As, b’s, etc.

Figure C.6 The rest of UCREL’s C7 Tagset (Garsideet al., 1997)



D
TRAINING HMMS: THE
FORWARD-BACKWARD
ALGORITHM

This appendix sketches theforward-backward or Baum-Welch algorithm
(Baum, 1972), a special case of theExpectation-Maximization or EM al-
gorithm (Dempsteret al., 1977). The algorithm will let us train the transition
probabilitiesai j and the emission probabilitiesbi(ot) of the HMM. While it
is theoretically possible to train both the network structure of an HMM and
these probabilities, no good algorithm for this double-induction exists. Thus
in practice the structure of most HMMs is designed by hand, and then the
transition and emission probabilities are trained from a large set of observa-
tion sequencesO. Furthermore, it turns out that the problem of setting the
a andb parameters so as to exactly maximize the probability of the obser-
vation sequenceO is unsolved. The algorithm that we give in this section is
only guaranteed to find alocal maximum. The forward-backward algorithm
is used throughout speech and language processing, for example in training
HMM-based part-of-speech taggers, as we saw in Chapter 8. Extensions of
forward-backward are also important, like the Inside-Outside algorithm used
to train stochastic context-free-grammars (Chapter 12).

Let us begin by imagining that we were training not a Hidden Markov
Model but a vanilla Markov Model. We do this by running the model on the
observation and seeing which transitions and observationswere used. For
ease of description in the rest of this section, we will pretend that we are
training on a single sequence of training data (calledO), but of course in
a real speech recognition system we would train on hundreds of thousands
of sequences (thousands of sentences). Since unlike an HMM,a vanilla
Markov Model is not hidden, we can look at an observation sequence and
know exactly which transitions we took through the model, and which state
generated each observation symbol. Since every state can only generate one
observation symbol, the observationb probabilities are all 1.0. The proba-
bility ai j of a particular transition between statesi and j can be computed by
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counting the number of times the transition was taken, whichwe could call
C(i ! j), and then normalizing by the total count of all times we took any
transition from statei.

ai j = C(i ! j)
∑q2QC(i ! q) (D.1)

For an HMM we cannot compute these counts directly from an ob-
served sentence (or set of sentences), since we don’t know which path of
states was taken through the machine for a given input. The Baum-Welch
uses two neat intuitions to solve this problem. The first ideais to iteratively
estimate the counts. We will start with an estimate for the transition and ob-
servation probabilities, and then use these estimated probabilities to derive
better and better probabilities. The second idea is that we get our estimated
probabilities by computing the forward probability for an observation and
then dividing that probability mass among all the differentpaths that con-
tributed to this forward probability.

In order to understand the algorithm, we need to return to theforward
algorithm of Chapter 5 and more formally define two related probabilities
which will be used in computing the final probability: theforward proba-
bility and thebackward probability . We refer to the forward probabilityFORWARD

PROBABILITY

BACKWARD
PROBABILITY asα and the backward probability asβ. Recall that we defined the forward

probability as the probability of being in statei after seeing the firstt obser-
vations, given the automatonλ:

αt(i) = P(o1;o2 : : :ot ;qt = ijλ) (D.2)

In Chapter 5 we used a matrix to calculate the forward probability re-
cursively; now we will formally define the actual recursion.

1. Initialization:

αh(1) = a1 jb j(o1) 1< j < N (D.3)

2. Recursion (since states 1 and N are non-emitting):

α j(t) = "N�1

∑
i=2

αi(t�1)ai j

#
b j(ot ) 1< j < N;1< t < T (D.4)

3. Termination:

P(Ojλ) = αN(T) = N�1

∑
i=2

αi(T)aiN (D.5)

As we saw in Chapter 5, the forward probability is computed via a
matrix or lattice, in which each column is computed by extending the paths
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from the previous columns. Figure D.1 illustrates the induction step for com-
puting the value in one new cell.

a
1j

a
2j

a3j

s
1

s

s

s

s

N

3

2

j

aNj

α (t)
i αj (t+1)

t+1b (o    )j

t+1oo t

Σ *

Figure D.1 The computation ofαi(t) by summing all the previous values
αt�1 weighted by their transition probabilitiesa and multiplying by the obser-
vation probabilitybi(ot+1). Of course in any given HMM many or most of the
transition probabilities will be 0, so not all previous states will contribute to
the forward probability of the current state.

The second important piece of the forward-backward algorithm, the
backward probability, is almost the mirror image of the forward probability;
it computes the probability of seeing the observations fromtime t +1 to the
end, given that we are in statej at timet (and of course given the automaton
λ):

βi(ot) = P(ot+1;ot+2 : : :oT jqt = j;λ) (D.6)

It is computed inductively in a similar manner to the forwardalgorithm.

1. Initialization:

βi(t) = aiN ; 1< i < N (D.7)

2. Recursion (again since states 1 and N are non-emitting):

βi(t) = N�1

∑
i=2

ai j b j(ot+1)β j(t +1) 1< i < N;T > t � 1 (D.8)

3. Termination:

P(Ojλ) = αN(T) = β1(T) = N�1

∑
j=2

a1 jb j(o1)β j(1) (D.9)
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Figure D.2 The computation ofβi(t) by summing all the successive values
βt+1 weighted by their transition probabilitiesa and the observation probabil-
ity bi(ot+1).

Figure D.2 illustrates the backward induction step.
We are now ready to understand how the forward and backward prob-

abilities can help us compute the transition probabilityai j and observation
probabilitybi(ot) from an observation sequence, even though the actual path
taken through the machine is hidden!

Let’s begin by showing how to reestimateai j . We will proceed to esti-
mateâi j by a variant of (D.1):

âi j = expected number of transitions from statei to statej
expected number of transitions from statei

(D.10)

How do we compute the numerator? Here’s the intuition. Assume
we had some estimate of the probability that a given transition i ! j was
taken at a particular point in timet in the observation sequence. If we knew
this probability for each particular timet, we could sum over all timest to
estimate the total count for the transitioni ! j.

More formally, let’s define the probabilityτt (τ for transition) as the
probability of being in statei at time t and statej at time t + 1, given the
observation sequence and of course the model:

τt(i; j) = P(qt = i;qt+1 = jjO;λ) (D.11)

In order to computeτt , we first compute a probability which is similar
to τt , but differs in including the probability of the observation:

not-quite-τt(i; j) = P(qt = i;qt+1 = j;Ojλ) (D.12)

Figure D.3 shows the various probabilities that go into computing not-
quite-τt : the transition probability for the arc in question, theα probability
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before the arc, theβ probability after the arc, and the observation probability
for the symbol just after the arc.

α (t)
i

o
j (t+1)β

ot−1 o t o t+1 t+2

si sj

(o    )jb
t+1ija *

Figure D.3 Computation of the joint probability of being in statei at time
t and statej at timet +1. The figure shows the various probabilities that need
to be combined to produceP(qt = i;qt+1 = j;Ojλ): theα andβ probabilities,
the transition probabilityai j and the observation probabilityb j(ot+1). After
Rabiner (1989).

These are multiplied together to producenot-quite-*τt as follows

not-quite-τt(i; j) = αi(t)ai j b j(ot+1)β j(t +1) (D.13)

In order to computeτt from not-quite-τt , the laws of probability in-
struct us to divide byP(Ojλ), since:

P(XjO;λ) = P(X;Ojλ)
P(Ojλ ) (D.14)

The probability of the observation given the model is simplythe for-
ward probability of the whole utterance, (or alternativelythe backward prob-
ability of the whole utterance!), which can thus be computedin a number of
ways:

P(Ojλ) = αN(T) = β1(T) = N

∑
j=1

α j(t)β j(t) (D.15)

So, the final equation forτt is:

τt(i; j) = αi(t)ai j b j(ot+1)β j(t +1)
αN(T) (D.16)

The expected number of transitions from statei to state j is then the
sum over allt of τ. For our estimate ofai j in (D.10), we just need one more
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thing: the total expected number of transitions from statei. We can get this
by summing over all transitions out of statei. Here’s the final formula for
âi j :

âi j = ∑T�1
t=1 τt(i; j)

∑T�1
t=1 ∑N

j=1 τt(i; j) (D.17)

We also need a formula for recomputing the observation probability.
This is the probability of a given symbolvk from the observation vocabulary
V, given a statej: b̂ j(vk). We will do this by trying to compute:

b̂ j(vk)= expected number of times in statej and observing symbolvk

expected number of times in statej
(D.18)

For this we will need to know the probability of being in statej at time
t, which we will callσ j(t) (σ for state):

σ j(t) = P(qt = jjO;λ) (D.19)

Once again, we will compute this by including the observation se-
quence in the probability:

σ j(t) = P(qt = j;Ojλ)
P(Ojλ) (D.20)

α (t)

o t−1 o t

s

β
o

(t)

t+1

jj

j

Figure D.4 The computation ofσ j(t), the probability of being in statej at
time t. Note thatσ is really a degenerate case ofτ and hence this figure is like
a version of Figure D.3 with statei collapsed with statej.

As Figure D.4 shows, the numerator of (D.20) is just the product of the
forward probability and the backward probability:

σ j(t) = α j(t)β j(t)
P(Ojλ) (D.21)
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We are ready to computeb. For the numerator, we sumσ j(t) for all
time stepst in which the observationot is the symbolvk that we are interested
in. For the denominator, we sumσ j(t) over all time stepst. The result will
be the percentage of the times that we were in statej that we saw symbolvk

(the notation∑T
t=1s:t:Ot=vk

means ”sum over allt for which the observation at
time t wasvk):

b̂ j(vk) = ∑T
t=1s:t:Ot=vk

σ j(t)
∑T

t=1σ j(t) (D.22)

We now have ways tore-estimatethe transitiona and observationb
probabilities from an observation sequenceO assuming that we already have
a previous estimate ofa andb. The entire training procedure for HMMs,
calledembedded training, first chooses some estimate fora andb, and then
uses equations (D.22) and (D.17) to re-estimatea andb, and the repeats until
convergence. In the next sections we will see how forward-backward is ex-
tended to inputs which are non-discrete (‘continuous observation densities’)
via Gaussian functions. Section 7.7 discussed how the embedded training
algorithm gets its initial estimates fora andb.

Continuous Probability Densities

The version of the parameter reestimation that we have described so far sec-
tion assumes that the input observations were discrete symbols from some
reasonably-sized alphabet. This is naturally true for someuses of HMMs;
for example Chapter 8 will introduce the use of HMMs for part-of-speech-
tagging. Here the observations are words of English, which is a reasonably-
sized finite set, say approximately 100K words. For speech recognition, the
LPC cepstral features that we introduced constitute a much larger alphabet
(11 features, each one say a 32-bit floating-point number), for a total vo-
cabulary size of 2(11�32). In fact, since in practice, we usually use not 11
features, but delta-features and double-delta features aswell, the vocabulary
size would be enormous. Chapter 7 mentioned that one way to solve this
problem is tocluster or vector quantize the cepstral features into a much
smaller set of discrete observation symbols. A more effective approach is to
use either mixtures ofGaussianestimatorsneural networks (multi-layer
perceptrons) to estimate aprobability density function or pdf over a con-
tinuous space, as we suggested in Chapter 7.

HMMs with Gaussian observation-probability-estimators are trained
by a simple extension to the forward-backward algorithm. Recall from Chap-
ter 7 that in the simplest use of Gaussians, we assume that thepossible values
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of the observation feature vectorot are normally distributed, and so we rep-
resent the observation probability functionb j(ot ) as a Gaussian curve with
mean vectorµj and covariance matrix∑ j (prime denotes vector transpose):

b j(ot) = 1p(2π)j∑ jje[(ot�µj )0Σ�1
j (ot�µj )] (D.23)

Usually we make the simplifying assumption that the covariance ma-
trix ∑ j is diagonal, which means that in practice we are keeping a single
separate mean and variance for each feature in the feature vector.

How are the mean and covariance of the Gaussians estimated? It is
helpful again to consider the simpler case of a non-hidden Markov Model,
with only one statei. The vector of feature meansµ and the vector of covari-
ancesΣ could then be estimated by averaging:

µ̂i = 1
T

T

∑
t=1

ot (D.24)

Σ̂i = 1
T

T

∑
t=1

[(ot �µj)0(ot �µj)] (D.25)

But since there are multiple hidden states, we don’t know which ob-
servation vectorot was produced by which state. What we would like to
do is assign each observation vectorot to every possible statei, prorated by
the probability that the HMM was in statei at timet. Luckily, we already
know how to do this prorating; the probability of being in state i at timet is
σi(t), which we saw how to compute above! Of course we’ll need to do the
probability computation ofσi(t) iteratively since getting a better observation
probability b will also help us be more sure of the probabilityσ of being in
a state at a certain time. So the actual re-estimation equations are:

µ̂i = ∑T
t=1σi(t)ot

∑T
t=1 σi(t) (D.26)

Σ̂i = ∑T
t=1σi(t)(ot �µi)0(ot �µi)

∑T
t=1 σi(t) (D.27)

The sums in the denominators are for the same normalization that we
saw in (D.22). Equations (D.27) and (D.27) are then used in the forward-
backward (Baum-Welch) training of the HMM. The values ofµi andσi are
first set to some initial estimate, which is then re-estimated until the numbers
converge.
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See Jelinek (1997) or Rabiner and Juang (1993) for a more complete
description of the forward-backward algorithm. Jelinek (1997) also shows
the relationship between forward-backward and EM.
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Colmerauer, A. (1970). Les systèmes-q ou un formalisme pour analyser et synthétiser
des phrase sur ordinateur. Internal publication 43, Département d’informatique de
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Mel’čuk, I. A. (1979). Studies in dependency syntax. Karoma Publishers, Ann
Arbor.
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Wahlster, W., André, E., Finkler, W., Profitlich, H.-J., and Rist, T. (1993). Plan-
based Integration of Natural Language and Graphics Generation. Artificial Intelli-
gence, 63(1–2), 387–428.

Waibel, A. (1988). Prosody and Speech Recognition. Morgan Kaufmann, San
Mateo, CA.

Wald, B. and Shopen, T. (1981). A researcher’s guide to the sociolinguistic variable
(ING). In Shopen, T. and Williams, J. M. (Eds.),Style and Variables in English,
pp. 219–249. Winthrop Publishers, Cambridge, MA.

Walker, M. A. (1989). Evaluating discourse processing algorithms. In ACL-89,
Vancouver, Canada, pp. 251–260. ACL.

Walker, M. A., Iida, M., and Cote, S. (1994). Japanese discourse and the process of
centering.Computational Linguistics, 20(2).

Walker, M. A., Joshi, A. K., and Prince, E. (Eds.). (1998).Centering in Discourse.
Oxford University Press.

Walker, M. A., Litman, D. J., Kamm, C. A., and Abella, A. (1997). Paradise:
A framework for evaluating spoken dialogue agents. InACL/EACL-97, Madrid,
Spain, pp. 271–280. ACL.

Walker, M. A., Maier, E., Allen, J., Carletta, J., Condon, S., Flammia, G., Hirschberg,
J., Isard, S., Ishizaki, M., Levin, L., Luperfoy, S., Traum,D., and Whittaker, S.
(1996). Penn multiparty standard coding scheme: Draft annotation manual. Un-
published ms. available at http://www.cis.upenn.edu/ ircs/discourse-tagging/newcoding.html.

Walker, M. A. and Whittaker, S. (1990). Mixed initiative in dialogue: An investiga-
tion into discourse segmentation. InACL-90, Pittsburgh, PA, pp. 70–78. ACL.

Wang, M. Q. and Hirschberg, J. (1992). Automatic classification of intonational
phrasing boundaries.Computer Speech and Language, 6(2), 175–196.

Wanner, E. and Maratsos, M. (1978). An ATN approach to comprehension. In Halle,
M., Bresnan, J., and Miller, G. A. (Eds.),Linguistic Theory and Psychological
Reality, pp. 119–161. MIT Press, Cambridge, MA.

Ward, N. (1994).A Connectionist Language Generator. Ablex.

Warnke, V., Kompe, R., Niemann, H., and Nöth, E. (1997). Integrated dialog act
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