
PB173 - Tématický vývoj aplikací v C/C++

(Podzim/Fall 2014)

Domain specific development in C/C++

Skupina: Aplikovaná kryptografie a bezpečné programování

https://is.muni.cz/auth/predmety/uplny_vypis.pl?fakulta=1433;obdobi=618

4;predmet=788705

Petr Švenda svenda@fi.muni.cz

Konzultace: A406, Pondělí 15-15:50

PB173

Teams

• 2-3 persons

• Joint work, but every one presents its contribution

– Presentation on next seminar

• Form the teams now!

– TODO teams

2

"Theme" project

• Secure videoconferencing architecture

PB173 3

PB173

"Theme" project – some details

• Users obtains certificate of identity from

Certification authority

• Users register with Videoconferencing server

• Videoconferencing server provides list of connected

users, help to establish video connection and

charge fee based on call length

• Client maintains user identity, related keys and

provides high speed encryption of audio/video

stream

4

Practical assignment

• Design and document API to:

1. new user registration

2. user authentication to server

3. obtain list of other users

4. establish secure channel to other (online) users (ENC, MAC)

5. exchange stream data with other user (audio only)

6. close secure channel

7. disconnect user from server

8. ...?

• Document functions in JavaDoc-style (Doxygen)

• CA/Client/Server are separate processes

– design communication over sockets or http requests

PB173 5

Practical assignment – cont.

• Prepare document and presentation with design

decisions

– 2-3xA4 document (overview, functions, crypto used...)

– 4-5 slides (presentation)

• Your design will be presented and discussed next

week

PB173 6

Designing good API, authenticated

encryption

PB173 7

Principles of good API

1. Be minimal

2. Be complete

3. Have clear and simple semantics

4. Be intuitive

5. Be easy to memorize

6. Lead to readable code

• read more at e.g., http://doc.trolltech.com/qq/qq13-apis.html

• security API even harder:

http://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c18.pdf

• http://blog.apigee.com/taglist/security

PB173 8

Read more about this topics

• Schneier on Security: http://www.schneier.com/

• TaoSecurity http://taosecurity.blogspot.com/

• Krebs on Security: http://krebsonsecurity.com/

• Freedom to Tinker: https://freedom-to-tinker.com/

• Light Blue Touchpaper:

http://www.lightbluetouchpaper.org/

• …

PB173 9

Copy-free functions

• API style which minimizes array copy operations

• Frequently used in cryptography

– we take block, process it and put back

– can take place inside original memory array

• int encrypt(byte array[], int startOffset, int length);

– encrypt data from startOffset to startOffset + length;

• Wrong(?) example:

– int encrypt(byte array[], int length, byte outArray[], int*
pOutLength);

– note: C/C++ can still use pointers arithmetic

– note: Java can’t (we need to create new array)

PB173 10

Block cipher modes for Authenticated

Encryption

PB173 11

Modes for authenticated encryption

• Encryption preserves confidentiality but not integrity

• Common integrity functions (like CRC) protect

against random faults

• Cryptographic message integrity protects

intensional errors

PB173 12

Confidentiality, integrity, privacy

• Message confidentiality [encryption]

– attacker is not able to obtain info about plaintext

• Message integrity [MAC]

– attacker is not able to modify message without being

detected (PTX, CTX)

• Message privacy [encryption]

– attacker is not able to distinguish between encrypted

message and random string

– same message is encrypted each time differently

PB173 13

Encryption and MAC composition

• Modes for block ciphers (CBC, CTR, CBC-MAC)

• Compositions (encryption + MAC)

– encrypt-and-mac [EKe,Km(M) = EKe(M) | TKm(M)]

• can fail with privacy and authenticity

– mac-then-encrypt [EKe,Km(M) = EKe(M | TKm(M))]

• can fail with authenticity

– encrypt-then-mac [EKe,Km(M) = EKe(M) || TKm(EKe(M)]

• always provides privacy and authenticity

• Paralelizability issue

• Authenticated-encryption modes (AE)

– special block cipher modes for composed process

PB173 14

Usage scenarios

• Powerful, parallelizable environments

– hardware accelerators

• Powerful, but almost serial environments

– personal computer, PDA

• Restricted environments

– smart card, cellular phone

• Different scenarios have different needs

PB173 15

Important features for AE modes
• Provable security

• Performance, paralelizability, memory req.
– important for high-speed encryption, SC

• Patent
– early AE modes were patented

• Associated data authentication
– authentication of non-encrypted part

• Online, incremental MAC, number of keys, endian
dependency …

• http://blog.cryptographyengineering.com/2012/05/how-to-
choose-authenticated-encryption.html

• www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf

PB173 16

EAX mode

PB173

� Encrypt-than-mac composition

� Provable secure, unpatented

17

Offset CodeBook mode (OCB)

PB173

� Memory efficient, fast mode

� Provable secure, but patented

18

Cipher-State mode (CS)

PB173

� Memory efficient, fast mode, unpatented

� Not provable secure (inner state of cipher)

19

Galois/Counter Mode (GCM)

PB173

� Need pre-computed table (4kB-64kB)

� fast mode, provable secure, unpatented, NIST standard

� http://csrc.nist.gov/publications/nistpubs/800-38D/SP-
800-38D.pdf

20

Implementation: AES-GCM from PolarSSL

• gcm.h, gcm.c

PB173

int gcm_init(gcm_context *ctx,

const unsigned char *key,

unsigned int keysize);

int gcm_crypt_and_tag(gcm_context *ctx,

int mode, // GCM_ENCRYPT (alternatively GCM_DECRYPT)

size_t length,

const unsigned char *iv,

size_t iv_len,

const unsigned char *add, // authenticated, but not encrypted

size_t add_len,

const unsigned char *input, // authenticated and encrypted

unsigned char *output, // encrypted data

size_t tag_len,

unsigned char *tag);

int gcm_auth_decrypt(gcm_context *ctx,

size_t length, // length of input data

const unsigned char *iv,

size_t iv_len,

const unsigned char *add, // authenticated, but not encrypted

size_t add_len,

const unsigned char *tag, // authenticator (MAC value)

size_t tag_len,

const unsigned char *input, // encrypted data

unsigned char *output); // decrypted data

21

CAESAR competition

• http://competitions.cr.yp.to/caesar-submissions.html

22 PB173

Conclusions

• Composition of ENC and MAC can fail

– encrypt-then-mac provable secure

– specially designed composed modes

• Most promising mode is patented (OCB)

– fast alternative GCM, CS

– Searching for new modes (CAESAR competition)

• Suitable mode depends on usage

– parallelizability, memory

– specific needs (online, incremental MAC)

PB173 23

