PA193 - Secure coding
principles and practices

Protecting integrity of modules and external

components - LABS ‘

Petr Svenda svenda@fi.muni.cz C R \./ CS

yzt J H‘y d

www.fi.muni.cz/crocs



CR&,CS

Secure temporary files handling - lib

2

Write library for secure usage of temporary files

— just *.h, *.cpp (no dll is required)

Design suitable API

— open, write/read, close, information (set/get tmp directory)

It should be as easy as possible to refactor existing code
based on tmpfile / tmpfile_s functions

— minimal changes to existing source code

Library implementation should follow security checklist for
temporary files, but hide complexity from user
— e.g., file name generation, directory and ACL setting, encryption...

PA193 | Integrity of modules www.fi.muni.cz/crocs



CR&,CS

Original code for refactor

int main() {
FILE * pTmpFile;
// Open temporary files
tmpfile s(&pTmpFile);

char buffer[100] = "Test";
for (size t 1 = 0; i < 50; i++) {
fwrite("Test", strlen("Test"), sizeof(char), pTmpFile);

}

rewind (pTmpFile) ;
fseek(pTmpFile, 30, SEEK SET);

memset (buffer, 0, sizeof (buffer));
fread(buffer, sizeof(char), sizeof(buffer) - 1, pTmpFile);
printf ("%s", buffer);

fclose(pTmpFile) ;

// Remove still opened tmp files (only these opened by tmpfile / tmpfile s)
_rmtmp () ;

return 0O;

R ni.cz/crocs




CR&,CS

TODO: hidden manipulation

obtain temporary directory

create subdirectory, set proper ACL

generate long random file name

open file exclusively with absolute path

generate random key

encrypt data before write, decrypt on read

shred content (overwrite) before close, erase key
close file after use

handle abnormal termination (signal, exception)

PA193 | Integrity of modules www.fi.muni.cz/crocs



CR&,CS

TODO: hidden manipulation —this lab

obtain temporary directory

create subdirectory, set proper ACL

generate long random file name

open file exclusively with absolute path

generate random key

encrypt data before write, decrypt on read

shred content (overwrite) before close, erase key
close file after use

handle abnormal termination (signal, exception)

PA193 | Integrity of modules www.fi.muni.cz/crocs



CR&,CS

How to start

« Create new project, change Charatcter set to ANSII
— Project properties->General->Character set->No set

« Write function for file open
— use same function interface like tmpfile or tmpfile_s
— fix directory to “C:\\Temp\\” for start (but change later)

— use rand() for generating random name for file (but change
later to robust random number generator)

— fopen with “wb” mode for start (but change later to include
exclusivity mode or use CreateFile(CREATE_NEW...)

— store file handle in global array of opened handles
— return opened file handle

6  PA193]| Integrity of modules www.fi.muni.cz/crocs



CR&,CS

Notes

Functions from standard C library are using FILE*
handle for file manipulation

— when you start refactoring, you may end up having some
functions from C library being changed to your improved
functions, but not all (e.g., not all fread() will be replaced)

By changing FILE* to your own structure

TMPFILE*, you will force user to switch all functions

he is using to your functions — otherwise code will

not compile (fread() cannot work with TMPFILE?*)

— TMPFILE may contain original FILE* inside

Z

PA193 | Integrity of modules www.fi.muni.cz/crocs



CR&,CS

Assignment 6 — Password hashing

* Write 2 functions in C
— To hash a password and store it in a hashed form (into file)
— To verify supplied password against the stored password

* Notes

— First read: http://www.codeproject.com/Articles/704865/Salted-
Password-Hashing-Doing-it-Right

— Use password salting

— To generate the random salt use your code from the previous
seminars (on random data)

— Write both UNIX and Windows variants
— In Unix use the crypt() function [use e.g. sha256]

— In Windows implement yourself PBKDF2; use MS crypto API for
hash functions

 Deadline: 30.11.2014 23:59

www.fi.muni.cz/crocs



http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right
http://www.codeproject.com/Articles/704865/Salted-Password-Hashing-Doing-it-Right

CR&,CS

Project reports — Dec 11, 14:00 in A319

 Join both the seminar groups!

* Presentations: 5 minutes (sharp)

 No PPT/PDF. Bring notes written on paper.

« Deadline Dec 11 by 11:11 to put files into the IS, bring 2 paper
copies for teachers
— 1-2 pages A4 for report from part 1

« What project you reviewed, what does the SW do, which tools
you used, what are your results, did you provide feedback to the
developers?

— 1 page A4 from part 2

« What you implemented, including detalls (restrictions); your
result (how many lines of code), what was difficult, ...

— 1 page A4 from part 3

« What tests did you perform (automated tests, manual review),
what did you focus on, what did you find out.

www.fi.muni.cz/crocs



