
Secure programming techniques
and approaches I

Defence in depth

PA193 – Secure coding

Petr

Švenda
Zdeněk Říha
Faculty

of

Informatics, Masaryk University, Brno, CZ

Defence in depth

•

Code fails. We have to take it as a fact. All code
has a nonzero likelihood of containing one or more
vulnerabilities.
–

We have seen buffer overflow examples

•

You need to change your outlook from "my code is
very good quality" to "though my code is the best it
can be with today's knowledge, it likely still has
security defects.“
–

Michael Howard, Attack Surface (MSDN)

Defence in depth: Definition (Wikipedia)
•

Non-IT: “Defence in depth (also known as deep or elastic
defence) is a military strategy; it seeks to delay rather than
prevent the advance of an attacker, buying time and causing
additional casualties by yielding space.”

•

IT: “Defence in depth is an information assurance concept
in which multiple layers of security controls (defence) are
placed throughout an IT system. Its intent is to provide
redundancy in the event a security control fails or a
vulnerability is exploited that can cover aspects of personnel,
procedural, technical and physical for the duration of the
system's life cycle.”

Defence in depth

•

It is an approach/concept/strategy
•

You have to apply it in your concrete project

•

This lecture will give you some hints
•

You have to select appropriate measures

•

You have to think as an attacker

Basic concepts

•

Simplicity
–

Less things can go wrong

–

Fewer possible inconsistencies
–

Code is easier to understand

•

Restriction
–

Minimize access (rights)

–

Inhibit communication

Basic concepts in more details
•

Simplicity
–

keep it simple (stupid) -

KISS

•

Compartmentalization
–

Principle of least privilege

–

Minimize needed trust
•

Defence

in depth

–

Use more than one security mechanism
–

Secure the weakest link

–

Fail securely
•

Work in team
–

Do not reinvent wheel

–

Code review

Compartmentalization

•

Divide system into modules
–

Each module serves a specific purpose

–

Different modules will have different access rights
–

The access rights are related to activities

•

Example:
1.

Access to files

2.

Read user or network input
3.

Execute privileged instructions (under root UID)

•

Real example:
–

Apache vs. suEXEC

suEXEC - example
•

User “Alice”

has a website including some CGI scripts in her

own public_html

folder, which can be accessed by
http://server/~alice.

•

Bob now views Alice's webpage, which requires Apache to
run one of these CGI scripts.

•

Instead of running all scripts as “wwwrun”, the scripts in
/home/alice/public_html

will be wrapped using suEXEC

and

run with Alice's user ID resulting in higher security and
eliminating the need to make the scripts readable and
executable for all users or everyone in the "wwwrun" group.

Least Privilege

•

A subject should be given only those privileges
necessary to complete its task
–

Function, not identity, controls

–

Rights added as needed and discarded after use (!)
•

The original formulation from Jerome Saltzer
–

“Every

program and

every

privileged

user

of

the

system

 should

operate

using

the

least

amount

of

privilege
 necessary

to complete

the

job.”

•

Dynamic assignments of privileges was later
discussed by Roger Needham.

Least Privilege - example
•

On UNIX-based systems binding a program to a port number
<1024 requires root privilege.
–

Let’s ignore modern capabilities at this moment

•

Many internet servers listening on well known ports (like webserver
 on port 80, mailserver

on port 25 etc.) need to be run with root

priviledge.
•

As soon as the port is bound the process should relinquish

the root

privilege as it is typically not needed anymore.
•

Many programs keep running with the root privileges.
–

After a successful attack against the process the attacker receives the
power of root

–

“Sendmail”

was well known for problems of this kind
–

Visual Studio required Admin privileges for long time

Minimize needed trust
•

Minimize trust relationships

•

Clients, servers should not trust each other
–

all can get hacked

–

can be manipulated by users
•

Trusted code should not call untrusted

code

•

Do not trust the input (!)
–

Separate lecture on input validation will follow

•

Do not trust the communication channel
–

Use encryption, data authentication etc.

–

Separate lecture on secure channel will follow

Example: Web security

•

Web server + web client
•

Simple HTML form

(FORM, INPUT, TEXT,

MAXLENGTH, …)
•

Validity of fields checked by Javascript

Example: Web security (2)

Example: Web security (3)

•

The server cannot trust that the input received from
the web browser will be correct with respect to

the

limitations specified
–

E.g. MAXLENGTH attribute of the INPUT fields

–

E.g. values will be check by the Javascript

functions
•

It is easy to avoid these checks
–

Disable Javascript

–

Send the “filled”

form directly
–

Tools (e.g. python request
module)

Fail-Safe Defaults

•

Default action is to deny access
•

Blacklist & Whitelist

•

Example: firewall
–

Default action is to drop packets

–

The

administrator

configures

the firewall

to allow

only

the
 packet

types

deemed

acceptable

though.

•

Example: input filtering
–

E.g. HTML tags in blog posts

Example - Blacklisting of HTML

•

E.g. blocking the tags
–

‘applet’, ‘body’, ‘bgsound’, ‘base’, ‘basefont’, ‘embed’,
‘frame’, ‘frameset’, ‘head’, ‘html’, ‘id’, ‘iframe’, ‘ilayer’,
‘layer’, ‘link’, ‘meta’, ‘name’, ‘object’, ‘script’, ‘style’, ‘title’,
‘xml’

•

A new version of HTML arrives (e.g. HTML5)
–

New tags (like <audio>, <video>, …)

–

New attribues

(like formaction of <input>,…)
•

Syntax errors
–

How to recover from syntax errors

Fail-safe vs. Fail-secure

•

Fail-safe means that a device will not endanger
lives or properties when it fails.

•

Fail-secure means that access or data will not fall
into the wrong hands in a failure.

•

Example: if a building catches fire, fail-safe

systems
would unlock doors

to ensure quick escape and

allow firefighters inside, while fail-secure

would lock
doors

to prevent unauthorized access to the

building.

Failing securely (1)

•

What’s wrong with the following code?

DWORD dwRet

= IsAccessAllowed(...);
if (dwRet

== ERROR_ACCESS_DENIED) {

// Security check failed.
// Inform user that access is denied.

} else {
// Security check OK.

}

Failing securely (2)

•

This is a more secure alternative.
•

Got it now?

DWORD dwRet

= IsAccessAllowed(...);

if (dwRet

== NO_ERROR) {
// Secure check OK.
// Perform task.

} else {
// Security check failed.
// Inform user that access is denied.

}

DWORD dwRet

=
IsAccessAllowed(...);
if (dwRet

==
ERROR_ACCESS_DENIED) {

// Security check failed.
// Inform user that access is

denied.
} else {

// Security check OK.
}

FreeBSD-SA-01:56
II. Problem Description

The addition of a flawed check for a numeric result during reverse DNS
lookup causes tcp_wrappers to skip some of its sanity checking of DNS
results. These sanity checks are only enabled by the 'PARANOID' ACL
option in the configuration file, and simply weaken the 'PARANOID'
host checks to the level of assurance provided by the regular host
ACLs.

III. Impact

An attacker that can influence the results of reverse DNS lookups can
bypass certain tcp_wrappers PARANOID ACL restrictions by impersonating
a trusted host. Such an attacker would need to be able to spoof
reverse DNS lookups, or more simply the attacker may be the
administrator of the DNS zone including the IP address of the remote
host.

FreeBSD-SA-01:56

•

The patch that is fixing the bug:
 http://ftp.sunet.se/pub/security/vendor/freebsd/patches/SA-01:56/tcp_wrappers.patch

--- contrib/tcp_wrappers/socket.c2000/09/25 00:41:55 1.5
+++ contrib/tcp_wrappers/socket.c 2001/07/04 20:16:18 1.6
@@ -222,7 +222,7 @@

hints.ai_family = sin->sa_family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE | AI_CANONNAME | AI_NUMERICHOST;

- if ((err = getaddrinfo(host->name, NULL, &hints, &res0) == 0)) {
+ if ((err = getaddrinfo(host->name, NULL, &hints, &res0)) == 0) {

freeaddrinfo(res0);
tcpd_warn("host name/name mismatch: "

"reverse lookup results in non-FQDN %s",

FreeBSD-SA-11:09.pam_ssh
I. Background

The PAM (Pluggable Authentication Modules) library provides a flexible framework for user
authentication and session setup / teardown. It is used not only in the base system, but also by a
large number of third-party applications.

The base system includes a module named pam_ssh

which, if enabled, allows users to authenticate
themselves by typing in the passphrase of one of the SSH private

keys which are stored in encrypted
form in the their .ssh

directory. Authentication is considered successful if at least

one of these keys
could be decrypted using the provided passphrase.

By default, the pam_ssh

module rejects SSH private keys with no passphrase. A "nullok" option
exists to allow these keys.

II. Problem Description

The OpenSSL

library call used to decrypt private keys ignores the passphrase argument if the
key is not encrypted. Because the pam_ssh

module only checks whether the passphrase
provided by the user is null, users with unencrypted SSH private

keys may successfully
authenticate themselves by providing a dummy passphrase.

III. Impact

If the pam_ssh

module is enabled, attackers may be able to gain access to user

accounts
which have unencrypted SSH private keys.

Failing securely

•

Do not expose system internals even in case of errors
–

Stack traces

–

Internal errors
–

Paths

Do not expose system internals in case of errors

WordPress

database error:
[Table './serkey/posts' is marked as crashed and should be repaired]
SELECT MAX(id) FROM posts;

WordPress

database error:
[Table './serkey/posts' is marked as crashed and should be repaired]
SELECT * FROM posts WHERE id IN ('');

Failing securely
–

Many vulnerabilities are related to
•

error handling,

•

debugging,
•

testing features,

•

error messages.
–

Make sure you handle errors

–

Test
•

Test if your system fails securely as you expect

•

There may be nontrivial consequences, relationships, …

KISS principle

•

Keep it as simple as possible
–

KISS –

Keep is simple stupid

–

“Invented”

in 1960s in aviation industry
•

Simpler means less can go wrong
–

And when errors occur, they are easier to understand
and fix

•

Pay attention to interfaces and interactions

Keep It Simple

•

Don’t add unnecessary features
–

Additional functionality means more ways to attack

•

Use simple algorithms that are easy to verify
–

Premature optimizations

–

‘Hacks’

in code make it
•

More difficult to understand

•

More difficult to maintain

FreeBSD-SA-11:08.telnetd
II. Problem Description

When an encryption key is supplied via the TELNET protocol, its length
is not validated before the key is copied into a fixed-size buffer.

III. Impact

An attacker who can connect to the telnetd daemon can execute arbitrary
code with the privileges of the daemon (which is usually the "root"
superuser).

IV. Workaround

No workaround is available, but systems not running the telnet daemon
are not vulnerable.

KISS principle – Best practices
•

Break down your tasks into sub tasks that you think
should take no longer than 4-12 hours to code.

•

Break down your problems into many small problems.
Each problem should be able to be solved within one or
a very few classes.

•

Keep your methods small, each method should never
be more than 30-40 lines. Each method should only
solve one little problem.

•

Solve the problem, then code it. Not the other way
around.

•

Test driven development
–

Prepare tests first

Mediation is difficult

•

Check permissions at every access
•

Quite often done only with the first action
–

File open

•

If permissions change after the access could be
unauthorized

•

Mediator with higher privileges
–

Kernel

–

Services (daemons running as root)
–

…

FreeBSD-SA-08:03.sendfile
II. Problem Description

When a process opens a file (and other file system objects, such as
directories), it specifies access flags indicating its intent to read,
write, or perform other operations. These flags are checked against
file system permissions, and then stored in the resulting file
descriptor to validate future operations against.

The sendfile(2) system call does not check the file descriptor access
flags before sending data from a file.

III. Impact

If a file is write-only, a user process can open the file and use
sendfile to send the content of the file over a socket, even though the
user does not have read access to the file, resulting in possible
disclosure of sensitive information.

“Security by Obscurity” is NOT secure

•

“Security by Obscurity”

vs. “Open design”
•

Security should not depend on secrecy of design or
implementation

•

“Security by Obscurity”

does not work
–

Reverse engineering

–

Disassembler: machine code to assembly language
–

Discomplier: machine code to higher-level language

•

Assume an attacker knows everything you know
–

Insider attacks are common

–

If attacker has 1-in-a-million chance, and there are a million
attackers, you are out of luck

Security by Obscurity vs. Open Design

•

Open design does not mean that the full source
code must be available to everyone

•

Logically crypto keys, passwords, …

must remain
secret

Security by obscurity

•

Examples where security by obscurity did not work
–

GSM encryption algorithms: A5/1, A5/2, …

–

WEP encryption
–

CSS encryption

on DVDs

–

Mifare

classic smartcards
–

Car remotes
•

Keeloq

Separation of Privilege

•

Require multiple conditions to grant privilege
–

Separation of duty

•

Failures are seen frequently
–

Edward Snowden (2013)
•

US lost classified information

•

Now asylum seeker in Russia
–

Unauthorized trading in UBS (Kweku

Adoboli, 2010)

•

Loss of 2 billion USD
–

Fraudulent trades Societe

Generale

(Jerome

Kerviel, 2008)

•

Loss of 7.2 billion USD

Do not share

•

Share the minimal number of mechanisms
–

Information can flow along shared channels

–

Covert channels
•

Use isolation
–

Virtual machines

–

Sandboxes

Vulnerability Note VU#911878 (CVE-2005-0109)
Description

Hyper-Threading (HT) Technology allows two series of instructions to run simultaneously and
independently on a single processor. With Hyper-Threading Technology enabled, the system
treats a physical processor as two "logical" processors. Each logical processor is allocated a
thread on which to work, as well as a share of execution resources such as cache memories,
execution units, and buses.

Information could potentially be deduced by local users using programs capable of shared
memory cache eviction analysis. Proof of concept code using timing and cache eviction
analysis techniques have demonstrated that cryptographic keys can be deduced on Intel
processors with Hyper-Threading technology (HTT) . It is likely that similar techniques could
be employed on other processor architectures that support simultaneous multithreading.

This vulnerability is applicable to many operating system platforms running on a hardware
platform that supports simultaneous multithreading (Intel HTT in particular).

Human Acceptability

•

Security mechanisms complicate accessing
resources and performing duties
–

Hide complexity introduced by security mechanisms to
users

•

Chernobyl nuclear power plant
–

Some safety mechanisms disabled/bypassed

•

Unpopularity of User Account Control (UAC) in
Microsoft Vista
–

Number of alerts reduced in subsequent Windows
versions

•

Certificate validation errors in Web browsers

Don’t reinvent the wheel

•

Use standard, tested components
•

Use SW, libraries, designs, protocols that other are
successfully using

•

In particular use standard crypto and crypto libraries
–

Use standard good random number generators

–

Use standards parsers etc.
–

Don’t implement your own cryptography

•

Bad examples
–

Bad use of crypto: 802.11b

–

Protocols without expert review: early 802.11i
–

Ad-hoc changes to OpenSSL

key generation: Debian

(2008)

Avoid High-Risk Technologies
•

Some technologies are considered more insecure than
others.

•

This includes programming languages, services and
protocols.

•

Statistics of published vulnerabilities.
–

E.g. comparison of web browsers

•

If the technology must be used, integrate security wrappers,
application firewalls etc.

•

JVM is a hot target these days
–

Java as a language has always been considered a bit more
secure language than C/C++

•

Early versions of PHP, Flash, Silverlight, ….

Learn from Mistakes

•

Learn from your mistakes and mistakes of others
–

How did the security error occur?

–

Is the same bug repeated in the code?
–

How could it have been prevented?
•

Change your education/practices to avoid repeating
the same errors.

–

Examine mistakes/bugs of your “competitors”

(!)

Secure the weakest link

•

Think about possible attacks
–

What want attackers achieve?

–

How can they attack your system?
–

What do they need to succeed?

•

Find weakest link
–

Analyze the ways to attack the system
•

The security analysis

–

Improve the security of the weakest link

The weakest link

•

Encryption example
–

The system encrypts data

–

Encryption is done in a standard crypto library
•

The library will typically not be the weakest link

–

Data is stored in encrypted form
–

The weakest link will typically be centered around the
cryptographic key / password
•

How and where is the passport stored?

•

How is it processed during the data
encryption/decryption?

Software design pattern

•

SW design pattern
–

General solution to a standard problem

–

The problem is common and being solved frequently
–

The solution is general and can be reused

•

The aim is to speed up the development process
and to avoid issues that can be recognized later (or
too late).

•

Design pattern is not code
–

Design pattern ≠

code reuse

Software design pattern

•

Examples
–

Computational design patterns
•

Identify key computations

–

Execution patterns
•

Execution of stream of tasks & synchronization

–

Implementation strategy patterns
•

Program organization and data structures

Security patterns

•

Applying the idea of Software design pattern to the
area of computer security

•

Aim is to achieve some IT security goals
–

Like confidentiality, integrity, …

or some specific goal

•

Comprehensive catalogs of security patterns exist
–

E.g. Munawar

Hafiz. Security Pattern Catalog

–

http://www.munawarhafiz.com/securitypatterncatalog/index.php

Examples of security patterns

•

Security patterns for highly available systems
–

Check

pointed

system

•

Replication and recovery from component failure
–

Standby pattern
•

Resuming the service of a failing component

–

Comparator-checked

fault

tolerant

system
•

monitoring the failure free behavior of a component

–

Replicated

system
•

The use of redundant components, load balancing, …

Security Pattern Catalog

Source: http://www.munawarhafiz.com/securitypatterncatalog/index.php

Security Pattern Catalog

Source: http://www.munawarhafiz.com/securitypatterncatalog/index.php

Security Pattern Catalog - Example
•

Problem
–

A security failure in a compartment can cause the whole system to crash. How can
we make the system robust against security failures?

•

Solution
–

Employ security measures at multiple layers of an application and throughout its
operating environment. Defense In Depth is more a security principle. In fact this is
considered to be the core security principles for system architecture.

•

Known Uses
–

qmail

does not employ only one security mechanism, rather it has security solutions
built in different levels of architecture.

•

Source
–

Hafiz et. al.
•

Tags
–

Deep Defense

OWASP Top 10 of WEB application vulnerabilities

1.

Unvalidated

Input
2.

Broken Access Control

3.

Broken Authentication and Session Management
4.

Cross Site Scripting (XSS) Flaws

5.

Buffer Overflows
6.

Injection Flaws

7.

Improper Error Handling
8.

Insecure Storage

9.

Denial of Service
10.Insecure Configuration Management

The SD3 Security Framework (Microsoft)
SD3

Secure architecture and code
Threat analysis
Vulnerability reduction

Secure architecture and code
Threat analysis
Vulnerability reduction

Secure
by Design

Protection: Detection, defense, recovery,
management
Process: How to guides, architecture guides
People: Training

Protection: Detection, defense, recovery,
management
Process: How to guides, architecture guides
People: Training

Secure in
Deployment

Attack surface area reduced
Unused features turned off by default
Minimum privileges used

Attack surface area reduced
Unused features turned off by default
Minimum privileges used

Secure
by Default

Security in Software Development Life
Cycle

[Source: Gary McGraw, Software security, Security & Privacy Magazine,
IEEE, Vol

2, No. 2, pp. 80-83, 2004.]

	Secure programming techniques and approaches I��Defence in depth
	Defence in depth
	Defence in depth: Definition (Wikipedia)
	Defence in depth
	Basic concepts
	Basic concepts in more details
	Compartmentalization
	suEXEC - example
	Least Privilege
	Least Privilege - example
	Minimize needed trust
	Example: Web security
	Example: Web security (2)
	Example: Web security (3)
	Fail-Safe Defaults
	Example - Blacklisting of HTML
	Fail-safe vs. Fail-secure
	Failing securely (1)
	Failing securely (2)
	FreeBSD-SA-01:56
	FreeBSD-SA-01:56
	FreeBSD-SA-11:09.pam_ssh
	Failing securely
	Do not expose system internals in case of errors
	Failing securely
	KISS principle
	Keep It Simple
	FreeBSD-SA-11:08.telnetd
	KISS principle – Best practices
	Mediation is difficult
	FreeBSD-SA-08:03.sendfile
	“Security by Obscurity” is NOT secure
	Security by Obscurity vs. Open Design
	Security by obscurity
	Separation of Privilege
	Do not share
	Vulnerability Note VU#911878 (CVE-2005-0109)
	Human Acceptability
	Don’t reinvent the wheel
	Avoid High-Risk Technologies
	Learn from Mistakes
	Secure the weakest link
	The weakest link
	Software design pattern
	Software design pattern
	Security patterns
	Examples of security patterns
	Security Pattern Catalog
	Security Pattern Catalog
	Security Pattern Catalog - Example
	OWASP Top 10 of WEB application vulnerabilities
	The SD3 Security Framework (Microsoft)
	Security in Software Development Life Cycle

