
PA193 - Secure coding

principles and practices

Protecting integrity of modules and external

components - LABS

Petr Švenda svenda@fi.muni.cz

Secure temporary files handling - lib

• Write library for secure usage of temporary files

– just *.h, *.cpp (no dll is required)

• Design suitable API

– open, write/read, close, information (set/get tmp directory)

• It should be as easy as possible to refactor existing code

based on tmpfile / tmpfile_s functions

– minimal changes to existing source code

• Library implementation should follow security checklist for

temporary files, but hide complexity from user

– e.g., file name generation, directory and ACL setting, encryption...

2 PA193 | Integrity of modules

Original code for refactor

3 PA193 | Integrity of modules

int main() {

 FILE * pTmpFile;

 // Open temporary files

 tmpfile_s(&pTmpFile);

 char buffer[100] = "Test";

 for (size_t i = 0; i < 50; i++) {

 fwrite("Test", strlen("Test"), sizeof(char), pTmpFile);

 }

 rewind(pTmpFile);

 fseek(pTmpFile, 30, SEEK_SET);

 memset(buffer, 0, sizeof(buffer));

 fread(buffer, sizeof(char), sizeof(buffer) - 1, pTmpFile);

 printf("%s", buffer);

 fclose(pTmpFile);

 // Remove still opened tmp files (only these opened by tmpfile / tmpfile_s)

 _rmtmp();

 return 0;

}

TODO: hidden manipulation

• obtain temporary directory

• create subdirectory, set proper ACL

• generate long random file name

• open file exclusively with absolute path

• generate random key

• encrypt data before write, decrypt on read

• shred content (overwrite) before close, erase key

• close file after use

• handle abnormal termination (signal, exception)

4 PA193 | Integrity of modules

TODO: hidden manipulation – this lab

• obtain temporary directory

• create subdirectory, set proper ACL

• generate long random file name

• open file exclusively with absolute path

• generate random key

• encrypt data before write, decrypt on read

• shred content (overwrite) before close, erase key

• close file after use

• handle abnormal termination (signal, exception)

5 PA193 | Integrity of modules

How to start

• Create new project, change Charatcter set to ANSII

– Project properties->General->Character set->No set

• Write function for file open

– use same function interface like tmpfile or tmpfile_s

– fix directory to “C:\\Temp\\” for start (but change later)

– use rand() for generating random name for file (but change

later to robust random number generator)

– fopen with “wb” mode for start (but change later to include

exclusivity mode or use CreateFile(CREATE_NEW...)

– store file handle in global array of opened handles

– return opened file handle

 6 PA193 | Integrity of modules

Notes

• Functions from standard C library are using FILE*

handle for file manipulation

– when you start refactoring, you may end up having some

functions from C library being changed to your improved

functions, but not all (e.g., not all fread() will be replaced)

• By changing FILE* to your own structure

TMPFILE*, you will force user to switch all functions

he is using to your functions – otherwise code will

not compile (fread() cannot work with TMPFILE*)

– TMPFILE may contain original FILE* inside

7 PA193 | Integrity of modules

Assignment 6 – Password hashing

• Write 2 functions in C
– To hash a password and store it in a hashed form (into file)

– To verify supplied password against the stored password

• Notes
– First read: http://www.codeproject.com/Articles/704865/Salted-

Password-Hashing-Doing-it-Right

– Use password salting

– To generate the random salt use your code from the previous
seminars (on random data)

– Write both UNIX and Windows variants

– In Unix use the crypt() function [use e.g. sha256]

– In Windows implement yourself PBKDF2; use MS crypto API for
hash functions

• Deadline: 30.11.2014 23:59

http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right

Project reports – Dec 11, 14:00 in A319
• Join both the seminar groups!

• Presentations: 5 minutes (sharp)

• No PPT/PDF. Bring notes written on paper.

• Deadline Dec 11 by 11:11 to put files into the IS, bring 2 paper
copies for teachers
– 1-2 pages A4 for report from part 1

• What project you reviewed, what does the SW do, which tools
you used, what are your results, did you provide feedback to the
developers?

– 1 page A4 from part 2

• What you implemented, including details (restrictions); your
result (how many lines of code), what was difficult, …

– 1 page A4 from part 3

• What tests did you perform (automated tests, manual review),
what did you focus on, what did you find out.

