
PA193 Secure coding principles and practices: XML Parser report

Matú² Nemec, Pankaj Agarwal, Anupam Gupta (Team B)

The XML parser is intended to work in a document validation mode. Document processing will halt

at �rst error and provide an informative error code. The parser is building an abstract representation

of the document in the memory, based on a rooted tree. For demonstration purposes, correctly parsed

document is printed without being manipulated.

Rules for valid documents are based on the XML speci�cation. Some modi�cations were required,

in order to reduce the scope of speci�cation for our purpose. For full list of rules, please refer to

speci�cation delivered with the parser source code. Features of the parser can be divided into three

main categories:

1. Supported � these document structures are handled exactly as required or very closely to the

real speci�cation.

• Properly nested tags, which de�ne elements.

• Attributes in tags, which must have unique names.

• Properly formed comments placed at allowed places.

2. Partially supported � these structures are supported, because they are usually included in an

XML document. However their content will be ignored or conformance to speci�cation will not

be enforced.

• Document declaration � values do not play any role and only proper format and placement

is enforced.

3. Not supported � these constructs are part of the XML speci�cation, however they are outside of

our scope and are in most cases considered as errors.

• Processing instructions and other special constructs are not allowed in our speci�cation. If

some of these can be "mistaken" for a more general case in our model, then they will not

be processed as de�ned by o�cial speci�cation.

The implementation is using only standard libraries and no code of a third person was used.

Parsing method was designed without referring to other implementations as well. XML speci�cation

states which characters are allowed or prohibited in di�erent places. These information provide small

hints, that were useful when making our parsing method. The parser contains 500 lines of C++ code

and 90 lines in header �le. Comments add additional 200 lines.

Building blocks of an XML document are tags, therefore in the lowest layer, we are parsing tags

and pairing them to form elements in a higher layer. Tags begin the same way as comments (which

are ignored) and are processed by the same function. Valid tags are empty element tags, begin and

end tags. Document declaration is parsed separately. Text content between tags is also allowed and

is saved to relevant element. Begin tags and empty elements may contain attributes. Mapping the

attribute name to the value is used. Map provides e�cient name uniqueness check.

Restrictions were introduced only when necessary. Some characters in tag and attribute names are

forbidden by o�cial speci�cation, therefore they are not accepted. Some control characters are allowed

even when not playing the control role, if their presence cannot be mistaken for special meaning. White

spaces are also allowed matching the speci�cation closely.

Selected rules (for more rules, please refer to our scope speci�cation):

• Syntax character "<" must not appear anywhere except when performing its markup-delineation role.
• There is a single "root" element.
• The <begin>, </end>, and <empty-element/> tags that delimit the elements are correctly nested, with

none missing and none overlapping. Names of the elements are case sensitive.
• Content must not contain "<" (general rule) and also ">" is not allowed.
• Comment may contain any sequence of characters except for "� �" (reserved).


