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Preface

This is an exciting time to be working in speech and languageqgssing.

Historically distinct fields (natural language processisygeech recognition,
computational linguistics, computational psycholingia® have begun to
merge. The commercial availability of speech recognitiand the need
for web-based language techniques have provided an inmpami@etus for

development of real systems. The availability of very langeline corpora
has enabled statistical models of language at every lexh phonetics to
discourse. We have tried to draw on this emerging state oathé the

design of this pedagogical and reference work:

1. Coverage

In attempting to describe a unified vision of speech and laggpro-
cessing, we cover areas that traditionally are taught fardifit courses
in different departments: speech recognition in eledtecgineering,
parsing, semantic interpretation, and pragmatics in ahtanguage
processing courses in computer science departments, tatiopal
morphology and phonology in computational linguisticsrsas in lin-
guistics departments. The book introduces the fundamalgatithms
of each of these fields, whether originally proposed for spad writ-
ten language, whether logical or statistical in origin, atigmpts to
tie together the descriptions of algorithms from differdatnains. We
have also included coverage of applications like spellimgcking and
information retrieval and extraction, as well as to areks dognitive
modeling. A potential problem with this broad-coveragerapph is
that it required us to include introductory material for ledield; thus
linguists may want to skip our description of articulatoryopetics,
computer scientists may want to skip such sections as megutaes-
sions, and electrical engineers the sections on signakpsoty. Of
course, even in a book this long, we didn't have room for ening.
Thus this book should not be considered a substitute for itapbrel-
evant courses in linguistics, automata and formal langtiagery, or,
especially, statistics and information theory.

2. Emphasis on practical applications
It is important to show how language-related algorithms #ewh-
niques (from HMMs to unification, from the lambda calculus to
transformation-based learning) can be applied to imporeai-world
problems: spelling checking, text document search, spesabgni-

XXi
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tion, Web-page processing, part-of-speech tagging, madhnansla-
tion, and spoken-language dialog agents. We have attertgptidthis
by integrating the description of language processingiegibns into
each chapter. The advantage of this approach is that aslévame
linguistic knowledge is introduced, the student has theéx¢pantind to
understand and model a particular domain.

3. Emphasis on scientific evaluation

The recent prevalence of statistical algorithms in languyagcessing,
and the growth of organized evaluations of speech and |gyeypeo-
cessing systems has led to a new emphasis on evaluation. We ha
therefore, tried to accompany most of our problem domairth wi
Methodology Box describing how systems are evaluated (e.g. in-
cluding such concepts as training and test sets, crossatialn, and
information-theoretic evaluation metrics like perplgxit

4. Description of widely available language processing reses
Modern speech and language processing is heavily basedmn co
mon resources: raw speech and text corpora, annotatedracapd
treebanks, standard tagsets for labeling pronunciatiart,qf speech,
parses, word-sense, and dialog-level phenomena. We hegiddrin-
troduce many of these important resources throughout thie (for ex-
ample the Brown, SwitchboardaLLHOME, ATIS, TREC, MUC, and
BNC corpora), and provide complete listings of many usedigisets
and coding schemes (such as the Penn Treebank, CLAWS C5 and C7
and the ARPADbet) but some inevitably got left out. Furtheremeoather
than include references to URLs for many resources direatithe
textbook, we have placed them on the book’s web site, whesedhn
more readily updated.

The book is primarily intended for use in a graduate or adednmder-
graduate course or sequence. Because of its compreheosemge and the
large number of algorithms, the book it also useful as aeefes for students
and professionals in any of the areas of speech and languagesping.

Overview of the book

The book is divided into 4 parts in addition to an introductand end matter.
Part I, “Words”, introduces concepts related to the praogssf words: pho-
netics, phonology, morphology, and algorithms used togss¢hem: finite
automata, finite transducers, weighted transducers, Mgrand Hidden
Markov Models. Part Il, “Syntax”, introduces parts-of-sph and phrase
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XXxiii

structure grammars for English, and gives essential dhgos for process-
ing word classes and structured relationships among wquais:of-speech
taggers based on HMMs and transformation-based learriegCYK and

Earley algorithms for parsing, unification and typed featsiructures, lex-
icalized and probabilistic parsing, and analytical todke Ithe Chomsky
hierarchy and the pumping lemma. Part Ill, “Semantics”rdadtices first

order predicate calculus and other ways of representinghimgaseveral

approaches to compositional semantic analysis, along agifications to

information retrieval, information extraction, speecldarstanding, and ma-
chine translation. Part IV, “Pragmatics”, covers refegerasolution and dis-
course structure and coherence, spoken dialog phenonkendidlog and

speech act modeling, dialog structure and coherence, almdinanagers,
as well as a comprehensive treatment of natural languageragen and of

machine translation.

Using this book

The book provides enough material to be used for a full yequesgce in
speech and language processing. Itis also designed st ¢hathe used for
a number of different useful one-term courses:

NLP NLP Speech + NLP Comp. Linguistics
1 quarter 1 semester 1 semester 1 quarter
1. Intro 1. Intro 1. Intro 1. Intro
2. Regex, FSA |2. Regex, FSA 2. Regex, FSA 2. Regex, FSA
8. POS tagging |3. Morph., FST 3. Morph., FST 3. Morph., FST
9. CFGs 6. N-grams 4. Comp. Phonol. |4. Comp. Phonol.
10. Parsing 8. POS tagging 5. Prob. Pronun. |10. Parsing
11. Unification |9. CFGs 6. N-grams 11. Unification
14. Semantics | 10. Parsing 7. HMMs & ASR | 13. Complexity
15. Sem. Analysisll. Unification 8. POS tagging 16. Lex. Semantics
18. Discourse 12. Prob. Parsing |9. CFG 18. Discourse
20. Generation |14. Semantics 10. Parsing 19. Dialog

15. Sem. Analysis | 12. Prob Parsing

16. Lex. Semantics 14. Semantics

18. Discourse 15. Sem. Analysis

19. WSD and IR | 19. Dialog

20. Generation 21. Machine Trans|.

21. Machine Trans|.

Selected chapters from the book could also be used to augmerses
in Artificial Intelligence, Cognitive Science, or Informan Retrieval.
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1 INTRODUCTION

Dave Bowman: Open the pod bay doors, HAL.
HAL: I'm sorry Dave, I'm afraid | can’t do that.

Stanley Kubrick and Arthur C. Clarke,
screenplay 02001: A Space Odyssey

The HAL 9000 computer in Stanley Kubrick’s filrd001: A Space
Odysseyis one of the most recognizable characters in twentietldegn
cinema. HAL is an artificial agent capable of such advanceguage-
processing behavior as speaking and understanding Engfidrat a crucial
moment in the plot, even reading lips. It is now clear that FéAdreator
Arthur C. Clarke was a little optimistic in predicting when artificial agent
such as HAL would be available. But just how far off was he? Wiauld
it take to create at least the language-related parts of Hintmally, such
an agent would have to be capable of interacting with humankrguage,
which includes understanding humans sgeech recognitionand natural
language understanding(and of coursdip-reading), and of communicat-
ing with humans vianatural language generationand speech synthesis
HAL would also need to be able to doformation retrieval (finding out
where needed textual resources resigg@rmation extraction (extracting
pertinent facts from those textual resources), enfirence (drawing con-
clusions based on known facts).

Although these problems are far from completely solved, mofche
language-related technology that HAL needs is currentipgodeveloped,
with some of it already available commercially. Solving dbeproblems,
and others like them, is the main concern of the fields knowMaisiral
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Language Processing, Computational Linguistics and $pBe&cognition
and Synthesis, which together we c8peech and Language Processing
The goal of this book is to describe the state of the art of tdifinology
at the start of the twenty-first century. The applications wik consider
are all of those needed for agents like HAL, as well as othkralde areas
of language processing such gselling correction, grammar checking,
information retrieval , andmachine translation.

1.1 KNOWLEDGE IN SPEECH ANDLANGUAGE PROCESSING

By speech and language processing, we have in mind thoseutatiopal
techniques that process spoken and written human langaadanguage
As we will see, this is an inclusive definition that encomassverything
from mundane applications such as word counting and auiorhgphen-
ation, to cutting edge applications such as automated ignesmtswering on
the Web, and real-time spoken language translation.

What distinguishes these language processing applisatiom other
data processing systems is their us&mdwledge of languageConsider the
Unix wc program, which is used to count the total number of bytesdajor
and lines in a text file. When used to count bytes and liweds an ordinary
data processing application. However, when it is used tmtcthe words
in a file it requiresknowledge about what it means to be a waadd thus
becomes a language processing system.

Of course,wc is an extremely simple system with an extremely lim-
ited and impoverished knowledge of language. More soghistd language
agents such as HAL require much broader and deeper knowlefdige-
guage. To get a feeling for the scope and kind of knowledgeired, in
more sophisticated applications, consider some of what Hauld need to
know to engage in the dialogue that begins this chapter.

To determine what Dave is saying, HAL must be capable of aivady
an incoming audio signal and recovering the exact sequenwerds Dave
used to produce that signal. Similarly, in generating ispomse, HAL must
be able to take a sequence of words and generate an audibthignBave
can recognize. Both of these tasks require knowledge giutetics and
phonology, which can help model how words are pronounced in colloquial
speech (Chapter 4 and Chapter 5).

Note also that unlike Star Trek’s Commander Data, HAL is bépaf
producing contractions likEm andcan't. Producing and recognizing these
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and other variations of individual words (for example ratiaing thatdoors
is plural) requires knowledge abonitorphology, which captures informa-
tion about the shape and behavior of words in context (Ch2ptehapter 3).

Moving beyond individual words, HAL must know how to analythe
structure underlying Dave’s request. Such an analysisdsgsary among
other reasons for HAL to determine that Dave’s utterance risgaest for
action, as opposed to a simple statement about the world westign about
the door, as in the following variations of his original staent.

HAL, the pod bay door is open.
HAL, is the pod bay door open?

In addition, HAL must use similar structural knowledge toperly string
together the words that constitute its response. For ex@nipAL must
know that the following sequence of words will not make sets®ave,
despite the fact that it contains precisely the same set afswas the original.

I’'m | do, sorry that afraid Dave I'm can't.

The knowledge needed to order and group words together conues the
heading ofsyntax.

Of course, simply knowing the words and the syntactic stmecof
what Dave said does not tell HAL much about the nature of higiest.
To know that Dave’s command is actually about opening thehayddoor,
rather than an inquiry about the day’s lunch menu, requiresvedge of
the meanings of the component words, the domaitewical semantics
and knowledge of how these components combine to form langanings,
compositional semantics

Next, despite its bad behavior, HAL knows enough to be pdbte
Dave. It could, for example, have simply replidbb or No, | won't open
the door Instead, it first embellishes its response with the phrisesorry
andI'm afraid, and then only indirectly signals its refusal by saylra@an't,
rather than the more direct (and truthfliyon't.> The appropriate use of this
kind of polite and indirect language comes under the heaafipgagmatics.

Finally, rather than simply ignoring Dave’s command andileg the
door closed, HAL chooses to engage in a structured conianseglevant
to Dave’s initial request. HAL's correct use of the wdidht in its answer
to Dave’s request is a simple illustration of the kind of beén-utterance

1 For those unfamiliar with HAL, it is neither sorry nor afraiubr is it incapable of opening
the door. It has simply decided in a fit of paranoia to kill itew.
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device common in such conversations. Correctly struajuttiese such con-
versations requires knowledgeditcourse conventions

To summarize, the knowledge of language needed to engagerin c
plex language behavior can be separated into six distinegoges.

Phonetics and Phonology — The study of linguistic sounds.
Morphology — The study of the meaningful components of words
Syntax — The study of the structural relationships betweerds:
Semantics — The study of meaning.

Pragmatics — The study of how language is used to accompbials.g
Discourse — The study of linguistic units larger than a singterance.

1.2 AWMBIGUITY

AMBIGUITY

A perhaps surprising fact about the six categories of listijriknowledge is
that most or all tasks in speech and language processingecgieled as
resolvingambiguity at one of these levels. We say some input is ambiguous
if there are multiple alternative linguistic structuregrnhcan be built for it.
Consider the spoken sentericmade her duckHere’s five different mean-
ings this sentence could have (there are more) each of wkarhgifies an
ambiguity at some level:

(1.1) I cooked waterfowl for her.

(1.2) | cooked waterfowl belonging to her.

(1.3) | created the (plaster?) duck she owns.

(1.4) | caused her to quickly lower her head or body.

(1.5) I'waved my magic wand and turned her into undifferéatia
waterfowl.

These different meanings are caused by a number of amlgiguFirst, the
wordsduckandher are morphologically or syntactically ambiguous in their
part of speech.Duck can be a verb or a noun, whiler can be a dative
pronoun or a possessive pronoun. Second, the waakeis semantically
ambiguous; it can meacreateor cook Finally, the verbmakeis syntac-
tically ambiguous in a different wayMake can be transitive, i.e. taking a
single direct object (1.2), or it can be ditransitive, i.@kihg two objects
(1.5), meaning that the first objedtdr) got made into the second object
(ducK. Finally, makecan take a direct object and a verb (1.4), meaning that
the object fier) got caused to perform the verbal actialu¢k. Furthermore,
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in a spoken sentence, there is an even deeper kind of ambigiodt first
word could have beeayeor the second worchaid

We will often introduce the models and algorithms we prefanatugh-
out the book as ways teesolve these ambiguities. For example deciding
whetherduckis a verb or a noun can be solved jpgrt of speech tagging
Deciding whethemakemeans ‘create’ or ‘cook’ can be solved kyord
sense disambiguationDeciding whetheher andduckare part of the same
entity (as in (1.1) or (1.4)) or are different entity (as in2}) can be solved
by probabilistic parsing. Ambiguities that don’t arise in this particular ex-
ample (like whether a given sentence is a statement or aiguegtill also
be resolved, for example Igpeech act interpretation

1.3 MODELS AND ALGORITHMS

One of the key insights of the last fifty years of research ngleage pro-
cessing is that the various kinds of knowledge describetdrast sections
can be captured through the use of a small number of formaémpar the-
ories. Fortunately, these models and theories are all diaamthe standard
toolkits of Computer Science, Mathematics, and Lingussdad should be
generally familiar to those trained in those fields. Amorgrfost important
elements in this toolkit arstate machinesformal rule systems logic, as
well asprobability theory and other machine learning tools. These mod-
els, in turn, lend themselves to a small number of algoritlirosy well-
known computational paradigms. Among the most importarthete are
state space searchlgorithms andlynamic programming algorithms.

In their simplest formulation, state machines are formabei® that
consist of states, transitions among states, and an inm&sentation. Among
the variations of this basic model that we will considerdegerministic and
non-deterministic finite-state automata finite-state transducers which
can write to an output devicayeighted automatg Markov models and
hidden Markov models which have a probabilistic component.

Closely related to these somewhat procedural models arediedar-
ative counterparts: formal rule systems. Among the moreitapt ones we
will consider areregular grammars andregular relations, context-free
grammars, feature-augmented grammars as well as probabilistic vari-
ants of them all. State machines and formal rule systemdarmain tools
used when dealing with knowledge of phonology, morpholagy syntax.

The algorithms associated with both state-machines andalorule
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systems typically involve a search through a space of stapgssenting hy-
potheses about an input. Representative tasks includehssgthrough a
space of phonological sequences for a likely input word ieesh recog-
nition, or searching through a space of trees for the comygutactic parse
of an input sentence. Among the algorithms that are ofted fmethese
tasks are well-known graph algorithms suchdapth-first search, as well
as heuristic variants such asst-first, and A* search. The dynamic pro-
gramming paradigm is critical to the computational traitiigbof many of
these approaches by ensuring that redundant computateas@ded.

The third model that plays a critical role in capturing knedde of
language is logic. We will discugsst order logic, also known as thpred-
icate calculus as well as such related formalisms as feature-structsees,
mantic networks, and conceptual dependency. These lagipegsentations
have traditionally been the tool of choice when dealing Witlowledge of
semantics, pragmatics, and discourse (although, as weem)lapplications
in these areas are increasingly relying on the simpler nrésims used in
phonology, morphology, and syntax).

Probability theory is the final element in our set of techesjfor cap-
turing linguistic knowledge. Each of the other models &tatchines, for-
mal rule systems, and logic) can be augmented with proliabiliOne major
use of probability theory is to solve the many kinds of amhigproblems
that we discussed earlier; almost any speech and languagessing prob-
lem can be recast as: ‘given N choices for some ambiguoug,inspoose
the most probable one’.

Another major advantage of probabilistic models is thay tire one of
a class ofmachine learningmodels. Machine learning research has focused
on ways to automatically learn the various representati@ssribed above;
automata, rule systems, search heuristics, classifiemsel$ystems can be
trained on large corpora and can be used as a powerful mgdekhnique,
especially in places where we don'’t yet have good causal mobiachine
learning algorithms will be described throughout the book.

1.4 LANGUAGE, THOUGHT, AND UNDERSTANDING

To many, the ability of computers to process language audkilas we do
will signal the arrival of truly intelligent machines. Thadis of this belief is
the fact that the effective use of language is intertwineth wur general cog-
nitive abilities. Among the first to consider the computaibimplications
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of this intimate connection was Alan Turing (1950). In thésrfous paper,
Turing introduced what has come to be known asTeng Test. Turing TurNG TesT
began with the thesis that the question of what it would meai inachine
to think was essentially unanswerable due to the inhereptaansion in the
termsmachineandthink. Instead, he suggested an empirical test, a game,
in which a computer’s use of language would form the basislé&iermin-
ing if it could think. If the machine could win the game it wdube judged
intelligent.

In Turing’s game, there are three participants: 2 peopleaazanputer.
One of the people is a contestant and plays the role of arrdagtior. To
win, the interrogator must determine which of the other twaatipipants is
the machine by asking a series of questions via a teletype.tdsk of the
machine is to fool the interrogator into believing it is agm@r by responding
as a person would to the interrogator's questions. The thskeosecond
human participant is to convince the interrogator that theroparticipant is
the machine, and that they are human.

The following interaction from Turing’s paper illustratése kind of
interactions he had in mind. Clearly a convincing simulatad humanity
doesn't require being an expert in all domains:

Q: Please write me a sonnet on the topic of the Forth Bridge.
A: Count me out on this one. | never could write poetry

Q: Add 34957 to 70764

A: (Pause about 30 seconds and then give answer as) 105621.

Turing predicted that roughly by the end of the twentiethtagna machine
with 10 gigabytes of memory would have around a 30% chanceabiig a
human interrogator after 5 minutes of questioning. Givenfttt that you
can fool some of the people all the time, it is not clear hovomigis this
particular standard is. Nevertheless, the critical issuweTtiring was that
using language as humans do is sufficient, by itself, as amatipeal test for
intelligence.

Surprisingly, many of the issues raised by Turing becanevasit as
early as 1966 in the context of the ELIZA program (Weizenbadf66).
ELIZA was an early natural language processing system ¢adlcarry-
ing on a limited form of conversation with a user. Considear thilowing
session with a version of ELIZA that imitated the respondes Rogerian
psychotherapist.
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User: You are like my father in some ways.

ELIZA;: WHAT RESEMBLANCE DO YOU SEE

Usekb:  You are not very aggressive but | think you don’t want me tbasothat.
ELIZA,: WHAT MAKES YOU THINK | AM NOT AGGRESSIVE

User: You don't argue with me.

ELIZA3: WHY DO YOU THINK | DON'T ARGUE WITH YOU

Usen: You are afraid of me.

ELIZA4: DOES IT PLEASE YOU TO BELIEVE | AM AFRAID OF YOU

As we will discuss in more detail in Chapter 2, ELIZA is a rekably sim-

ple program that makes use of pattern-matching to processput and
translate it into suitable outputs. The success of this lEitgehnique in this
domain is due to the fact that ELIZA doesn’t actually neelrtowanything

to mimic a Rogerian psychotherapist. As Weizenbaum nadtésjg one of
the few dialogue genres where the listener can act as if thew kiothing of
the world.

ELIZA deep relevance to Turing’s ideas is that many people vk
teracted with ELIZA came to believe that it realipderstoodchem and their
problems. Indeed, Weizenbaum (1976) notes that many of {hesple con-
tinued to believe in ELIZAs abilities even after the progra operation was
explained to them. In more recent years, Weizenbaum'’s rimdibrreports
have been repeated in a somewhat more controlled settimge $B891, an
event known as the Loebner Prize competition has attemptpdttvarious
computer programs to the Turing test. Although these ctstesse proven
to have little scientific interest, a consistent result ayer years has been
that even the crudest programs can fool some of the judges sbthe time
(Shieber, 1994). Not surprisingly, these results have duntking to quell
the ongoing debate over the suitability of the Turing test &sst for intelli-
gence among philosophers and Al researchers (Searle,.1980)

Fortunately, for the purposes of this book, the relevandhexe results
does not hinge on whether or not computers will ever be igtgit, or un-
derstand natural language. Far more important is receateceresearch in
the social sciences that has confirmed another of Turingdigtions from
the same paper.

Nevertheless | believe that at the end of the century the tise o
words and educated opinion will have altered so much that we
will be able to speak of machines thinking without expectiog

be contradicted.

It is now clear that regardless of what people believe or kabaut the in-
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ner workings of computers, they talk about them and intenaitt them as
social entities. People act toward computers as if they weople; they are
polite to them, treat them as team members, and expect antbegthings
that computers should be able to understand their needf)eandpable of
interacting with them naturally. For example, Reeves anssN4996) found
that when a computer asked a human to evaluate how well thpuemhad
been doing, the human gives more positive responses tham avtigferent
computer asks the same questions. People seemed to becdfiogitig im-
polite. In a different experiment, Reeves and Nass fountpgbaple also
give computers higher performance ratings if the compusrrbcently said
something flattering to the human. Given these predispositispeech and
language-based systems may provide many users with thenasal in-
terface for many applications. This fact has led to a lomgitéocus in the
field on the design ofonversational agentsartificial entities which com-
municate conversationally.

1.5 THE STATE OF THE ART AND THE NEAR-TERM
FUTURE

We can only see a short distance ahead, but we can see plenty
there that needs to be done.
— Alan Turing.

This is an exciting time for the field of speech and languagegssing.
The recent commercialization of robust speech recogngiimtems, and the
rise of the World-Wide Web, have placed speech and languegeessing
applications in the spotlight, and have pointed out a pletlod exciting pos-
sible applications. The following scenarios serve to tHa®e some current
applications and near-term possibilities.

A Canadian computer program accepts daily weather data emer-g
ates weather reports that are passed along unedited to ltkie jnuEnglish
and French (Chandioux, 1976).

TheBabel Fishtranslation system from Systran handles over 1,000,000
translation requests a day from the AltaVista search ergjiae

A visitor to Cambridge, Massachusetts, asks a computert gidaces
to eat using only spoken language. The system returns rglavfarmation
from a database of facts about the local restaurant scemae(Zl, 1991).

These scenarios represent just a few of applications peggien cur-
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rent technology. The following, somewhat more speculaienarios, give
some feeling for applications currently being exploredeaearch and devel-
opment labs around the world.

A computer reads hundreds of typed student essays and sigsaytes
to them in a manner that is indistinguishable from humanepaflLandauer
et al, 1997).

A satellite operator uses language to ask questions and aoosio a
computer that controls a world-wide network of satellite}s (

German and Japanese entrepreneurs negotiate a time aadgqaeet
in their own languages using small hand-held communicat&vices (?).

Closed-captioning is provided in in any of a number of larggsafor
a broadcast news program by a computer listening to the sighal (7).

A computer equipped with a vision system watches a profeaksnc-
cer game and provides an automated natural language acufoiinet game

).

1.6 SOME BRIEFHISTORY

Historically, speech and language processing has beetedreary differ-
ently in computer science, electrical engineering, lisos, and psychol-
ogy/cognitive science. Because of this diversity, speexhlanguage pro-
cessing encompasses a number of different but overlappids fin these
different departmentssomputational linguisticsin linguistics,natural lan-
guage processingn computer sciencespeech recognitionn electrical en-
gineering, computational psycholinguisticsin psychology. This section
summarizes the different historical threads which havermgiise to the field
of speech and language processing. This section will peosidy a sketch;
the individual chapters will provide more detail on eacheare

Foundational Insights: 1940’s and 1950’s

The earliest roots of the field date to the intellectuallytiferperiod just
after World War 1l which gave rise to the computer itself. Jhieriod
from the 1940s through the end of the 1950s saw intense woriwvon
foundational paradigms: theutomaton andprobabilistic or information-
theoretic models

The automaton arose in the 1950s out of Turing’s (1950) motlel
algorithmic computation, considered by many to be the fatiod of mod-



Section 1.6. Some Brief History

11

ern computer science. Turing’s work led to theCulloch-Pitts neuron
(McCulloch and Pitts, 1943), a simplified model of the neuasra kind of
computing element that could be described in terms of ptitipoal logic,
and then to the work of Kleene (1951) and (1956) on finite aatarand reg-
ular expressions. Automata theory was contributed to byh&dra (1948),
who applied probabilistic models of discrete Markov preessto automata
for language. Drawing the idea of a finite-state Markov pssdeom Shan-
non’s work, Chomsky (1956) first considered finite-state maes as a way
to characterize a grammar, and defined a finite-state laegamg language
generated by a finite-state grammar. These early model® lgwktfield of
formal language theory, which used algebra and set theory to define formal
languages as sequences of symbols. This includes the tdrexgrammar,
first defined by Chomsky (1956) for natural languages butpeddently dis-
covered by Backus (1959) and Nartral. (1960) in their descriptions of the
ALGOL programming language.

The second foundational insight of this period was the agraknt of
probabilistic algorithms for speech and language prongssvhich dates to
Shannon’s other contribution: the metaphor of ttesy channeland de-
coding for the transmission of language through media like comoatiin
channels and speech acoustics. Shannon also borrowedribeptmfen-
tropy from thermodynamics as a way of measuring the informatiqmacity
of a channel, or the information content of a language, ambpeed the
first measure of the entropy of English using probabiligichniques.

It was also during this early period that the sound specagmwas
developed (Koenigt al,, 1946), and foundational research was done in in-
strumental phonetics that laid the groundwork for laterknnispeech recog-
nition. This led to the first machine speech recognizers éneidrly 1950’s.
In 1952, researchers at Bell Labs built a statistical systesh could rec-
ognize any of the 10 digits from a single speaker (Da&tial., 1952). The
system had 10 speaker-dependent stored patterns roughbseating the
first two vowel formants in the digits. They achieved 97-9%6ugacy by
choosing the pattern which had the highest relative cdioglacoefficient
with the input.

The Two Camps: 1957-1970

By the end of the 1950s and the early 1960s, speech and lamguacpssing
had split very cleanly into two paradigms: symbolic and k&stic.
The symbolic paradigm took off from two lines of research.e Tinst
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was the work of Chomsky and others on formal language theadygen-
erative syntax throughout the late 1950’s and early to mig0X) and the
work of many linguistics and computer scientists on parsilggrithms, ini-
tially top-down and bottom-up, and then via dynamic prograng. One
of the earliest complete parsing systems was Zelig Haffisiasformations
and Discourse Analysis Project (TDAP), which was impleradritetween
June 1958 and July 1959 at the University of Pennsylvaniari$]d 962)?
The second line of research was the new field of artificialligence. In
the summer of 1956 John McCarthy, Marvin Minsky, Claude $banand
Nathaniel Rochester brought together a group of researétiea two month
workshop on what they decided to call artificial intelligenélthough Al al-
ways included a minority of researchers focusing on stdhasd statistical
algorithms (include probabilistic models and neural nets&) major focus of
the new field was the work on reasoning and logic typified by élband
Simon’s work on the Logic Theorist and the General Problefae30oAt this
point early natural language understanding systems waeite Dese were
simple systems which worked in single domains mainly by aldoation
of pattern matching and key-word search with simple heaasdbr reason-
ing and question-answering. By the late 1960’s more forogithl systems
were developed.

The stochastic paradigm took hold mainly in departmentgaifssics
and of electrical engineering. By the late 1950’s the Bayesnethod was
beginning to be applied to to the problem of optical charateognition.
Bledsoe and Browning (1959) built a Bayesian system fortegbgnition
that used a large dictionary and computed the likelihoocdohebserved let-
ter sequence given each word in the dictionary by multig)ythre likelihoods
for each letter. Mosteller and Wallace (1964) applied Bayemethods to
the problem of authorship attribution dilme Federalispapers.

The 1960s also saw the rise of the first serious testable pwgibal
models of human language processing based on transformahaticammar,
as well as the first online corpora: the Brown corpus of AnariEnglish,
a 1 million word collection of samples from 500 written tektsm different
genres (newspaper, novels, non-fiction, academic, etbihwvas assem-
bled at Brown University in 1963-64 (Kuc€era and Francisg;9Francis,
1979; Francis and Kucera, 1982), and William S. Y. Wang871DOC (Dic-

2 This system was reimplemented recently and is described&lyi And Hopely (1999)
and Karttunen (1999), who note that the parser was esdgritigllemented as a cascade of
finite-state transducer.
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tionary on Computer), an on-line Chinese dialect dictignar

Four Paradigms: 1970-1983

The next period saw an explosion in research in speech agddge pro-
cessing, and the development of a number of research paraditpich still
dominate the field.

The stochastic paradigm played a huge role in the development of
speech recognition algorithms in this period, particyléne use of the Hid-
den Markov Model and the metaphors of the noisy channel andditey,
developed independently by Jelinek, Bahl, Mercer, anceagllies at IBM’s
Thomas J. Watson Research Center, and Baker at CarnegienMédliver-
sity, who was influenced by the work of Baum and colleaguekealristitute
for Defense Analyses in Princeton. AT&T's Bell Laboratarias also a
center for work on speech recognition and synthesis; sdarfBeaand Juang,
1993) for descriptions of the wide range of this work.

Thelogic-basedparadigm was begun by the work of Colmerauer and
his colleagues on Q-systems and metamorphosis grammahsdaier,
1970, 1975), the forerunners of Prolog and Definite Clauser@rars (Pereira
and Warren, 1980). Independently, Kay’s (1979) work on fiomal gram-
mar, and shortly later, (1982)'s (1982) work on LFG, estdi#d the impor-
tance of feature structure unification.

Thenatural language understandingfield took off during this period,
beginning with Terry Winograd’'s SHRDLU system which simatha robot
embedded in a world of toy blocks (Winograd, 1972a). The @ogwas
able to accept natural language text commamdisve the red block on top
of the smaller green on®f a hitherto unseen complexity and sophistication.
His system was also the first to attempt to build an extendoretlie time)
grammar of English, based on Halliday's systemic grammamaogfad’s
model made it clear that the problem of parsing was well-ghainderstood
to begin to focus on semantics and discourse models. Rogangand his
colleagues and students (in was often referred to a¥aheSchodlbuilt a
series of language understanding programs that focusedmarhconcep-
tual knowledge such as scripts, plans and goals, and humaromergani-
zation (Schank and Abelson, 1977; Schank and Riesbeck; Ca8lingford,
1981; Wilensky, 1983; Lehnert, 1977). This work often usetivork-based
semantics (Quillian, 1968; Norman and Rumelhart, 1975;a8kh1972;
Wilks, 1975c, 1975b; Kintsch, 1974) and began to incorgoftimore’s
notion of case roles (Fillmore, 1968) into their represtots (Simmons,
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1973a).

The logic-based and natural-language understanding ipanadvere
unified on systems that used predicate logic as a semantiesesgation,
such as the LUNAR question-answering system (Woods, 19573)1

The discourse modelingparadigm focused on four key areas in dis-
course. Grosz and her colleagues proposed ideas of discstusture and
discourse focus (Grosz, 1977a; Sidner, 1983a), a numbeseérchers be-
gan to work on automatic reference resolution (Hobbs, 108 theBDI
(Belief-Desire-Intention) framework for logic-based Wwoon speech acts
was developed (Perrault and Allen, 1980; Cohen and Perdug).

Empiricism and Finite State Models Redux: 1983-1993

This next decade saw the return of two classes of models wiachlost
popularity in the late 50's and early 60’s, partially due hedretical argu-
ments against them such as Chomsky'’s influential review frtgk’s Verbal
Behavior(Chomsky, 1959b). The first class was finite-state modelsstwh
began to receive attention again after work on finite-stditenplogy and
morphology by (Kaplan and Kay, 1981) and finite-state modétg/ntax by
Church (1980). A large body of work on finite-state modeld bél described
throughout the book.

The second trend in this period was what has been calleddheryof
empiricism’; most notably here was the rise of probabgistiodels through-
out speech and language processing, influenced stronglyebydrk at the
IBM Thomas J. Watson Research Center on probabilistic nsaafetpeech
recognition. These probabilistic methods and other su¢h-didven ap-
proaches spread into part of speech tagging, parsing amchatent ambi-
guities, and connectionist approaches from speech retmgid semantics.

This period also saw considerable work on natural languagerg-
tion.

The Field Comes Together: 1994-1999

By the last five years of the millennium it was clear that thigdfigas vastly

changing. First, probabilistic and data-driven modelslbexbme quite stan-
dard throughout natural language processing. Algorithongérsing, part
of speech tagging, reference resolution, and discoursgegsing all began
to incorporate probabilities, and employ evaluation methoagies borrowed
from speech recognition and information retrieval. Se¢ahe increases in
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the speed and memory of computers had allowed commercidigton
of a number of subareas of speech and language processipgrticular
speech recognition and spelling and grammar checking.ll¥itlae rise of
the Web emphasized the need for language-based informratioeval and
information extraction.

A Final Brief Note on Psychology

Many of the chapters in this book include short summariessgtpological
research on human processing. Of course, understandingrhlamguage
processing is an important scientific goal in its own righmgl & part of the
general field of cognitive science. However, an understandif human
language processing can often be helpful in building bettachine mod-
els of language. This seems contrary to the popular wisddmghaholds
that direct mimicry of nature’s algorithms is rarely usafuengineering ap-
plications. For example the argument is often made that ifeged nature
exactly, airplanes would flap their wings; yet airplanedwiked wings are a
more successful engineering solution. But language iseroiautics. Crib-
bing from nature is sometimes useful for aeronautics (afteairplanes do
have wings), but it is particularly useful when we are trytogolve human-
centered tasks. Airplane flight has different goals thad Hight; but the
goal of speech recognition systems, for example, is to parfexactly the
task that human court reporters perform every day: trams&poken dialog.
Since people already do this well, we can learn from natymesgious solu-
tion. Since we are building speech recognition systemsderaio interact
with people, it makes sense to copy a solution that behaeews/dly people
are accustomed to.

1.7 SUMMARY

This chapter introduces the field of speech and languageegsory. The
following are some of the highlights of this chapter.

e A good way to understand the concerns of speech and language p

cessing research is to consider what it would take to createtelli-
gent agent like HAL from 2001: A Space Odyssey.

e Speech and language technology relies on formal modelspoesen-
tations, of knowledge of language at the levels of phonolkagy pho-
netics, morphology, syntax, semantics, pragmatics antbdise. A
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small number of formal models including state machinesnfirrule
systems, logic, and probability theory are used to captusekinowl-
edge.

e The foundations of speech and language technology lie inpoten
science, linguistics, mathematics, electrical engimgesand psychol-
ogy. A small number of algorithms from standard frameworksiused
throughout speech and language processing,

e The critical connection between language and thought laaggdlspeech
and language processing technology at the center of debatentel-
ligent machines. Furthermore, research on how peopleaiitevith
complex media indicates that speech and language progessimol-
ogy will be critical in the development of future technolegi

e Revolutionary applications of speech and language progease cur-
rently in use around the world. Recent advances in speeckméon
and the creation of the World-Wide Web will lead to many maqupla
cations.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Research in the various subareas of speech and languagsgiragis spread
across a wide number of conference proceedings and jourridls con-
ferences and journals most centrally concerned with coatiomal linguis-
tics and natural language processing are associated \eitAgbociation for
Computational Linguistics (ACL), its European countetg&ACL), and the
International Conference on Computational LinguisticO@NG). The an-
nual proceedings of ACL and EACL, and the biennial COLINGfeoance
are the primary forums for work in this area. Related comfees include
the biennial conference on Applied Natural Language PricggANLP)
and the conference on Empirical Methods in Natural LanglRm@eessing
(EMNLaP). The journalComputational Linguisticés the premier publica-
tion in the field, although it has a decidedly theoretical &nduistic ori-
entation. The journaNatural Language Engineeringovers more practical
applications of speech and language research.

Research on speech recognition, understanding, and sisibere-
sented at the biennial International Conference on Spokergliage Pro-
cessing (ICSLP) which alternates with the European Conésren Speech
Communication and Technology (EUROSPEECH). The |IEEE hatigonal
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Conference on Acoustics, Speech, & Signal Processing (IEEESSP)
is held annually, as is the meeting of the Acoustical SocétAmerica.
Speech journals includgpeech Communicatio@omputer Speech and Lan-
guage and IEEE Transactions on Pattern Analysis and Machine Intelli-
gence

Work on language processing from an Atrtificial Intelligerpmrspec-
tive can be found in the annual meetings of the American Aaton for Ar-
tificial Intelligence (AAAI), as well as the biennial Inteational Joint Con-
ference on Artificial Intelligence (IJCAI) meetings. Thdldéwing artificial
intelligence publications periodically feature work oresph and language
processingAirtificial Intelligence Computational Intelligencd EEE Trans-
actions on Intelligent Systemasnd the Journal of Artificial Intelligence Re-
search. Work on cognitive modeling of language can be fouigesannual
meeting of the Cognitive Science Society, as well as itsnalu€ognitive
Science An influential series of closed workshops was held by ARRAed
variously theDARPA Speech and Natural Language Processing Workshop
the ARPA Workshop on Human Language Technalogy

The are a fair number of textbooks available covering variaspects
of speech and language processing. (Manning and Schii2®) fFoun-
dations of Statistical Language Processifigcuses on statistical models of
tagging, parsing, disambiguation, collocations, and ro#tteas. Charniak
(1993) Gtatistical Language Learnings an accessible, though less exten-
sive, introduction to similar material. Allen (1993)#étural Language Un-
derstanding provides extensive coverage of language processing frem t
Al perspective. (Gazdar and Mellish, 198%atural Language Process-

ing in Lisp/Prolog covers especially automata, parsing, features, and uni-

fication. (Pereira and Shieber, 1987) gives a Prolog-basedduction to
parsing and interpretation. Russell and Norvig (1995) isn&noduction to
artificial intelligence that includes chapters on natuaalguage processing.
Partee (1990) has a very broad coverage of mathematicaidiics. (Cole,
1997) is a volume of survey papers covering the entire fielgpeech and
language processing. A somewhat dated but still trememgaoseful col-
lection of foundational papers can be found in (Gresal.,, 1986) Readings
in Natural Language Processihg

Of course, a wide-variety of speech and language processsogirces
are now available on the World-Wide Web. Pointers to theseues are
maintained on the homepage for this book at www.cs.coloeatid mar-
tin/slp.html.
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WORDS

Words are the fundamental building block of language. Evenyan
language, spoken, signed, or written, is composed of woEl®ry
area of speech and language processing, from speech recndai
machine translation to information retrieval on the welguiges ex-
tensive knowledge about words. Psycholinguistic modelsumhan
language processing and models from generative linguaséicalso
heavily based on lexical knowledge.

The six chapters in this part introduce computational medel
of the spelling, pronunciation, and morphology of words aoder
three important real-world tasks that rely on lexical knesde: au-
tomatic speech recognition (ASR), text-to-speech syigh@sr's),
and spell-checking. Finally, these chapters define pertregsost
important computational model for of speech and languagegss-
ing: the automaton. Four kinds of automata are covered:efinit
state automata (FSAS) and regular expressions, finite{séatsducers
(FSTs), weighted transducers, and the Hidden Markov Md4ldIN1),
as well as thé\-gram model of word sequences.






REGULAR EXPRESSIONS
2 AND AUTOMATA

“In the old days, if you wanted to impeach a witness you had to
go back and fumble through endless transcripts. Now it's on a
screen somewhere or on a disk and | can search for a particular
word — say every time the witness used the vghogte— and then
quickly ask a question about what he said years ago. Righyawa
you see the witness get flustered”

Johnnie L. Cochran Jr., attorn@&yew York Time9/28/97

Imagine that you have become a passionate fan of woodchids.
siring more information on this celebrated woodland cnegtyou turn to
your favorite web browser and type wioodchuck Your browser returns a
few sites. You have a flash of inspiration and typevimodchucksThis time
you discover ‘interesting links to woodchucks and lemunsd &all about
Vermont’s unique, endangered species’. Instead of hadmptthis search
twice, you would have rather typed one search command spegifome-
thing like woodchuck with an optional final $urthermore, you might want
to find a site whether or not it spelledoodchucksvith a capitalW (Wood-
chucR. Or perhaps you might want to search for all the prices inesdotu-
ment; you might want to see all strings that look K99 or $25 or $24.99
In this chapter we introduce thregular expression the standard notation
for characterizing text sequences. The regular expressiased for spec-
ifying text strings in situations like this web-search exden and in other
information retrieval applications, but also plays an imaot role in word-
processing (in PC, Mac, or UNIX applications), computatdfirequencies
from corpora, and other such tasks.
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After we have defined regular expressions, we show how theyea
implemented via théinite-state automaton The finite-state automaton is
not only the mathematical device used to implement regudairessions, but
also one of the most significant tools of computational ligtics. Variations
of automata such as finite-state transducers, Hidden Mavkadels, and
N-gram grammars are important components of the speechni¢éioogand
synthesis, spell-checking, and information-extractigpligations that we
will introduce in later chapters.

2.1 REGULAR EXPRESSIONS

REGULAR
EXPRESSION

STRINGS

SIR ANDREW Her C’s, her U’s and her T's: why that?
Shakespear@welfth Night

One of the unsung successes in standardization in compriegrce
has been theegular expression(RE), a language for specifying text search
strings. The regular expression languages used for sagrtdmuts in UNIX
(vi, Perl, Emacs, grep), Microsoft Word (version 6 and bed)oand Word-
Perfect are almost identical, and many RE features existarvarious Web
search engines. Besides this practical use, the regulaessipn is an im-
portant theoretical tool throughout computer science anylistics.

A regular expression (first developed by Kleene (1956) baitise His-
tory section for more details) is a formula in a special laaggithat is used
for specifying simple classes sfrings. A string is a sequence of symbols;
for the purpose of most text-based search techniguesng &rany sequence
of alphanumeric characters (letters, numbers, spaces,aatl punctuation).
For these purposes a space is just a character like any attiewe represent
it with the symbol_,.

Formally, a regular expression is an algebraic notatiorciaracteriz-
ing a set of strings. Thus they can be used to specify seainbsas well as
to define a language in a formal way. We will begin by talkingattregular
expressions as a way of specifying searches in texts, arwguao other
uses. Section 2.3 shows that the use of just three regulaessipn opera-
tors is sufficient to characterize strings, but we use theermonvenient and
commonly-used regular expression syntax of the Perl laggtiaroughout
this section. Since common text-processing programs amrerost of the
syntax of regular expressions, most of what we say extenal§ tiNIX, Mi-
crosoft Word, and WordPerfect regular expressions. Appedidhows the
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few areas where these programs differ from the Perl syntax.

Regular expression search requiregadtern that we want to search
for, and acorpus of texts to search through. A regular expression searokvus
function will search through the corpus returning all tetktat contain the
pattern. In an information retrieval (IR) system such as b search engine,
the texts might be entire documents or web pages. In a warckepsor, the
texts might be individual words, or lines of a document. la thst of this
chapter, we will use this last paradigm. Thus when we giveaecbepattern,
we will assume that the search engine returnslitiee of the documente-
turned. This is what the UNIX ‘grep’ command does. We will erthe the
exact part of the pattern that matches the regular expresaisearch can be
designed to return all matches to a regular expression grtbelfirst match.
We will show only the first match.

Basic Regular Expression Patterns

The simplest kind of regular expression is a sequence oflsioiaracters.
For example, to search faroodchuckwe type/woodchuck/ . So the reg-
ular expressiorButtercup/ matches any string containing the substring
Buttercup for example the lind’'m called little Buttercup (recall that we
are assuming a search application that returns entire)lifre®m here on
we will put slashes around each regular expression to mateat what is
a regular expression and what is a pattern. We use the stashtsiis is the
notation used by Perl, but the slashesrastpart of the regular expressions.
The search string can consist of a single letter (like ) or a sequence
of letters (like/urgl /); Thefirst instance of each match to the regular ex-
pression is underlined below (although a given applicatight choose to
return more than just the first instance):

RE Example Patterns Matched

/woodchucks/ “interesting links to woodchuckand lemurs”
fal “Mary Ann stopped by Mona’s”

/Claire _says,/ |“Dagmar, my gift please,” Claire says,

/song/ “all our pretty song”

i “You've left the burglar behind agaihsaid Nori

Regular expressions atase sensitivelower-casds/ s distinct from
upper-caséS/ ; (/s/ matches a lower casbut not an upper-cas®. This
means that the patterfivoodchucks/  will not match the stringWood-
chucks We can solve this problem with the use of the square brijacesl] .
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RANGE

The string of characters inside the braces spedifisnction of characters
to match. For example Figure 2.1 shows that the pat{fer/]/ matches
patterns containing eithev or W.

RE Match Example Patterns

/[wW]oodchuck/ Woodchuck or woodchuck“WoodchucK

/[abc)/ ‘a’, ‘b, or'c “In uomini, in soldai”

/[1234567890]/ any digit “plenty of 7to 5”
Figure2.1 The use of the brackefls to specify a disjunction of characters.

The regular expressidfil234567890]/ specified any single digit.
While classes of characters like digits or letters are irtgrbuilding blocks
in expressions, they can get awkward (e.g. it's inconverigespecify

[[ABCDEFGHIIKLMNOPQRSTUVWXYZ]/

to mean ‘any capital letter’). In these cases the brackeisbeaused with
the dash {) to specify any one character inrange. The patterrn/[2-
5]/ specifies any one of the charact@rs, 4, or 5. The patterri[b-g]/
specifies one of the charactdrsc, d, e, f, or g. Some other examples:

RE Match Example Patterns Matched

M[A-Z]/ an uppercase letter'we should call it ‘Drenched Blossoms?’

l[a-z]/ a lowercase letter| “my beans were impatient to be hoed!{

/[0-9]/ a single digit “Chapter 1 Down the Rabbit Hole”
Figure 2.2  The use of the brackefs plus the dash to specify a range.

The square braces can also be used to specify what a singi@ceha
ter cannotbe, by use of the carét. If the caret” is the first symbol after
the open square bra¢e the resulting pattern is negated. For example, the
pattern/["a)/ matches any single character (including special chargcter
excepta. This is only true when the caret is the first symbol after thero
square brace. If it occurs anywhere else, it usually staoda taret; Fig-
ure 2.3 shows some examples.

The use of square braces solves our capitalization probbenvdod-
chucks But we still haven't answered our original question; howwie
specify bothwoodchuckandwoodchuck® We can’t use the square brack-
ets, because while they allow us to say ‘s or S’, they dontvallis to say
‘s or nothing’. For this we use the question-md# , which means ‘the
preceding character or nothing’, as shown in Figure 2.4.
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RE Match (single characters) Example Patterns Matched
[CA-Z] not an uppercase letter | “Oyfn pripetchik”

[(Ss] neither ‘S’ nor ‘s’ “|_have no exquisite reason forit’
["\.] not a period “our resident Djinn”

[e7] either ‘e’ or “look up ~ now”

ab the patterna™b ’ “look up a” bnow”

Figure 2.3  Uses of the carét for negation or just to mean

RE Match Example Patterns Matched
woodchucks? | woodchuck or woodchucks'woodchuck
colou?r color or colour “colour”

Figure 2.4 The question-marR marks optionality of the previous expre$
sion.

We can think of the question-mark as meaning ‘zero or on@mmss
of the previous character’. That is, it's a way of specifyimgw many of
something that we want. So far we haven’t needn’t to spebify e want
more than one of something. But sometimes we need regulaessipns
that allow repetitions of things. For example, considerlimguage of (cer-
tain) sheep, which consists of strings that look like théofeing:

baa!
baaa!l
baaaa!

baaaaa!

baaaaaa!

This language consists of strings witlbafollowed by at least &'s,
followed by an exclamation point. The set of operators thlataus to say
things like “some number of ‘a’'s” are based on the asterisk, @mommonly
called theKleene * (pronounced “cleany star”). The Kleene star mearsne*
‘zero or more occurrences of the immediately previous atarar regular
expression’. Sda*/ means ‘any string of zero or more a's’. This will
matcha or aaaaaabut it will also matchOff Minor, since the stringOff
Minor has zero a’s. So the regular expression for matching one o mo
ais /aa*/ , meaning one followed by zero or more’'s. More complex
patterns can also be repeated./fab]*/  means ‘zero or more ‘a’s or ‘b’s’
(not ‘zero or more right square braces). This will matchngfsilikeaaaaor
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KLEENE +

ANCHORS

abababor bbbh

We now know enough to specify part of our regular expressmn f
prices: multiple digits. Recall that the regular expresdior an individual
digit was/[0-9])/ . So the regular expression for an integer (a string of
digits) is/[0-9][0-9]*/ . (Why isn't it just/[0-9]*/  )?

Sometimes it's annoying to have to write the regular exjoedsr dig-
its twice, so there is a shorter way to specify ‘at least ofgbmne character.
This is theKleene + which means ‘one or more of the previous character’.
Thus the expressiaffi0-9]+/ is the normal way to specify ‘a sequence of
digits’. There are thus two ways to specify the sheep langubgaa*!/
or /baa+!/

One very important special character is the period (, a wildcard
expression that matches any single charaeecdpta carriage return):

RE Match Example Patterns
/beg.n/ any character between ‘beg’ and |n’ begin beg’n begun

Figure 2.5 The use of the period to specify any character.

The wildcard is often used together with the Kleene star tamiany
string of characters’. For example suppose we want to findiaeyn which
a particular word, for examplaardvark appears twice. We can specify this
with the regular expressidiaardvark.*aardvark/

Anchors are special characters that anchor regular expressioras-to p
ticular places in a string. The most common anchors are tted ‘cand the
dollar-sign$. The caref matches the start of a line. The pattéifihe/
matches the word@’heonly at the start of a line. Thus there are three uses
of the caret : to match the start of a line, as a negation inside of square
brackets, and just to mean a caret. (What are the contextaltba Perl to
know which function a given caret is supposed to have?). Dilardksign$
matches the end of a line. So the pattefhis a useful pattern for matching
a space at the end of a line, atithe dog\.$/ matches a line that con-
tains only the phras&he dog.(We have to use the backslash here since we
want the. to mean ‘period’ and not the wildcard).

There are also two other anchokk: matches a word boundary, while
\B matches a non-boundary. Thliibthe\b/ matches the worthe but
not the wordother. More technically, Perl defines a word as any sequence
of digits, underscores or letters; this is based on the digimnof ‘words’ in
programming languages like Perl or C. For example99/  will match
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the string99in There are 99 bottles of beer on the wédecause 99 follows
a space) but nd®9 in There are 299 bottles of beer on the wedince 99

follows a number). But it will matct99 in $99 (since 99 follows a dollar

sign ($), which is not a digit, underscore, or letter).

Disjunction, Grouping, and Precedence

Suppose we need to search for texts about pets; perhaps warticellarly
interested in cats and dogs. In such a case we might wantrichdea either

the stringcat or the stringdog Since we can't use the square-brackets to
search for ‘cat or dog’ (why not?) we need a new operatordtbj@nction  oisiuncrion
operator, also called thgipe symbol| . The patterricat|dog/ matches

either the stringat or the stringdog.

Sometimes we need to use this disjunction operator in thestnoid
a larger sequence. For example, suppose | want to searchféomition
about pet fish for my cousin David. How can | specify baiinppy and
guppie® We cannot simply salguppylies/ , because that would match
only the stringgguppyandies This is because sequences likgppy take
precedenceover the disjunction operatér. In order to make the disjunctionprecenence
operator apply only to a specific pattern, we need to use thentieesis
operators( and) . Enclosing a pattern in parentheses makes it act like a
single character for the purposes of neighboring operdikesthe pipe|
and the Kleene. So the patterrigupp(y|ies)/ would specify that we
meant the disjunction only to apply to the suffixeandies .

The parenthesis operat6ris also useful when we are using counters
like the Kleen&. Unlike the| operator, the Kleerfeoperator applies by
default only to a single character, not a whole sequencep&gpwe want
to match repeated instances of a string. Perhaps we have ¢hhmh has
column labels of the fornColumn 1 Column 2 Column Jhe expression
/Column _[0-9]+ _* will not match any column; instead, it will match
a column followed by any number of spaces! The star here epplily to
the space, that precedes it, not the whole sequence. With the parerghes
we could write the expressioffColumn _[0-9]+ _** to match the
word Column followed by a number and optional spaces, the whole pattern
repeated any number of times.

This idea that one operator may take precedence over anatheir-
ing us to sometimes use parentheses to specify what we nsdanmialized
by theoperator precedence hierarchyfor regular expressions. The follow-SREREIR .
ing table gives the order of RE operator precedence, frolmgsigprecedence
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GREEDY

to lowest precedence:

Parenthesis 0

Counters *+ 2?20
Sequences and anchorghe "my end$
Disjunction |

Thus, because counters have a higher precedence than cesjitee*/
matchegheeeedut notthethe Because sequences have a higher precedence
than disjunction/the|any/ matcheghe or any but nottheny

Patterns can be ambiguous in another way. Consider the ssxpne
l[a-z]*/ when matching against the textce upon a timeSince/[a-

z]*/  matches zero or more letters, this expression could matittingo or
just the first letteo, or on, orong oronce In these cases regular expressions
always match théargeststring they can; we say that patterns greedy,
expanding to cover as much of a string as they can.

A simple example

Suppose we wanted to write a RE to find cases of the Englistieitiie A
simple (but incorrect) pattern might be:

Ithe/

One problem is that this pattern will miss the word when itibeg
a sentence and hence is capitalized (iTéng. This might lead us to the
following pattern:

N[tT]he/

But we will still incorrectly return texts withthe embedded in other
words (e.gotheror theology. So we need to specify that we want instances
with a word boundary on both sides:

Nb[tT]he\b/

Suppose we wanted to do this without the usé\of ? We might
want this sincé\b/ won't treat underscores and numbers as word bound-
aries; but we might want to finthein some context where it might also have
underlines or numbers nearbthé. or the25. We need to specify that we
want instances in which there are no alphabetic letters thiereside of the
the

II"a-z][tT]he[ a2/
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But there is still one more problem with this pattern: it wiofimd the
wordthewhen it begins a line. This is because the regular expreg§sen
z] , which we used to avoid embedd#s, implies that there must be some
single (although non-alphabetic) character beforettiee. We can avoid
this by specifying that before ttthewe requireeitherthe beginning-of-line
or a non-alphabetic character:

10" a-zD)[tTThe[ a2/

A More Complex Example

Let's try out a more significant example of the power of REspiiise we
want to build an application to help a user buy a computer enntbb. The
user might want ‘any PC with more than 500 Mhz and 32 Gb of disce
for less than $1000'. In order to do this kind of retrieval widl first need to
be able to look for expressions lik®0 MHzor 3.5 Gbor 32 Megabytesor
Compagor Mac or $999.99 In the rest of this section we’ll work out some
simple regular expressions for this task.

First, let's complete our regular expression for pricestef$ea regular
expression for a dollar sign followed by a string of digitsotdl that Perl is
smart enough to realize th@ithere doesn't mean end-of-line; how might it
know that?

1$[0-9]+/

Now we just need to deal with fractions of dollars. We'll addeximal
point and two digits afterwards:

/$[0-9]+\.[0-9][0-9)/

This pattern only allows$199.99but not$199. We need to make the
cents optional, and make sure we're at a word boundary:

Nb$[0-9]+(\.[0-9][0-9]) ?\b/

How about specifications for processor speed (in Megahekihzor
Gigahertz = Ghz)? Here's a pattern for that:

NAb[0-9]+  _*(Mhz|[Mm]egahertz|Ghz|[Gg]ligahertz)\b/

Note that we usé _*/ to mean 'zero or more spaces’, since there
might always be extra spaces lying around. Dealing with dishkce (in Gb
= gigabytes), or memory size (in Mb = megabytes or Gb = giged)ytwe
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NEWLINE

need to allow for optional gigabyte fractions agabis(GhH. Note the use of
? for making the finak optional:

Ab[0-9]+  _*(Mb|[Mm]egabytes?)\b/
Nb[0-9](\.[0-9]+)? _*(Gb|[Gg]igabytes?)\b/

Finally, we might want some simple patterns to specify ojiegasys-
tems and vendors:

Ab(Win|Win95|Win98|WinNT|Windows _*(NT|95|98)?)\b/
Nb(Mac|Macintosh|Apple)\b/

Advanced Operators

RE| Expansion Match Example Patterns

\d | [0-9] any digit Party of 5

\D | [0-9] any non-digit Blue_moon

\w | [a-zA-Z0-9 _] | any alphanumeric or spaceDaiyu

\W | ["\Ww] a non-alphanumeric m

\s | [ _\\\n\f] whitespace (space, tab)

\S | [N\g] Non-whitespace in,_Concord
Figure 2.6  Aliases for common sets of characters.

There are also some useful advanced regular expressicatogser-ig-
ure 2.6 shows some useful aliases for common ranges, whicheased
mainly to save typing. Besides the Kleene * and Kleene +, weatso use
explicit numbers as counters, by enclosing them in curlglets. The reg-
ular expressio{3}/ means “exactly 3 occurrences of the previous char-
acter or expression”. S@\.{24}z/ will match a followed by 24 dots
followed by z (but nota followed by 23 or 25 dots followed by 2.

A range of numbers can also be specifiedi{sgm}/  specifies from
n to m occurrences of the previous char or expression, WiJ¥  means
at least n occurrences of the previous expression. REs tmtiog are sum-
marized in Figure 2.7.

Finally, certain special characters are referred to by iap@otation
based on the backslash)( The most common of these are thewline
charactein and thetab characteit . To refer to characters that are special
themselves, (like,*, [, and\ ), precede them with a backslash, (ie.
N N ,and\V ).
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RE Match

* zero or more occurrences of the previous char or expression
+ one or more occurrences of the previous char or expression
? exactly zero or one occurrence of the previous char or egjunes
{n} n occurrences of the previous char or expression

{n,m} | from nto m occurrences of the previous char or expression
{n} at least n occurrences of the previous char or expression

Figure 2.7 Regular expression operators for counting.

RE Match Example Patterns Matched
\* an asterisk “*” “K* A*P*L*A*N”

\. a period “” “Dr. Livingston, | presume”
\? a question mark “Would you light my candle?
\n a newline

\t atab

Figure 2.8  Some characters that need to be backslashed.

The reader should consult Appendix A for further details eguiar
expressions, and especially for the differences betweguaeexpressions
in Perl, UNIX, and Microsoft Word.

Regular Expression Substitution, Memory, and ELIZA

Animportant use of regular expressions isubstitutions. For example, the §&3
Perl substitution operat@/regexpl/regexp2/ allows a string charac-
terized by one regular expression to be replaced by a sthiatacterized by

a different regular expression:

s/colour/color/

It is often useful to be able to refer to a particular subpéthe string
matching the first pattern. For example, suppose we wantgditt@ngle
brackets around all integers in a text, changing elge 35 boxego the
<35> boxes We'd like a way to refer back to the integer we've found so
that we can easily add the brackets. To do this, we put pasesf and
) around the first pattern, and use thember operator\1 in the second
pattern to refer back. Here’s how it looks:

s/([O-9]+)/<\1>/
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The parenthesis and number operators can also be used ify $pat
a certain string or expression must occur twice in the texir dxample,
suppose we are looking for the pattern ‘the Xer they werexXarethey will
be’, where we want to constrain the two X’s to be the samegstritve do
this by surrounding the first X with the parenthesis operatod replacing
the second X with the number operatar, as follows:

Ithe (*)er they were, the \ler they will be/

Here the\l will be replaced by whatever string matched the first item in
parentheses. So this will matdine bigger they were, the bigger they will be
but notThe bigger they were, the faster they will be

The number operator can be used with other numbers: if yoghmat
two different sets of parenthesi® means whatever matched thecond
set. For example

fthe (¥)er they (.*), the \ler they \2/

will match The bigger they were, the bigger they wbutt notThe bigger they
recisters  were, the bigger they will béThese numbered memories are catlegisters
(e.g. register 1, register 2, register 3, etc). This memeajure is not part
of every regular expression language, and is often coresiden ‘extended’
feature of regular expressions.
Substitutions using memory are very useful in implemenérgimple
natural-language understanding program like ELIZA (Webmum, 1966).
Recall that ELIZA simulated a Rogerian psychologist, andl@¢da@arry on
conversations with the user like the following:

User: Men are all alike.

ELIZA1: IN WHAT WAY

Usep: They're always bugging us about something or other..
ELIZA,: CAN YOU THINK OF A SPECIFIC EXAMPLE

User:  Well, my boyfriend made me come here.

ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
Usew: He says I'm depressed much of the time.

ELIZA4: 1 AM SORRY TO HEAR YOU ARE DEPRESSED.

Eliza worked by having a cascade of regular expression itufixss
that each matched some part of the input lines and changed thiee first
substitutions changed all instancesnoyto YOUR andI'm to YOU ARE
and so on. The next set of substitutions looked for relevattems in the
input and created an appropriate output; here are some é&mp

s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
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s/.* YOU ARE (depressed|sad) .*WHY DO YOU THINK YOU ARE \1/
s/.* all */IN WHAT WAY/
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

Since multiple substitutions could apply to a given inpusitutions
were assigned a rank and were applied in order. Creationchf gatterns is
addressed in Exercise 2.2.

2.2 HNITE-STATE AUTOMATA

The regular expression is more than just a convenient nmgfasge for text
searching. First, a regular expression is one way of daésgrifinite-state
automaton (FSA). Finite-state automata are the theoretical foundation {¥f5STac
a good deal of the computational work we will describe in thi®k, Any Fsa
regular expression can be implemented as a finite-statenatwo (except
regular expressions that use the memory feature; more sitatieir). Sym-
metrically, any finite-state automaton can be describeld aviegular expres-

sion. Second, a regular expression is one way of characigrzparticular

kind of formal language called eegular language Both regular expres- fE&UAR:
sions and finite-state automata can be used to describelhréguguages.

The relation among these three theoretical constructi®skétched out in
Figure 2.9.

regular
expressions

finite  <———————- 2 regular
automata languages

Figure 2.9  The relationship between finite automata, regular exprassi
and regular languages; figure suggested by Martin Kay.

This section will begin by introducing finite-state automdar some of
the regular expressions from the last section, and therestiggw the map-
ping from regular expressions to automata proceeds in genéithough
we begin with their use for implementing regular expressjdfSAs have a
wide variety of other uses which we will explore in this clex@nd the next.
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Using an FSA to Recognize Sheeptalk

After a while, with the parrot's help, the Doctor got to leatme
language of the animals so well that he could talk to them &lims
and understand everything they said.

Hugh Lofting, The Story of Doctor Dolittle

Let's begin with the ‘sheep language’ we discussed prelyoiRecall
that we defined the sheep language as any string from thevfatiqinfinite)
set:

baa!
baaa!
baaaa!

baaaaa!

baaaaaa!

Figure 2.10 A finite-state automaton for talking sheep.

The regular expression for this kind of ‘sheep talk/bga+!/ . Fig-
atomston —— Ure 2.10 shows aautomaton for modeling this regular expression. The
automaton (i.e. machine, also calkauite automaton, finite-state automa-
ton, or FSA) recognizes a set of strings, in this case the strings cteaiziog
sheep talk, in the same way that a regular expression doeephésent the
automaton as a directed graph: a finite set of vertices (aledcnodes),
together with a set of directed links between pairs of vesticalled arcs.
We'll represent vertices with circles and arcs with arrow$ie automaton
STATE has fivestates, which are represented by nodes in the graph. State O is the
smrrstre start state which we represent by the incoming arrow. State 4 isfihal
stateor accepting state which we represent by the double circle. It also has
four transitions, which we represent by arcs in the graph.
The FSA can be used for recognizing (we also gaegepting strings
in the following way. First, think of the input as being weitt on a long tape
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broken up into cells, with one symbol written in each celllud tape, as in
Figure 2.11.

s |a|bflaj!]|b <

Figure 2.11 A tape with cells.

The machine starts in the start statg)( and iterates the following
process: Check the next letter of the input. If it matchessymmbol on
an arc leaving the current state, then cross that arc, motheetoext state,
and also advance one symbol in the input. If we are in the diccpptate
(g4) when we run out of input, the machine has successfully réized an
instance of sheeptalk. If the machine never gets to the fia#t,seither
because it runs out of input, or it gets some input that doesatch an arc
(as in Figure 2.11), or if it just happens to get stuck in some-final state,
we say the machinejects or fails to accept an input. REJECTS
We can also represent an automaton wihiae-transition table. As  Fiismon
in the graph notation, the state-transition table reprssttre start state, the
accepting states, and what transitions leave each stdtemhith symbols.
Here’s the state-transition table for the FSA of Figure 2.10

Input
State|b a !
0 100
1 020
2 030
3 034
4 000

Figure 2.12: The state-transition table for the FSA of Feg2ir10

We've marked state 4 with a colon to indicate that it’s a finates(you
can have as many final states as you want), an@ ihdicates an illegal or
missing transition. We can read the first row as “if we're iatstO and we
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see the inpub we must go to state 1. If we're in state 0 and we see the input
aor!, we fail”.

More formally, a finite automaton is defined by the following&ram-
eters:

e Q: afinite set ofN statexqo. qy,...0n

2: afinite input alphabet of symbols

Jo: the start state

F: the set of final state§; C Q

0(q,i): the transition function or transition matrix betweenaatGiven
a stateq € Q and an input symbal € %, 8(q,i) returns a new state
g € Q. dis thus a relation fron®Q x Z to Q;

For the sheeptalk automaton in Figure 2.@0= {Qqo,01,02,03,04},
> ={ab,!}, F ={as}, andd(q,i) is defined by the transition table in Fig-
ure 2.12.

Figure 2.13 presents an algorithm for recognizing a strgiggia state-
transition table. The algorithm is callemtRECOGNIZE for ‘deterministic

DETERMINIS- — recognizer’. Adeterministic algorithm is one that has no choice points;
the algorithm always knows what to do for any input. The nextisn will
introduce non-deterministic automata that must make messbout which
states to move to.

D-RECOGNIZE takes as input a tape and an automaton. It retams
ceptif the string it is pointing to on the tape is accepted by the@aton,
andreject otherwise. Note that since-RECOGNIZE assumes it is already
pointing at the string to be checked, its task is only a subgfathe general
problem that we often use regular expressions for, findirigragsin a corpus
(the general problem is left as an exercise to the readerencise 2.8).

D-RECOGNIZE begins by initializing the variableimdex and current-
stateto the beginning of the tape and the machine’s initial stet@ ECOGNIZE
then enters a loop that drives the rest of the algorithm.dt éinecks whether
it has reached the end of its input. If so, it either accepsrjput (if the cur-
rent state is an accept state) or rejects the input (if not).

If there is input left on the tap&-RECOGNIZE|ooks at the transition
table to decide which state to move to. The variahlerent-stateindicates
which row of the table to consult, while the current symbotloatape indi-
cates which column of the table to consult. The resultingsitaon-table cell
is used to update the varialdarrent-stateandindexis incremented to move
forward on the tape. If the transition-table cell is emptgrtithe machine
has nowhere to go and must reject the input.



Section 2.2. Finite-State Automata

37

function D-RECOGNIZHtape, machingreturns accept or reject

index< Beginning of tape
current-state— Initial state of machine
loop
if End of input has been reachitbn
if current-state is an accept stéten
return accept
else
return reject
elsif transition-table[current-state,tape[indexi$ emptythen
return reject
else
current-state—transition-table[current-state,tape[index]]
index«~index+ 1
end

Figure 2.13  An algorithm for deterministic recognition of FSAs. This al
gorithm returnsacceptif the entire string it is pointing at is in the language
defined by the FSA, and reject if the string is not in the larggua

Figure 2.14 traces the execution of this algorithm on theegHan-
guage FSA given the sample input stringaal

@ ® ®®®

< |blajajaj'! s

Figure 2.14  Tracing the execution of FSA #1 on some sheeptalk.

Before examining the beginning of the tape, the machine ssated;.
Finding ab on input tape, it changes to stajgas indicated by the contents
of transition-table[g,b] in Figure 2.12 on page 35. It then finds amnd
switches to statgp, anothea puts it in stateys, a thirdaleaves it in state,
where it reads the ‘I, and switches to state Since there is no more input,
theEnd of i nput condition at the beginning of the loop is satisfied for
the first time and the machine halts gp. Stateq is an accepting state,
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FAIL STATE

and so the machine has accepted the stiamp! as a sentence in the sheep
language.

The algorithm will fail whenever there is no legal trangitifor a given
combination of state and input. The inldcwill fail to be recognized since
there is no legal transition out of stafg on the inputa, (i.e. this entry of
the transition table in Figure 2.12 on page 35 h@s &ven if the automaton
had allowed an initiah it would have certainly failed on, sincec isn’t even
in the sheeptalk alphabet!). We can think of these ‘emptgireints in the
table as if they all pointed at one ‘empty’ state, which we mhicall thefail
stateor sink state In a sense then, we could view any machine with empty
transitionsas if we had augmented it with a fail state, and drawn in all the
extra arcs, so we always had somewhere to go from any stateygoasible
input. Just for completeness, Figure 2.15 shows the FSA fimuare 2.10
with the fail stategg filled in.

Figure 2.15 Adding a fail state to Figure 2.10.

Formal Languages

We can use the same graph in Figure 2.10 as an automatGEKERATING
sheeptalk. If we do, we would say that the automaton stasta#qg, and
crosses arcs to new states, printing out the symbols that &dzh arc it
follows. When the automaton gets to the final state it stopsticH that at
state 3, the automaton has to chose between printing budrad going to
state 4, or printing out aa and returning to state 3. Let’s say for now that
we don’t care how the machine makes this decision; maybepg #icoin.
For now, we don’t care which exact string of sheeptalk we greas long
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as it's a string captured by the regular expression for dhdepbove.

Key Concept #1.Formal Language:A model which can both gener-
ate and recognize all and only the strings of a formal langueats as
adefinitionof the formal language.

A formal languageis a set of strings, each string composed of symb @it
from a finite symbol-set called aalphabet (the same alphabet used abowverHaser
for defining an automaton!). The alphabet for the sheep laggs the set
>~ ={ab,!}. Given a modem (such as a particular FSA), we can usen)
to mean “the formal language characterizedntly So the formal language
defined by our sheeptalk automatworin Figure 2.10 (and Figure 2.12) is the
infinite set:

L(m) = {bad,baad,baaad, baaaad,baaaaaa...} (2.2)

The usefulness of an automaton for defining a language idttbah
express an infinite set (such as this one above) in a closed féiormal
languages are not the sameragural languages which are the kind of Midiecs
languages that real people speak. In fact a formal languayeear no re-
semblance at all to a real language (for example a formallagg can be
used to model the different states of a soda machine). Butfiee ase a
formal language to model part of a natural language, suctags pf the
phonology, morphology, or syntax. The teganerative grammaris some-
times used in linguistics to mean a grammar of a formal lagguthe origin
of the term is this use of an automaton to define a languagensraing all
possible strings.

Another Example

In the previous examples our formal alphabet consistedttdrie but we
can also have a higher-level alphabet consisting of wordshis way we
can write finite-state automata that model facts about wordhinations.
For example, suppose we wanted to build an FSA that modeéeduibpart
of English dealing with amounts of money. Such a formal lagguwould
model the subset of English consisting of phrases tiétecentsthree dol-
lars, one dollar thirty-five centand so on.
We might break this down by first building just the automatorat-

count for the numbers from one to ninety-nine, since we'#chthem to deal
with cents. Figure 2.16 shows this.
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one six
two seven
three eight
four nine
five

thirty
forty

twenty sixty
sevent
eighty

ten sixty eleven

twenty seventy twelve
thirty
forty
fifty

thirteen
fourteen
fifteen

eighty
ninety

one
two
three
four

sixteen
seventeen
eighteen
nineteen

SIX
seven
eight
nine

fifty ninety five

Figure 2.16  An FSA for the words for English numbers 1 — 99.

We could now addcentsand dollars to our automaton. Figure 2.17
shows a simple version of this, where we just made two codiglseoau-
tomaton in Figure 2.16 and appended the wamistsanddollars.

Six ten sixty eleven sixteen
seven twenty seventy twelve seventeen
eight thirty eighty thirteen eighteen
nine forty ninety fourteen nineteen

fifty fiteen cen

twenty sixty one six .
thirty = seventy! two seven
forty eighty

threeeight
fifty ninety

one six ten sixty  eleven sixteen
two seventwenty seventy twelve seventeen
three eight thirty eighty thirteen eighteen
four nine forty ninety fourteen nineteen
five fifty fifteen

one six
two seven
three eight
four nine
five

twenty sixty

thirty  seventy
forty eighty
fifty ninety

four nine
five

Figure 2.17 FSA for the simple dollars and cents.

We would now need to add in the grammar for different amouhts o
dollars; including higher numbers likeindred thousand We'd also need to
make sure that the nouns likentsanddollars are singular when appropriate
(one centone dollap, and plural when appropriatéef centstwo dollarg.
This is left as an exercise for the reader (Exercise 2.3). &@vktlaink of the
FSAs in Figure 2.16 and Figure 2.17 as simple grammars of paEnglish.
We will return to grammar-building in Part Il of this book, gtiaularly in
Chapter 9.

Nondeterministic FSAs

Let’s extend our discussion now to another class of F®@sa-deterministic
FSAs(or NFSAs). Consider the sheeptalk automaton in Figure 2.18, which
is much like our first automaton in Figure 2.10:

NON-
DETERMINISTIC
NFSA
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Figure 2.18 A non-deterministic finite-state automaton for talking ee
(NFSA #1). Compare with the deterministic automaton in Feg2110.

The only difference between this automaton and the previmgsis
that here in Figure 2.18 the self-loop is on state 2 insteastaié 3. Con-
sider using this network as an automaton for recognizingptatk. When
we get to state 2, if we see awe don’t know whether to remain in state
2 or go on to state 3. Automata with decision points like this ealled
non-deterministic FSAs (or NFSAs). Recall by contrast that Figure 2.1¢sumnsno
specified adeterministic automaton, i.e. one whose behavior during recogsa
nition is fully determinecdby the state it is in and the symbol it is looking at.
A deterministic automaton can be referred to &~5A. That is not true for orsa
the machine in Figure 2.18 (NFSA #1).

There is another common type of non-determinism, which essalnsed
by arcs that have no symbols on them (callecansitions). The automaton &,.smons
in Figure 2.19 defines the exact same language as the lasbiooar first
one, but it does it with aa-transition.

b a a !
Figure 2.19 Another NFSA for the sheep language (NFSA #2). It differs
from NFSA #1 in Figure 2.18 in having antransition.

We interpret this new arc as follows: if we are in state 3, we alr
lowed to move to state ®ithoutlooking at the input, or advancing our input
pointer. So this introduces another kind of non-determniswe might not
know whether to follow the-transition or the arc.
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SEARCH-
STATE

Using an NFSA to accept strings

If we want to know whether a string is an instance of sheepialkot, and
if we use a non-deterministic machine to recognize it, wehtnigllow the
wrong arc and reject it when we should have accepted it. Bhatrice there
is more than one choice at some point, we might take the wrbaige. This
problem of choice in non-deterministic models will come ggpia and again
as we build computational models, particularly for parsing

There are three standard solutions to this problem:

e Backup: Whenever we come to a choice point, we could potaaker
to mark where we were in the input, and what state the autonveés
in. Then if it turns out that we took the wrong choice, we cooidatk
up and try another path.

e Look-ahead: We could look ahead in the input to help us decide which
path to take.

e Parallelism: Whenever we come to a choice point, we could look at
every alternative path in parallel.

We will focus here on the backup approach and defer discusdithe
look-ahead and parallelism approaches to later chapters.

The backup approach suggests that we should blithely makieesh
that might lead to deadends, knowing that we can alwaysmrétuunex-
plored alternative choices. There are two keys to this ambrowe need
to remember all the alternatives for each choice point, asch@ed to store
sufficient information about each alternative so that wereturn to it when
necessary. When a backup algorithm reaches a point in itegsng where
no progress can be made (because it runs out of input, or hizgaldran-
sitions), it returns to a previous choice point, selects afrine unexplored
alternatives, and continues from there. Applying this omtio our non-
deterministic recognizer, we need only remember two thiogsach choice
point: the state, or node, of the machine that we can go to lsaadrre-
sponding position on the tape. We will call the combinatiéthe node and
position thesearch-stateof the recognition algorithm. To avoid confusion,
we will refer to the state of the automaton (as opposed to téte sf the
search) as aode or amachine-state Figure 2.21 presents a recognition
algorithm based on this approach.

Before going on to describe the main part of this algorithra,slould
note two changes to the transition table that drives it.tHinsorder to rep-
resent nodes that have outgo#xyansitions, we add a negvcolumn to the
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Input
Statelb a ! ¢
0 10 00
1 62 00
2 02300
3 060 40
4 00 00

Figure 2.20: The transition table from NFSA #1 in Figure 2.18

transition table. If a node has artransition, we list the destination node in
the e-column for that node’s row. The second addition is needexttount
for multiple transitions to different nodes from the sampuinsymbol. We
let each cell entry consist of a list of destination nodekaathan a single
node. Figure 2.20 shows the transition table for the madhifégure 2.18
(NFSA #1). While it has na-transitions, it does show that in machine-state
g the inputa can lead back tg, or on togs.

Figure 2.21 shows the algorithm for using a non-determmiBEA
to recognize an input string. The functiem-RECOGNIZEUSeS the variable
agendato keep track of all the currently unexplored choices geedrduring
the course of processing. Each choice (search state) iseactpsisting of a
node (state) of the machine and a position on the tape. Tiebl@current-
search-stateepresents the branch choice being currently explored.

ND-RECOGNIZEbegins by creating an initial search-state and placing
it on the agenda. For now we don’t specify what order the $estates are
placed on the agenda. This search-state consists of the mechine-state
of the machine and a pointer to the beginning of the tape. GineibNNEXT
is then called to retrieve an item from the agenda and assigrthie variable
current-search-state

As with D-RECOGNIZE the first task of the main loop is to determine
if the entire contents of the tape have been successfullygrezed. This
is done via a call toacCEPTFSTATE?, which returnsacceptif the current
search-state contains both an accepting machine-stata pothter to the
end of the tape. If we're not done, the machine generates af peissible
next steps by callinGENERATENEW-STATES, which creates search-states
for any e-transitions and any normal input-symbol transitions friw@ tran-
sition table. All of these search-state tuples are then chdolehe current
agenda.

Finally, we attempt to get a new search-state to processtfieragenda.
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If the agenda is empty we've run out of options and have tatéfee input.
Otherwise, an unexplored option is selected and the loopruges.

It is important to understand whyD-RECOGNIZE returns a value of
reject only when the agenda is found to be empty. UrbikeeECOGNIZE it
does not return reject when it reaches the end of the tape im+accept
machine-state or when it finds itself unable to advance the taom some
machine-state. This is because, in the non-determinisise,csuch road-
blocks only indicate failure down a given path, not overallure. We can
only be sure we can reject a string when all possible choiage heen ex-
amined and found lacking.

Figure 2.22 illustrates the progressNaf-RECOGNIZEaAS it attempts to
handle the inpubaaa! . Each strip illustrates the state of the algorithm at
a given point in its processing. Tloarrent-search-statgariable is captured
by the solid bubbles representing the machine-state aldhgtve arrow rep-
resenting progress on the tape. Each strip lower down indbesfrepresents
progress from oneurrent-search-staté the next.

Little of interest happens until the algorithm finds itseif stateq,
while looking at the second a on the tape. An examination efdhtry
for transition-tablef,a] returns bothg, andgs. Search states are created
for each of these choices and placed on the agenda. Unftetynaur al-
gorithm chooses to move to stajg a move that results in neither an accept
state nor any new states since the entry for transitiorefighla] is empty.
At this point, the algorithm simply asks the agenda for a niatego pursue.
Since the choice of returning t from g is the only unexamined choice on
the agenda it is returned with the tape pointer advancecdetodht a. Some-
what diabolically,ND-RECOGNIZE finds itself faced with the same choice.
The entry for transition-tablgp,a] still indicates that looping back @ or
advancing togs are valid choices. As before, states representing both are
placed on the agenda. These search states are not the samepasvious
ones since their tape index values have advanced. This tienggenda pro-
vides the move tgp as the next move. The movedg, and success, is then
uniquely determined by the tape and the transition-table.

Recognition as Search

ND-RECOGNIZE accomplishes the task of recognizing strings in a regular
language by providing a way to systematically explore alpbssible paths
through a machine. If this exploration yields a path endimgam accept
state, it accepts the string, otherwise it rejects it. Thsteamatic exploration
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function ND-RECOGNIzHtape, machingreturns accept or reject

agenda— {(Initial state of machine, beginning of tage)
current-search-state- NExT(agenda
loop
if ACCEPFSTATE?(current-search-stajaeturns trughen
return accept
else
agenda—agendaJ GENERATE-NEW-STATES(current-search-staje
if agendas emptythen
return reject
else
current-search-state- NExT(agenda
end

function GENERATE-NEW-STATES(current-staté returns a set of search-
states

current-node—the node the current search-state is in
index«the point on the tape the current search-state is looking at
return a list of search states from transition table as follows:
(transition-table[current-node], index)
U
(transition-table[current-node, tape[index]], index 4 1

function ACCEPFSTATE?(search-statgreturns true or false

current-node—the node search-state is in
index«the point on the tape search-state is looking at
if indexis at the end of the tapnd current-nodes an accept state of machine
then
return true
else
return false

Figure 2.21  An algorithm for NFSA recognition. The wondodemeans
a state of the FSA, whilstateor search-stateneans ‘the state of the searg
process’, i.e. a combination abdeandtape-position

>

is made possible by the agenda mechanism, which on eadiiotesalects a
partial path to explore and keeps track of any remaining easigexplored,
partial paths.

Algorithms such asiD-RECOGNIZE which operate by systematically
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Figure 2.22 Tracing the execution of NFSA #1 (Figure 2.18) on somme
sheeptalk.

SWESCE  searching for solutions, are known skate-space searchalgorithms. In
such algorithms, the problem definition creates a space sfilple solu-
tions; the goal is to explore this space, returning an answen one is
found or rejecting the input when the space has been extialystixplored.
In ND-RECOGNIZE search states consist of pairings of machine-states with
positions on the input tape. The state-space consists tfia@lpairings of
machine-state and tape positions that are possible gieam&ichine in ques-
tion. The goal of the search is to navigate through this sfraoeone state to
another looking for a pairing of an accept state with an ena@é position.

The key to the effectiveness of such programs is oftenotier in
which the states in the space are considered. A poor ordefistates may
lead to the examination of a large number of unfruitful stdiefore a suc-
cessful solution is discovered. Unfortunately, it is tybig not possible to
tell a good choice from a bad one, and often the best we cantdansure
that each possible solution is eventually considered.
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Careful readers may have noticed that the ordering of siatem-
RECOGNIZEhas been left unspecified. We know only that unexploredstate
are added to the agenda as they are created and that the rfedjidtinc-
tion NEXT returns an unexplored state from the agenda when asked. How
should the function EXT be defined? Consider an ordering strategy where
the states that are considered next are the most recendliedrenes. Such
a policy can be implemented by placing newly created statélseafront
of the agenda and havingeXT return the state at the front of the agenda
when called. Thus the agenda is implemented btaak. This is commonly
referred to as depth-first searchor Last In First Out (LIFO ) strategy.  pepTHFiRsT

Such a strategy dives into the search space following neexgldped
leads as they are generated. It will only return to considelies options
when progress along a current lead has been blocked. Thedfdbe ex-
ecution of ND-RECOGNIZE on the stringbaaa! as shown in Figure 2.22
illustrates a depth-first search. The algorithm hits thé €éin®ice point after
seeingba when it has to decide whether to stayds or advance to state
gs. At this point, it chooses one alternative and follows itilubis sure it's
wrong. The algorithm then backs up and tries another olderreltive.

Depth first strategies have one major pitfall: under certaioum-
stances they can enter an infinite loop. This is possibleiftthe search
space happens to be set up in such a way that a search-stdtte aaciden-
tally re-visited, or if there are an infinite number of seastates. We will
revisit this question when we turn to more complicated dearoblems in
parsing in Chapter 10.

The second way to order the states in the search space isg@ebn
states in the order in which they are created. Such a polioybeaimple-
mented by placing newly created states at the back of thedagamd still
have NEXT return the state at the front of the agenda. Thus the agenda is
implemented via @ueue This is commonly referred to astmeadth-first  EfeaP™
searchor First In First Out (FIFO) strategy. Consider a different trace
of the execution oND-RECOGNIZE 0N the stringbaaa! as shown in Fig-
ure 2.23. Again, the algorithm hits its first choice poineaieeinga when
it had to decide whether to stay @a or advance to statgs. But now rather
than picking one choice and following it up, we imagine exaing all pos-
sible choices, expanding one ply of the search tree at a time.

Like depth-first search, breadth-first search has its fstfalhs with
depth-first if the state-space is infinite, the search magmevminate. More
importantly, due to growth in the size of the agenda if theestpace is
even moderately large, the search may require an imprigtiaege amount
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Figure 2.23 A breadth-first trace of FSA #1 on some sheeptalk.

of memory. For small problems, either depth-first or bredul#t search

strategies may be adequate, although depth-first is normaferred for its

more efficient use of memory. For larger problems, more cempkarch

techniques such abynamic programming or A* must be used, as we will
see in Chapter 7 and Chapter 10.

Relating Deterministic and Non-deterministic Automata

It may seem that allowing NFSAs to have non-deterministatufees likee-
transitions would make them more powerful than DFSAs. I flais is not
the case; for any NFSA, there is an exactly equivalent DF8A£adt there is
a simple algorithm for converting an NFSA to an equivalen8BE-although
the number of states in this equivalent deterministic aatommay be much
larger. See Lewis and Papadimitriou (1981) or Hopcroft atich&h (1979)
for the proof of the correspondence. The basic intuitiorhefgroof is worth
mentioning, however, and builds on the way NFSAs parse tyeut. Recall
that the difference between NFSAs and DFSAs is that in an N& Stateg;
may have more than one possible next state given an ir{ftexamplegs
andqp). The algorithm in Figure 2.21 dealt with this problem by cking
eitherg, or g, and therbacktrackingif the choice turned out to be wrong.
We mentioned that a parallel version of the algorithm wowltiofv both
paths (towardy, andq,) simultaneously.
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The algorithm for converting a NFSA to a DFSA is like this piaia
algorithm; we build an automaton that has a deterministib fua every path
our parallel recognizer might have followed in the searcicsp We imagine
following both paths simultaneously, and group togethar an equivalence
class all the states we reach on the same input symbolod.andq,). We
now give a new state label to this new equivalence class @tatexample
Uan). We continue doing this for every possible input for everggible group
of states. The resulting DFSA can have as many states asdtedistinct
sets of states in the original NFSA. The number of differerisets of a set
with N elements is ®, hence the new DFSA can have as many"astates.

2.3 REGULAR LANGUAGES AND FSAs

As we suggested above, the class of languages that are definategular
expressions is exactly the same as the class of languages¢hzharacter-

izable by finite-state automata (whether deterministicar-deterministic).
Because of this, we call these languagesrdgrilar languages In order to  FEG5AR.¢
give a formal definition of the class of regular languages,need to refer

back to two earlier concepts: the alphakgivhich is the set of all symbols in

the language, and tlempty stringg, which is conventionally not included in

>. In addition, we make reference to tampty sed (which is distinct from

€). The class of regular languages (egular set9 overZ is then formally

as follows:*

1. 0is aregular language
2. YVae ZUg, {a} is aregular language
3. If Ly andL, are regular languages, then so are:

(@) L1 - Lo = {xy|x € L1,y € Ly}, theconcatenationof L; andL,
(b) L1 ULy, theunion or disjunction of L;andL»
(c) Lj, theKleene closureof L

All and only the sets of languages which meet the above ptieper
are regular languages. Since the regular languages arettb&languages
characterizable by regular expressions, it must be thetbasall the regu-
lar expression operators introduced in this chapter (éxtemnory) can be
implemented by the three operations which define regulgguages: con-

1 Following van Santen and Sproat (1998), Kaplan and Kay (1984d Lewis and Pa-
padimitriou (1981).
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catenation, disjunction/union (also called,'and Kleene closure. For ex-
ample all the counters (+, {n,m} ) are just a special case of repetition plus
Kleene *. All the anchors can be thought of as individual slexymbols.
The square bracgk are a kind of disjunction (i.ab] means aorb”, or
the disjunction ofa andb). Thus it is true that any regular expression can be
turned into a (perhaps larger) expression which only makesofithe three
primitive operations.

Regular languages are also closed under the following tipesgwhere
2* means the infinite set of all possible strings formed fromaipbabet):

e intersection: ifL; andL, are regular languages, then sa.is1 Ly, the
language consisting of the set of strings that are in hethndL,.

e difference: ifL; andL, are regular languages, then sd.is— L, the
language consisting of the set of strings that arejibut notL..

e complementation: IL; is a regular language, then so2is— L1, the
set of all possible strings that aren’tlin

e reversal: IfL; is a regular language, then soLi§, the language con-
sisting of the set of reversals of all the stringd.in

The proof that regular expressions are equivalent to fstdée au-
tomata can be found in Hopcroft and Ulliman (1979), and has pgans:
showing that an automaton can be built for each regular kgguand con-
versely that a regular language can be built for each autbmade won't
give the proof, but we give the intuition by showing how to te first part:
take any regular expression and build an automaton fromhie. ifituition is
inductive: for the base case we build an automaton to casrebsfo regular
expressions of a single symbol (e.g. the expresa)doy creating an initial
state and an accepting final state, with an arc between thestetba. For
the inductive step, we show that each of the primitive opamatof a regular
expression (concatenation, union, closure) can be inditagean automaton:

e concatenation We just string two FSAs next to each other by con-
necting all the final states of FSAo the initial state of FSAby an
e-transition.

e closure We connect all the final states of the FSA back to the initial
states byg-transitions (this implements the repetition part of thed€ie
*), and then put direct links between the initial and finaltesabye-
transitions (this implements the possibly of havirggooccurrences).
We’'d leave out this last part to implement Kleene-plus iadte

e union: We add a single new initial statg, and add new transitions
from it to all the former initial states of the two machinedtjoined.
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Figure 2.26  The union () of two FSAs.

2.4 SUMMARY

This chapter introduced the most important fundamentatephin language
processing, thénite automaton, and the practical tool based on automaton,
the regular expression Here’s a summary of the main points we covered
about these ideas:

e theregular expressionlanguage is a powerful tool for pattern-matching.
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e basic operations in regular expressions inclodecatenationof sym-
bols, disjunction of symbols [] , |, and. ), counters (*, +, and
{n,m} ), anchors(", $) and precedence operato(s)().

e any regular expression can be realized &nite automaton.

e memory {1 together with() ) is an advanced operation which is often
considered part of regular expressions, but which cannmeddized as
a finite automaton.

e an automaton implicitly definesfarmal languageas the set of strings
the automatomccepts

e an automaton can use any set of symbols for its vocabularlydimg
letters, words, or even graphic images.

¢ the behavior of aeterministic automata DFSA) is fully determined
by the state itis in.

e anon-deterministic (NFSA) automata sometimes has to make a choice
between multiple paths to take given the same current stdtaext in-
put.

e anyNFSA can be converted to@FSA.

¢ the order in which &NFSA chooses the next state to explore on the
agenda defines itsearch strategy Thedepth-first search or LIFO
strategy corresponds to the agenda-as-stackyrsedth-first search
or FIFO strategy corresponds to the agenda-as-queue.

e any regular expression can be automatically compiled il 8A and
hence into &SA.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

MCCULLOCH-
PITTS
NEURON

Finite automata arose in the 1950’s out of Turing’s (1936dei@mf algo-
rithmic computation, considered by many to be the foundatib modern
computer science. The Turing machine was an abstract neaalitin a finite
control and an input/output tape. In one move, the Turinghmaccould
read a symbol on the tape, write a different symbol on the, E@mnge state,
and move left or right. (Thus the Turing machine differs frarfinite-state
automaton mainly in its ability to change the symbols ondfse).

Inspired by Turing’s work, McCulloch and Pitts built an aata-like
model of the neuron (see von Neumann, 1963, p. 319). Theiemadhich
is now usually called théicCulloch-Pitts neuron (McCulloch and Pitts,



Section 2.4. Summary 53

1943), was a simplified model of the neuron as a kind of ‘comguéle-

ment’ that could be described in terms of propositional dogrhe model
was a binary device, at any point either active or not, whickktexcitatory
and inhibitatory input from other neurons and fired if itsieation passed
some fixed threshold. Based on the McCulloch-Pitts neurdeerke (1951)
and (1956) defined the finite automaton and regular expressémd proved
their equivalence. Non-deterministic automata were thiced by Rabin
and Scott (1959), who also proved them equivalent to detestit ones.

Ken Thompson was one of the first to build regular expresssongpil-
ers into editors for text searching (Thompson, 1968). Hiteddincluded
a command “g/regular expression/p”, or Global Regular Egpion Print,
which later became the UNI¥rep utility.

There are many general-purpose introductions to the matesrun-
derlying automata theory; such as Hopcroft and Ullman ()1 @r@l Lewis
and Papadimitriou (1981). These cover the mathematicaldaiions the
simple automata of this chapter, as well as the finite-statestucers of
Chapter 3, the context-free grammars of Chapter 9, and tloen€ky hier-
archy of Chapter 13. Friedl (1997) is a very useful comprsivenguide to
the advanced use of regular expressions.

The metaphor of problem-solving as search is basic to Aiflatel-
ligence (Al); more details on search can be found in any Atltesk such as
Russell and Norvig (1995).

EXERCISES

2.1 Write regular expressions for the following languages: Yoay use
either Perl notation or the minimal ‘algebraic’ notation®dction 2.3, but
make sure to say which one you are using. By ‘word’, we meat@rabhetic
string separated from other words by white space, any nelguanctuation,
line breaks, etc.

a. the set of all alphabetic strings.
b. the set of all lowercase alphabetic strings endinghn a

c. the set of all strings with two consecutive repeated wodiasaxample
‘Humbert Humbert’ and ‘the the’ but not ‘the bug’ or ‘the bigdp).
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d. the set of all strings from the alphal@®b such that each is immedi-
ately preceded and immediately followed bi.a

e. all strings which start at the beginning of the line with ateger (i.e.
1,2,3...10...10000...) and which end at the end of the litie awvord.

f. all strings which have both the wogiotto and the wordavenin them.
(but not, for example, words likgrottosthat merelycontainthe word
grotto).

g. write a pattern which places the first word of an Englishaece in a
register. Deal with punctuation.

2.2 Implement an ELIZA-like program, using substitutions sashthose
described on page 32. You may choose a different domain tfogarian
psychologist, if you wish, although keep in mind that you Woneed a
domain in which your program can legitimately do a lot of sien@peating-
back.

2.3 Complete the FSA for English money expressions in Figuré 24
suggested in the text following the figure. You should haradteunts up
to $100,000, and make sure that “cent” and “dollar” have ttoper plural
endings when appropriate.

2.4 Design an FSA that recognizes simple date expressiond/igceh 15

the 22nd of NovembgeChristmas You should try to include all such ‘ab-
solute’ dates, (e.g. not ‘deictic’ ones relative to the entrday likethe day
before yesterddy Each edge of the graph should have a word or a set of
words on it. You should use some sort of shorthand for clasbesrds to
avoid drawing too many arcs (e.g. Furnituredesk, chair, table)

2.5 Now extend your date FSA to handle deictic expressions/iisterday
tomorrow, a week from tomorrowthe day before yesterdagpunday next
Monday three weeks from Saturday

2.6 Write an FSA for time-of-day expressions likéeven o’clocktwelve-
thirty, midnight or a quarter to terand others.

2.7 Write a regular expression for the language accepted by BE&ANN
Figure 2.27

2.8 Currently the functiorp-RECOGNIZEIn Figure 2.13 only solves a sub-
part of the important problem of finding a string in some tekktend the
algorithm to solve the following two deficiencies: (b}RECOGNIZE cur-
rently assumes that it is already pointing at the string tatecked. (2)
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Figure 2.27 A mystery language

D-RECOGNIzEfails if the string it is pointing includes as a proper suimgtr
a legal string for the FSA. That i®-RECOGNIZzEfalls if there is an extra
character at the end of the string.

2.9 Give an algorithm for negating a deterministic FSA. The tiegeof an
FSA accepts exactly the set of strings that the original F&§écis (over the
same alphabet), and rejects all the strings that the oti§BA accepts.

2.10 Why doesn't your previous algorithm work with NFSAs? Nowesnd
your algorithm to negate an NFSA.






MORPHOLOGY AND
3 FINITE-STATE
TRANSDUCERS

A writer is someone who writes, and a stinger is something tha
stings. But fingers don'’t fing, grocers don’t groce, habeldas
ers don’'t haberdash, hammers don't ham, and humdingerg don’
humding.

Richard LedererCrazy English

Chapter 2 introduced the regular expression, showing famgxe how
a single search string could help a web search engine findvbatidchuck
andwoodchucks Hunting for singular or plural woodchucks was easy; the
plural just tacks als on to the end. But suppose we were looking for another
fascinating woodland creatures; let’s salpg and afish, that surlypeccary
and perhaps a Canadiaiild goose Hunting for the plurals of these animals
takes more than just tacking on anThe plural offox is foxes of peccary
peccariesand ofgooseg geese To confuse matters further, fish don’t usually
change their form when they are plural (as Dr. Seuss poirtoaoe fish two
fish, red fish, blue figh

It takes two kinds of knowledge to correctly search for siagaiand
plurals of these formsSpelling rulestell us that English words ending g
are pluralized by changing thg to -i- and adding anes Morphological
rules tell us thatfishhas a null plural, and that the plural gboseis formed
by changing the vowel.

The problem of recognizing thédxesbreaks down into the two mor-
phemedox and-esis calledmorphological parsing.

Key Concept #2. Parsingmeans taking an input and producing soresine
sort of structure for it.

We will use the term parsing very broadly throughout thisigaocluding
many kinds of structures that might be produced; morpholdgsyntactic,
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STEMMING

SURFACE

PRODUCTIVE

semantic, pragmatic; in the form of a string, or a tree, or vak. In
the information retrieval domain, the similar (but not itleal) problem of
mapping fromfoxesto fox is calledstemming Morphological parsing or
stemming applies to many affixes other than plurals; for gptarwe might
need to take any English verb form ending-iing (going talking, congrat-
ulating) and parse it into its verbal stem plus tlieg morpheme. So given
thesurfaceor input form going we might want to produce the parsed form
VERB-go + GERUND-ing. This chapter will survey the kinds of mor-
phological knowledge that needs to be represented in difféanguages and
introduce the main component of an important algorithm forphological
parsing: thdinite-state transducer.

Why don't we just list all the plural forms of English nounsdaall the
-ing forms of English verbs in the dictionary? The major reasahas-ing
is aproductive suffix; by this we mean that it applies to every verb. Simi-
larly -s applies to almost every noun. So the idea of listing everynrend
verb can be quite inefficient. Furthermore, productive seffieven apply to
new words (so the new worfdx automatically can be used in thieag form:
faxing. Since new words (particularly acronyms and proper noansxyre-
ated every day, the class of nouns in English increasesarthstand we
need to be able to add the plural morphesi® each of these. Additionally,
the plural form of these new nouns depends on the spellingijrciation of
the singular form; for example if the noun ends-azrthen the plural form is
-esrather thans. We'll need to encode these rules somewhere. Finally, we
certainly cannot list all the morphological variants of gveord in morpho-
logically complex languages like Turkish, which has worite the follow-
ing:
(3.1) uygarlastiramadiklarimizdanmissinizcasina

uygar +las +tir +ama +dik +Har +mmiz
civiized +BEC +CAUS +NEGABLE +PPART +PL +P1PL
+dan +mis +siniz +casina

+ABL +PAST +2PL +AsIf

‘(behaving) as if you are among those whom we could not
civilize/cause to become civilized’
The various pieces of this word (tineorphemeg have these meanings:

+BEC is ‘become’ in English
+CAUS is the causative voice marker on a verb
+NEGABLE is ‘not able’ in English
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+PPart marks a past participle form

+P1PL is 1st person pl possessive agreement

+2PL is 2nd person pl

+ABL is the ablative (from/among) case marker

+AslIf is a derivational marker that forms an adverb from adéinierb form

In such languages we clearly need to parse the input sinséniigos-
sible to store every possible word. Kemal Oflazer (p.c.), wdume up with
this example, notes that verbs in Turkish have 40,000 foraiscaunting
derivational suffixes; adding derivational suffixes alloavgheoretically in-
finite number of words. This is true because for example amlg gan be
‘causativized’ like the example above, and multiple instmnof causativiza-
tion can be embedded in a single woyth cause X to cause Y to .... dQ.W
Not all Turkish words look like this; Oflazer finds that the eage Turkish
word has about three morphemes (a root plus two suffixes)n Bgethe
fact that such words are possible means that it will be diffimustore all
possible Turkish words in advance.

Morphological parsing is necessary for more than just imfron re-
trieval. We will need it in machine translation to realizeiththe French
wordsva and aller should both translate to forms of the English ve
We will also need it in spell checking; as we will see, it is ploological
knowledge that will tell us thainisclamandantiundogginglyare not words.

The next sections will summarize morphological facts atienglish
and then introduce thiinite-state transducer.

3.1 SURVEY OF (MOSTLY) ENGLISH MORPHOLOGY

Morphology is the study of the way words are built up from deraheaning-

bearing unitsmorphemes A morpheme is often defined as the minimabrexenes
meaning-bearing unit in a language. So for example the fardonsists of

a single morpheme (the morpheifio®) while the wordcatsconsists of two:

the morphemeat and the morphemss.

As this example suggests, it is often useful to distinguisb broad
classes of morphemestemsandaffixes The exact details of the distinc-srews
tion vary from language to language, but intuitively, thenstis the ‘main’ arrixes
morpheme of the word, supplying the main meaning, while ffigegs add
‘additional’ meanings of various kinds.

Affixes are further divided intprefixes suffixes infixes, andcircum-
fixes Prefixes precede the stem, suffixes follow the stem, circasfilo
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both, and infixes are inserted inside the stem. For exantmeaybrdeatsis
composed of a stematand the suffixs. The wordunbuckleis composed of

a stembuckleand the prefixun-. English doesn’t have any good examples
of circumfixes, but many other languages do. In German, fampte, the
past participle of some verbs formed by addges to the beginning of the
stem andt to the end; so the past participle of the vedigen(to say) is
gesagt(said). Infixes, in which a morpheme is inserted in the midifla
word, occur very commonly for example in the Philipine laage Tagalog.
For example the affixim, which marks the agent of an action, is infixed to
the Tagalog sterhingi ‘borrow’ to producehumingi There is one infix that
occurs in some dialects of English in which the taboo morphétiking’

or others like it are inserted in the middle of other words &if**king-
hattan’) (McCawley, 1978).

Prefixes and suffixes are often callemhcatenative morphologysince
a word is composed of a number of morphemes concatenatetheéogé\
number of languages have extensiven-concatenative morphology in
which morphemes are combined in more complex ways. The dggat
fixation example above is one example of non-concatenatiwgpinology,
since two morphemeshipgi and um) are intermingled. Another kind of
non-concatenative morphology is callégimplatic morphology or root-
and-pattern morphology. This is very common in Arabic, Hebrew, and
other Semitic languages. In Hebrew, for example, a verbnstcocted us-
ing two components: a root, consisting usually of three onaats (CCC)
and carrying the basic meaning, and a template, which gnheesridering of
consonants and vowels and specifies more semantic infanmakiout the
resulting verb, such as the semantic voice (e.g. activesjiyggsniddle). For
example the Hebrew tri-consonantal rdwtd, meaning ‘learn’ or ‘study’,
can be combined with the active voice CaCaC template to pethe word
lamad ‘he studied’, or the intensive CiCeC template to produeewiord
limed ‘he taught’, or the intensive passive template CuCacC tdyre the
word lumad ‘he was taught'.

A word can have more than one affix. For example, the wewdites
has the prefixe-, the stemwrite, and the suffixs. The wordunbelievably
has a stembelieve plus three affixesun-, -able, and-ly). While English
doesn't tend to stack more than 4 or 5 affixes, languages likkigh can
have words with 9 or 10 affixes, as we saw above. Languageseifzto
string affixes together like Turkish does are calbgjlutinative languages.

There are two broad (and partially overlapping) classesayfvto form
words from morphemesnflection andderivation. Inflection is the combi-
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nation of a word stem with a grammatical morpheme, usualyltimg in a
word of the same class as the original stem, and usuallygfiiome syntac-
tic function like agreement. For example, English has tffledtional mor-
pheme-s for marking theplural on nouns, and the inflectional morpheme
-edfor marking the past tense on verbs. Derivation is the coatluin of a
word stem with a grammatical morpheme, usually resulting imord of a
differentclass, often with a meaning hard to predict exactly. For eptartine
verb computerizecan take the derivational suffiationto produce the noun
computerization

Inflectional Morphology

English has a relatively simple inflectional system; onlyms, verbs, and
sometimes adjectives can be inflected, and the number oibpessflec-
tional affixes is quite small.

English nouns have only two kinds of inflection: an affix thedrks
plural and an affix that markpossessive For example, many (but not all)rLura
English nouns can either appear in the bare stesingular form, or take a sineuar
plural suffix. Here are examples of the regular plural suffjthe alternative
spelling-es and irregular plurals:

\ | Regular Noun§ Irregular Nouns

Singular cat |thrush Mouse 0X
Plural |cats|thrushes || mice |oxen

While the regular plural is spelle@ after most nouns, it is spelleds
after words ending irs (ibis/ibises , -z, (waltz/waltzek-sh (thrush/thrushes
-ch, (finch/finchey and sometimesx (box/boxes Nouns ending iny pre-
ceded by a consonant change théo -i (butterfly/butterfliels

The possessive suffix is realized by apostropkefer regular singular
nouns (lama’s) and plural nouns not ending is (children’s) and often by a
lone apostrophe after regular plural noultgnias’) and some names ending
in -sor -z (Euripides’ comedigs

English verbal inflection is more complicated than nomindkiction.
First, English has three kinds of verlisain verbs, (eat, sleep, impeag¢h
modal verbs (can, will, should, andprimary verbs (be, have, dp(using
the terms of Quirlet al,, 1985a). In this chapter we will mostly be concerned
with the main and primary verbs, because it is these that dleztional
endings. Of these verbs a large classrapilar, that is to say all verbs of recutar
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this class have the same endings marking the same funciitese regular
verbs (e.gwalk, orinspec}, have four morphological forms, as follow:

Morphological Form Classes  Regularly Inflected Verbs
stem walk |merge |try map
-sform walks |merges |tries |maps
-ing participle walking| merging| trying | mapping
Past form oredpatrticiple || walked | merged|tried | mapped

These verbs are called regular because just by knowing ¢ne st
can predict the other forms, by adding one of three preditabdings, and
making some regular spelling changes (and as we will see apteh4, reg-
ular pronunciation changes). These regular verbs and farewsignificant in
the morphology of English first because they cover a majaitihe verbs,
and second because the regular clagsosluctive. As discussed earlier, a
productive class is one that automatically includes any wewds that enter
the language. For example the recently-created faecfiMy mom faxedane
the note from cousin Evergttakes the regular endingsed, -ing, -es (Note
that the-s form is spelledfaxesrather thanfaxs we will discuss spelling
rules below).

Theirregular verbs are those that have some more or less idiosyn-
cratic forms of inflection. Irregular verbs in English ofteave five different
forms, but can have as many as eight (e.g. the berbr as few as three (e.g.
cut or hit). While constituting a much smaller class of verbs (Quétlal.
(1985a) estimate there are only about 250 irregular vedis;aunting aux-
iliaries), this class includes most of the very frequenbsesf the languagé.
The table below shows some sample irregular forms. Noteathatregular
verb can inflect in the past form (also called fhreterite) by changing its
vowel (eat/atg, or its vowel and some consonantgaich/caught or with no
ending at all ¢ut/cu).

1 In general, the more frequent a word form, the more likelysitd have idiosyncratic
properties; this is due to a fact about language change; fvequent words preserve their
form even if other words around them are changing so as tanbeenore regular.
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Morphological Form Classedrregularly Inflected Verbs
stem eat |catch |cut
-sform eats |catches|cuts

-ing participle eating| catching cutting
Past form ate |caught |cut
-edpatrticiple eaten |caught |cut

The way these forms are used in a sentence will be discus<&iubin-
ters 8-12 but is worth a brief mention here. Tadorm is used in the ‘ha-
bitual present’ form to distinguish the 3rd-person singelading She jogs
every Tuesdgyfrom the other choices of person and numbaroi/we/they
jog every Tuesddy The stem form is used in the infinitive form, and also
after certain other verbg'd rather walk home | want to walk homg The
-ing participle is used when the verb is treated as a noun; thiscpkar
kind of nominal use of a verb is calledgerund use: Fishing is fine if you aerunp
live near water.The -ed participle is used in thperfect construction e’s  rerrect
eaten lunch alreadyor the passive constructiofilie verdict was overturned
yesterday.

In addition to noting which suffixes can be attached to whigms,
we need to capture the fact that a number of regular spelliagges occur
at these morpheme boundaries. For example, a single cansletir is
doubled before adding théng and-ed suffixes peg/begging/beggedif the
final letter is ‘c’, the doubling is spelled ‘ck’pfcnic/picnicking/picnicked
If the base ends in a siler, it is deleted before addingng and-ed(merge/-
merging/merged Just as for nouns, tha ending is spelledesafter verb
stems ending ins (toss/tosses, -z, (waltz/waltzes-sh (wash/washés-ch,
(catch/catchesand sometimesx (tax/taxe$. Also like nouns, verbs ending
in -y preceded by a consonant change-thi -i (try/tries).

The English verbal system is much simpler than for exampegi-
ropean Spanish system, which has as many as fifty distinbtfeems for
each reqgular verb. Figure 3.1 shows just a few of the exaniptabe verb
amar, ‘to love’. Other languages can have even more forms thar8panish
example.

Derivational Morphology

While English inflection is relatively simple compared tdhet languages,
derivation in English is quite complex. Recall that defivatis the combi-
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Present |Imper|Imperfect|Future |Preterit¢Present Conditionallmperfect Future
Indicative Indicative Subjnct] Subjnct. |Subjnct.
amo amaba |amaré |amé |ame |amaria amara |amare
amas |ama |amabas |amaras |amaste|ames |amarias |amaras |amares
ames
ama amaba |amara |am06 |ame |amaria amara |amareme
amamos amébamqamaremosimamo samemoamariamos am’aramqsiméremos
amais |amad|amabais |amaréis |amastejaméis |amariais |amarais |amareis
amais
aman amaban |amaran |amaronjamen |amarian |amaran |amaren
Figure 3.1  To love in Spanish.
nation of a word stem with a grammatical morpheme, usualyltimg in a
word of adifferentclass, often with a meaning hard to predict exactly.
A very common kind of derivation in English is the formatiohrew
JaumALZA-— nouns, often from verbs or adjectives. This process isaaleinalization.

For example, the suffixation produces nouns from verbs ending often in the
suffix -ize (computerize—~ computerization Here are examples of some

particularly productive English hominalizing suffixes.

| Suffix | Base Verb/AdjectivéDerived Noun |

-ation | computerize (V) |computerization
-ee | appoint (V) appointee

-er kill (V) killer

-ness | fuzzy (A) fuzziness

Adjectives can also be derived from nouns and verbs. Herexam-
ples of a few suffixes deriving adjectives from nouns or verbs

| Suffix | Base Noun/VerhDerived Adjective

-al computation (N) computational
-able ||embrace (V) |embraceable
-less | clue (N) clueless

Derivation in English is more complex than inflection for amher of
reasons. One is that it is generally less productive; evesmamalizing suf-
fix like -ation, which can be added to almost any verb endingag cannot
be added to absolutely every verb. Thus we can't satdtionor *spella-
tion (we use an asterisk (*) to mark ‘non-examples’ of Englishnoter
is that there are subtle and complex meaning differencesi@mominaliz-
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ing suffixes. For examplsincerityhas a subtle difference in meaning from
sincereness

3.2 HNITE-STATE MORPHOLOGICALPARSING

Let’'s now proceed to the problem of parsing English morpgldConsider
a simple example: parsing just the productive nominal pl(#s} and the
verbal progressive-ifig). Our goal will be to take input forms like those in
the first column below and produce output forms like thosehan ¢econd
column.

Input | Morphological Parsed Output

cats cat +N +PL

cat cat +N +SG

cities |city +N +PL

geese |goose +N +PL

goose |(goose +N +SG) or (goose +V)

gooses |goose +V +3SG

mergingl merge +V +PRES-PART

caught |(catch +V +PAST-PART ) or (catch +V +PAST)

The second column contains the stem of each word as well agess
morphologicafeatures These features specify additional information abotstrures
the stem. For example the featurBl means that the word is a nouRSG
means it is singularrPL that it is plural. We will discuss features in Chap-
ter 11; for now, considet+SGto be a primitive unit that means ‘singular’.
Note that some of the input forms (likkaughtor goos¢ will be ambiguous
between different morphological parses.

In order to build a morphological parser, we’ll need at leébstfollow-
ing:

1. alexicon: The list of stems and affixes, together with basic informratioexicon
about them (whether a stem is a Noun stem or a Verb stem, etc).

2. morphotactics: the model of morpheme ordering that explains whid{gg"Homc-
classes of morphemes can follow other classes of morphemsieeia

word. For example, the rule that the English plural morphéotiews

the noun rather than preceding it.

3. orthographic rules: thesespelling rulesare used to model the changes
that occur in a word, usually when two morphemes combine€¥er
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ample they — ie spelling rule discussed above that changés + -s
to citiesrather tharcitys).

The next part of this section will discuss how to represeminple ver-
sion of the lexicon just for the sub-problem of morphologieEognition,
including how to use FSAs to model morphotactic knowledge. WM then
introduce the finite-state transducer (FST) as a way of nmaglehorpholog-
ical features in the lexicon, and addressing morphologieasing. Finally,
we show how to use FSTs to model orthographic rules.

The Lexicon and Morphotactics

A lexicon is a repository for words. The simplest possibléden would
consist of an explicit list of every word of the languagevdryword, i.e.
including abbreviations (‘AAA) and proper names (‘Jane’'Beijing’) as
follows:

a
AAA

AA
Aachen
aardvark
aardwolf
aba
abaca
aback

Since it will often be inconvenient or impossible, for theivas rea-
sons we discussed above, to list every word in the languagepuatational
lexicons are usually structured with a list of each of thenst@nd affixes of
the language together with a representation of the morpticséathat tells us
how they can fit together. There are many ways to model moaghios; one
of the most common is the finite-state automaton. A very sirfipite-state
model for English nominal inflection might look like Figure23

The FSA in Figure 3.2 assumes that the lexicon includes aeguluns
(reg-noun) that take the regulass plural (e.g. cat, dog fox, aardvark).
These are the vast majority of English nouns since for now weigmore
the fact that the plural of words liklox have an inserte@d: foxes The
lexicon also includes irregular noun forms that don't tageboth singular
irreg-sg-noun (goose, mougend pluralirreg-pl-noun (geese, mige
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reg—noun plural (-s)

irreg—pl-noun

iIrreg—sg—noun

Figure 3.2 A finite-state automaton for English nominal inflection.

| reg-noun | irreg-pl-noun | irreg-sg-noun | plural |
fox geese goose -s
cat sheep sheep
dog mice mouse
aardvark

A similar model for English verbal inflection might look likEig-
ure 3.3.

irreg—past-verb—form

preterite (—ed)

irreg—verb-stem

3-sing (-s)

Figure 3.3 A finite-state automaton for English verbal inflection

This lexicon has three stem classes (reg-verb-stem, vedgstem,

and irreg-past-verb-form), plus 4 more affix classesl past,-edparticiple,
-ing participle, and 3rd singulas):
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reg-verb-| irreg-verb- | irreg-past- | past| past-part| pres-part 3sg\
stem stem verb
walk cut caught -ed | -ed -ing -s
fry speak ate
talk sing eaten
impeach | sang

cut
spoken

English derivational morphology is significantly more cdexpthan
English inflectional morphology, and so automata for maaglnglish deriva-
tion tend to be quite complex. Some models of English dedmatn fact,
are based on the more complex context-free grammars of @S proat,
1993; Orgun, 1995).

As a preliminary example, though, of the kind of analysis daud
require, we present a small part of the morphotactics of iEmgldjectives,
taken from Antworth (1990). Antworth offers the followingth on English
adjectives:

big, bigger, biggest

cool, cooler, coolest, coolly

red, redder, reddest

clear, clearer, clearest, clearly, unclear, unclearly
happy, happier, happiest, happily

unhappy, unhappier, unhappiest, unhappily

real, unreal, really

An initial hypothesis might be that adjectives can have dioaopl pre-
fix (un-), an obligatory rootlig, cool etc) and an optional suffix€r, -est
or -ly). This might suggest the the FSA in Figure 3.4.

Alas, while this FSA will recognize all the adjectives in tlhadle above,
it will also recognize ungrammatical forms likenbig redly, andrealest
We need to set up classes of roots and specify which can odttumich
suffixes. Saadj-root; would include adjectives that can occur with- and
-ly (clear, happy andreal) while adj-root, will include adjectives that can’'t
(big, cool, andred). Antworth (1990) presents Figure 3.5 as a partial solution
to these problems.

This gives an idea of the complexity to be expected from EBhgli
derivation. For a further example, we give in Figure 3.6 haotfragment
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. —er —est
un-— adj—-root -ly

Figure 3.4 An FSA for a fragment of English adjective morphology:
Antworth’s Proposal #1.

adj-root,,

Figure 3.5 An FSA for a fragment of English adjective morphology:
Antworth’s Proposal #2.

of an FSA for English nominal and verbal derivational morphy, based
on Sproat (1993), Bauer (1983), and Porter (1980). This F@#als a
number of derivational facts, such as the well known geizatabn that any
verb ending irize can be followed by the nominalizing suffiation (Bauer,
1983; Sproat, 1993)). Thus since there is a wWossilize we can predict the
word fossilizationby following statesqg, g1, andd. Similarly, adjectives
ending in-al or -ableatgs (equal formal, realizablg can take the suffixty,
or sometimes the suffinessto stategg (naturalnesscasualness We leave
it as an exercise for the reader (Exercise 3.2) to discovaesaf the indi-
vidual exceptions to many of these constraints, and alsovéoexamples of
some of the various noun and verb classes.

We can now use these FSAs to solve the problermofphological
recognition; that is, of determining whether an input string of letterskes
up a legitimate English word or not. We do this by taking thephotactic
FSAs, and plugging in each ‘sub-lexicon’ into the FSA. Tlsatve expand
each arc (e.g. theeg-noun-stemarc) with all the morphemes that make up
the set ofeg-noun-stem The resulting FSA can then be defined at the level
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noun; —-ize/V  -ation/N

Figure 3.6  An FSA for another fragment of English derivational morpho
ogy.

of the individual letter.

Figure 3.7 Compiled FSA for a few English nouns with their inflection.
Note that this automaton will incorrectly accept the infaxs We will see
beginning on page 76 how to correctly deal with the insegtedfoxes

Figure 3.7 shows the noun-recognition FSA produced by elipgn
the Nominal Inflection FSA of Figure 3.2 with sample regulad @&regular
nouns for each class. We can use Figure 3.7 to recognizgsiike aard-
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varksby simply starting at the initial state, and comparing thauirletter by
letter with each word on each outgoing arc, etc., just as wars&hapter 2.

Morphological Parsing with Finite-State Transducers

Now that we've seen how to use FSAs to represent the lexicdnramen-

tally do morphological recognition, let's move on to morfdgical parsing.

For example, given the inpeats we'd like to outputcat +N +PL , telling

us that cat is a plural noun. We will do this via a versiortveb-level mor-  two-Leve
phology, first proposed by Koskenniemi (1983). Two level morphology-
resents a word as a correspondence betwésxiaal level which represents

a simple concatenation of morphemes making up a word, andutiace surrace
level, which represents the actual spelling of the final wdidrphological
parsing is implemented by building mapping rules that mépiesequences

like catson the surface level into morpheme and features sequenaes li
cat +N +PL on the lexical level. Figure 3.8 shows these two levels fer th
word cats Note that the lexical level has the stem for a word, folloviagd

the morphological informatiorN +PL which tells us thatatsis a plural

noun.

Lexical% |c|a|t |+N|+PL| | | é
3

Surface% clalt S| | | |

Figure 3.8  Example of the lexical and surface tapes.

The automaton that we use for performing the mapping betwesse
two levels is thdinite-state transduceror FST. A transducer maps betweenst
one set of symbols and another; a finite-state transducer tticevia a fi-
nite automaton. Thus we usually visualize an FST as a twe-tapomaton
which recognizes or generatpairs of strings. The FST thus has a more
general function than an FSA; where an FSA defines a formglulage by
defining a set of strings, an FST defineskation between sets of strings.
This relates to another view of an FST; as a machine that reaelstring
and generates another, Here’s a summary of this four-folgd afahinking
about transducers:

e FST as recognizer: a transducer that takes a pair of strings as input
and outputsacceptif the string-pair is in the string-pair language, and



72

Chapter 3. Morphology and Finite-State Transducers

MEALY
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REGULAR
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arejectif it is not.

e FST as generator: a machine that outputs pairs of strings of the lan-
guage. Thus the output is a yes or no, and a pair of outpugstrin

e FST as translator: a machine that reads a string and outputs another
string.

e FST as set relater:a machine that computes relations between sets.

An FST can be formally defined in a number of ways; we will rely
on the following definition, based on what is called tdealy machine
extension to a simple FSA:

e Q: afinite set ofN statexqo. qs,...0n

e 2. a finite alphabet of complex symbols. Each complex symbol is
composed of an input-output pdir. 0; one symboli from an input
alphabetl, and one symbob from an output alphabed, thusZ C
| x O. | andO may each also include the epsilon symbol

e (o: the start state

e F: the set of final state§; C Q

e 9(q,i : 0): the transition function or transition matrix between atat
Given a stateg] € Q and complex symbadl: o € %, d(q,i : 0) returns a
new statey € Q. dis thus a relation fron® x X to Q;

Where an FSA accepts a language stated over a finite alpHatiet e
symbols, such as the alphabet of our sheep language:

>={ba!} (3.2)
an FST accepts a language stated @ars of symbols, as in:
={a:a b:b/!:!1 a:l a:¢g €:!} (3.3)

In two-level morphology, the pairs of symbols Inare also calledeasible
pairs.

Where FSAs are isomorphic to regular languages, FSTs amoiso
phic toregular relations. Regular relations are sets of pairs of strings, a
natural extension of the regular languages, which are $etgings. Like
FSAs and regular languages, FSTs and regular relationsl@edcunder
union, although in general they are not closed under diffeecomplemen-
tation and intersection (although some useful subclagseSDsare closed
under these operations; in general FSTs that are not augchwiith thee
are more likely to have such closure properties). BesidemnuRrSTs have
two additional closure properties that turn out to be exelgmiseful:
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e inversion: the inversion of a transducdr (T 1) simply switches the
input and output labels. ThusT maps from the input alphabétto
the output alphabed, T—! maps fromOto .

e compositiort if Ty is a transducer frony to O; and T, a transducer &3Pos-
from I, to Oy, thenT; o T, maps froml, to O,.

Inversion is useful because it makes it easy to convert adsSJarser
into an FST-as-generator. Composition is useful becawsmits us to take
two transducers that run in series and replace them with @re oomplex
transducer. Composition works as in algebra; applying T, to an input
sequences is identical to applyingly to S and thenT, to the result; thus
T1oTo(S) = T2(T1(S)). We will see examples of composition below.

We mentioned that for two-level morphology it's conveniémtview
an FST as having two tapes. Thpper or lexical tape, is composed from Lexica Tape
characters from the left side of tlee: b pairs; thelower or surface tape,
is composed of characters from the right side ofdhé pairs. Thus each
symbola: b in the transducer alphab&texpresses how the symbmfrom
one tape is mapped to the symliobn the another tape. For examplee
means that aa on the upper tape will correspond nothing on the lower
tape. Just as for an FSA, we can write regular expressiortseicdmplex
alphabetz. Since it's most common for symbols to map to themselves, in
two-level morphology we call pairs lika: a default pairs, and just refer to BT
them by the single lette.

We are now ready to build an FST morphological parser out of ou
earlier morphotactic FSAs and lexica by adding an extrai¢kdk tape and
the appropriate morphological features. Figure 3.9 shawaugmentation
of Figure 3.2 with the nominal morphological featureSGand+PL) that
correspond to each morpheme. Note that these features niap empty
stringe or the word/morpheme boundary symbol # since there is nosegm
corresponding to them on the output tape.

In order to use Figure 3.9 as a morphological noun parsezeitisito be
augmented with all the individual regular and irregular mstems, replacing
the labelsregular-noun-stemetc. In order to do this we need to update the
lexicon for this transducer, so that irregular plurals Ijje=sewill parse into
the correct stengoose +N +PL. We do this by allowing the lexicon to
also have two levels. Since surfageesemaps to underlyingyoose , the
new lexical entry will be §:g o:e o:e s:s e:e ". Regular forms are
simpler; the two-level entry fofox will now be ‘f.f 0:0 x:x ’, but by
relying on the orthographic convention thastands forf:f and so on, we

73



74

Chapter 3. Morphology and Finite-State Transducers

@ SYMBOL

reg—noun-stem +N: ¢

irreg-sg—-noun-form

irreg—pl-noun—form

Figure 3.9 A transducer for English nominal number inflectidum
Since bothg; and g are accepting states, regular nouns can have the plural
suffix or not. The morpheme-boundary symbol ~ and word-bamcharker
# will be discussed below.

can simply refer to it abx and the form fogeeseas‘g o:e o.e s e .
Thus the lexicon will look only slightly more complex:

| reg-noun | irreg-pl-noun | irreg-sg-noun
fox goeeoese goose
cat sheep sheep
dog moiiues.ce mouse
aardvark

Our proposed morphological parser needs to map from suffauses
like geesdo lexical forms likegoose +N +SG. We could do this byas-
cading the lexicon above with the singular/plural automaton ofuFéy3.9.
Cascading two automata means running them in series witbutput of
the first feeding the input to the second. We would first regmethe lexi-
con of stems in the above table as the FiggEmsof Figure 3.10. This FST
maps e.gdogto reg-noun-stem In order to allow possible suffixe$stems
in Figure 3.10 allows the forms to be followed by the wildc&@dsymbot
@:@stands for ‘any feasible pair’. A pair of the for@:x, for example will
mean ‘any feasible pair which hason the surface level’, and correspond-
ingly for the formx:@. The output of this FST would then feed the number
automatonTnym

Instead of cascading the two transducers, wectanposethem using
the composition operator defined above. Composing is a wdgkifig a
cascade of transducers with many different levels of inpats outputs and
converting them into a single ‘two-level’ transducer witheanput tape and
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one output tape. The algorithm for composition bears sosemelance to
the algorithm for determinization of FSAs from page 49; gi@o automata
T, and T, with state set€); andQ, and transition function®; andd,, we
create a new possible stgtey) for every pair of stateg € Q; andy € Q-.
Then the new automaton has the transition function:

33((Xa; Ya),i:0) = (Xo,¥b) if
Jc st. 81(Xa,1:C) =X
andd;(Ya,C: 0) =Yp (3.4)
The resulting composed automatdipy = Thumo Tstems IS Shown in
Figure 3.11 (compare this with the FSA lexicon in Figure J77page 70¥.
Note that the final automaton still has two levels separayetidn. . Because

the colon was reserved for these levels, we had to usesyrabol inTstems
in Figure 3.10 to separate the upper and lower tapes.

reg-noun-stem | aardvark

reg—noun-stem | dog

Teg—-noun-stem | cat

eg—noun-stem | fox

iIrreg-sg—noun—form | goose

irreg-sg-noun-form | sheep

irreg-sg—noun—form | mouse
irreg—pl-noun—-form | go:eoese

irreg-pl-noun-form | sheep
irreg—pl-noun=form | mo:i u: &sic e

Figure 3.10 The transducefstems Which maps roots to their root-class.

This transducer will map plural nouns into the stem plus tloepino-
logical marker+PL, and singular nouns into the stem plus the morpheme
+SG Thus a surfaceatswill map tocat +N +PL as follows:

cic aa tt +N: € +PL:"s#

Thatis,c maps toitself, as da andt , while the morphological feature
+N (recall that this means ‘noun’) maps to nothirgy, @nd the featurePL
(meaning ‘plural’) maps tés . The symbol indicates anorpheme bound- -
ary, while the symbok indicates avord boundary, Figure 3.12 refers to MSHHENE

2 Note that for the purposes of clear exposition Figure 3.XLriwt been minimized in the *
way that Figure 3.7 has. O ARY
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SPELLING
RULES

Q @ +N: ¢ +PL: " s#
(03 W 9 €, ® ©)

2 o)e)
+SG:#
O\O»&O»O O O
h\o o000

mO{)‘/ +PL:#
A LN LG RC

S

() o:e . 1
h\o 0 c %0
m M
OIUE '

Figure 3.11 A fleshed-out English nominal inflection FSI[eyx = Thumo
Tstems

tapes with these morpheme boundary markergtesmediate tapes; the
next section will show how the boundary marker is removed.

Lexicals [f Jo[x[+N[+P] [ T 3
3

Intermediates [ f [0 [ x [" [s [#] |

Figure 3.12 An example of the lexical and intermediate tapes.

Orthographic Rules and Finite-State Transducers

The method described in the previous section will succégsfacognize
words likeaardvarksandmice But just concatenating the morphemes won't
work for cases where there is a spelling change; it wouldriiectly reject
an input likefoxesand accept an input likloxs We need to deal with the
fact that English often requires spelling changes at marghleoundaries by
introducingspelling rules(or orthographic rules). This section introduces
a number of notations for writing such rules and shows howriplement
the rules as transducers. Some of these spelling rules:
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|Name | Description of Rule | Example \
Consonant | 1-letter consonant doubled befoiag/-ed| beg/begging
doubling

E deletion Silent e dropped beforéng and-ed make/making

E insertion e added afters,-z,-x,-ch, -shbefore-s watch/watches
Y replacement-y changes teie before-s, -i before-ed | try/tries
Kinsertion |verbs ending wittvowel + -cadd-k panic/panicked

We can think of these spelling changes as taking as input plesim
concatenation of morphemes (the ‘intermediate outputhefléxical trans-
ducer in Figure 3.11) and producing as output a slightly-ifrexi (correctly-
spelled) concatenation of morphemes. Figure 3.13 showthtke levels
we are talking about: lexical, intermediate, and surface. f@ example
we could write an E-insertion rule that performs the mapgdnogn the in-
termediate to surface levels shown in Figure 3.13. Sucheamight say

Lexicalg |[f o[ x [+«N]+P| | | 3
Intermediates | f [o | x [" [s | #] | 5
Surface% |f|0|X|e|S| | | %

Figure 3.13 An example of the lexical, intermediate and surface tapes.
Between each pair of tapes is a 2-level transducer; thedett@nsducer of
Figure 3.11 between the lexical and intermediate leveld,tha E-insertion
spelling rule between the intermediate and surface lev&lse E-insertion
spelling rule inserts aaon the surface tape when the intermediate tape has a
morpheme boundary ~ followed by the morpherme

something like “insert am on the surface tape just when the lexical tape has
a morpheme ending ir (or z, etc) and the next morpheme-s Here’s a
formalization of the rule:

X
e—>eld s " __s# (3.5)
z

This is the rule notation of Chomsky and Halle (1968); a rui¢he
form a — b/c__d means ‘rewritea asb when it occurs between and
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d’. Since the symbok means an empty transition, replacing it means in-
serting something. The symbol ~ indicates a morpheme boyndihese
boundaries are deleted by including the symbelifi:the default pairs for
the transducer; thus morpheme boundary markers are deletéd surface
level by default. (Recall that the colon is used to separatesls on the in-
termediate and surface forms). The # symbol is a special slytnat marks

a word boundary. Thus (3.5) means ‘inserteaafter a morpheme-finat,

s, or z, and before the morphens2 Figure 3.14 shows an automaton that
corresponds to this rule.

Figure 3.14 The transducer for the E-insertion rule of (3.5), extendethf
a similar transducer in Antworth (1990).

The idea in building a transducer for a particular rule isxpress only
the constraints necessary for that rule, allowing any atvémg of symbols
to pass through unchanged. This rule is used to insure thataweonly
see thee:e pair if we are in the proper context. So stage which models
having seen only default pairs unrelated to the rule, is @e@ong state,
as isq1, which models having seenzas, or x. g models having seen the
morpheme boundary after tlags, orx, and again is an accepting state. State
g3 models having just seen the E-insertion; it is not an acagiate, since
the insertion is only allowed if it is followed by tremorpheme and then the
end-of-word symboi.

The other symbol is used in Figure 3.14 to safely pass through any
parts of words that don’t play a role in the E-insertion rutgher means
‘any feasible pair that is not in this transducer’; it is trausgersion of@:@
which is context-dependent in a transducer-by-transdwegr So for exam-
ple when leaving statgp, we go tog; on thez, s, or x symbols, rather than
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following the other arc and staying imp. The semantics aofither depends
on what symbols are on other arcs; sifces mentioned on some arcs, it
is (by definition) not included imther, and thus, for example, is explicitly
mentioned on the arc fromp to do.

Atransducer needs to correctly reject a string that aptiiesule when
it shouldn’t. One possible bad string would have the coreegtronment for
the E-insertion, but have no insertion. Stateis used to insure that the
is always inserted whenever the environment is appropribtetransducer
reachegs only when it has seen amfter an appropriate morpheme bound-
ary. If the machine is in statg and the next symbol %, the machine rejects
the string (because there is no legal transition#dnom gs). Figure 3.15
shows the transition table for the rule which makes the dlldgansitions
explicit with the ‘=" symbol.

Staté Input S:s X:X z:z " ge # other|

do: 1 1 1 0 - 0 0

O1: 1 1 1 2 - 0 0

Op: 5 1 1 0 3 0 0

G A : - - - - -

04 - - - - - o -

Os 1 1 1 2 - - 0
Figure 3.15 The state-transition table for E-insertion rule of Figur#43
extended from a similar transducer in Antworth (1990).

The next section will show a trace of this E-insertion trarcst run-
ning on a sample input string.

3.3 COMBINING FST LEXICON AND RULES

We are now ready to combine our lexicon and rule transducgrpéfrsing
and generating. Figure 3.16 shows the architecture of dewed-morphol-
ogy system, whether used for parsing or generating. Thedexransducer
maps between the lexical level, with its stems and morphcdbdeatures,
and an intermediate level that represents a simple corataianof mor-
phemes. Then a host of transducers, each representingle sadjing rule
constraint, all run in parallel so as to map between thigimégliate level and
the surface level. Putting all the spelling rules in patadea design choice;
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we could also have chosen to run all the spelling rules iresg@as a long
cascade), if we slightly changed each rule.

Lexicalé | f | o} | X |+N|+PL| | | é

A
L EXICON-FST]

e

]
!
Intermediates | f [o|x | |s | | | <
1
s A s
ST e [T
I J____.{___J ______ :
Surfaceq |[f |o|[x|e[s | | | 3

Figure 3.16  Generating or Parsing with FST lexicon and rules

The architecture in Figure 3.16 is a two-level cascade oistfacers.
Recall that a cascade is a set of transducers in series, Thwie output
from one transducer acts as the input to another transduascades can
be of arbitrary depth, and each level might be built out of yniadividual
transducers. The cascade in Figure 3.16 has two transducsesies: the
transducer mapping from the lexical to the intermediatelievand the col-
lection of parallel transducers mapping from the interratto the surface
level. The cascade can be run top-down to generate a strimptimm-up
to parse it; Figure 3.17 shows a trace of the syséegeptingthe mapping
from fox"sto foxes

The power of finite-state transducers is that the exact saseade
with the same state sequences is used when the machine mgane¢he
surface tape from the lexical tape, or when it is parsing ékiechl tape from
the surface tape. For example, for generation, imaginerigdte Interme-
diate and Surface tapes blank. Now if we run the lexicon ttacsr, given
fox +N +PL , it will producefox“s#on the Intermediate tape via the same
states that it accepted the Lexical and Intermediate taypagriearlier exam-
ple. If we then allow all possible orthographic transdudersun in parallel,
we will produce the same surface tape.

Parsing can be slightly more complicated than generatiecalrse of
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Lexical é f lo| X |+N|[+PL §
T OOOOG
Intermediate< [ f [o [ x [" [s [# s
Te—insert [» E? E>@

4

Surface% flo|lx|e|s f

Figure 3.17  Acceptingfoxes The lexicon transducdijey from Figure 3.11
cascaded with the E-insertion transducer in Figure 3.14.

the problem ofambiguity. For examplefoxescan also be a verb (albeitwsicury
a rare one, meaning ‘to baffle or confuse’), and hence thedépiarse for
foxescould befox +V +3SG as well asfox +N +PL . How are we to

know which one is the proper parse? In fact, for ambiguouszatthis sort,

the transducer is not capable of decidibgsambiguating will require some  RRAVBIGUAT
external evidence such as the surrounding words. Taxesis likely to be

a noun in the sequendsaw two foxes yesterdagut a verb in the sequence

That trickster foxes me every timeWe will discuss such disambiguation
algorithms in Chapter 8 and Chapter 17. Barring such extexidence, the

best our transducer can do is just enumerate the possiblgeshso we can
transducdox”s#into bothfox +V +3SG andfox +N +PL .

There is a kind of ambiguity that we need to handle: local gy
that occurs during the process of parsing. For example,imeagarsing the
input verbassessAfter seeingass our E-insertion transducer may propose
that thee that follows is inserted by the spelling rule (for example far as
the transducer is concerned, we might have been parsingditbasses It
is not until we don't see th#& after assesbut rather run into anothex that
we realize we have gone down an incorrect path.

Because of this non-determinism, FST-parsing algoritheedrto in-
corporate some sort of search algorithm. Exercise 3.8 dmkselader to
modify the algorithm for non-deterministic FSA recognition Figure 2.21
in Chapter 2 to do FST parsing.
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AUTOMATON
INTERSEC-

Running a cascade, particularly one with many levels, camlgeldy.
Luckily, we've already seen how to compose a cascade ofdteess in se-
ries into a single more complex transducer. Transducersiiallpl can be
combined byautomaton intersection The automaton intersection algo-
rithm just takes the Cartesian product of the states, i.eedch statey in
machine 1 and statg; in machine 2, we create a new statge. Then for
any input symboh, if machine 1 would transition to statg and machine 2
would transition to statgm,, we transition to statgnm.

Figure 3.18 sketches how this intersection &nd compositiond) pro-
cess might be carried out.

compose

t
LEXICON-FST LEXICON-FST
[

LEXICON-FST
O
FST,

) {
tersect
FST, } — FST, (ZFSTY ST "FSTY)
¥ i

Figure 3.18

Intersection and composition of transducers.

Since there are a number of rudd=ST compilers, it is almost never
necessary in practice to write an FST by hand. Kaplan and K894) give
the mathematics that define the mapping from rules to twetlelations,
and Antworth (1990) gives details of the algorithms for ratampilation.
Mohri (1997) gives algorithms for transducer minimizatenmd determiniza-
tion.

3.4 LEXICON-FREEFSTs: THE PORTER STEMMER

While building a transducer from a lexicon plus rules is ttendard al-
gorithm for morphological parsing, there are simpler alhjons that don’t
require the large on-line lexicon demanded by this algoritithese are used
especially in Information Retrieval (IR) tasks (Chapte) tvwhich a user
needs some information, and is looking for relevant docusmgrerhaps on
the web, perhaps in a digital library database). She givesyhtem a query
with some important characteristics of documents she elesand the IR
system retrieves what it thinks are the relevant documeBtse common
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type of query is Boolean combinations of relevkaywords or phrases, e.g. kevworos
(marsupial OR kangaroo OR koglarhe system then returns documents that
have these words in them. Since a document with the wandupialamight

not match the keywordharsupial] some IR systems first run a stemmer on

the keywords and on the words in the document. Since morphualbopars-

ing in IR is only used to help form equivalence classes, thaildeof the
suffixes are irrelevant; what matters is determining that werds have the

same stem.

One of the most widely used sustemmingalgorithms is the simple stemvne
and efficient Porter (1980) algorithm, which is based on &sef simple
cascaded rewrite rules. Since cascaded rewrite rulesstrédisort of thing
that could be easily implemented as an FST, we think of theePalgorithm
as a lexicon-free FST stemmer (this idea will be developethéu in the
exercises (Exercise 3.7). The algorithm contains rules lik

(3.6) ATIONAL — ATE (e.qg. relational relate)
(3.7) ING— ¢ if stem contains vowel (e.g. motoring motor)

The algorithm is presented in detail in Appendix B.

Do stemmers really improve the performance of informatieinieval
engines? One problem is that stemmers are not perfect. kon#s Krovetz
(1993) summarizes the following kinds of errors of omissaon of commis-
sion in the Porter algorithm:

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
generalization generic matrices matrix
numerical numerous noise noisy
policy police sparse sparsity
university universe explain  explanation
negligible negligent urgency urgent

Krovetz also gives the results of a number of experimentsteshether
the Porter stemmer actually improved IR performance. Qvbeafound
some improvement, especially with smaller documents @hgel the docu-
ment, the higher the chance the keyword will occur in the ef@m used
in the query). Since any improvement is quite small, IR eegjioften don’t
use stemming.
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3.5 HUMAN MORPHOLOGICALPROCESSING

FULL LISTING

MINIMUM
REDUNDANCY

PRIMED

In this section we look at psychological studies to learn hawiti-morphemic
words are represented in the minds of speakers of Englistexample, con-
sider the wordvalk and its inflected formsvalks andwalked Are all three

in the human lexicon? Or merelyalk plus as well ased and-s? How
about the wordhappyand its derived form&appilyandhappines8 We can
imagine two ends of a theoretical spectrum of represemistidhefull list-

ing hypothesis proposes that all words of a language are listdteimental
lexicon without any internal morphological structure. stview, mor-
phological structure is simply an epiphenomenon, aatk, walks walked
happy andhappily are all separately listed in the lexicon. This hypothesis
is certainly untenable for morphologically complex langes: like Turkish
(Hankamer (1989) estimates Turkish as 200 billion possiaeds). The
minimum redundancy hypothesis suggests that only the constituent mor-
phemes are represented in the lexicon, and when procesaikg (whether

for reading, listening, or talking) we must access both rherpes\{alk and

-s) and combine them.

Most modern experimental evidence suggests that neithérese is
completely true. Rather, some kinds of morphological retetips are men-
tally represented (particularly inflection and certainddrof derivation), but
others are not, with those words being fully listed. Stasm¢ral. (1979),
for example, found that derived formgppinesshappily) are stored sepa-
rately from their stemhappy), but that regularly inflected formg@uring)
are not distinct in the lexicon from their stenmo(r). They did this by using
a repetition priming experiment. In short, repetition grimtakes advantage
of the fact that a word is recognized faster if it has been &edore (if it is
primed). They found thatifting primedIift, andburnedprimedburn, but
for exampleselectivedidn’'t prime select Figure 3.19 sketches one possible
representation of their finding:

=g

Figure 3.19 Stanner®t al. (1979) result: Different representations of i
flection and derivation
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In a more recent study, Marslen-Wilsehal.(1994) found thaspoken
derived words can prime their stems, but only if the meanintye derived
form is closely related to the stem. For examgd&ernmenprimesgovern
but departmentdoes not primalepart Graingeret al. (1991) found similar
results with prefixed words (but not with suffixed words). Blan-Wilson
et al. (1994) represent a model compatible with their own findingdod
lows:

-al —-ure -s
-ing

Figure 3.20 Marslen-Wilsoret al. (1994) result: Derived words are linkef
to their stems only if semantically related

Other evidence that the human lexicon represents some wlogital
structure comes fronspeech errors also calledslips of the tongue In
normal conversation, speakers often mix up the order of iwelsvor initial
sounds:

if you breakit it'll drop
| don't have time to worko watch television because | have to
work

But inflectional and derivational affixes can also appeaassply from
their stems, as these examples from Fromkin and Ratner  H9@BGarrett
(1975) show:

it's not only us who have screw loosésr ‘screws loose’)

wordsof rule formation (for ‘rules of word formation”)

easy enoughlyfor ‘easily enough’)

which by itself is the most implausible sentence you can imagine

The ability of these affixes to be produced separately fragir tem
suggests that the mental lexicon must contain some repat®enof the
morphological structure of these words.

In summary, these results suggest that morphology doesapiale in
the human lexicon, especially productive morphology likfteiction. They
also emphasize the important of semantic generalizatiorss words, and
suggest that the human auditory lexicon (representing sviortérms of their
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sounds) and the orthographic lexicon (representing warterims of letters)
may have similar structures. Finally, it seems that manypenites of lan-
guage processing, like morphology, may apply equally (¢eat similarly)
to languageeomprehensionand languag@roduction.

3.6 SUMMARY

This chapter introduceshorphology, the arena of language processing deal-
ing with the subparts of words, and tfiaite-state transducer, the com-
putational device that is commonly used to model morphologgre’s a
summary of the main points we covered about these ideas:

morphological parsingis the process of finding the constituenor-
phemesin a word (e.gcat +N +PL for catg.

English mainly useprefixes andsuffixesto expressnflectional and
derivational morphology.

Englishinflectional morphology is relatively simple and includes per-
son and number agreemerd)(@nd tense markingsddanding).

Englishderivational morphology is more complex and includes suf-
fixes like-ation, -ness -able as well as prefixes likeo-andre-.

many constraints on the Englismorphotactics (allowable morpheme
sequences) can be represented by finite automata.

finite-state transducersare an extension of finite-state automata that
can generate output symbols.

two-level morphology is the application of finite-state transducers to
morphological representation and parsing.

spelling rulescan be implemented as transducers.

there are automatic transducer-compilers that can praatremsducer
for any simple rewrite rule.

the lexicon and spelling rules can be combinedcbgnposingandin-
tersectingvarious transducers.

the Porter algorithm is a simple and efficient way to detemming,
stripping off affixes. It is not as accurate as a transduceatatthat in-
cludes a lexicon, but may be preferable for applicationsihiforma-
tion retrieval in which exact morphological structure is not needed.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

Despite the close mathematical similarity of finite-staéa$ducers to finite-
state automata, the two models grew out of somewhat diffdraditions.

Chapter 2 described how the finite automaton grew out of gigi(l1936)

model of algorithmic computation, and McCulloch and Pittité-state-like
models of the neuron. The influence of the Turing machine entréns-

ducer was somewhat more indirect. Huffman (1954) proposkdt was
essentially a state-transition table to model the behasi@equential cir-
cuits, based on the work of Shannon (1938) on an algebraiehoddelay

circuits. Based on Turing and Shannon’s work, and unawakduffiman’s

work, Moore (1956) introduced the terfimite automaton for a machine
with a finite number of states with an alphabet of input symlasid an al-
phabet of output symbols. Mealy (1955) extended and syizénshe work
of Moore and Huffman.

The finite automata in Moore’s original paper, and the extangy
Mealy differed in an important way. In a Mealy machine, thputioutput
symbols are associated with the transitions between states finite-state
transducers in this chapter are Mealy machines. In a Moohime, the
input/output symbols are associated with the state; wese#l examples of
Moore machines in Chapter 5 and Chapter 7. The two types odra-
ers are equivalent