
Object Oriented Analysis

Lecture 5

1 © Clear View Training 2010 v2.6

Outline

Objects and classes [Lecture 4]

 Finding analysis classes [Lecture 4]

 Relationships between objects and classes

 Links

 Associations

 Dependencies

 Inheritance and polymorphism

 State diagram

 2 © Clear View Training 2010 v2.6

Relationships Between Objects and Classes

Lecture 5/Part 1

3 © Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 4

What is a link?

 Links are connections between objects

 Think of a link as a telephone line connecting you and a friend.
You can send messages back and forth using this link

 Links are the way that objects communicate

 Objects send messages to each other via links

 Messages invoke operations

 OO programming languages implement links as object
references or pointers

 When an object has a reference to another object, we say that
there is a link between the objects

© Clear View Training 2010 v2.6 5

Object diagrams

 Paths in UML

diagrams can be

drawn as

orthogonal,

oblique or curved

lines

 We can combine

paths into a tree if

each path has the

same properties

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

role name

link

BookClub

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

BookClub

oblique

path
style

orthogonal

path
style

preferred

object

Shape

Square Circle Triangle

© Clear View Training 2010 v2.6 6

What is an association?

 Associations are relationships between classes

 Associations between classes indicate that there may be links

between objects of those classes, while links indicates that there

must be associations

 Can there be a communication between objects of two classes that

have no association between them?

bookClub:Club jim:Person
chairman

Club Person

«instantiate» «instantiate» «instantiate»

link

association

links

instantiate

associations

© Clear View Training 2010 v2.6 7

Association syntax

 An association can have role names or an
association name

 Multiplicity is a constraint that specifies the

number of objects that can participate in a

relationship at any point in time

 If multiplicity is not explicitly stated in the model
then it is undecided – there is no default multiplicity

Company Person
1 0..*

employs

navigability

association

name

multiplicity

Company Person
employer employee

1 0..*

role names

multiplicity: min..max

0..1 zero or 1

1 exactly 1

0..* zero or more

1..* 1 or more

1..6 1 to 6

reading

direction

© Clear View Training 2010 v2.6 8

Multiplicity exercise

 How many

 Employees can a Company have?

 Employers can a Person have?

 Owners can a BankAccount have?

 Operators can a BankAccount have?

 BankAccounts can a Person have?

 BankAccounts can a Person operate?

Company

Person

employee

1

7

employer

BankAccount

0..*

1 owner

0..*

1..* operator

© Clear View Training 2010 v2.6 9

Reflexive associations: file system example

Directory File
0..* 1 0..*

0..1

C

Windows My Documents Corel

Command

autoexec

config

To John

directories files

parent

subdirectory

reflexive association

© Clear View Training 2010 v2.6 10

Hierarchies and networks

A
0..*

0..1

a1:A

b1:A c1:A d1:A

e1:A f1:A g1:A

B
0..*

0..*

a1:B

b1:B

c1:B

d1:B e1:B

f1:B

g1:B

hierarchy network

In an association hierarchy, each object

has zero or one object directly above

it.

In an association network, each object

has zero or many objects directly

above it.

© Clear View Training 2010 v2.6 11

Navigability

 Navigability indicates that it
is possible to traverse from
an object of the source class
to objects of the target class

 Can there be a
communication in a direction
not supported by the
navigability?

 Are some of the cases on
the right equivalent?

Order Product
0..* 0..*

Not navigable
A Product object does not store a list of Orders

An Order object stores a list of Products

Navigable

source target

navigability

A B

A B

A B

A B

A to B is navigable

B to A is navigable

A to B is navigable

B to A is not navigable

A to B is navigable

B to A is undefined

A to B is undefined

B to A is undefined

© Clear View Training 2010 v2.6 12

Associations and attributes

 An association is (through its role name) a representation of an attribute

 Use associations when:

 The target class is an important part of the model

 The target class is a class that you have designed yourself

 Use attributes when:

 The target class is not important, e.g. a primitive type such as number, string

 The target class is just an implementation detail such as a bought-in component or

a library component e.g. Java.util.Vector (from the Java standard libraries)

address:Address

House

House Address
1 1

address House

address:Address

pseudo-attribute attribute

=

© Clear View Training 2010 v2.6 13

Association classes

Company Person
0..* 0..* employment

 Where do we record the Person’s salary?

 We model the association itself as an association class. Exactly one

instance of this class exists for each link between a Person and a Company.

 We can place the salary and any other attributes or operations which are

really features of the association into this class

Company Person
0..* 0..*

Job

salary:double

the association class

consists of the class,

the association and the

dashed line
association class

© Clear View Training 2010 v2.6 14

Using association classes

Company Person
0..* 0..*

Job

salary:double

If we use an association class,

then a particular Person can

have only one Job with a

particular Company

If, however a particular

Person can have multiple

jobs with the same

Company, then we must

use a reified association
Company Person

Job

salary:double

0..* 0..* 1 1

© Clear View Training 2010 v2.6 15

Dependencies

 "A dependency is a relationship between two elements where a
change to one element (the supplier) may affect or supply
information needed by the other element (the client)".

 In other words, the client depends in some way on the supplier

 Weaker type of relationship than association

 Can there be both association and dependency between two classes?

 Three types of dependency:

 Usage - the client uses some of the services made available by the
supplier to implement its own behavior – this is the most commonly
used type of dependency

 Abstraction - a shift in the level of abstraction. The supplier is more
abstract than the client

 Permission - the supplier grants some sort of permission for the client
to access its contents – this is a way for the supplier to control and limit
access to its contents

© Clear View Training 2010 v2.6 16

Usage dependencies

 Stereotypes

 «use» - the client makes use of the supplier to implement its behaviour

 «call» - the client operation invokes the supplier operation

 «parameter» - the supplier is a parameter of the client operation

 «send» - the client (an operation) sends the supplier (a signal) to some

unspecified target

 «instantiate» - the client is an instance of the supplier

A

foo(b : B)

bar() : B

doSomething()

B

A :: doSomething() {

 B myB = new B();

}

«use»

A «use» dependency is generated between A and B when B is

used in A as a parameter, return value or inside method body

the stereotype is often omitted

© Clear View Training 2010 v2.6 17

Abstraction and permission dependencies

 Abstraction dependencies

 «trace» - the client and the supplier represent the same concept but at different

points in development

 «substitute» - the client may be substituted for the supplier at runtime. The

client and supplier must realize a common contract. Use in environments that

don't support specialization/generalization

 «refine» - the client represents a fuller specification of the supplier

 «derive» - the client may be derived from the supplier. The client is logically

redundant, but may appear for implementation reasons

 Permission dependencies

 «access» the public contents of the supplier package are added as private

elements to the namespace of the client package

 «import» the public contents of the supplier package are added as public

elements to the namespace of the client package

 «permit» the client element has access to the supplier element despite the

declared visibility of the supplier

© Clear View Training 2010 v2.6 18

Key points

 Links – relationships between objects

 Associations – relationships between classes

 role names

 multiplicity

 navigability

 association classes

 Dependencies – relationships between model elements

 usage

 abstraction

 permission

© Clear View Training 2010 v2.6 19

Inheritance and polymorphism

Lecture 5/Part 2

© Clear View Training 2010 v2.6 20

Generalisation

Shape

Square Circle Triangle

more general element

more specific elements

parent

superclass

base class

ancestor

child

subclass

descendent

g
e
n
e
ra

lis
a
tio

n

s
p
e
c
ia

lis
a
ti
o
n

A generalisation hierarchy

“is kind of”

A relationship between a more general element and a more
specific element (with more information)

© Clear View Training 2010 v2.6 21

Class inheritance

 Subclasses inherit all features of their
superclasses:

 attributes

 operations

 relationships

 stereotypes, tags, constraints

 Subclasses can add new features

 Subclasses can override superclass
operations

 We can use a subclass instance
anywhere a superclass instance is
expected

Substitutability

Principle

Shape

origin : Point = (0,0)

width : int {>0}
height : int {>0}

draw(g : Graphics)

getArea() : int
getBoundingArea() : int

Square Circle

radius : int = width/2

What’s wrong with

these subclasses?

© Clear View Training 2010 v2.6 22

Overriding

 Subclasses often need to override superclass behaviour

 To override a superclass operation, a subclass must provide an
operation with the same signature

 The operation signature is the operation name, return type and types
of all the parameters

Shape

draw(g : Graphics)

getArea() : int
getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : int width x height p x radius2

What’s wrong with

the superclass?

© Clear View Training 2010 v2.6 23

Abstract operations & classes

 We can’t provide an implementation for
Shape :: draw(g : Graphics) or for
Shape :: getArea() : int
because we don’t know how to draw or calculate the area for a "shape"!

 Operations that lack an implementation are abstract operations

 A class with any abstract operations can’t be instantiated and is
therefore an abstract class

concrete

operations

Shape

draw(g : Graphics)

getArea() : int
getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : int

abstract class

concrete

classes

abstract

operations
abstract class and

operation names

must be in italics

© Clear View Training 2010 v2.6 24

Exercise

Vehicle

JaguarXJS Truck

what’s wrong

with this model?

© Clear View Training 2010 v2.6 25

Polymorphism

 Polymorphism = "many forms"

 A polymorphic operation has
many implementations

 Square and Circle provide
implementations for the
polymorphic operations
Shape::draw() and
Shape::getArea()

 The operation in Shape
superclass defines a contract
for the subclasses.

Shape

draw(g : Graphics)

getArea() : int

getBoundingArea() : int

Square Circle

draw(g : Graphics)

getArea() : int

draw(g : Graphics)

getArea() : int

polymorphic

operations

concrete subclasses

abstract

superclass

Canvas

0..*

1

A Canvas object has a collection of Shape objects

where each Shape may be a Square or a Circle

shapes

© Clear View Training 2010 v2.6 26

What happens?

 Each class of object has its
own implementation of the
draw() operation

 On receipt of the draw()
message, each
object invokes the
draw() operation
specified by its class

 We can say that each object
"decides" how to interpret the
draw() message based on its class

:Canvas

s1:Circle

s2:Square

s3:Circle

s4:Circle

1.draw()

2.draw()

3.draw()

4.draw()

© Clear View Training 2010 v2.6 27

BankAccount example

 We have overridden the deposit() operation even though it is

not abstract.

BankAccount

withdraw()

calculateInterest()

deposit()

CheckingAccount DepositAccount

withdraw()

calculateInterest()

withdraw()

calculateInterest()

Bank
0..* 1

ShareAccount

withdraw()

calculateInterest()

deposit()

© Clear View Training 2010 v2.6 28

Key points

Generalisation, specialisation, inheritance

 Subclasses

 inherit all features from their parents including constraints and

relationships

 may add new features, constraints and relationships

 may override superclass operations

 A class that can’t be instantiated is an abstract class

© Clear View Training 2010 v2.6 29

UML State Diagram

Lecture 7/Part 4

© Clear View Training 2010 v2.6 30

State machines

 Models life stages of a single model element – e.g. object, use case, module

 Every state machine exists in the context of a particular model element that:

 Has a clear life history modelled as a progression of states, transitions and events

 Responds to events dispatched from outside of the element

 There are two types of state machines:

 Behavioural state machines - define the behaviour of a model element

 Protocol state machines - model the protocol of a classifier

• E.g. call conditions and call ordering of an interface that itself has no behaviour

Off On Off On

turnOff

burnOut

light bulb

turnOn

© Clear View Training 2010 v2.6 31

Basic state machine syntax

 State = a situation or condition during the life of an object

 Determined at any point in time by the values of its

attributes, the relationships to other objects, or the

activities it is performing.

 Every state machine should have one initial state
which indicates the first state of the sequence

 Unless the states cycle endlessly, state machines
should have a final state which terminates its lifecycle

A B
anEvent

initial state transition

event

state final state

Color

red : int

green : int

blue : int

How many states?

© Clear View Training 2010 v2.6 32

State syntax

 Actions are instantaneous

and uninterruptible

 Entry actions occur

immediately on state entry

 Exit actions occur

immediately on state leaving

 Internal transitions occur

within the state. They do not

fire transition to a new state

 Activities take a finite amount

of time and are interruptible

EnteringPassword

entry/display passwd dialog

exit/validate password

keypress/ echo "*"

help/display help

do/get password

entry and

exit actions

internal

transitions

internal

activity

Action syntax: eventTrigger / action

Activity syntax: do / activity

state name

© Clear View Training 2010 v2.6 33

Transitions

A B
event1, event2 [guard condition] / act1, act2

behavioral state machine

C D
[precondition] event1, event2 / [postcondition]

protocol state machine {protocol}
Protocol

state machine

Specifies legal

sequences of

events.

Behavioral

state machine

Specifies

object’s

reactions to

events.

events guard condition actions

precondition events postcondition

© Clear View Training 2010 v2.6 34

 Choice pseudo state
directs its single incoming
transition to one of its
outgoing transitions

 Each outgoing transition
must have a mutually
exclusive guard condition

 Equivalent to two outgoing
transitions from one state

 Junction pseudo state
connects multiple incoming
transitions into one (or more)
transitions.

 When there are more
outgoing transitions, they
must have guard conditions

Unpaid

FullyPaid PartiallyPaid OverPaid

[payment == balance]

[payment > balance] [payment < balance]

acceptPayment acceptPayment

makeRefund

BankLoan

choice pseudo-state

Choice and junction pseudo states

junction

pseudo state

© Clear View Training 2010 v2.6 35

Events

 "The specification of a noteworthy
occurrence that has location in time and
space"

 Events trigger transitions in state machines

 Events can be shown externally, on
transitions, or internally within states
(internal transitions)

 There are four types of event:

 Call event

 Signal event

 Change event

 Time event

Off

On

turnOff turnOn

event

© Clear View Training 2010 v2.6 36

close()

Call event

 A call for an operation
execution

 The event should have
the same signature as an
operation of the context
class

 A sequence of actions
may be specified for a
call event - they may use
attributes and operations
of the context class

 The return value must
match the return type of
the operation

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

internal call event action

condition external call event

entry action

SimpleBankAccount

© Clear View Training 2010 v2.6 37

close()

Signal events

 A signal is a

package of

information that is

sent

asynchronously

between objects

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

SimpleBankAccount

OverdrawnAccount

send a signal

«signal»
OverdrawnAccount

date : Date

accountNumber : long
amountOverdrawn : long

Calling borrower OverdrawnAccount

signal receipt

© Clear View Training 2010 v2.6 38

close()

Change events

 The action is
performed when the
Boolean expression
transitions from false
to true

 The event is edge
triggered on a false
to true transition

 The values in the
Boolean
expression must
be constants,
globals or
attributes of the
context class

 A change event
implies continually
testing the condition
whilst in the state

InCredit

deposit(m)/ balance = balance + m

balance >= 5000 / notifyManager()

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)

[balance < m]

withdraw(m)

[balance >= m]

SimpleBankAccount

OverdrawnAccount

Boolean

expression

© Clear View Training 2010 v2.6 39

Time events

 Time events occur when a

time expression becomes

true

 There are two keywords,

after and when

 Elapsed time:

 after(3 months)

 Absolute time:

 when(date =20/3/2000)

Overdrawn

balance < overdraftLimit / notifyManager

Frozen

after(3 months)

Context: CreditAccount class

© Clear View Training 2010 v2.6 40

Composite states

 Have one or more regions that

each contain a nested

submachine

 Simple composite state

• exactly one region

 Orthogonal composite state

• two or more regions

 The final state terminates its

enclosing region – all other

regions continue to execute

 The terminate pseudo-state

terminates the whole state

machine

A composite state

A B

C

region 1

region 2

submachines

Another composite state

D E

F

terminate

pseudo-state

© Clear View Training 2010 v2.6 41

[dialtone]

after(20 seconds)/ noDialtone after(20 seconds)/ noCarrier [carrier]

cancel

Simple composite states

do/ dialISP

DialingISP

entry/ offHook

WaitingForDialtone
Dialing

WaitingForCarrier

entry

pseudo
state

notConnected

dial

connected exit pseudo-state

NotConnected

Connected

entry/ onHook exit/ onHook

do/ useConnection

ISPDialer

the nested states inherit the cancel transition

© Clear View Training 2010 v2.6 42

Orthogonal composite states

 Has two or more regions

When we enter the superstate, both submachines start

executing concurrently - this is an implicit fork

do/ initializeSecuritySensor

Initializing

InitializingFireSensors

do/ initializeFireSensor

InitializingSecuritySensors

Initializing composite state details

do/ monitorSecuritySensor

Monitoring

MonitoringFireSensors

do/ monitorFireSensor

MonitoringSecuritySensors

fire

intruder

Monitoring composite state details

Synchronized exit - exit the superstate when both

regions have terminated

Unsynchronized exit - exit the superstate when either

region terminates. The other region continues

© Clear View Training 2010 v2.6 43

Key points

 Behavioral and protocol state machines

 States

 Initial and final

 Exit and entry actions, activities

 Transitions

 Guard conditions, actions

 Events

 Call, signal, change and time

 Composite states

 Simple and orthogonal composite states

