
Concurrency issues

PA193 – Secure coding

Petr

Švenda
Zdeněk Říha
Faculty

of

Informatics, Masaryk University, Brno, CZ

Introduction - Terminology

•

Program
–

File on disk

•

Process
–

Executed program

•

Thread
–

Entity within a process

–

A single sequence of instructions
–

CPU is scheduled to threads

•

Memory, files descriptors are allocated to
processes

Concurrency

•

Parallel or interleaved (time multiplex) running of
processes and threads can be a source of problems
–

single CPU

–

HTT
–

Multiples CPUs (SMP, AMP)

•

Code in processes/threads is not executed
atomically

IPC

•

OS isolates processes
•

To interact processes have to use IPC offered by
the operating system

•

IPC = Inter Process Communication

IPC

•

Semaphor
•

Mutex/futex

•

Pipe (unnamed, named)
•

Shared memory

•

Messages
•

Signals

•

RPC, OLE, DDE, Clipboard

Other resources

•

Files
–

filesystem

is

a shared

resource

used

by many

processes, and

some

procesess

may

interfere

with

its
 use by other

processes…

•

The tasks:
–

3 variables: A, B, C

–

2 threads: T1, T2
–

Thread

T1 computes

C = A+B

–

Thread

T2 moves the value

X from

A to

B
•

Expected behaviour
–

T2 does

A = A-X and

B = B+X

–

T1 computes a constant

C, i.e.

A + B does not change
•

What if:
–

T1 calculates

A+B

–

after

T2 has done

A = A-X
–

but before

T2 does

B = B+X

–

then

T1 does not get correct result

C = A+B

Consistency problem

Consistency problem

•

Similarly if two threads use one shared variable x
–

T1 is running x++

–

T2 is running x—
•

But x++ is implemented as
–

register1 = x

–

register1 = register1 + 1
–

x = register1

Consistency problem
•

Let’s start with x=5 and run T1, T2 concurrently
–

T1: register1 = x (register1 = 5)

–

T1: register1 = register1 + 1 (register1 = 6)
–

T2: register2 = counter (register2 = 5)

–

T2 : register2 = register2 – 1 (register2 = 4)
–

T1 : counter = register1 (counter = 6)

–

T2 : counter = register2 (counter = 4)
•

The result is 4 instead of 5
–

Inconsistency!

•

Memory
–

Shared memory between processes as IPC

–

Memory shared between threads of a single process

Race condition - definition
A race condition or race hazard is the behavior of an electronic

or software

system where the output is dependent on the sequence or timing of other
uncontrollable events. It becomes a bug when events don't happen

in the order

that the programmer intended.

The term originates with the idea of two signals racing each other to influence
the output first.

Race conditions can occur in electronics systems, especially logic circuits,
and in computer software, especially multithreaded or distributed programs.

Source: Wikipedia

Race condition - definition

Anomalous behavior due to unexpected critical
dependence on the relative timing of events.

Source: Free

On−Line Dictionary

of

Computing

Race condition

•

Interference caused by
–

Untrusted

processes

•

processes running other programs, which “slip in”' other
actions between steps of the secure program. These
other programs might be invoked by an attacker
specifically to cause the problem.

•

Sequencing problems
–

Trusted processes
•

conditions caused by processes running the “same”

 application.
•

Locking problems (deadlock, livelock, …)

Deadlocks

•

4 necessary conditions:
–

Mutual exclusion

–

Hold and wait
–

No preemption

–

Circular wait

Race condition

•

Example
–

Create a file (with default access rights)

–

And then set the access rights of the new file
–

Attacker can get access to the file before the correct
permissions are set…

Files – atomic actions…
Sequence of actions is not atomic

–

avoid

using

access(2) to determine

if

a request

should

be
 granted, followed

later

by open(2)

•

Attacks based on symlinks
–

A secure

program should

instead

set its

effective

id or

filesystem

 id, then

make

the

open

call

directly

Source: Linux & Unix Secure programming by D. Wheeler

Working with files - examples

•

Editor joe
–

the ‘joe’

text editor had a weakness called the ‘DEADJOE’

 symlink

vulnerability. When joe

was exited in a
nonstandard way, joe

would unconditionally append its

open buffers to the file ‘DEADJOE’. This could be
exploited by the creation of DEADJOE symlinks

in

directories where root would normally use joe. In this way,
joe

could be used to append garbage to potentially

sensitive files, resulting in a denial of service and/or
unintentional access

–

failure in joe, connection down, …

Example: CVE-2013-4169

Overview
GNOME Display Manager (gdm) before 2.21.1 allows local users to change permissions
of arbitrary directories via a symlink attack on /tmp/.X11-unix/.

Description
The GNOME Display Manager (GDM) provides the graphical login screen, shown shortly
after boot up, log out, and when user-switching.

A race condition was found in the way GDM handled the X server sockets directory
located in the system temporary directory. An unprivileged user could use this flaw to
perform a symbolic link attack, giving them write access to any file, allowing them to
escalate their privileges to root.

GDM will chown /tmp/.X11-unix to the user and group root, but also changes the
permissions to 1777.

Example: CVE-2013-2162

Overview
Race condition in the post-installation script (mysql-server-5.5.postinst) for
MySQL Server 5.5 for Debian GNU/Linux and Ubuntu Linux creates
a configuration file with world-readable permissions before restricting
the permissions, which allows local users to read the file and obtain
sensitive information such as credentials.

CVE-2013-5147: iOS Passcode Lock

Description: Passcode Lock in Apple iOS before 7 does not properly
manage the lock state, which allows physically proximate attackers to
bypass an intended passcode requirement by leveraging a race condition
involving phone calls and ejection of a SIM card.

Impact: A person with physical access to the device may be able to bypass
the screen lock.

CVE-2013-5035: Race Conditions in HtmlCleaner

Product: Open-Xchange AppSuite / HTMLCleaner

Vulnerability Details:
If multiple requests to save E-Mail as “draft”, or send E-Mail, occur within
a very narrow window of time, it is possible that E-Mail content get swapped
between requests. The root cause for this is a HTML sanitising library that
turned out not to be thread-safe despite it claims to be. Further research
showed, that the issue has been introduced with OX 7.2.2 by updating to
the latest version of this library (2.2 to 2.5). OX Versions 7.2.1 and earlier
are not vulnerable.

CVE-2013-1792: Race Condition in Linux Kernel

There is a race in install_user_keyrings() that can cause a NULL pointer dereference when
called concurrently for the same user if the uid and uid-session keyrings are not yet created. It
might be possible for an unprivileged user to trigger this by calling keyctl() from userspace in
parallel immediately after logging in.

The race window is really small but can be exploited if, for example, thread B
is interrupted or preempted after initializing uid_keyring, but before doing
setting session_keyring.

This couldn't be reproduced on a stock kernel. However, after placing
systemtap probe on 'user->session_keyring = session_keyring;' that introduced
some delay, the kernel could be crashed reliably.

Source: https://patchwork.kernel.org/patch/2228431/

CVE-2013-1792
Assume that we have two threads both executing lookup_user_key(), both looking for
KEY_SPEC_USER_SESSION_KEYRING.

THREAD A THREAD B
=============================== ===============================

==>call install_user_keyrings();
if (!cred->user->session_keyring)
==>call install_user_keyrings()

...
user->uid_keyring = uid_keyring;

if (user->uid_keyring)
return 0;

<==
key = cred->user->session_keyring [== NULL]

user->session_keyring = session_keyring;
atomic_inc(&key->usage); [oops]

Source: https://patchwork.kernel.org/patch/2228431/

CVE-2013-0871: Race condition in the ptrace

Race condition in the ptrace

functionality in the Linux kernel before 3.7.5 allows
local users to gain privileges via a PTRACE_SETREGS ptrace

system call in a

crafted application.

putreg() assumes that the tracee

is not running and pt_regs_access() can
safely play with its stack. However a killed tracee

can return from

ptrace_stop() to the low-level asm

code and do RESTORE_REST, this means
that debugger can actually read/modify the kernel stack until the tracee
does SAVE_REST again.

CVE-2013-2162: Race condition in MySQL

Race condition in the post-installation script (mysql-server-5.5.postinst) for
MySQL

Server 5.5 for Debian

GNU/Linux and Ubuntu

Linux creates a

configuration file with world-readable permissions before restricting the
permissions, which allows local users to read the file and obtain sensitive
information such as credentials.

CVE-2012-6095: Race condition in ProFTPD
There is a possible race condition in the handling of the MKD/XMKD FTP
commands, when the UserOwner

directive is involved, and the

attacker is on the same physical machine as a running proftpd:

1. Locally create directory `foo'.
2. In ftp client, send "MKD foo/etc".
3. ProFTPD

creates `foo/etc/' directory.

4. Locally move `foo' out of the way.
5. Locally create symlink

`foo

-> /'.

6. ProFTPD

applies UserOwner

to `foo/etc', changing ownership of /etc.

The race is the time between when proftpd

creates the requested directory (step
3) and when proftpd

applies the UserOwner

ownership changes (step 6); in that

time, a local attack can replace the created directory with a symlink

that
points to some other directory that the local attacker does not control.

Source: http://bugs.proftpd.org/show_bug.cgi?id=3841

How to do it correctly?

•

open

file

using

the

modes

O_CREAT | O_EXCL
and

grant only

very

narrow

permissions

–

use umask

and/or

open's parameters

to limit initial

access
 to just

the

user

and

user

group.

•

be

prepared that

the

call to open can fail…

time

of

check–time

of

use (TOCTOU)

•

first

open

the

file

and

then

use the

operations

on open

files
–

i.e. use functions like fchown(), fstat(), or

fchmod()

instead of

chown(), chgrp(), and

chmod()

taking filenames.
–

This will prevent the file from being replaced while your program
is running…

–

E.g.

if

you

close

a file

and

then

use chmod() to change

its
 permissions, an

attacker

may

be

able

to move

or

remove

the

file

 between

those

two

steps

and

create

a symbolic

link

to another
 file

(say

/etc/passwd). Other

interesting

files

include

/dev/zero,

which

can

provide

an

infinitely-long

data stream

of

input

to a
program; if

an

attacker

can

``switch'' the

file

midstream, the

 results

can

be

dangerous…

Temporary files

•

Temporary files are a big issue
–

discusses in a separate lecture

Files: case sensitive?

•

Filesystems
–

Case-sensitive (e.g. ext2)

–

Case-insensitive, but case-preserving (e.g. FAT32)
–

Case-insensitive (e.g. FAT16)

•

Example
–

Program has a blacklist that prevents users from uploading
or downloading the file /etc/ssh_host_key, On a case-

 insensitive volume, you must also reject someone who
makes a request for /etc/SSH_host_key,
/ETC/SSH_HOST_KEY, or even /ETC/ssh_host_key.

Scripts & files
•

Set the temporary directory ($TMPDIR) environment variable to a safe
directory. Even if your script doesn’t directly create any temporary
files, one or more of the routines you call might create one, which can
be a security vulnerability if it’s created in an insecure directory.

•

Set the umask

to restrict access to any files that might be created by
routines run by the script.

•

Do not redirect output using the operators > or >> to a publicly
 writable location. These operators do not check to see whether the file

already exists, and they follow symbolic links.
•

Do not use the test command (or its left bracket ([) equivalent)

to

check for the existence of a file or other status information for the file
before writing to it. Doing so always results in a race condition…

Source: https://developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/Articles/RaceConditions.html

Critical sections

•

Critical section
–

Must be performed exclusively

–

Processes / threads
•

Mutual exclusion
–

MutEx

(futex, semaphore)

Semaphores in Windows API
•

Semaphore-related functions:
–

CreateSemaphore

–

OpenSemaphore
–

ReleaseSemaphore

–

Wait
•

SignalObjectAndWait

•

WaitForSingleObject
•

WaitForSingleObjectEx

•

WaitForMultipleObjects
•

WaitForMultipleObjectsEx

•

MsgWaitForMultipleObjects
•

MsgWaitForMultipleObjectsEx

Semaphore

•

YES
–

Wait (x)

–

Signal (x)
•

NO
–

Wait (x)

–

Wait (x)
•

NO
–

Wait (x)

–

Signal (y)

Secure signal handling

•

Signal can come asynchronously any time
•

Secure signal processing
–

No system calls

–

Terminate as quickly as possible

Although there are certain system calls that are safe from within signal handlers, writing a
safe signal handler that does so is tricky. The best thing to do is to set a flag that your
program checks periodically, and do no other work within the signal handler. This is
because the signal handler can be interrupted by a new signal before it finishes processing
the first signal, leaving the system in an unpredictable state or, worse, providing a
vulnerability for an attacker to exploit.

Source: https://developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/Articles/RaceConditions.html

Example: CVE-1999-0035

In 1997, a vulnerability was reported in a number of implementations of the FTP protocol in which
a user could cause a race condition by closing an FTP connection. Closing the connection resulted in the
near-simultaneous transmission of two signals to the FTP server: one to abort the current operation, and one
to log out the user. The race condition occurred when the logout signal arrived just before the abort signal.

When a user logged onto an FTP server as an anonymous user, the server would temporarily downgrade its
privileges from root to nobody so that the logged-in user had no privileges to write files. When the user logged
out, however, the server reassumed root privileges. If the abort signal arrived at just the right time, it would
abort the logout procedure after the server had assumed root privileges but before it had logged out the user.
The user would then be logged in with root privileges, and could proceed to write files at will. An attacker
could exploit this vulnerability with a graphical FTP client simply by repeatedly clicking the “Cancel” button.

Source: https://developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/Articles/RaceConditions.html

Other file tips
•

Before you attempt a file operation, make sure it is safe to perform the operation on that file. For example,
before attempting to read a file (but after opening it), you should make sure that it is not a FIFO or a device -
special file.

•

Just because you can write to a file, that doesn’t mean you should write to it. For example, the fact that a
directory exists doesn’t mean you created it, and the fact that you can append to a file doesn’t mean you own
the file or no one else can write to it.

•

Some operations can be done only on certain systems. For example, certain file systems honor setuid files
when executed from them and some don’t. Be sure you know what file system you’re working with and what
operations can be carried out on that system.

•

Local pathnames can point to remote files. For example, the path /volumes/foo might actually be someone’s
FTP server rather than a locally-mounted volume. Just because you’re accessing something by a pathname,
that does not guarantee that it’s local or that it should be accessed.

•

Remember that users can read the contents of executable binaries just as easily as the contents of ordinary
files. For example, the user can run strings(1) to quickly see a list of (ostensibly) human-readable strings in
your executable.

•

When you fork a new process, the child process inherits all the file descriptors from the parent unless you set
the close-on-exec flag. If you fork and execute a child process and drop the child process’ privileges so its real
and effective IDs are those of some other user (to avoid running that process with elevated privileges), then
that user can use a debugger to attach the child process. They can then run arbitrary code from that running
process. Because the child process inherited all the file descriptors from the parent, the user now has access
to every file opened by the parent process.

Source: https://developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/Articles/RaceConditions.html

Tools to detect data races

•

Static checking
–

LockLint

(Sun)

–

Vpara

flag of compiler (Sun)
•

Runtime checking –

simulation based

–

Helgrind (part of Valgrind)
•

Runtime checking –

execution based

–

Visual Threads (HP)
–

Thread Checker (Intel)

–

Data Race Detection Tool –

DRDT (Sun)

Static checking

•

Advantages
–

Fast, consumes little memory

–

Analysis does not affect the behaviour

of program
–

Can detect potential data races that do not happen in
particular run with particular input data set.

Helgrind

•

Helgrind = Valgrind

tool

for

detecting
 synchronisation

errors

in C/C++

programs

that

use

the

POSIX pthreads

threading

primitives.
•

Helgrind

can

detect

three

classes

of

errors:

1.

Misuses of the POSIX pthreads

API.
2.

Potential deadlocks arising from lock ordering problems.

3.

Data races -

accessing memory without adequate locking
or synchronisation

Using helgrind

•

C program in sample.c
•

Compile the program
–

Use –g to include line numbers

–

gcc

-g sample.c

-o sample –l pthread
•

Run helgrind
–

As a tool of valgrind

–

valgrind

--tool=helgrind ./sample
•

Analyze the results

Ad 1: Misuses of the POSIX pthreads API.

•

unlocking

an

invalid mutex
•

unlocking

a not-locked

mutex
•

unlocking

a mutex

held

by a different

thread
•

destroying

an

invalid or

a locked

mutex
•

recursively

locking

a non-recursive

mutex
•

deallocation

of

memory

that

contains

a locked

mutex
•

passing

mutex

arguments

to functions

expecting

reader-writer

lock

arguments, and

vice

versa

•

when

a POSIX pthread

function

fails

with

an

error

code

that

must

be

handled
•

when

a thread

exits

whilst

still

holding locked

locks
•

calling

pthread_cond_wait

with

a not-locked

mutex, an

invalid mutex, or

one

locked

by
a different

thread
•

inconsistent

bindings

between

condition

variables

and

their

associated

mutexes
•

invalid or

duplicate

initialisation

of

a pthread

barrier
•

initialisation

of

a pthread

barrier

on which

threads

are still

waiting
•

destruction

of

a pthread

barrier

object

which

was

never

initialised, or

on which

threads

are still

waiting
•

waiting

on an

uninitialised

pthread

barrier

Example: missing unlock

#include <pthread.h>

int main (void)
{

pthread_mutex_t mx1;
pthread_mutex_init(&mx1, NULL);
pthread_mutex_lock(&mx1);

return 0;
}

Example: missing unlock
==7131== Helgrind, a thread error detector
==7131== Copyright (C) 2007-2012, and GNU GPL'd, by OpenWorks LLP et al.
==7131== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==7131== Command: ./a.out
==7131==
==7131== ---Thread-Announcement--
==7131==
==7131== Thread #1 is the program's root thread
==7131==
==7131== --
==7131==
==7131== Thread #1: Exiting thread still holds 1 lock
==7131== at 0x414C52C0: _Exit (in /usr/lib/libc-2.16.so)
==7131==
==7131==
==7131== For counts of detected and suppressed errors, rerun with: -v
==7131== Use --history-level=approx or =none to gain increased speed, at
==7131== the cost of reduced accuracy of conflicting-access information
==7131== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Ad 2: Potential deadlocks arising from lock
ordering problems.
•

Helgrind builds a directed graph indicating the order in which
locks have been acquired in the past. When a thread
acquires a new lock, the graph is updated, and then checked
to see if it now contains a cycle. The presence of a cycle
indicates a potential deadlock involving the locks in the
cycle.

•

Helgrind will choose two locks involved in the cycle and
show you how their acquisition ordering has become
inconsistent. It does this by showing the program points that
first defined the ordering, and the program points which later
violated it.

Example: deadlock
#include <pthread.h>

static pthread_mutex_t m1 = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t m2 = PTHREAD_MUTEX_INITIALIZER;

static void *t1(void *v)
{

pthread_mutex_lock(&m1);
pthread_mutex_lock(&m2);
pthread_mutex_unlock(&m1);
pthread_mutex_unlock(&m2);

return 0;
}

static void *t2(void *v)
{

pthread_mutex_lock(&m2);
pthread_mutex_lock(&m1);
pthread_mutex_unlock(&m1);
pthread_mutex_unlock(&m2);

return 0;
}

int main()
{

pthread_t a, b;

pthread_mutex_lock(&m1);
pthread_mutex_unlock(&m1);

pthread_create(&a, NULL, t1, NULL);
pthread_create(&b, NULL, t2, NULL);

pthread_join(a, NULL);
pthread_join(b, NULL);

return 0;
}

Example: deadlock
==7487== Thread #3: lock order "0x804A02C before 0x804A044" violated
==7487==
==7487== Observed (incorrect) order is: acquisition of lock at 0x804A044
==7487== at 0x400B0BF: pthread_mutex_lock (hg_intercepts.c:495)
==7487== by 0x80485FE: t2 (hg02.c:19)
==7487== by 0x400AD68: mythread_wrapper (hg_intercepts.c:219)
==7487== by 0x41614AFE: start_thread (in /usr/lib/libpthread-2.16.so)
==7487== by 0x415020ED: clone (in /usr/lib/libc-2.16.so)
==7487==
==7487== followed by a later acquisition of lock at 0x804A02C
==7487== at 0x400B0BF: pthread_mutex_lock (hg_intercepts.c:495)
==7487== by 0x804860A: t2 (hg02.c:20)
==7487== by 0x400AD68: mythread_wrapper (hg_intercepts.c:219)
==7487== by 0x41614AFE: start_thread (in /usr/lib/libpthread-2.16.so)
==7487== by 0x415020ED: clone (in /usr/lib/libc-2.16.so)
==7487==
==7487== Required order was established by acquisition of lock at 0x804A02C
==7487== at 0x400B0BF: pthread_mutex_lock (hg_intercepts.c:495)
==7487== by 0x80485C1: t1 (hg02.c:9)
==7487== by 0x400AD68: mythread_wrapper (hg_intercepts.c:219)
==7487== by 0x41614AFE: start_thread (in /usr/lib/libpthread-2.16.so)
==7487== by 0x415020ED: clone (in /usr/lib/libc-2.16.so)
==7487==
==7487== followed by a later acquisition of lock at 0x804A044
==7487== at 0x400B0BF: pthread_mutex_lock (hg_intercepts.c:495)
==7487== by 0x80485CD: t1 (hg02.c:10)
==7487== by 0x400AD68: mythread_wrapper (hg_intercepts.c:219)
==7487== by 0x41614AFE: start_thread (in /usr/lib/libpthread-2.16.so)
==7487== by 0x415020ED: clone (in /usr/lib/libc-2.16.so)

Ad 3: Data races

•

A data race

happens, or

could

happen, when

two
 threads

access

a shared

memory

location

without

 using

suitable

locks

or

other

synchronisation

to
ensure

single-threaded

access. Such missing

 locking

can

cause obscure

timing

dependent

bugs.
•

Ensuring

programs

are race-free

is

one

of

the

 central

difficulties

of

threaded

programming…

Example: data race
#include <pthread.h>

static int shared;

static void *th(void *v)
{

shared++;
return 0;

}

int main()
{

pthread_t a, b;

pthread_create(&a, NULL, th, NULL);
pthread_create(&b, NULL, th, NULL);

pthread_join(a, NULL);
pthread_join(b, NULL);

return 0;
}

Example: data race
==2740== --
==2740==
==2740== Possible data race during read of size 4 at 0x6009E0 by thread #3
==2740== Locks held: none
==2740== at 0x40057C: th (hg04.c:7)
==2740== by 0x4C2D0D4: mythread_wrapper (hg_intercepts.c:219)
==2740== by 0x4E37850: start_thread (in /lib64/libpthread-2.12.so)
==2740== by 0x6BE16FF: ???
==2740==
==2740== This conflicts with a previous write of size 4 by thread #2
==2740== Locks held: none
==2740== at 0x400585: th (hg04.c:7)
==2740== by 0x4C2D0D4: mythread_wrapper (hg_intercepts.c:219)
==2740== by 0x4E37850: start_thread (in /lib64/libpthread-2.12.so)
==2740== by 0x5DE06FF: ???
==2740==
==2740== --

Valgrind: DRD tool
•

drd, a thread error detector

==7691== Thread 3:
==7691== Conflicting load by thread 3 at 0x0804a024 size 4
==7691== at 0x8048533: th (in /home/zriha/h/a.out)
==7691== by 0x400B17C: vgDrd_thread_wrapper (drd_pthread_intercepts.c:355)
==7691== by 0x41614AFE: start_thread (in /usr/lib/libpthread-2.16.so)
==7691== by 0x415020ED: clone (in /usr/lib/libc-2.16.so)
==7691== Allocation context: BSS section of /home/zriha/h/a.out
==7691== Other segment start (thread 2)
==7691== at 0x400D5F0: pthread_mutex_unlock (drd_pthread_intercepts.c:703)
==7691== by 0x400B171: vgDrd_thread_wrapper (drd_pthread_intercepts.c:236)
==7691== by 0x41614AFE: start_thread (in /usr/lib/libpthread-2.16.so)
==7691== by 0x415020ED: clone (in /usr/lib/libc-2.16.so)
==7691== Other segment end (thread 2)
==7691== at 0x414FE659: madvise (in /usr/lib/libc-2.16.so)
==7691== by 0x41614C30: start_thread (in /usr/lib/libpthread-2.16.so)
==7691== by 0x415020ED: clone (in /usr/lib/libc-2.16.so)
==7691==
…

Excercise
1.

Play with Helgrind

Homework

•

Helgrind
–

Create a program in C/C++ that contains 5 type of errors
that are reported by Helgrind. Then correct the errors.
•

Submit 2 source codes and 2 Helgrind

reports

	Concurrency issues
	Introduction - Terminology
	Concurrency
	IPC
	IPC
	Other resources
	Consistency problem
	Consistency problem
	Consistency problem
	Race condition - definition
	Race condition - definition
	Race condition
	Deadlocks
	Race condition
	Files – atomic actions…
	Working with files - examples
	Example: CVE-2013-4169
	Example: CVE-2013-2162
	CVE-2013-5147: iOS Passcode Lock
	CVE-2013-5035: Race Conditions in HtmlCleaner
	CVE-2013-1792: Race Condition in Linux Kernel
	CVE-2013-1792
	CVE-2013-0871: Race condition in the ptrace
	CVE-2013-2162: Race condition in MySQL
	CVE-2012-6095: Race condition in ProFTPD
	How to do it correctly?
	time of check–time of use (TOCTOU)
	Temporary files
	Files: case sensitive?
	Scripts & files
	Critical sections
	Semaphores in Windows API
	Semaphore
	Secure signal handling
	Example: CVE-1999-0035
	Other file tips
	Tools to detect data races
	Static checking
	Helgrind
	Using helgrind
	Ad 1: Misuses of the POSIX pthreads API.�
	Example: missing unlock
	Example: missing unlock
	Ad 2: Potential deadlocks arising from lock ordering problems.
	Example: deadlock
	Example: deadlock
	Ad 3: Data races
	Example: data race
	Example: data race
	Valgrind: DRD tool
	Excercise
	Homework

