
Security analysis of JSON parser

Ravibabu Matta, Martin Ukrop, Jiří Weiser

December 9, 2014

1 Introduction
We analyzed a JSON parser written in C++ by Vít Šesták and Daniil Leksin. According to the specifi-
cation, the parser is slightly more permissive than it should, some examples are provided. Nevertheless,
the authors claim that no inputs should lead to memory corruption. The specification assumes a valid
UTF-8 stream on the input.

2 Static and dynamic analysis
Microsoft PreFast reports no issues and CppCheck has found just a single (but meaningful) style issue:
exceptions should be caught by reference, not by value. Valgrind’s memcheck tool reports no memory
issues on multiple JSON inputs tested.

3 Manual code inspection
Manual testing and code ispection revealed the following issues:

• The parser is able to parse numbers which are not allowed by JSON standard, such as "-.1".
However, such inputs cause no memory corruption or parsing problems.

• The parser should check the end-of-file character after the last token. Omiting this check allows for
multiple subsequent JSON strings to be parsed. However, such inputs cause no memory corruption
or parsing problems.

• The parser is not able to handle unfinished strings correctly. For instance, the insput string " (single
double-quote character) causes the parser to crash with segmentation fault.

• The parser accepts some string characters inside the range 0x00–0x1F which should be refused.
These characters should be encoded in Unicode escape sequence.

• The parser is not capable of accepting valid Unicode escape sequences of characters larger than
0xFFFF (e.g. "\uD852\uDF62"). However, such inputs cause no memory corruption or parsing
problems.

• The parser is not capable of accepting valid Unicode escape sequence of some characters less than
0xFFFF. For example, using the Euro sign on the input ("\u20ac") causes a problem in the code.
The stack is not exposed, only UTF-8 characters higher than 127 are badly flushed.

• The Json::Value object does not define a virtual destructor. Even though this does not lead to a
memory leak in this case, that is only due to a (somewhat improper) usage of std::shared_ptr.

1



4 Conclusions
The automated analysis did not find any major flaws. Manual inspection revealed several issues, bringing
into attention the following three major problems:

• The function shared_ptr<Json::String> Json::String::readStringFrom(istream &in) does
not return any value if the ending quotation mark is not reached. This results into uninitialized
std::shared_ptr< Json::String > and therefore a segmentation fault.

• The function void Json::String::parseHexaStringSequence(istream &in,stringstream &ss)
does not accept some Unicode escape sequences less than 0xFFFF. Such characters are flushed in-
correctly.

• The Json::Value object should define a virtual destructor.

2


