
+

SOAP, WS-* Web
Services & Spring-WS
Bruno Rossi & Juha Rikkilä

PA165 Enterprise Java
2014-2015

+
Objectives and content

Get “the big picture” of
SOAP and WS-* related web
services

Have a look at how
contract-first development
can be used with Spring-WS

 Some Definitions

 WSDL & SOAP

 Creating a SOAP Web
service

 Web services development

 Using Spring-WS

Objectives Content

+
W3C Definition of Web
Services

A Web service is a software system designed to
support interoperable machine-to-machine
interaction over a network. It has an interface
described in a machine processable format
(specifically WSDL). Other systems interact
with the Web service in a manner prescribed by
its description using SOAP messages, typically
conveyed using HTTP with an XML serialization
in conjunction with other Web-related
standards.

3

+
Web Service Description Language
(WSDL)

 The Web Service Description Language (WSDL) is a
technical description of a Web Service

 It mentions all interfaces available, with the relevant
information for the invocation (parameters, return
type...)

It is possible to generate:

 the client code for accessing the Web Service

 A WSDL file from Java source code

 A Java source code skeleton from WSDL file

4

Thomas Erl definition

+
What are WS-* specifications

 The term "WS-*" has become a commonly used abbreviation
that refers to the second-generation Web services
specifications. These are extensions to the basic Web
services framework established by first generation
standards represented by WSDL, SOAP, and UDDI.

 The term "WS-*" became popular because the majority of
titles given to second-generation Web services
specifications have been prefixed with "WS-".

5

Thomas Erl definition

+ 6

Business process
Specifications

Management
Specifications

Presentation
Specifications

Metadata
Specifications

Reliability
Specifications

Security
Specifications

Resource
Specifications

I
n
t
e
r
o
p
e
r
a
b
i
l
i
t
y

i
s
s
u
e
s

D
e
p
e
n
d
e
n
c
i
e
sTransaction

Specification
s

Messaging
Specification
s

XML Specifications

SOAP

+ Web Services Standards for SOA
The Web Services Platform Architecture

Messaging

Quality
of Service

Transport

Description

Components

Transport

Interface + Bindings

Composite

XML Non-XML

Security

Policy

D
i
s
c
o
v
e
r
y
,

N
e
g
o
t
i
a
t
i
o
n
,

A
g
r
e
e
m
e
n
t

Atomic

OrchestrationOrchestration ProtocolsProtocols StateState

Reliable
Messaging Transactions

Component
Model
Component
Model

7

+ Web Services Standards for SOA
The Web Services Platform Architecture

Messaging

Quality
of Service

Transport

Description

Components

Transport

Interface + Bindings

Composite

XML Non-XML

Security

Policy

D
i
s
c
o
v
e
r
y
,

N
e
g
o
t
i
a
t
i
o
n
,

A
g
r
e
e
m
e
n
t

Atomic

OrchestrationOrchestration ProtocolsProtocols StateState

Reliable
Messaging Transactions

Component
Model
Component
Model

WS-RM

WSDL* WS-Policy*

HTTP, TCP/IP, SMTP, FTP, …

U
D
D
I
,

W
S
-
A
d
d
r
,

M
e
t
a
d
a
t
a

E
x
c
h
.
,
…

WS-C
WS-N* WS-RFWS-BPEL

WS-Security*
WS-AT
WS-BA

SOAP, WS-Addr* JMS, RMI/IIOP, ...

SCA

8

+ Web Services Standards for SOA
The Web Services Platform Architecture

Messaging

Quality
of Service

Transport

Description

Components

Transport

Interface + Bindings

Composite

XML Non-XML

Security

Policy

D
i
s
c
o
v
e
r
y
,

N
e
g
o
t
i
a
t
i
o
n
,

A
g
r
e
e
m
e
n
t

Atomic

OrchestrationOrchestration ProtocolsProtocols StateState

Reliable
Messaging Transactions

Component
Model
Component
Model

WS-RM

WSDL* WS-Policy*

HTTP, TCP/IP, SMTP, FTP, …

U
D
D
I
,

W
S
-
A
d
d
r
,

M
e
t
a
d
a
t
a

E
x
c
h
.
,
…

WS-C
WS-N* WS-RFWS-BPEL

WS-Security*
WS-AT
WS-BA

SOAP, WS-Addr* JMS, RMI/IIOP, ...

SCA

9

+
SOAP, in general terms

10

 Originally acronym for Simple Object Access Protocol,
now a common name

 A communication protocol, designed to communicate via
Internet

 Extends HTTP for XML messaging

 Provides data transport for Web services

 Exchanges complete documents or call a remote procedure

 Is used for broadcasting a message

 Is platform and language independent

 Is the XML way of defining what information gets sent
and how

https://kore.fi.muni.cz/wiki/index.php/PA165/WebServices_(English)
An historical overview:

https://kore.fi.muni.cz/wiki/index.php/PA165/WebServices_(English)

+
XML (Extensible Markup
Language)

11

 Sets of rules for encoding documents to structure,
store, and transport data in a convenient way

 Human-readable and machine-readable format

 XML 1.0 Specification produced by the W3C

 two current versions of XML.
 XML 1.0, currently in its fifth edition, still
recommended for general use

 XML 1.1, not very widely implemented and is recommended
for use only by those who need its unique features

+
XML, markup and content

12

 markup
 begins with character “<” and ends with a “>”,

 strings of characters that are not markup are
content

 tag(s)
 start-tags; for example: <section>
 end-tags; for example: </section>
 empty-element tags; for example: <line-break />

 element, begins with a start-tag and ends with a
matching end-tag or consists only of an empty-
element tag.

+
Schema and validation

13

 well-formed, and may be valid.
 Document contains a reference

to DTD,
 DTD declares elements and

attributes, and specifies the
grammatical rules

 XML processors
 re validating or non-validating
 If error discovered it is

reported, but processing may
continue normally

 schema languages constrain
 the set of elements in a

document,
 attributes that are applied to

them,
 the order in which they appear,
 the allowable parent/child

relationships

XML Schema: XSD (XML Schema
Definition)
schema language, described by
the W3C

 (successor of DTD =
Document Type Definition)

 XML schema is more powerful
than DTDs

 XSDs use an XML-based format,
so XML tools can be used
process them.

+
XML Messaging

 SOAP 1.1 defined:
 An XML envelope for XML messaging:

 Headers + body.
 An HTTP binding for SOAP messaging:

 SOAP is “transport independent”.
 A convention for doing RPC,
 An XML serialization format for structured data.

 SOAP Attachments adds:
 How to carry and reference data attachments using in a
MIME envelope and a SOAP envelope.

14

+
SOAP Message

SOAP Message

Primary MIME
part (text/xml)

Attachment

Attachment

Attachment

SOAP Envelope

SOAP Header

SOAP Body

Fault

15

+
SOAP Message Envelope

 Encoding information
 Header

 Optional
 Contains context knowledge

• Security
• Transaction

 Body
 Methods and parameters
 Contains application data

16

+ A SOAP Request

POST /temp HTTP/1.1
Host: www.somewhere.com
Content-Type: text/xml; charset="utf-8"
Content-Length: xxx
SOAPAction: "http://www…../temp"

<?xml version=“1.0”?>

……………..

HTTP
headers
and the
blank line

an XML document

“The SOAPAction HTTP request header field can be used to indicate the intent of
the SOAP HTTP request. The value is a URI identifying the intent. SOAP places no
restrictions on the format or specificity of the URI or that it is resolvable. An
HTTP client MUST use this header field when issuing a SOAP HTTP Request.”
Note: in SOAP 1.2, the SOAPAction header has been replaced with the “action”
attribute on the application/soap+xml media type (Content-Type:
application/soap+xml; charset=utf-8). But it works almost exactly the same way as
SOAPAction.

17

Source: Simple Object Access Protocol (SOAP) 1.1 specifications

+

<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope“
soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Header>
...

</soap:Header>

<soap:Body>
...
<soap:Fault>

...
</soap:Fault>

</soap:Body>
</soap:Envelope>

soap-encoding

XML message structure

Version number

18

+
SOAP encoding

 When SOAP specification
was written for the first
time, XMLSchema was not
available, so a common
way to describe messages
was defined.

 Now SOAP encoding defines
it's own namespace as
http://schemas.xmlsoap.or
g/soap/encoding/ and a
set of rules to follow.

 Rules of expressing
application-defined data
types in XML

 Based on W3C XML Schema

 Simple values
 Built-in types from XML
Schema, Part 2 (simple
types, enumerations,
arrays of bytes)

 Compound values
 Structures, arrays,
complex types

19

http://www.tutorialspoint.com/soap/soap_encoding.htm

http://www.tutorialspoint.com/soap/soap_encoding.htm

+
WS-Addressing (1/2)

 WS-* specifications are inserted on top of SOAP
messaging

 For example, looking at SOAP, there is no knowledge
about where the message is going, or how to return the
response or where to post an error message → this can
be problematic in case of asynchronous communication

 WS-Addressing adds this information to the SOAP
envelope

20

See https://jax-ws.java.net/nonav/jax-ws-21-ea2/docs/why-wsaddressing.html

https://jax-ws.java.net/nonav/jax-ws-21-ea2/docs/why-wsaddressing.html

+
WS-Addressing (2/2)

 Example

21

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope”
xmlns:wsa="http://www.w3.org/2004/12/addressing">
<soap:Header>
 <wsa:MessageID>
 UniqueMessageIdentifier
 </wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>http://somereceiving.client</wsa:Address>
 </wsa:ReplyTo>

 <wsa:FaultTo>
 <wsa:Address>http://somereceiving.server/ErrorHandler</wsa:Address>
 </wsa:FaultTo>

 <wsa:To>http://somereceiving.server/HandlerURI </wsa:To>
 <wsa:Action>

http://somereceiving.server/ACTION
</wsa:Action>

 </soap:Header>

 <soap:Body>
<!-- SOAP Request as usual here -->

 </soap:Body>

+

SOAP, “closer to
the bit space”

 Summing up:

 SOAP, originally defined as
Simple Object Access Protocol, is
a protocol specification that is
used to exchange information in a
structured way – the protocol is
used for implementation of Web
Services as it builds on top of
an Application Layer protocol,
Hypertext Transfer Protocol
(HTTP) and Simple Mail Transfer
Protocol (SMTP).

 SOAP is based on on Extensible
Markup Language (XML) for its
message format.

 SOAP is usually the foundation
layer of a web services protocol
stack, to provide a basic
messaging framework.

+
SOAP with Attachments,
SOAP with Attachments API for Java (SAAJ)

 SOAP with Attachments (SwA)
or MIME for Web Services
refers to the method of using
Web Services to send and
receive files using a
combination of SOAP and MIME,
primarily over HTTP.

 Note that SwA is not a new
specification, but rather a
mechanism for using the
existing SOAP and MIME
facilities to perfect the
transmission of files using
Web Services invocations.

 The SOAP with Attachments API
for Java or SAAJ provides a
standard way to send XML
documents over the Internet
from the Java platform.

 SAAJ enables developers to
produce and consume messages
conforming to the SOAP 1.1
specification and SOAP with
Attachments note.

 Developers can also use it to
write SOAP messaging
applications directly instead
of using JAX-RPC (obsolete)
or JAX-WS

23

SOAP with Attachments API for Java
The Java EE 5 Tutorial
http://docs.oracle.com/javaee/5/tutorial/doc/bnbhf.html

24

import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPConnection;
import javax.xml.soap.MessageFactory;
……….

public SimpleSAAJ {
 public static void main(String args[]) {
 try {
 //Create a SOAPConnection
 SOAPConnectionFactory factory =
 SOAPConnectionFactory.newInstance();

 SOAPConnection connection =
 factory.createConnection();

 // Close the SOAPConnection
 connection.close();

 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
}

Creating a
SOAP Conection

25

……………

import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPPart;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPBody;
import java.net.URL;
……………

 //Create a SOAPMessage
 SOAPMessageFactory messageFactory =

 MessageFactory.newInstance();
 SOAPMessage message = messageFactory.createMessage();
 SOAPPart soapPart = message.getSOAPPart();
 SOAPEnvelope envelope = soapPart.getEnvelope();
 SOAPHeader header = envelope.getHeader();
 SOAPBody body = envelope.getBody();
 header.detachNode();

Creating a
SOAP Message

26

Populate a
SOAP Message

27

 //Create a SOAPBodyElement
 Name bodyName = envelope.createName("GetElement"
 "n", "http://localhost");
 SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

 //Insert Content
 Name name = envelope.createName("symbol");
 SOAPElement symbol = bodyElement.addChildElement(name);
 symbol.addTextNode("Smith");

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <n:GetElement xmlns:n="http://localhost">
 <symbol>Smith</symbol>
 </n:GetElement>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This will produce the SOAP envelope:

java.net.URL endpoint = new URL("localhost/addr");
SOAPMessage response = connection.call(message, endpoint);

That you can send with

+
Some Remarks

 SOAP is not “what it used to be”, the name
remained, but the content has changed

 SOAP term is often used as synonym for WS* web
service architecture, though it is one element of
it

 SOAP is not just one element of WS*, it is used in
other context as well, even parallel with ReST web
services.

 SOAP is often hidden from the developer, build
into tools in such a way that developer does not
have to deal with it at a detailed level.

28

+
Use of web services

Service
requestor
Client

Directory
UDDI

Service
provider Web
services

Find
(WSDL)

Publish
(WSDL)

Bind / invoke
(SOAP)

SOAP, WSDL, UDDI, and XML in all of them

29

+
UDDI (Universal Description,
Discovery and Integration)

30

 UDDI is a platform-independent, Extensible Markup
Language (XML)-based registry by which businesses
worldwide can list themselves, plus a mechanism to
register and locate web service applications.

 It is a standard supported by the Organization for the
Advancement of Structured Information Standards (OASIS)

 In the original plans for the discoverability of web
services, a central role should have been played by UDDI

+
Public Registries (well, it used to

be...)
 IBM Registration:
https://uddi.ibm.com/ubr/registry.html
 inquiryURL= https://uddi.ibm.com/ubr/inquiryapi
 publishURL= https://uddi.ibm.com/ubr/publishapi

 HP Registration: http://uddi.hp.com
 inquiryURL = http://uddi.hp.com/ubr/inquire
 publishURL = https://uddi.hp.com/ubr/publish

 Microsoft Registration: http://uddi.rte.microsoft.com
 inquiryURL=http://uddi.rte.microsoft.com/inquire
 publishURL=https://uddi.rte.microsoft.com/publish

 SAP Registration: http://udditest.sap.com
 inquiryURL=http://uddi.sap.com/UDDI/api/inquiry/
 publishURL=https://uddi.sap.com/UDDI/api/publish/

31

UDDI has not been as successful as its creators had
expected. IBM, Microsoft, and SAP closed their public
UDDI nodes in 2006.

The OASIS UDDI Specification Technical Committee has
been dismantled as well.

Microsoft removed UDDI services from the Windows
Server operating system.

UDDI systems are most commonly found inside companies,
where they are used to dynamically bind client systems
to implementations. However, much of the more advanced
functionalities are not used.

+
Enabling technologies

Service discovery and publication
UDDI

Service description
WSDL

XML-Based message
SOAP

Network
HTTP, …………

32

+
WS*

Web
service

WSDL
Web

service

WSDL

SOAP
messages

SOAP
messages

.NETJ2EE

Platform or
middleware

 clear
specifications of
the service
interface and the
data types in use

 communication
protocol
independent
(platform,
programming
language)

 interoperability.

33

+
SOAP engines

SOAP engine

Serialize
into a SOAP
message

De-
serialize
into native
data types

Message

Message

SOAP engine

Serialize
into a SOAP
message

De-
serialize
into native
data typesConsumer

/ Client
Provider
/ Server

A SOAP engine is a framework used in servers and clients that
facilitates:
1.Serializing objects from a programming language into SOAP messages
2.De-serializing SOAP messages into objects in a programming language,
i.e. creating appropriate data types and populating these with the
message content.

34

+
Simple Web Service Invocation

Manual Web
Service
Lookup

Invoke Web
Service

Write
Client
Code Remote Web Service

Publish
Web

Service

Service directory

1.

2. HTTP GET

3. WSDL file

4. SOAP request

5. SOAP response

35

JAXB

SOAP

SchemaJAX-P

JAX-RUDDI

WSDL

MTOM

SAAJ

JAX-WS

Java SE
6/7

XML

Includes

In build on

Binds to

Directory for

Provides
client access
for

Uses

Provides
high-level
API for

Pr
ov
id
es

lo
w-
le
ve
l

AP
I
fo
r

Im
pr
ov
es
 p
er
fo
rm
an
ce
 o
f

bi
na
ry
 a
tt
ac
hm
en
ts
 o
f

Transforms Java objects
to/from

Represented by

Processes Defines

36

+
An example (1/7)
Implementing a simple web service
with Java
1.Create the “service

endpoint interface”
 Interface for web
service

2.Create the “service
implementation”
 Class that
implements the
service

3.Create the “service
publisher”

 Java supports web
services in core Java
 JAX‐WS (Java API for
XML‐Web Services)

 In full production
mode, one would use a
Java application server
such as Tomcat,
Glassfish, etc.

37

+
An example (2/7)
Service Endpoint Interface

package example.echo; // echo server
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;

@WebService // This is a Service Endpoint Interface
@SOAPBinding(style = Style.RPC) // Needed for the WSDL
public interface EchoServer {

@WebMethod // This method is a service operation
String EchoMessage(String strMsg); }

38

+
An example (3/7)
 Service Implementation

package example.echo;
import javax.jws.WebService;
/**

* The @WebService property endpointInterface links this class
* to example.echo.EchoServer.

*/
@WebService(endpointInterface = "example.echo.EchoServer")
public class EchoServerImpl implements EchoServer {

public String EchoMessage(String Msg) {
String capitalizedMsg;
System.out.println("Server: EchoMessage() invoked...");
System.out.println("Server: Message > " + Msg);
capitalizedMsg = Msg.toUpperCase();
return(capitalizedMsg);

}
}

39

+
An example (4/7)
Service Publisher

package example.echo;
import javax.xml.ws.Endpoint;

public class EchoServerPublisher {
public static void main(String[] args) {
Endpoint.publish("http://localhost:8080/ws", new
EchoServerImpl());
}

}

40

+
An example (5/7)
Deploying and testing

1. Compile the Java code

2. Run the publisher
 java example.echo.EchoServerPublisher

3. Testing the web service with a browser
 URL: http://localhost:8080/ws?wsdl

41

<definitions targetNamespace=”http://localhost/" name="EchoServerImplService">
<types/>
<message name="EchoMessage”> <part name="arg0" type="xsd:string"/> </message>
<message name="EchoMessageResponse”><part name="return"
type="xsd:string"/></message>

<portType name="EchoServer">
<operation name="EchoMessage">

<input message="tns:EchoMessage"/>
<output message="tns:EchoMessageResponse"/>

</operation>
</portType>

<binding name="EchoServerImplPortBinding" type="tns:EchoServer">
<soap:binding transport=”http://schemas.xmlsoap.org/soap/http" style="rpc”/>
<operation name="EchoMessage">
<soap:operation soapAction=""/>
<input> <soap:body use="literal" namespace="http://echo.example/"/> </input>
<output> <soap:body use="literal" namespace="http://echo.example/"/> </output>
inding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
</operation>

</binding>

<service name="EchoServerImplService">
<port name="EchoServerImplPort" binding="tns:EchoServerImplPortBinding”>

<soap:address location=”http://localhost:8080/ws"/>
</port>
</service>
</definitions>

An Example (6/7)
WSDL for echo

service

42

package example.echo;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import java.net.URL;

class EchoClient {
public static void main(String argv[]) throws Exception {

if (argv.length < 1) {
System.out.println("Usage: java EchoClient \"MESSAGE\"");System.exit(1);}

String strMsg = argv[0];
URL url = new URL(”http://localhost:8080/ws?wsdl");

// Qualified name of the service:
QName qname = new
QName(“http://localhost/”,“EchoServerImplService");
Service service = Service.create(url, qname);

// Extract the endpoint interface, the service "port".
EchoServer eif = service.getPort(EchoServer.class);
System.out.println(eif.EchoMessage(strMsg));

}
}

An Example (7/7)
EchoClient

43

+

Web server

Server side

@WebServi
ce

Dispatche
r

SOAP
binding

JAXB
binding

Endpoint
Listener

SOAP
request

WSDL

Handler
chain

44

+
Developing a Web Service

WSDL
Service
contrac
t

war file
(or ear)

Server
code

@WebService
POJO class
Servlet-based

Deploymen
t

JAXB &
JAX-WS
files

45

+
Client-side programming

WSDL

Service
contract

wsimport
tool

Client
code

@WebService
Dynamic
proxy

You develop Client
which uses proxy to

call Web Service

46

+
Client-side programming

47

Usually two ways:

Contract last: first you create the code
for your web service, then the contract
(WSDL) is generated based on the code

Contract first: you start with the
creation of the contract for the web
service and then source code templates are
 generated based on the contract

+
Client side

Web Service

WSDL

Endpoint
URL

Dynamic proxy

wsimport:
WSDL to
Java

parameters
JAXB

return
value
JAXB

XService

Javax.xml.ws.Service

SOAP
response

SOAP
request

extends

Service
Endpoint
Interface
(SEI)

Invocation
Handler

48

+
WSDL

49

 A WSDL describes the point of contact for a service
provider, also known as the service endpoint or just
endpoint.

 Provides a formal definition of the endpoint
interface

 requestors wishing to communicate with the service
provider know exactly how to structure request
messages

 Establishes the physical location (address) of the
service.

+

 <types>, the data types of input
and output data, used by the web
service

 <message>, messages to be
exchanged, used by the web
service

 <portType>, the operations input
and output exposed by the web
service. Note: parameters are
represented as messages

 <binding>, the coupling and
protocols used by the web
service. This is were for example
SOAP can be used as protocol

 <port> service location and
binding

WSDL elements
50

+Web Service Example

<wsdl:message name="addIntResponse">
 <wsdl:part name="addIntReturn" type="xsd:int" />
 </wsdl:message>
<wsdl:message name="addIntRequest">
 <wsdl:part name="a" type="xsd:int" />
 <wsdl:part name="b" type="xsd:int" />
 </wsdl:message>
<wsdl:portType name="AddFunction">
 <wsdl:operation name="addInt" parameterOrder="a b">
 <wsdl:input message="impl:addIntRequest" name="addIntRequest" />
 <wsdl:output message="impl:addIntResponse" name="addIntResponse" />
 </wsdl:operation>
 </wsdl:portType> // possible implementation of WS using

the wsimport tool:
// AddFunction.jws
public class AddFunction {
 int addInt(int a, int b){
 return(a+b);
 }
}

A Web service AddFunction with operation addInt is known through its WSDL:

51

+
Generating a WSDL file from a
Java class

javac –cp . Calculator.java
java2wsdl –cp . –tn calculator –stn calculator –cn Calculator

-cp = classpath; -tn target namespace; -stn schema target
namespace; -cn class name

52

public class Calculator {
 int add(int a, int b){
 return(a+b);
 }
}

+ Generating the service code skeleton
from the WSDL file

wsdl2java -ss -sd -uri Calculator.wsdl

-ss = server side; -sd = service descriptor

 A src directory is created with the source code for
our server side files

 A resources directory is created with the WSDL file
for the service and a service descriptor
(services.xml) file

 A build.xml file is created in the current
directory, which will be used to create the ws
deployment file

53

+
Using WSDL

 WSDL allows to define a contract between client
and server
 Tool support to generate code from WSDL or WSDL from
code.

 Allows to have standard service interfaces.

 It can also be used for dynamic discovery with
UDDI registries

54

+
Summary

 WS* standards are unevenly taken into use
 Service orientation is well accepted
 Several competing solutions, most notably WS* vs REST
that complement each other

 Successful and accepted standardization process in
technical interfaces

 Many technical complexities still remains

 Emergence of new new solutions is frequent
although standards are mature and widely adopted

55

+
Spring-WS

 A Spring “sub-project” that allows to simplify
WS-* development

 You can reuse as such your Spring application
context and configuration in your application in
your SOA application

 Plus, you get access to various WS-* standards

 Note that Spring-WS only supports “contract first”
development

56

+
Spring-WS - Configuration

 See http://projects.spring.io/spring-ws/

57

<dependencies>
 <dependency>
 <groupId>org.springframework.ws</groupId>
 <artifactId>spring-ws-core</artifactId>
 <version>2.2.0.RELEASE</version>
 </dependency>
</dependencies>

<beans xmlns="http://www.springframework.org/schema/beans">
 <bean id="webServiceClient" class="WebServiceClient">
 <property name="defaultUri"
value="http://localhost:8080/WebService"/>
 </bean>
</beans>

Maven dependency

Webservice client bean

Spring-WS-Core depends
On Spring's Object/XML Mapping support
(OXM) module and on Spring XML module

+
Spring-WS – Service Client

 See http://projects.spring.io/spring-ws/

58

<beans xmlns="http://www.springframework.org/schema/beans">
 <bean id="webServiceClient" class="WebServiceClient">
 <property name="defaultUri" value="http://localhost:8080/WebService"/>
 </bean>
</beans>

public class WebServiceClient {

 private static final String MESSAGE =
 "<message xmlns=\"http://tempuri.org\">Hello World</message>";

 private final WebServiceTemplate webServiceTemplate = new
WebServiceTemplate();

 public void setDefaultUri(String defaultUri) {
 webServiceTemplate.setDefaultUri(defaultUri);
 }

 // send to the configured default URI
 public void simpleSendAndReceive() {
 StreamSource source = new StreamSource(new
 StringReader(MESSAGE));
 StreamResult result = new StreamResult(System.out);
 webServiceTemplate.sendSourceAndReceiveToResult(source,
 result);
 }
}

+
Spring-WS – Endpoints

59

@Endpoint
public class BookEndpoint {
 private static final String NAMESPACE_URI = "http://muni.cz/pa165/soa";

private final BookRepository bookRepository;

@Autowired
public BookEndpoint(BookRepository bookRepository) {

this.bookRepository = bookRepository;
}

@PayloadRoot(namespace = NAMESPACE_URI, localPart = "getBookRequest")
@ResponsePayload
public GetBookResponse getBook(@RequestPayload GetBookRequest request) {

 GetBookResponse response = new GetBookResponse();

 response.setBook(bookRepository.getBookByTitle(request.getTitle()));
 return response;

}

}

+
Spring-WS

 Let's look at Spring-WS documentation, in
particular:

 MessageDispatcher & MessageDispatcherServlet

 Automatic WSDL exposure

 Endpoints & Endpoint Mapping

 Interceptors

 Testing in Spring-WS

http://docs.spring.io/spring-
ws/docs/2.2.0.RELEASE/reference/htmlsingle

60

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

