
PA165 Persistence

Filip Nguyen
Lab Software Architectures and Information Systems

Lectures 02-03

September 23, September 30, 2014



Agenda 1

● Introduction to data persistence
● Persistence Layer
● Introduction to ORM
● JPA Overview
● JPA Mapping



Introduction



Introduction to data persistence

Overall goal is to build Information System that 
retrieves data from a datastore and allows user 
CRUD
● To view the data
● Modify the data
● Delete the date
● Create the data
Persistence layer is part of the application that 
encapsulates logic related to accessing and 
manipulating sources of data.



Recap: Application Tiers/Layers

● Basic three tiers found in current systems
○ Presentation Tier
○ Business Service Tier
○ Persistence/Data Access Tier

● Access from top down. Layer sees and uses 
only the services from the layer directly 
underneath it



Diagram



Where to store data

● RDBMS
● No-SQL database
● Object Database
● XML Database
● DMS (Document Management System)
● CMS (Content Management System)
● Post-relational database (Caché)

○ Temporary
○ Hierarchical
○ Spatial

● Another information system (CRM, ERP)



RDMBS
The most frequent data storage for enterprise applications
● Relational data model is simple but very powerful 
● Suitable and sufficient for most of common applications
● Good theoretical model (Relational Algebra, Relational Calculus)
● Simplicity => High Performance (eg. due simple optimizations)
● Proven and well established technology (40 years of development, 
● tools, standards, reliability, high penetration, lots of experts, etc.)
● Data are separated from application and can be easily shared between 
● different applications
● Independent on concrete platform or programming language



Transactions

● JDBC Transactions
● ACID properties

○ Atomicity
○ Consistency
○ Isolation
○ Durability

● Resource Local vs Global Transactions



Quiz 1

Which of the following are advantages of 
RDMBS?

1. RDMBS are transactional
2. RDBMS are based on good theoretical 

model
3. RDMBS are the best tools to store and 

retrieve enormous amounts of data



Answers 1

Which of the following are advantages of 
RDMBS?

1. RDMBS are transactional
2. RDBMS are based on good theoretical 

model
3. RDMBS are the best tools to store and 

retrieve enormous amounts of data



Quiz 2

Which of the following is true

1. Persistence tier can contain SQL fragments
2. Service tier contain methods that represent 

business function (registerUser)



Answers 2

Which of the following is true

1. Persistence tier can contain SQL 
fragments

2. Service tier contain methods that 
represent business function 
(registerUser)



Persistence Layer



Service Layer vs Persistence Layer

Service Layer uses Persistence Layer not vice 
versa



Service Layer

● Key element, contains business logic
● Complete  - expose all operations client 

need
● Simple - coarse grained
● Defined by interfaces 
● No assumptions about DAO
● Handle Transactions
● Be easy to test



Persistence Layer

● Encapsulates complexity of the data store
● Doesn’t contain any business logic
● Usually implemented with Data Access 

Object (DAO) design pattern



Data Access Object Pattern

● Generic interface for business objects 
without data store details

● Transactions:DAO should participate in transaction 
but should not usually drive them. This is because 
operations of the DAO are usually fine grained



Data Access Object Pattern

● Test Driven Development: Allows easy 
mocking of data access. Its easier to mock 
DAO interface then java.sql.Connection

● DAO is clear, strongly typed persistence API
● DAO contain finder methods with domain 

arguments



Data Access Object

● Exception Handling DAOs should throw 
generic data access exceptions. Throwing 
SQLException exposes underlying data 
store technology



Data Transfer Object

● Data container
● No dependencies - DTO should have no 

dependencies on anything but JDK
● Serializable - used to send data remotely
● We can use automatic tools to convert 

business objects to DTO such as Dozer:

Mapper mapper = new DozerBeanMapper();
DestinationObject destObject =  
    mapper.map(sourceObject, DestinationObject.class);



Transaction Demarcation

● Its easy to demarcate transactions on DAO 
level. However, transactions should NOT be 
demarcated on DAO level

● It is responsibility of Service layer to 
demarcate transactions



Transactions on DAO level

Too limitting transaction demarcation
public void update(Pet pet) {

Connection con = ds.getConnection();

con.setAutoCommit(false);

PreparedStatement st = con

.prepareStatement("UPDATE PETS SET ID = ?, NAME=?, TYPENAME=?, CAGE_FK=? WHERE ID = ? ");

st.setInt(1, pet.getId());

st.setString(2, pet.getName());

st.setString(3, pet.getTypename());

st.setObject(4, pet.getCageFk());

st.setInt(5, pet.getId());

st.executeUpdate();

con.commit();

}



Quiz 3

Which of these methods are probably suited for 
Service layer?
1. sellProduct
2. loadProductByID
3. deleteCustomer
4. sendPromotionToGoldenCustomers



Answers 3

Which of these methods are probably suited for 
Service layer?
1. sellProduct
2. loadProductByID
3. deleteCustomer
4. sendPromotionToGoldenCustomers



Quiz 4

Transactions should be demarcated on which 
layer?
1. Presentation Layer
2. Service Layer
3. Persistence Layer
4. Depends on situation



Answers 4

Transactions should be demarcated on which 
layer?
1. Presentation Layer
2. Service Layer
3. Persistence Layer
4. Depends on situation



Introduction to ORM



What is ORM

● Technique to map database table columns 
to fields of a class in OOP



Advantages and Disadvantages

● Advantages
○ Less code to write
○ SQL dialect agnostic
○ Caching in Web application development

● Disadvantages
○ learning curve
○ ORM is a big abstraction. Practical example is N+1 

problem
○ lower application performance when used by 

inexperienced programmer



Example of ORM disadvantage N+1

● N+1 problem is a known problem with lazy 
loading a database

  // Issues c.size() number of SQL statements
  for (Cage c : allCages) {
    System.out.println(“Is cage empty?”);
    System.out.println(c.getPets().isEmpty());
  }



Isn’t SQL/JDBC + ORM too limiting?

● Not necessarily
○ JDBC standard is relatively easy to implement
○ Any JDBC+SQL compliant driver can be easily used 

with Hibernate
○ Hibernate implements JPA

● Conclusion: As soon as JDBC driver is 
available, it’s possible to use it with existing 
JPA compliant code in Java



Quiz 5

Which of the following statements are true?
1. ORM acronym states for Object Real 

Managing
2. N+1 problem is a real performance threat
3. When we use ORM we can easily change 

underlying RDMBS
4. Existence of JDBC driver automatically 

implies possibility to use ORM such as 
Hibernate



Answers 5

Which of the following statements are true?
1. ORM acronym states for Object Real 

Managing
2. N+1 problem is a real performance threat
3. When we use ORM we can easily change 

underlying RDMBS
4. Existence of JDBC driver automatically 

implies possibility to use ORM such as 
Hibernate



Java Persistence API 
Overview



History
● Java Persistence API

○ POJO Entities, inspired by ORM tool Hibernate
○ API implemented by various ORM tools from different vendors.
○ Just basic functionality, implementations could provide other features 
○ and functions through its proprietary API

● Versions and specifications
○ JPA 1.0 – part of Java EE 5; created as part of EJB 3.0 (JSR 220), but 

independent.
○ JPA 2.0 – part of Java EE 6; JSR 317
○ JPA 2.1 – part of Java EE 7; JSR 338

● ORM tools implementing JPA
○ Hibernate, Open JPA
○ TopLink, TopLink Essentials, Eclipse Link



Entity
● Entity

○ Represent domain object
○  Simple POJO class
○  Attributes represents domain object properties
○  Attributes accessible with set/get methods
○  Mandatory parameterless constructor
○  It is useful (but not mandatory) to implement Serializable

● Mapping definition
○ With annotations or xml file
○ Convention-over-configuration principle



JPA Entity Example
● Pet entity

@Entity
public class Pet {

@Id
@GeneratedValue
private long id = 0;
@Temporal(TemporalType.DATE)
private Date birthDate;
@Column(nullable=false)
private String name;
@ManyToOne()
private Cage cage = null;
@Enumerated(EnumType.STRING)
private PetColor color;



Quiz 6

What is POJO class?
1. Class that doesn’t extend another class
2. Class that doesn’t implement equals method
3. Class that doesn’t have long name
4. Class that contains complex logic



Answers 6

What is POJO class?
1. Class that doesn’t extend another class
2. Class that doesn’t implement equals method
3. Class that doesn’t have long name
4. Class that contains complex logic



Persistence Unit
● JPA Specification chapter 8.1
● Intuitively, the Persistence unit is a collection of configuration for our 

application. Our application needs to use JPA.
● Defined by persistence.xml file in META-INF directory
● A persistence unit is a logical grouping that includes:

○ An entity manager factory and its entity managers, together with their 
configuration information.

○ The set of managed classes included in the persistence unit and 
managed by the entity managers of the entity manager factory.

○ Mapping metadata (in the form of metadata annotations and/or XML 
metadata) that specifies the mapping of the classes to the database.



Persistence Unit - Example
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name="myUnit" transaction-type="RESOURCE_LOCAL">
<properties>

<property name="hibernate.dialect" value="org.hibernate.dialect.DerbyDialect" />
<property name="hibernate.hbm2ddl.auto" value="create-drop" />
<property name="hibernate.show_sql" value="true" />
<property name="hibernate.format_sql" value="true" />

</properties>
</persistence-unit>

</persistence>



Persistent Unit - Example
● file META-INF/persistence.xml must exist
● The following code constructs entry point for JPA which is 

EntityManagerFactory

       EntityManagerFactory emf =   
                          Persistence.createEntityManagerFactory("myUnit");

EntityManager em = emf.createEntityManager();



Quiz 7

Persistence unit can be used to
1. Implement a web interface
2. Provide information about SQL dialect of the 

data source
3. Provide list of entities mapped to the data 

source
4. Provide configuration for Data Access 

Objects



Answers 7

Persistence unit can be used to
1. Implement a web interface
2. Provide information about SQL dialect of 

the data source
3. Provide list of entities mapped to the data 

source
4. Provide configuration for Data Access 

Objects



Persistent Context
● JPA Specification, section 7.1
● Intuitively, persistence context is an abstract set of in memory loaded 

entities and a persistence context is typically associated with one 
EntityManager instance 

● A persistence context is a set of managed entity instances in which for any 
persistent entity identity there is a unique entity instance. Within the 
persistence context, the entity instances and their lifecycle are managed by 
the entity manager.

● In Java EE environment, the entity manager is typically retrieved by 
dependency injection:

@PersistenceContext
EntityManager em;



EntityManager
● Container-managed Entity Manager

○ Obtained via dependency injection or JNDI lookup 
○ Such Entity Manager is propagated through a JTA transaction. 

Multiple DAOs may access the same Persistence Context
● Application-managed Entity Manager

○ Obtained from EntityManagerFactory
○ There is a new PersistenceContext created for such Entity Manager
○ Such manager must be closed by close() method
○ In Java SE, this is the only supported Entity Manager type



EntityManager - Example
       EntityManagerFactory emf =     
          Persistence.createEntityManagerFactory("myUnit");

EntityManager em = emf.createEntityManager();
em.getTransaction().begin();

      Pet pet1 = new Pet();
pet1.setName("Sisi");
pet1.setColor(PetColor.BLACK);

       em.persist(pet1);
em.getTransaction().commit();
em.close();



Entity - Lifecycle
● JPA Specification, section 3.2
● Entity states

○ NEW - A new entity instance has no persistent identity, and is not yet 
associated with a persistence context.

○ MANAGED - A managed entity instance is an instance with a 
persistent identity that is currently associated with a persistence 
context.

○ DETACHED - A detached entity instance is an instance with a 
persistent identity that is not (or no longer) associated with a 
persistence context.

○ REMOVED - A removed entity instance is an instance with a 
persistent identity, associated with a persistence context, that will be 
removed from the database upon transaction commit.



Lifecycle Operations
● JPA Specification, section 3.2
● Entity instances are created by means of the new operation. An entity 

instance, when first created by new is not yet persistent. An instance 
becomes persistent by means of the EntityManager API.

● A new entity instance becomes both managed and persistent by invoking 
the persist method on it or by cascading the persist operation.

       EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Pet pet = new Pet();
pet.setName("Tomas");
pet.setColor(PetColor.BLACK);
pet.setBirthDate(new Date());
em.persist(pet);

        .....



Lifecycle Operations
● JPA Specification, section 3.2
● A managed entity instance becomes removed by invoking the remove 

method on it or by cascading the remove operation.
● The state of a managed entity instance is refreshed from the database by 

invoking the refresh method on it or by cascading the refresh operation.
● An entity instance is removed from the persistence context by invoking the 

detach method on it or cascading the detach operation. Changes made to 
the entity, if any (including removal of the entity), will not be synchronized 
to the database after such eviction has taken place.

● The merge operation allows for the propagation of state from detached 
entities onto persistent entities managed by the entity manager.



Quiz 8

After object is persisted and EntityManager 
method is closed, what is the state of the 
entity?
1. NEW
2. MANAGED
3. DETACHED
4. REMOVED



Answers 8

After object is persisted and EntityManager 
method is closed, what is the state of the 
entity?
1. NEW
2. MANAGED
3. DETACHED
4. REMOVED



Quiz 9

When we persist an object X and during after 
calling persist method we set a property of X by 
X.setName(“NewValue”) what will happen in 
database?
1. Nothing until we call EntityManager.merge()
2. The row for X will be updated with 

“NewValue”
3. Exception will be thrown by JPA



Quiz 10

When we persist an object X and during after 
calling persist method we set a property of X by 
X.setName(“NewValue”) what will happen in 
database?
1. Nothing until we call EntityManager.merge()
2. The row for X will be updated with 

“NewValue”
3. Exception will be thrown by JPA



JPA Configuration Wrapup
● Configuration

○ Stored in persistence.xml
○ Contains one or more Persistence Units.

● Persistence Unit
○ List of classes managed by given Persistence Unit
○ Database connection configuration

■ JNDI name of DataSource
■ JDBC url, name, password

○ Transaction control configuration (RESOURCE_LOCAL or JTA)
○ Table creation strategy

● Configuration parameter names
○ Vendor specific for JPA 1.0, standardized for JPA 2.0 
○ Parameters could be also set when creating EntityManagerFactory or 

EntityManager



ORM vs JPA vs Hibernate

● Object Relational Mapping
○ Abstract concept of mapping RDBMS to Objects in 

OOP
● Java Persistence API

○ Concrete Java standard for ORM
○ Set of interfaces in javax.persistence
○ Written (PDF) specification of the requirements of 

the behavior of the implementation of the interfaces
● Hibernate

○ An implementation of Java Persistence API
○ Set of JAR files that implement interfaces from JPA



Java Persistence API 
Mapping



JPA Specification - Entities

● Chapter 2 Entities
○ 2.4 Primary Keys and Entity Identity



Entity Mapping

The entity class must be annotated with the Entity annotation or denoted in the 
XML descriptor as an entity.

The entity class must have a no-arg constructor.

Every entity must have a primary key. The Id annotation or id XML element 
must be used to denote a simple primary key.

The primary key class must define equals and hashCode methods. The 
semantics of value equality for these methods must be consistent with the 
database equality for the database types to which the key is mapped.



Relationships

● Direction
○ Uniderctional
○ Bidirectional

● Cardinality
○ OneToOne
○ OneToMany
○ ManyToOne 
○ ManyToMany



Quiz 10

Which of the following are true?
1. Entity must be annotated with @Entity
2. Entity must have an equals method
3. Entity doesn’t need to have  hashCode 

method



Answers 10

Which of the following are true?
1. Entity must be annotated with @Entity
2. Entity must have an equals method
3. Entity doesn’t need to have  hashCode 

method



Bidirectional - Owning Side

● A bidirectional relationship has both an owning side and 
an inverse (non-owning) side. A unidirectional 
relationship has only an owning side.

● The inverse side of a bidirectional relationship must 
refer to its owning side by use of the mappedBy element 
of the OneToOne, OneToMany, or ManyToMany 
annotation. The mappedBy element designates the 
property or field in the entity that is the owner of the 
relationship.



Bidirectional - Mapping
@Entity
public class Employee {

private Department department;
@ManyToOne
public Department getDepartment() {

return department;
}

}
@Entity
public class Department {

private Collection<Employee> employees = new HashSet();
@OneToMany(mappedBy="department")
public Collection<Employee> getEmployees() {

return employees;
}

}



Bidirectional - saving

 ....

 Department dep = new Department();
 Employee e = new Employee();
 e.setDepartment(dep);
 em.persist(e); 
 em.getTransaction().commit(); //throws exception unless Department is 
persisted in this transaction! (or persist cascading is set - this is more advanced concept)



Bidirectional - saving
This piece of code doesn’t throw exception anymore
 ....

 Department dep = new Department();
 Employee e = new Employee();
 e.setDepartment(dep);
 em.persist(dep); 
 em.persist(e); 
 em.getTransaction().commit(); 



Bidirectional - saving
 This is also possible
 ....

 Department dep = new Department();
 Employee e = new Employee();
 e.setDepartment(dep);
 em.persist(e); 
 em.persist(dep); 
 em.getTransaction().commit(); 



Bidirectional - maintain runtime 
consistency

 ....

 Department dep = new Department();
 Employee e = new Employee();
 e.setDepartment(dep);
 em.persist(e); 
 em.persist(dep); 
 System.out.println(dep.getEmployees().getSize()); // This will print “0”!
 em.getTransaction().commit(); 



Bidirectional - maintain runtime 
consistency

 ....

 Department dep = new Department();
 Employee e = new Employee();
 e.setDepartment(dep); 
 dep.addEmployee(e); 
 em.persist(e); 
 em.persist(dep); 
 System.out.println(dep.getEmployees().getSize()); // This will print “1”!
 em.getTransaction().commit(); 



Maintain runtime consistency

JPA spec section 2.9:

Note that it is the application that bears responsibility for 
maintaining the consistency of runtime relationships - for 
example, for insuring that the “one” and the “many” sides of 
a bidirectional relationship are consistent with one another 
when the application updates the relationship at runtime



Revising Data Access Object Pattern

● Every entity has a corresponding DAO 
object
○ Student entity has corresponding StudentDAO

● The DAO object contains basic data 
operations
○ CRUD - findById, delete, update
○ Also more complicated methods can be there 

“findByName”



Data Access Object Pattern

● Every DAO should have an interface and an 
implementation



Persistence Overview



History - EJB 2.x

● Incompatible with DAO Design Pattern
● Actually, DAO Pattern was designed as replacement for 

EJB 2.x Entities
● Requires Java EE Application server with EJB 

Container
● Entity is heavyweight component, instances are located 

in EJB Container and accessed remotely
● Problem with latencies (reason for introducing DAO and 

DTO design patterns)
● CMP versus BMP
● JPA is preferred from EJB 3.0



JDO

● JSR-243
● Java Data Objects
● Independent of underlying data technology
● Not used very much



Embedded SQL
● Code is processed with special preprocessor before compiling
● Preprocessor process SQL expressions, checks their validity, 
● performs type checking a translates them into expression of used 
● programming language.
● Preprocessor requires database connection

public String getPersonName(long personId) {
 String name;
 #sql { 
 SELECT name INTO :name 
 FROM people WHERE id = :personId 
 };
 return name;
}



Spring JDBC
● Spring library implementing Template Method design pattern
● Cleaner code, faster development, easier maintenance
● Unlike ORM or Embedded SQL does not solve the problem 
● with errors in SQL expressions, that become apparent until 
● runtime

JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
public String getPersonName(long personId) {
 return jdbcTemplate.queryForObject(
 "SELECT name FROM people WHERE id = ?",
 String.class,personId);
}



Java Persistence API

● We view tables in RDMBs as collection of 
objects

@Entity
public class Pet {

@Temporal(TemporalType.DATE)
private Date birthDate;
@Column(nullable=false)
private String name;
@ManyToOne()
private Cage cage = null;
@Enumerated(EnumType.STRING)
private PetColor color;



Java Persistence API

● Store objects 
  EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

Pet pet = new Pet();
pet.setName("FILIP");
pet.setBirthDate(cal.getTime());
pet.setColor(PetColor.WHITE);
em.persist(pet);

em.getTransaction().commit();
em.close();



iBatis SQL Map

● Originally Apache project, retired, currently 
developed as MyBatis

● SQL Queries are separated from code
○ In XML file
○ In annotations (in new versions)

● More powerful that simple libraries like 
Spring JDBC, more lightweight than ORM



JPA Advanced 
Mapping



Load State
● JPA Specification 3.2.9 
● Each attribute have default FetchType (important especially with 

collections)
● Attributes with FetchType.LAZY may or may not have been loaded
● A collection-valued attribute is considered to be loaded if the collection was 

loaded from the database or the value of the attribute was assigned by the 
application, and, if the attribute references a collection instance (i.e., is not 
null), each element of the collection (e.g. entity or embeddable) is 
considered to be loaded.



Load State

● JPA Specification 3.2.9 
● Intuitively, collections have default FetchType.LAZY

○ They are loaded only after the collection is touched 
(typically by traversing the collection with loop)

○ Setting FetchType.EAGER may result in serious 
performance problems since large number of objects 
might be loaded from the database

○ Leaving FetchType.LAZY may also result in serious 
performance problems since accessing the LAZY 
collections with loops might result in large number of 
queries sent to the database



Fetching strategy

● OneToOne - Default is EAGER
● OneToMany - Default is LAZY
● ManyToOne - Default is EAGER
● ManyToMany - Default is LAZY



Relationships - Operation Cascading

● JPA Specification, section 3
● Use of the cascade annotation element may be used to 

propagate the effect of an operation to associated 
entities. The cascade functionality is most typically used 
in parent-child relationships.

● If X is a preexisting managed entity, it is ignored by the 
persist operation. However, the persist operation is 
cascaded to entities referenced by X, if the relationships 
from X to these other entities are annotated with the 
cascade=PERSIST or cascade=ALL annotation element 
value or specified with the equivalent XML descriptor 
element.



Operation Cascading - example

  
  @ManyToOne(cascade=CascadeType.PERSIST)

private Cage cage = null;



Operation Cascading

● ALL
● DETACH
● MERGE
● PERSIST
● REFRESH
● REMOVE



Embeddable

● Classes that are stored as part of owning entity, but 
don’t have persistent identity

@Embeddable
public class Address {
  private String street;
  private String city;  
  ...
}



Embeddable

● Classes that are stored as part of owning entity, but 
don’t have persistent identity

@Embeddable
public class Address {
  private String street;
  private String city;  
  ...
}



Embedded

● Embeddes the Embeddable class into an Entity
● In database, the Embedded instance is stored inside the 

table dedicated to the Entity

@Embedded
private Address address;



ElementCollection

● When an Entity needs to store list of basic types or 
Embeddable types. Its more consise then to create a 
new entity to represent the list

● On database level there must be a new table created for 
the elements of the collection. This new table has 
foreign key that is directed to the owning Entity



ElementCollection - Database

@ElementCollection(fetch=FetchType.EAGER)
private Set<Address> addresses= 

               new HashSet<Address>();

 create table PetStore (id bigint generated by default as 
identity, city...
 create table (PetStore_id bigint not null, street varchar
(255)...



Temporal

 The Temporal annotation must be specified for persistent 
fields or properties of type java.util.Date and java.util.
Calendar unless a converter is being applied. It may 
only be specified for fields or properties of these types.

@Temporal(TemporalType.DATE)
private Date dateOfOpening;



Basic

● Mapping of a field to a database column
● fetch type can be specified
● optional can be specified (nonnull)



Column

● More powerful mapping of a column 
● uniqueness 
● nullable
● length
● precision and scale for numbers



PersistenceUtil

● interface in javax.persistence
● in Hibernate it is implemented by PersistenceUtilHelper
● You can use the PersistenceUtilHelper to find out the 

load state of your collections on an Entity
○ LoadState.LOADED
○ LoadState.NOT_LOADED
○ LoadState.UNKNOWN



Java Persistence API 
Querying



Introduction

● JPQL
○ Query language similar to SQL
○ Supports scalar values, tuples, entities or 

constructed objects
● Criteria API

○ From JPA 2.0
○ Allows to build query programatically

● Native queries
○ Queries in SQL, non portable, not integrated with 

JPA infrastructure
○ Use only in exceptional cases



Simple Example

List<Pet> pets = 
  em.createQuery("SELECT p FROM Pet p",Pet.class)
  .getResultList();

● Developer is responsible to understand what type of 
result a query generates
○ Usually the result is a list of Entities or single value
○ When result is more complicated it may even 

become List<Object[]> which is the most general 
result



Creating the query using 
EntityManager

● createQuery(String)
● createNativeQuery(String)
● createNamedQuery(String)



Using the Query Object

● getResultList() - actually runs the query
● getSingleResult()

○ aggregation function COUNT, MAX, etc.
○ when query returns exactly 1 Entity

● setParameter(..) - used to supply parameters



Path Expression

● JPA Specification 4.4.4
● An identification variable followed by the navigation 

operator (.) and a state field or association field is a path 
expression.

SELECT i.name, VALUE(p)
FROM Item i JOIN i.photos p
WHERE KEY(p) LIKE ‘%egret’



GROUP BY

SELECT s.name, COUNT(p)
FROM Suppliers s LEFT JOIN s.products p
GROUP BY s.name

● The result of this query is a list of Object[]



Fetch Join

● A FETCH JOIN enables the fetching of an association 
or element collection as a side effect of the execution of 
a query.

● Intuitively, it is a side effect of the query

SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno = 1



Empty Collection Comparison 
Expressions

● Expression tests whether or not the collection 
designated by the collection-valued path expression

is empty (i.e, has no elements).

SELECT o
FROM Order o
WHERE o.lineItems IS EMPTY



Named Query

● Named queries are static queries expressed in 
metadata or queries registered by means of the Entity-
ManagerFactory addNamedQuery method.

@NamedQuery(name="findAll",query="SELECT p FROM Pet p")
@Entity
public class Pet {

List<Pet> pets = em.createNamedQuery("findAll",Pet.class).getResultList();



Constructor Expressions in SELECT

● So called SELECT NEW

SELECT NEW com.acme.example.CustomerDetails(c.id, c.status, o.count)
FROM Customer c JOIN c.orders o WHERE o.count > 100



EMPTY operator

● Can be used to check emptiness of a 
collection navigated by a path expression

SELECT c FROM Cage c WHERE c.pets IS NOT EMPTY



LEFT (OUTER) JOIN

● LEFT JOIN and LEFT OUTER JOIN are synonymous. 
They enable the retrieval of a set of entities where 
matching values in the join condition may be absent.

LEFT [OUTER] JOIN 
     join_association_path_expression [AS] 
identification_variable

[ON condition]



Simple Left Outer Join

  
  SELECT s.name, COUNT(p)
  FROM Suppliers s LEFT JOIN s.products p

SQL:
   SELECT s.name, COUNT(p.id)
   FROM Suppliers s LEFT JOIN Products p
   ON s.id = p.supplierId



Adding ON to Left Join

●   This returns all the suppliers and when a supplier has 
a product in status ‘inStock’ it will pair it 

  SELECT s.name, COUNT(p)
  FROM Suppliers s LEFT JOIN s.products p
  ON p.status = 'inStock'

SQL:
   SELECT s.name, COUNT(p.id)
   FROM Suppliers s LEFT JOIN Products p
   ON s.id = p.supplierId AND p.status = 'inStock'



Left Join with WHERE 

  
  SELECT s.name, COUNT(p)
  FROM Suppliers s LEFT JOIN s.products p
  WHERE p.status = 'inStock'

● Will exclude the suppliers without products!



Parametrized Queries

FROM Pet p WHERE p.birthDate = :date

 em.createQuery(
        "SELECT p FROM 

        Pet p WHERE p.birthDate = :date",Pet.class)
            .setParameter("date", new Date())


