PB173 - Tématický vývoj aplikací v C/C++ (Podzim/Fall 2014) Domain specific development in C/C++

Skupina: <u>Aplikovaná kryptografie a bezpečné programování</u> https://is.muni.cz/auth/predmety/uplny_vypis.pl?fakulta=1433;obdobi=618 4;predmet=788705

Petr Švenda svenda@fi.muni.cz Konzultace: A406, Pondělí 15-15:50 CROCS

Centre for Research on Cryptography and Security

CRତCS

Teams

- 2-3 persons
- Joint work, but every one presents its contribution
 - Presentation on next seminar
- Form the teams now!
 - TODO teams

"Theme" project

Secure videoconferencing architecture

"Theme" project – some details

- Users obtains certificate of identity from Certification authority
- Users register with Videoconferencing server
- Videoconferencing server provides list of connected users, help to establish video connection and charge fee based on call length
- Client maintains user identity, related keys and provides high speed encryption of audio/video stream

Practical assignment

- Design and document API to:
 - 1. new user registration
 - 2. user authentication to server
 - 3. obtain list of other users
 - 4. establish secure channel to other (online) users (ENC, MAC)
 - 5. exchange stream data with other user (audio only)
 - 6. close secure channel
 - 7. disconnect user from server
 - 8. ...?
- Document functions in JavaDoc-style (Doxygen)
- CA/Client/Server are separate processes
 - design communication over sockets or http requests

Practical assignment – cont.

- Prepare document and presentation with design decisions
 - 2-3xA4 document (overview, functions, crypto used...)
 - 4-5 slides (presentation)
- Your design will be presented and discussed next week

Designing good API, authenticated encryption

Principles of good API

- 1. Be minimal
- 2. Be complete
- 3. Have clear and simple semantics
- 4. Be intuitive
- 5. Be easy to memorize
- 6. Lead to readable code
- read more at e.g., <u>http://doc.trolltech.com/qq/qq13-apis.html</u>
- security API even harder: <u>http://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c18.pdf</u>
- <u>http://blog.apigee.com/taglist/security</u>

Read more about this topics

- Schneier on Security: <u>http://www.schneier.com/</u>
- TaoSecurity <u>http://taosecurity.blogspot.com/</u>
- Krebs on Security: <u>http://krebsonsecurity.com/</u>
- Freedom to Tinker: <u>https://freedom-to-tinker.com/</u>
- Light Blue Touchpaper: <u>http://www.lightbluetouchpaper.org/</u>

. . .

Copy-free functions

- API style which minimizes array copy operations
- Frequently used in cryptography
 - we take block, process it and put back
 - can take place inside original memory array
- int encrypt(byte array[], int startOffset, int length);
 - encrypt data from startOffset to startOffset + length;
- Wrong(?) example:
 - int encrypt(byte array[], int length, byte outArray[], int*
 pOutLength);
 - note: C/C++ can still use pointers arithmetic
 - note: Java can't (we need to create new array)

Block cipher modes for Authenticated Encryption

Modes for authenticated encryption

- Encryption preserves confidentiality but not integrity
- Common integrity functions (like CRC) protect against random faults
- Cryptographic message integrity protects
 intensional errors

Confidentiality, integrity, privacy

- Message confidentiality [encryption]
 - attacker is not able to obtain info about plaintext
- Message integrity [MAC]
 - attacker is not able to modify message without being detected (PTX, CTX)
- Message privacy [encryption]
 - attacker is not able to distinguish between encrypted message and random string
 - same message is encrypted each time differently

Encryption and MAC composition

- Modes for block ciphers (CBC, CTR, CBC-MAC)
- Compositions (encryption + MAC)
 - encrypt-and-mac $[E_{Ke,Km}(M) = E_{Ke}(M) | T_{Km}(M)]$
 - can fail with privacy and authenticity
 - mac-then-encrypt $[E_{Ke,Km}(M) = E_{Ke}(M | T_{Km}(M))]$
 - can fail with authenticity
 - encrypt-then-mac $[E_{Ke,Km}(M) = E_{Ke}(M) || T_{Km}(E_{Ke}(M)]$
 - always provides privacy and authenticity
- Paralelizability issue
- Authenticated-encryption modes (AE)
 - special block cipher modes for composed process

Usage scenarios

- Powerful, parallelizable environments
 hardware accelerators
- Powerful, but almost serial environments

 personal computer, PDA
- Restricted environments
 - smart card, cellular phone
- Different scenarios have different needs

Important features for AE modes

- Provable security
- Performance, paralelizability, memory req.
 - important for high-speed encryption, SC
- Patent
 - early AE modes were patented
- Associated data authentication
 - authentication of non-encrypted part
- Online, incremental MAC, number of keys, endian dependency ...
- <u>http://blog.cryptographyengineering.com/2012/05/how-to-</u> choose-authenticated-encryption.html
- www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf

EAX mode

- Encrypt-than-mac composition
- Provable secure, unpatented

17 PB173

Offset CodeBook mode (OCB)

- Memory efficient, fast mode
- Provable secure, but patented

Cipher-State mode (CS)

- Memory efficient, fast mode, unpatented
- Not provable secure (inner state of cipher)

19 PB173

Galois/Counter Mode (GCM)

- Need pre-computed table (4kB-64kB)
- fast mode, provable secure, unpatented, NIST standard
- <u>http://csrc.nist.gov/publications/nistpubs/800-38D/SP-</u> 800-38D.pdf
 GCM

Implementation: AES-GCM from PolarSSL

• gcm.h, gcm.c

<pre>int gcm_init(gcm_context *ctx,</pre>	
<pre>int gcm_crypt_and_tag(gcm_context *ctx, int mode, // GCM_ENCRYPT (alternatively GCM_DE size_t length, const unsigned char *iv, size_t iv_len, const unsigned char *add, // authenticated, but size_t add_len, const unsigned char *input, // authenticated autous</pre>	CRYPT) t not encrypted nd encrypted
unsigned char *output, // encrypted data size_t tag_len, unsigned char *tag);	<pre>int gcm_auth_decrypt(gcm_context *ctx, size_t length,</pre>
21 PB173	www.fi.muni.cz/crocs

CAESAR competition

• <u>http://competitions.cr.yp.to/caesar-submissions.html</u>

Cryptographic competitions

Introduction	CAESAR submissions	
Secret-key cryptography		
Disasters	candidate	designers
Features	ACORN: <u>v1</u>	Hongjun Wu
Focused competitions:	++AE: v1.0 analysis parameters	Francisco Recacha
	AEGIS: <u>v1</u>	Hongjun Wu, Bart Preneel
SHA-3	AES-CMCC: <u>v1 v1.1</u>	Jonathan Trostle
PHC	AES-COBRA: v1 withdrawn	Elena Andreeva, Andrey Bogdanov, Martin M. Lauridsen, Atul Luykx, Bart Mennink, Elmar Tischhauser, Kan Yasuda
CAESAR	AES-COPA: v1	Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser, Kan Yasuda
Broader evaluations:	AES-CPFB: <u>v1</u>	Miguel Montes, Daniel Penazzi
	AES-JAMBU: <u>v1</u>	Hongjun Wu, Tao Huang
	AES-OTR: <u>v1</u>	Kazuhiko Minematsu
CAESAR details:	AEZ: <u>v1 security</u>	Viet Tung Hoang, Ted Krovetz, Phillip Rogaway
Call for submissions	Artemia: <u>v1 proof addendum</u>	Javad Alizadeh, Mohammad Reza Aref, Nasour Bagheri
Call draft 5	Ascon: <u>home v1</u>	Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Martin Schläffer
Call draft 4	AVALANCHE: v1 corrections	Basel Alomair
Call draft 3 Call draft 2	Calico: <u>v8</u>	Christopher Taylor
Call draft 1	CBA: <u>v1 v1-1</u>	Hossein Hosseini, Shahram Khazaei
Committee	CBEAM: r1 withdrawn	Markku-Juhani O. Saarinen
Frequently asked questions	CLOC: <u>v1</u>	Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka

CRତCS

Conclusions

- Composition of ENC and MAC can fail
 - encrypt-then-mac provable secure
 - specially designed composed modes
- Most promising mode is patented (OCB)
 - fast alternative GCM, CS
 - Searching for new modes (CAESAR competition)
- Suitable mode depends on usage
 - parallelizability, memory
 - specific needs (online, incremental MAC)