
PA193 - Secure coding

principles and practices

Static analysis with annotations, dynamic analysis,

security testing

Petr Švenda svenda@fi.muni.cz

Overview

• Lecture:

– Annotations for static analysis (Microsoft SAL)

– blackbox / whitebox testing

– whitebox testing – how to analyze large code base

– fuzzing (blackbox testing)

– tools

• Labs

2 PA193 | Annotations, dynamic analysis, fuzzing

CODE ANNOTATIONS – MS SAL

3 PA193 | Annotations, dynamic analysis, fuzzing

Microsoft SDL C/C++ static checker

• http://msdn.microsoft.com/en-us/security/gg675036

• Problems not found by PREfast checker by default

• But solvable by SAL

– check of return value

– argument must be not NULL

– string must be terminated

– length of data read / written into buffer

4 PA193 | Annotations, dynamic analysis, fuzzing

Source-code annotation language (SAL)

• Microsoft’s annotation language

• Improves code checking done by MS static checker

PREfast

• MS Annotations

– http://msdn.microsoft.com/en-us/library/ms182032.aspx

– http://msdn.microsoft.com/en-us/library/hh916382.aspx

• Additional requirements are added to declaration of

function, structure... via (non-standard) keywords

• Validity of such requirements are checked by PREfast

– in pre-state (before fnc call) & in post-state (after fnc call)

5 PA193 | Annotations, dynamic analysis, fuzzing

SAL functions basics

• Optional version of arguments

– argument might be NULL

– _In_opt, _Out_opt...

– function must perform check before use

6 PA193 | Annotations, dynamic analysis, fuzzing

SAL functions basics II.

• Pointer type annotations

• _Outptr_

– should not be NULL

– should be initialized

• _Outptr_opt_

– can be NULL, must be checked

7 PA193 | Annotations, dynamic analysis, fuzzing

• PREfast analysis

8 PA193 | Annotations, dynamic analysis, fuzzing

void salDemo(_In_ int* pInArray, _Outptr_ int** ppArray) {

}

int main(int argc, char* argv[]) {

int* pArray = NULL;

int* pArray2 = NULL;

if (strcmp(argv[1], "alloc") == 0) pArray = new int[5];

salDemo(pArray, &pArray2);

return 0;

}

test.cpp(34): warning : C6101: Returning uninitialized memory '*ppArray'. A successful
path through the function does not set the named _Out_ parameter.

test.cpp(49): warning : C6387: 'pArray' could be '0': this does not adhere to the
specification for the function 'salDemo'.

test.cpp(49): warning : C6001: Using uninitialized memory '*pArray'.

SAL annotations - functions

• http://msdn.microsoft.com/en-us/library/hh916382.aspx

9 PA193 | Annotations, dynamic analysis, fuzzing

SAL annotations –

• Structs and classes can be also annotated

– http://msdn.microsoft.com/en-us/library/jj159528.aspx

• Locking behavior for concurrency can be annotated

– http://msdn.microsoft.com/en-us/library/hh916381.aspx

• Whole function can be annotated

– http://msdn.microsoft.com/en-us/library/jj159529.aspx

– _Must_inspect_result_

• Best practices

– http://msdn.microsoft.com/en-us/library/jj159525.aspx

10 PA193 | Annotations, dynamic analysis, fuzzing

SAL – examples (in and out buffer)

11 PA193 | Annotations, dynamic analysis, fuzzing

// read from buffer, but outside

int readData(void *buffer, int length);
int readData(_In_reads_(length) void *buffer, int length);

// writes specified amount of data into buffer

int fillData(void *buffer, const int maxLength, int *length);
int fillData(_Out_writes_all_(length) void *buffer, const int length);

// writes into buffer maxLength at max, but possibly less and modifies also length argument

int fillData(void *buffer, const int maxLength, int *length);
// Check if no more then maxLength and *length is written, also check range of length

int fillData(__Out_writes_to_(maxLength, *length) void *buffer,
const int maxLength, _Out_range_(0, maxLength-1) int *length);

// read AND write from buffer

int readWriteData(void *buffer, int length);
int readWriteData(_Inout_updates_(length) void *buffer, int length);

SAL – examples (pointers, strings)

12 PA193 | Annotations, dynamic analysis, fuzzing

// pass argument by value foo pointer

int getInfo(struct thing *thingPtr);
// value is used as input and output => _Inout_

int getInfo(_Inout_ struct thing *thingPtr);

// pass C null-terminated strings

int writeString(const char *string);
// must be null terminated string > _In_z_

int writeString(_In_z_ const char *string);

Using SAL with / without PREfast

• Cross-platform code

– Compiled with MSVC for Windows (SAL is supported)

– Compiled with GCC for Linux (SAL not supported)

• SAL annotations makes GCC compilation to fail

• Solution

– Create custom #define for most common SAL annotations

– Define as empty if not compiled with MSVC

– Can be also tuned when SAL annotation changes itself

• Peter Gutmann’ Experiences with SAL/PREfast

– http://www.cs.auckland.ac.nz/~pgut001/pubs/sal.html

13 PA193 | Annotations, dynamic analysis, fuzzing

Wrapping defines for SAL

14 PA193 | Annotations, dynamic analysis, fuzzing

#if defined(_MSC_VER) && defined(_PREFAST_)

#define IN_BUFSIZE _In_reads

#define IN_BUFSIZE_OPT _In_reads_opt

#define OUT_BUFSIZE _Out_writes

#define OUT_BUFSIZE_OPT _Out_writes_opt

#define OUT_PTR _Outptr_

#define OUT_PTR_OPT _Outptr_opt_

#else

#define IN_BUFSIZE(size)

#define IN_BUFSIZE_OPT(size)

#define OUT_BUFSIZE(max, size)

#define OUT_BUFSIZE_OPT(max, size)

#define OUT_PTR

#define OUT_PTR_OPT

#endif /* VC++ with source analysis enabled */

Modification of http://www.cs.auckland.ac.nz/~pgut001/pubs/sal.html

Deputy (annotations for GCC)

• Not active any more �, last update 2006?

– http://www.stanford.edu/class/cs295/asgns/asgn5/www/

15 PA193 | Annotations, dynamic analysis, fuzzing

DYNAMIC ANALYSIS

16 PA193 | Annotations, dynamic analysis, fuzzing

What can dynamic analysis provide

• Dynamic analysis compile and execute tested program

– real or virtualized processor

• Inputs are supplied and outputs are observed

– sufficient number of inputs needs to be supplied

– code coverage should be high

• Memory, function calls and executed operations can be

monitored and evaluated

– invalid access to memory (buffer overflow)

– memory leak or double free

– calls to potentially sensitive functions

• http://www.embedded.com/design/safety-and-security/4419779

17 PA193 | Annotations, dynamic analysis, fuzzing

Dynamic analysis tools

• Commercial

– HP/Fortify, IBM Purify, Veracode, Coverity, Klocwork, Parasoft...
(together with static analysis)

• Free

– GCC gcov tool

– Valgrind – set of dynamic analysis features

• List of tools for dynamic analysis
– https://en.wikipedia.org/wiki/Dynamic_program_analysis

• Most performance analyzers are dynamic analyzers

– MS Visual Studio→Analyze→Start performance analysis

– gcc -Wall -fprofile-arcs -ftest-coverage main.c

18 PA193 | Annotations, dynamic analysis, fuzzing

Valgrind http://www.valgrind.org/

• Suite of multiple tools (valgrind --tool=<toolname>)

• Memcheck - memory management dynamic analysis

– most commonly used tool (memory leaks)

– replaces standard C memory allocator with its own implementation and
check for memory leaks, corruption (additional guards blocks)...

– dangling pointers, unclosed file descriptors, uninitialized variables

– http://www.valgrind.org/docs/manual/mc-manual.html

• Massif – heap profiler

• Hellgrind - detection of concurrent issues (later presentation)

• Callgrind – generation of all graphs

• ...

19 PA193 | Annotations, dynamic analysis, fuzzing

Valgrind – core options

• Compile with debug symbols
– gcc –std=c99 –Wall –g –o program program.c

– will allow for more context information in Valgrind report

• Run program with Valgrind attached
– valgrind <options> ./program

– program cmd line arguments (if any) can be passed

– valgrind -v --leak-check=full ./program arg1

• Trace also into sub-processed
– --trace-children=yes

– necessary for multi-process / threaded programs

• Display unclosed file descriptors
– --track-fds=yes

20 PA193 | Annotations, dynamic analysis, fuzzing

Memcheck – memory leaks

• Detailed report of memory leaks checks

– --leak-check=full

• Memory leaks

– Definitely lost: memory is directly lost (no pointer exists)

– Indirectly lost: only pointers in lost memory points to it

– Possibly lost: address of memory exists somewhere, but

might be just randomly correct value (usually real leak)

21 PA193 | Annotations, dynamic analysis, fuzzing

Memcheck – uninitialized values

• Detect usage of uninitialized variables
– -undef-value-errors=yes (default)

• Track from where initialized variable comes from
– --track-origins=yes

– introduces high performance overhead

22 PA193 | Annotations, dynamic analysis, fuzzing

Memcheck – invalid reads/writes

• Writes outside allocated memory (buffer overflow)

• Only for memory located on heap!

– allocated via dynamic allocation (malloc, new)

• Will not detect problems on stack or static (global)
variables
– https://en.wikipedia.org/wiki/Valgrind#Limitations_of_Memcheck

• Writes into already de-allocated memory

– Valgrind tries to defer reallocation of freed memory as long

as possible to detect subsequent reads/writes here

23 PA193 | Annotations, dynamic analysis, fuzzing

24 PA193 | Annotations, dynamic analysis, fuzzing

#include <iostream>

int Static[5];

int memcheckFailDemo(int* arrayStack, unsigned int arrayStackLen,

int* arrayHeap, unsigned int arrayHeapLen) {

int Stack[5];

Static[100] = 0;

Stack[100] = 0;

for (int i = 0; i <= 5; i++) Stack [i] = 0;

int* array = new int[5];

array[100] = 0;

arrayStack[100] = 0;

arrayHeap[100] = 0;

for (unsigned int i = 0; i <= arrayStackLen; i++) {

arrayStack[i] = 0;

}

for (unsigned int i = 0; i <= arrayHeapLen; i++) {

arrayHeap[i] = 0;

}

return 0;

}

int main(void) {

int arrayStack[5];

int* arrayHeap = new int[5];

memcheckFailDemo(arrayStack, 5, arrayHeap, 5);

return 0;

}

25 PA193 | Annotations, dynamic analysis, fuzzing

#include <iostream>

int Static[5];

int memcheckFailDemo(int* arrayStack, unsigned int arrayStackLen,

int* arrayHeap, unsigned int arrayHeapLen) {

int Stack[5];

Static[100] = 0; /* Error - Static[100] is out of bounds */

Stack[100] = 0; /* Error - Stack[100] is out of bounds */

for (int i = 0; i <= 5; i++) Stack [i] = 0; /* Error - for Stack[5] */

int* array = new int[5];

array[100] = 0; /* Error - array[100] is out of bounds */

arrayStack[100] = 0; /* Error - arrayStack[100] is out of bounds */

arrayHeap[100] = 0; /* Error - arrayHeap[100] is out of bounds */

for (unsigned int i = 0; i <= arrayStackLen; i++) { /* Error - off by one */

arrayStack[i] = 0;

}

for (unsigned int i = 0; i <= arrayHeapLen; i++) { /* Error - off by one */

arrayHeap[i] = 0;

}

/* Problem Memory leak – array */

return 0;

}

int main(void) {

int arrayStack[5];

int* arrayHeap = new int[5];

memcheckFailDemo(arrayStack, 5, arrayHeap,

return 0;

}

Problems detected – compile time

• g++ -ansi -Wall -Wextra -g -o test test.cpp

– clean compilation

• MSVC (Visual Studio 2012) /W4

– only one problem detected, Stack[100] = 0;

26 PA193 | Annotations, dynamic analysis, fuzzing

test.cpp(56): error C4789: buffer 'Stack' of size 20 bytes will

be overrun; 4 bytes will be written starting at offset 400

27 PA193 | Annotations, dynamic analysis, fuzzing

#include <iostream>

int Static[5];

int memcheckFailDemo(int* arrayStack, unsigned int arrayStackLen,

int* arrayHeap, unsigned int arrayHeapLen) {

int Stack[5];

Static[100] = 0; /* Error - Static[100] is out of bounds */

Stack[100] = 0; /* Error - Stack[100] is out of bounds */

for (int i = 0; i <= 5; i++) Stack [i] = 0; /* Error - for Stack[5] */

int* array = new int[5];

array[100] = 0; /* Error - array[100] is out of bounds */

arrayStack[100] = 0; /* Error - arrayStack[100] is out of bounds */

arrayHeap[100] = 0; /* Error - arrayHeap[100] is out of bounds */

for (unsigned int i = 0; i <= arrayStackLen; i++) { /* Error - off by one */

arrayStack[i] = 0;

}

for (unsigned int i = 0; i <= arrayHeapLen; i++) { /* Error - off by one */

arrayHeap[i] = 0;

}

/* Problem Memory leak – array */

return 0;

}

MSVC /W4

Visual Studio 2012 & GCC – runtime checks

• Corruption (usually) causes runtime exceptions

– Stack around variable ‘Stack’ was corrupted

– Stack around variable ‘arrayStack’ was corrupted

• MSVC: /RTC, /GS, /DYNAMICBASE (ASLR) and

/NXCOMPAT (DEP)

• GCC: -fstack-protector-all, --no_execstack (DEP),

kernel.randomize_va_space=1 (ASLR)

• May preventing successful exploit, but is only last defense

28 PA193 | Annotations, dynamic analysis, fuzzing

Cppcheck --enable=all static.cpp

• (Some memory leaks also detected)

29 | PA193 - Static and dynamic checkers

[static.cpp:7]: (error) Array 'Static[5]' accessed at index 100, which is out of bounds.
[static.cpp:8]: (error) Array 'Stack[5]' accessed at index 100, which is out of bounds.
[static.cpp:10]: (error) Buffer is accessed out of bounds: Stack
[static.cpp:30] -> [static.cpp:15]: (error) Array 'arrayStack[5]' accessed at

index 100, which is out of bounds.
[static.cpp:13]: (error) Array 'array[5]' accessed at index 100, which is out of bounds.
[static.cpp:25]: (error) Memory leak: array
[static.cpp:31]: (error) Memory leak: arrayHeap

30 PA193 | Annotations, dynamic analysis, fuzzing

#include <iostream>

int Static[5];

int memcheckFailDemo(int* arrayStack, unsigned int arrayStackLen,

int* arrayHeap, unsigned int arrayHeapLen) {

int Stack[5];

Static[100] = 0; /* Error - Static[100] is out of bounds */

Stack[100] = 0; /* Error - Stack[100] is out of bounds */

for (int i = 0; i <= 5; i++) Stack [i] = 0; /* Error - for Stack[5] */

int* array = new int[5];

array[100] = 0; /* Error - array[100] is out of bounds */

arrayStack[100] = 0; /* Error - arrayStack[100] is out of bounds */

arrayHeap[100] = 0; /* Error - arrayHeap[100] is out of bounds */

for (unsigned int i = 0; i <= arrayStackLen; i++) { /* Error - off by one */

arrayStack[i] = 0;

}

for (unsigned int i = 0; i <= arrayHeapLen; i++) { /* Error - off by one */

arrayHeap[i] = 0;

}

/* Problem Memory leak – array */

return 0;

}

Cppcheck --enable=all file.cpp

/* Not all memory leaks are caught! */

if (1 == 2) delete[] array; /* caught */

if (Stack[0] == 1) delete[] array; /* missed */

if (Stack[0] == 1) delete[] arrayHeap; /*-//-*/

Visual Studio 2012 & PREfast

• Additional two problems detected
– Static[100] = 0;

– for (int i = 0; i <= 5; i++) Stack [i] = 0;

• arrayStack and arrayHeap overruns still missed

31 PA193 | Annotations, dynamic analysis, fuzzing

test.cpp(55): warning : C6200: Index '100' is out of valid index

range '0' to '4' for non-stack buffer 'int * Static'.
test.cpp(58): warning : C6201: Index '5' is out of valid index

range '0' to '4' for possibly stack allocated buffer 'Stack'.
test.cpp(55): warning : C6386: Buffer overrun while writing to 'Static':

the writable size is '20' bytes, but '404' bytes might be written.
test.cpp(62): warning : C6386: Buffer overrun while writing to 'array':

the writable size is '5*4' bytes, but '404' bytes might be written.

32 PA193 | Annotations, dynamic analysis, fuzzing

#include <iostream>

int Static[5];

int memcheckFailDemo(int* arrayStack, unsigned int arrayStackLen,

int* arrayHeap, unsigned int arrayHeapLen) {

int Stack[5];

Static[100] = 0; /* Error - Static[100] is out of bounds */

Stack[100] = 0; /* Error - Stack[100] is out of bounds */

for (int i = 0; i <= 5; i++) Stack [i] = 0; /* Error - for Stack[5] */

int* array = new int[5];

array[100] = 0; /* Error - array[100] is out of bounds */

arrayStack[100] = 0; /* Error - arrayStack[100] is out of bounds */

arrayHeap[100] = 0; /* Error - arrayHeap[100] is out of bounds */

for (unsigned int i = 0; i <= arrayStackLen; i++) { /* Error - off by one */

arrayStack[i] = 0;

}

for (unsigned int i = 0; i <= arrayHeapLen; i++) { /* Error - off by one */

arrayHeap[i] = 0;

}

/* Problem Memory leak – array */

return 0;

}

Visual Studio 2012 & PREfast

Visual Studio 2012 & PREfast & SAL

33 PA193 | Annotations, dynamic analysis, fuzzing

test.cpp(11): warning : C6200: Index '100' is out of valid index
range '0' to '4' for non-stack buffer 'int * Static'.

test.cpp(14): warning : C6201: Index '5' is out of valid index
range '0' to '4' for possibly stack allocated buffer 'Stack'.

test.cpp(11): warning : C6386: Buffer overrun while writing to 'Static':
the writable size is '20' bytes, but '404' bytes might be written.

test.cpp(17): warning : C6386: Buffer overrun while writing to 'array':
the writable size is '5*4' bytes, but '404' bytes might be written.

test.cpp(23): warning : C6386: Buffer overrun while writing to 'arrayStack':
the writable size is '_Old_2`arrayStackLen' bytes, but '8' bytes might be written.

test.cpp(26): warning : C6386: Buffer overrun while writing to 'arrayHeap':
the writable size is '_Old_2`arrayHeapLen' bytes, but '8' bytes might be written.

int memcheckFailDemo(

_Out_writes_bytes_all_(arrayStackLen) int* arrayStack,

unsigned int arrayStackLen,

_Out_writes_bytes_all_(arrayHeapLen) int* arrayHeap,

unsigned int arrayHeapLen);

34 PA193 | Annotations, dynamic analysis, fuzzing

#include <iostream>

int Static[5];

int memcheckFailDemo(int* arrayStack, unsigned int arrayStackLen,

int* arrayHeap, unsigned int arrayHeapLen) {

int Stack[5];

Static[100] = 0; /* Error - Static[100] is out of bounds */

Stack[100] = 0; /* Error - Stack[100] is out of bounds */

for (int i = 0; i <= 5; i++) Stack [i] = 0; /* Error - for Stack[5] */

int* array = new int[5];

array[100] = 0; /* Error - array[100] is out of bounds */

arrayStack[100] = 0; /* Error - arrayStack[100] is out of bounds */

arrayHeap[100] = 0; /* Error - arrayHeap[100] is out of bounds */

for (unsigned int i = 0; i <= arrayStackLen; i++) { /* Error - off by one */

arrayStack[i] = 0;

}

for (unsigned int i = 0; i <= arrayHeapLen; i++) { /* Error - off by one */

arrayHeap[i] = 0;

}

/* Problem Memory leak – array */

return 0;

}

/* Error – still off by one, but not detected by SAL */

for (unsigned int i = 0; i < arrayStackLen + 1; i++) {

arrayStack[i] = 0;

}

Visual Studio 2012 & PREfast & SAL

35 PA193 | Annotations, dynamic analysis, fuzzing

: valgrind --tool=memcheck ./test
== Invalid write of size 4
== at 0x4006AB: memcheckFailDemo(int*, unsigned int, int*, unsigned int) (test.cpp:14)
== by 0x40075D: main (test.cpp:33)
== Address 0x595f230 is not stack'd, malloc'd or (recently) free'd

==
== Invalid write of size 4
== at 0x4006CB: memcheckFailDemo(int*, unsigned int, int*, unsigned in t) (test.cpp:17)
== by 0x40075D: main (test.cpp:33)
== Address 0x595f1d0 is not stack'd, malloc'd or (recently) free'd

==
== Invalid write of size 4
== at 0x400710: memcheckFailDemo(int*, unsigned int, int*, unsigned int) (test.cpp:23)
== by 0x40075D: main (test.cpp:33)
== Address 0x595f054 is 0 bytes after a block of size 20 alloc'd

== at 0x4C28152: operator new[](unsigned long) (vg_replace_malloc.c:363)
== by 0x40073F: main (test.cpp:32)

== LEAK SUMMARY:
== definitely lost: 40 bytes in 2 blocks

== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 6 from 6)

Invalid write detected

(array[100] = 0;)

Memory leaks detected

(array, arrayHeap)

Valgrind --tool=memcheck

Invalid write detected

(arrayHeap[100] = 0;)

Invalid write detected

(arrayHeap[i] = 0;)

36 PA193 | Annotations, dynamic analysis, fuzzing

#include <iostream>

int Static[5];

int memcheckFailDemo(int* arrayStack, unsigned int arrayStackLen,

int* arrayHeap, unsigned int arrayHeapLen) {

int Stack[5];

Static[100] = 0; /* Error - Static[100] is out of bounds */

Stack[100] = 0; /* Error - Stack[100] is out of bounds */

for (int i = 0; i <= 5; i++) Stack [i] = 0; /* Error - for Stack[5] */

int* array = new int[5];

array[100] = 0; /* Error - array[100] is out of bounds */

arrayStack[100] = 0; /* Error - arrayStack[100] is out of bounds */

arrayHeap[100] = 0; /* Error - arrayHeap[100] is out of bounds */

for (unsigned int i = 0; i <= arrayStackLen; i++) { /* Error - off by one */

arrayStack[i] = 0;

}

for (unsigned int i = 0; i <= arrayHeapLen; i++) { /* Error - off by one */

arrayHeap[i] = 0;

}

/* Problem Memory leak – array */

return 0;

}

Valgrind --tool=memcheck

Valgrind --tool=exp-sgcheck

37 PA193 | Annotations, dynamic analysis, fuzzing

==15979== Invalid write of size 4
==15979== at 0x40067C: memcheckFailDemo(int*, unsigned int, int*,

unsigned int) (test.cpp:11)
==15979== by 0x40075D: main (test.cpp:33)
==15979== Address 0x7fefffe34 expected vs actual:
==15979== Expected: stack array "Stack" of size 20 in this frame
==15979== Actual: unknown
==15979== Actual: is 0 after Expected
==15979==
==15979== Invalid write of size 4
==15979== at 0x4006E5: memcheckFailDemo(int*, unsigned int, int*,

unsigned int) (test.cpp:20)
==15979== by 0x40075D: main (test.cpp:33)
==15979== Address 0x7fefffe74 expected vs actual:
==15979== Expected: stack array "arrayStack" of size 20 in frame 1 back from here
==15979== Actual: unknown
==15979== Actual: is 0 after Expected
==15979==
==15979==
==15979== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 28 from 28)

Invalid write detected
for (int i = 0; i <= 5; i++) Stack[i] = 0;

Invalid write detected
... arrayStack[i] = 0;

38 PA193 | Annotations, dynamic analysis, fuzzing

#include <iostream>

int Static[5];

int memcheckFailDemo(int* arrayStack, unsigned int arrayStackLen,

int* arrayHeap, unsigned int arrayHeapLen) {

int Stack[5];

Static[100] = 0; /* Error - Static[100] is out of bounds */

Stack[100] = 0; /* Error - Stack[100] is out of bounds */

for (int i = 0; i <= 5; i++) Stack [i] = 0; /* Error - for Stack[5] */

int* array = new int[5];

array[100] = 0; /* Error - array[100] is out of bounds */

arrayStack[100] = 0; /* Error - arrayStack[100] is out of bounds */

arrayHeap[100] = 0; /* Error - arrayHeap[100] is out of bounds */

for (unsigned int i = 0; i <= arrayStackLen; i++) { /* Error - off by one */

arrayStack[i] = 0;

}

for (unsigned int i = 0; i <= arrayHeapLen; i++) { /* Error - off by one */

arrayHeap[i] = 0;

}

/* Problem Memory leak – array */

return 0;

}

Valgrind --tool=exp-sgcheck

(MSVS 2012) _CrtDumpMemoryLeaks();

39 | PA193 - Static and dynamic checkers

Detected memory leaks!
Dumping objects ->
{155} normal block at 0x00600AD0, 20 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD
{154} normal block at 0x00600A80, 20 bytes long.
Data: < > 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Object dump complete.

Tools - summary

• Compilers (MSVC, GCC) will miss many problems

• Compiler flags (/RTC and /GS; -fstack-protector-all) flags

– detect (some) stack based corruptions at runtime

– additional preventive flags /DYNAMICBASE (ASLR) and /NXCOMPAT (DEP)

• Valgrind memcheck

– will not find stack based problems, only heap corruptions (dynamic allocation)

• Valgrind exp-sgcheck

– will detect stack based problem, but miss first (possibly incorrect) access

• Cppcheck

– detect multiple problems (even memory leaks), but mostly limited to single function

• PREfast will find some stack based problems, limited to single function

• PREfast with SAL annotations will find additional stack and some heap
problems, but not all

40 PA193 | Annotations, dynamic analysis, fuzzing

TAINT ANALYSIS

41 PA193 | Annotations, dynamic analysis, fuzzing

Taint analysis

• Form of flow analysis

• Follow propagation of sensitive values inside
program

– e.g., user input that can be manipulated by an attacker

– find all parts of program where value can “reach”

• “Information flows from object x to object y,

denoted x→y , whenever information stored in x is

transferred to, object y.” D. Denning

• Native support in some languages (Ruby, Perl)

– But not C++ �

42 PA193 | Annotations, dynamic analysis, fuzzing

Taint sources

• Files (*.pdf, *.doc, *.js, *.mp3...)

• User input (keyboard, mouse, touchscreen)

• Network traffic

• USB devices

• ...

• Every time there is information flow from value from
untrusted source to other object X, object X is tainted

– labeled as “tainted”

43 PA193 | Annotations, dynamic analysis, fuzzing

Execution of sensitive operation

• Before sensitive operation (e.g., system()) is
executed with value, taint label is checked

– if value is tainted, alert is issued

• Untrusted data reaching privilege location is
detected

– can detect even unknown attacks

– (but sometimes we need to use user input)

44 PA193 | Annotations, dynamic analysis, fuzzing

Taint analysis - tools

• Taintgrind

– http://www.cl.cam.ac.uk/~wmk26/taintgrind/

– additional module to Valgrind

– dynamic taint analyzer for C/C++

– output memory traces (information flows) already produced by
Valgrind

• Tanalysis

– http://code.google.com/p/tanalysis/

– static taint analyzer for C

– plugin for Frama-C http://frama-c.com/

• Read more about taint analysis

– http://users.ece.cmu.edu/~ejschwar/papers/oakland10.pdf

45 PA193 | Annotations, dynamic analysis, fuzzing

Microsoft PREfast + Taint analysis

• Warning C6029 is issued when tainted value is
passed to parameter marked as [Post(Tainted=No)]

– without any checking (any condition statement)

• http://msdn.microsoft.com/en-
us/library/ms182047%28v=vs.100%29.aspx

46 PA193 | Annotations, dynamic analysis, fuzzing

// C

#include <CodeAnalysis\SourceAnnotations.h>

void f([SA_Pre(Tainted=SA_Yes)] int c);

// C++

#include <CodeAnalysis\SourceAnnotations.h>

using namespace vc_attributes;

void f([Pre(Tainted=Yes)] int c);

DEBUGGING SYMBOLS

(WHITEBOX)

47 PA193 | Annotations, dynamic analysis, fuzzing

Release vs. Debug

• Optimizations applied (compiler-specific settings)

– gcc –Ox (http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html)

• -O0 no optimization (Debug)

• -Og debug-friendly optimization

• -O3 heavy optimization

– msvc /Ox /Oi (http://msdn.microsoft.com/en-us/library/k1ack8f1.aspx)

• MSVS2010: Project properties→C/C++→optimizations

PA193 | Annotations, dynamic analysis, fuzzing48

Debug symbols

• Availability of debug information (symbols)

– gcc –g

• symbols inside binary

– msvc /Z7, /Zi

• symbols in detached file ($projectname.pdb)

49 PA193 | Annotations, dynamic analysis, fuzzing

Stripping out debug symbols

• Debug symbols are of great help for an “attacker”

– key called NSAKey in ADVAPI.dll? (Crypto 1998)

– http://www.heise.de/tp/artikel/5/5263/1.html

• Always strip out debug symbols in released binary

– check compiler flag

– Linux: run file or objdump --syms command

(stripped/not stripped)

– Windows: DependencyWalker

50 PA193 | Annotations, dynamic analysis, fuzzing

DYNAMIC ANALYSIS -

PROFILING (WHITEBOX)

51 PA193 | Annotations, dynamic analysis, fuzzing

PA193 | Annotations, dynamic analysis, fuzzing

Automatic measurement - profiling

• Automatic tool to measure time and memory used

• “Time” spend in specific function

• How often a function is called

• Call tree

– what function called actual one

– based on real code execution (condition jumps)

• Many other statistics, depend on the tools

• Helps to focus and scope security analysis

52

PA193 | Annotations, dynamic analysis, fuzzing

MS Visual Studio Profiler

• Analyze→Launch Performance Wizard

• Profiling method: CPU Sampling

– check periodically what is executed on CPU

– accurate, low overhead

• Profiling method: Instrumentation

– automatically inserts special accounting code

– will return exact function call counter

– (may affect performance timings a bit)

• additional code present

• May require admin privileges (will ask)

53

PA193 | Annotations, dynamic analysis, fuzzing

MS VS Profiler – results (Summary)

• Where to start the optimization work?

54

PA193 | Annotations, dynamic analysis, fuzzing

MS VS Profiler – results (Functions)

• Result given in number of sampling hits

– meaningful result is % of total time spend in function

• Inclusive sampling

– samples hit in function or its children

– aggregate over call stack for given function

• Exclusive sampling

– samples hit in exclusively in given function

– usually what you want

• fraction of time spend in function code (not in

subfunctions)

55

PA193 | Annotations, dynamic analysis, fuzzing

MS VS Profiler – results (Functions)

Doubleclick to move into

Function Details view

56

GCC gcov tool

• http://gcc.gnu.org/onlinedocs/gcc/Gcov.html#Gcov

1. Compile program by GCC with additional flags

– gcc -Wall -fprofile-arcs -ftest-coverage main.c

– gcc -Wall --coverage main.c

– additional monitoring code is added to binary

2. Execute program

– files with “.bb" ".bbg" and ".da" extension are created

3. Analyze resulting files with gcov

– gcov main.c

– annotated source code is created

• Lcov - graphical front-end for gcov

– http://ltp.sourceforge.net/coverage/lcov.php

57 PA193 | Annotations, dynamic analysis, fuzzing

58 PA193 | Annotations, dynamic analysis, fuzzing
Taken from http://ltp.sourceforge.net/coverage/lcov/output/example/methods/iterate.c.gcov.html

FUZZING (BLACKBOX)

59 PA193 | Annotations, dynamic analysis, fuzzing

Example with many possible inputs

• Multiple inputs to application

• Not possible to evaluate manually

– or done very frequently: UT, TDD, continuous integration

• Sometimes not possible to bruteforce at all

– to many combinations

– usual situation!

• Easy to overlook potential problem

60 PA193 | Annotations, dynamic analysis, fuzzing

Fuzzing

• Attack vectors within application’s I/O

– user interface (UI)

– command line options

– import/export capabilities

• Fuzzers tend to find simple bugs

– more protocol-aware fuzzer is, less weird problems will find

• Protocol/file-format dependant

• Data-type dependant

• https://www.owasp.org/index.php/Fuzzing

61 PA193 | Annotations, dynamic analysis, fuzzing

Fuzzing – advantages/disadvantages

• Fuzzing advantages

– very simple design

– allow to find bugs missed by human eye

– sometimes only way to test (completely closed system)

• Fuzzing disadvantages

– increased difficulty to evaluate impact/dangerosity

• closed system is evaluated, black box testing

62 PA193 | Annotations, dynamic analysis, fuzzing

Types of fuzzing

• Application fuzzing

– generates inputs for application (stdin, memory...)

• Protocol fuzzing

– manipulation of protocol level

• File format fuzzing

– generates malformed file samples

– if program crashes, debug log is created

– attack against parser layer

– attack against codec/application layer

– example: MS04-028 Microsoft's JPEG GDI+ vulnerability

• http://technet.microsoft.com/en-us/security/bulletin/ms04-028

63 PA193 | Annotations, dynamic analysis, fuzzing

Fuzzing – approaches

• Capture valid inputs and modify some bytes

– randomly

– according to given regular expression

• Binary vs. text oriented fuzzing

64 PA193 | Annotations, dynamic analysis, fuzzing

Available tools

• Microsoft’s SDL MiniFuzz File Fuzzer

• Microsoft’s SDL Regex Fuzzer

• Ilja van Sprundel’s mangle.c

– https://ext4.wiki.kernel.org/index.php/Filesystem_Testing_Tools/mangle.c

– filename and header size

– change between 0 and 10% of header with random bytes

– example data

• zzuf - multi-purpose fuzzer

– application input fuzzer

– intercepting file and network operations and changing random bits in the
program’s input

– http://sam.zoy.org/zzuf/

65 PA193 | Annotations, dynamic analysis, fuzzing

Microsoft’s SDL MiniFuzz File Fuzzer

• Application input files fuzzer

– http://www.microsoft.com/en-us/download/details.aspx?id=21769

– UsingMiniFuzz.htm

• Templates for valid input files (multiple)

• Modify valid input file (randomly, % aggressiveness)

• Run application with partially modified inputs

• Log resulting crash (if happen)

– exception, CPU registers...

• Can be incorporated directly into Visual Studio

• Video overview

– http://msdn.microsoft.com/en-us/security/gg675011.aspx

66 PA193 | Annotations, dynamic analysis, fuzzing

67 PA193 | Annotations, dynamic analysis, fuzzing

Microsoft’s SDL Regex Fuz

• Test of regular expressions evaluations

• May cause denial-of-service attack

• Use when your program use regex evaluation

• Video overview

– http://msdn.microsoft.com/en-us/security/gg675012.aspx

• http://blogs.msdn.com/b/sdl/archive/2010/10/12/ne
w-tool-sdl-regex-fuzzer.aspx

• Example: ^(\d+)+$

68 PA193 | Annotations, dynamic analysis, fuzzing

69 PA193 | Annotations, dynamic analysis, fuzzing

SPIKE

• Tool for fuzzing analysis of network protocols

– http://www.immunitysec.com/resources-freesoftware.shtml

• Overview of SPIKE capabilities

– https://www.blackhat.com/presentations/bh-usa-02/bh-us-

02-aitel-spike.ppt

• Fuzzing tutorial with SPIKE on Vulnserver

– http://resources.infosecinstitute.com/intro-to-fuzzing/

– Windows & Linux version

• Another SPIKE tutorial

– http://pentest.cryptocity.net/fuzzing/

70 PA193 | Annotations, dynamic analysis, fuzzing

REVERSE ENGINEERING

(BLACKBOX)

71 PA193 | Annotations, dynamic analysis, fuzzing

PA193 | Annotations, dynamic analysis, fuzzing

Reverse engineering

• Art of discovering principles through analysis of
structure, functions and operation

• Legality
– Own binary without documentation

– Interoperability

– Anti-virus research

– Fair use, education

– Forensics

• Problem with recent copyright laws
– even attempt to circumvent is illegal

– not only selling circumvented content

72

PA193 | Annotations, dynamic analysis, fuzzing

Disassembler vs. debugger

• Static vs. dynamic code analysis

• Debugger vs. Debugger with advanced modification
tools (Visual Studio vs. OllyDbg)

• Assembler vs. bytecode

– Instruction set

– Register-based vs. stack-based execution

73

PA193 | Annotations, dynamic analysis, fuzzing

Lena tutorials

• Nice introduction tutorials for reversing/cracking

• Win32 binary

– Lena tutorials 1 and 2

• Name of the registers

– (EAX 32bit, AX 16bit, AH/AL 8bit)

• Registers (FPU):

– Z – zero flag, C – carry flag, S – sign flag

– EIP ... next address to execute (instruction pointer)

– EBX ... usually loop counter

74

PA193 | Annotations, dynamic analysis, fuzzing

Startup resources

• The Reverse Code Engineering Community:
http://www.reverse-engineering.net/

• Tutorials for You: http://www.tuts4you.com

• RE on Wikipedia:
http://en.wikipedia.org/wiki/Reverse_engineering

75

Disassembling binary code

• Interactive Disassembler is legendary full-fledged
disassembler with ability to disassemble many
different platforms.

– Free version available for non-commercial uses

– Free version disassemble only Windows binaries

– http://www.hex-rays.com/idapro/idadownfreeware.htm

• Very nice visualization and debugger feature
(similar as OllyDbg)

– Try it!

76 PA193 | Annotations, dynamic analysis, fuzzing

Decompiling binary code

• Decompiler is able to produce source code from binary code.
Decompiler needs to do disassembling first and then try to create
code that will in turn produce binary code you have at the beginning.

• Resulting code will NOT contain information removed during
compilation

– (comments, function names, formatting...)

– Read http://www.debugmode.com/dcompile/ for more info

• Still can be of great help

• Problem to find well working free disassembler

– http://en.wikibooks.org/wiki/X86_Disassembly/Disassemblers_and_Decom
pilers

77 PA193 | Annotations, dynamic analysis, fuzzing

Resources

• The Reverse Code Engineering Community:
http://www.reverse-engineering.net/

• Tutorials for You: http://www.tuts4you.com

• Disassembling tutorial
http://www.codeproject.com/KB/cpp/reversedisasm.
aspx

78 PA193 | Annotations, dynamic analysis, fuzzing

Conclusions

• Annotations for even better results

– Microsoft SAL

• Dynamic analyzers can profile application

– and find bugs not found by static analysis

• Fuzzing is blackbox dynamic analysis via
malformed inputs

79 PA193 | Annotations, dynamic analysis, fuzzing

Questions

