
Laboratory Exercise 9
A Simple Processor

Figure 1 shows a digital system that contains a number of 16-bit registers, a multiplexer, an adder/subtracter
unit, and a control unit (finite state machine). Data is input to this system via the 16-bit DIN input. This data can
be loaded through the 16-bit wide multiplexer into the various registers, such as R0, . . . , R7 and A. The multi-
plexer also allows data to be transferred from one register to another. The multiplexer’s output wires are called a
bus in the figure because this term is often used for wiring that allows data to be transferred from one location in
a system to another.

Addition or subtraction is performed by using the multiplexer to first place one 16-bit number onto the bus
wires and loading this number into register A. Once this is done, a second 16-bit number is placed onto the bus,
the adder/subtracter unit performs the required operation, and the result is loaded into register G. The data in G
can then be transferred to one of the other registers as required.

AddSub

Ain

Gin

Run

Done

9

16 16

DIN

R0in

Multiplexers

R7in

Bus

Clock

Gout
R0out

R7out

16

R0 R7

16

8

DINout

16

IRin

Addsub

16

IR

9

A

G

Resetn

16 16

Control unit FSM

Figure 1: A digital system.

The system can perform different operations in each clock cycle, as governed by the control unit. This unit
determines when particular data is placed onto the bus wires and it controls which of the registers is to be loaded
with this data. For example, if the control unit asserts the signals R0out and Ain, then the multiplexer will place
the contents of register R0 onto the bus and this data will be loaded by the next active clock edge into register A.

A system like this is often called a processor. It executes operations specified in the form of instructions.
Table 1 lists the instructions that the processor has to support for this exercise. The left column shows the name

1



of an instruction and its operand. The meaning of the syntax RX← [RY] is that the contents of register RY are
loaded into register RX. The mv (move) instruction allows data to be copied from one register to another. For
the mvi (move immediate) instruction the expression RX← D indicates that the 16-bit constant D is loaded into
register RX.

Operation Function performed

mv Rx,Ry Rx← [Ry]

mvi Rx,#D Rx← D

add Rx,Ry Rx← [Rx] + [Ry]

sub Rx,Ry Rx← [Rx]− [Ry]

Table 1. Instructions performed in the processor.

Each instruction can be encoded and stored in the IR register using the 9-bit format IIIXXXYYY, where III
represents the instruction, XXX gives the RX register, and YYY gives the RY register. Although only two bits
are needed to encode our four instructions, we are using three bits because other instructions will be added to the
processor in later parts of this exercise. Hence IR has to be connected to nine bits of the 16-bit DIN input, as
indicated in Figure 1. For the mvi instruction the YYY field has no meaning, and the immediate data #D has to be
supplied on the 16-bit DIN input after the mvi instruction word is stored into IR.

Some instructions, such as an addition or subtraction, take more than one clock cycle to complete, because
multiple transfers have to be performed across the bus. The finite state machine in the control unit “steps through”
such instructions, asserting the control signals needed in successive clock cycles until the instruction has com-
pleted. The processor starts executing the instruction on the DIN input when the Run signal is asserted and the
processor asserts the Done output when the instruction is finished. Table 2 indicates the control signals that can
be asserted in each time step to implement the instructions in Table 1. Note that the only control signal asserted in
time step 0 is IRin, so this time step is not shown in the table.

T1 T2 T3

(mv): I0 RYout, RXin,
Done

(mvi): I1 DINout, RXin,
Done

(add): I2 RXout, Ain RYout, Gin Gout, RXin,
Done

(sub): I3 RXout, Ain RYout, Gin, Gout, RXin,
AddSub Done

Table 2. Control signals asserted in each instruction/time step.

Part I

Design and implement the processor shown in Figure 1 using Verilog code as follows:

1. Create a new Quartus II project for this exercise.

2. Generate the required Verilog file, include it in your project, and compile the circuit. A suggested skeleton
of the Verilog code is shown in parts a and b of Figure 2, and some subcircuit modules that can be used in
this code appear in Figure 2c.

3. Use functional simulation to verify that your code is correct. An example of the output produced by a
functional simulation for a correctly-designed circuit is given in Figure 3. It shows the value (2000)16 being

2



loaded into IR from DIN at time 30 ns. This pattern (the leftmost bits of DIN are connected to IR) represents
the instruction mvi R0,#D, where the value D = 5 is loaded into R0 on the clock edge at 50 ns. The
simulation then shows the instruction mv R1,R0 at 90 ns, add R0,R1 at 110 ns, and sub R0,R0 at 190 ns.
Note that the simulation output shows DIN as a 4-digit hexadecimal number, and it shows the contents of
IR as a 3-digit octal number.

4. Create a new Quartus II project which will be used for implementation of the circuit on the Altera DE2-
series board. This project should consist of a top-level module that contains the appropriate input and output
ports for the Altera board. Instantiate your processor in this top-level module. Use switches SW15−0 to drive
the DIN input port of the processor and use switch SW17 to drive the Run input. Also, use push button KEY0

for Resetn and KEY1 for Clock. Connect the processor bus wires to LEDR15−0 and connect the Done signal
to LEDR17.

5. Add to your project the necessary pin assignments for the DE2-series board. Compile the circuit and down-
load it into the FPGA chip.

6. Test the functionality of your design by toggling the switches and observing the LEDs. Since the processor’s
clock input is controlled by a push button switch, it is easy to step through the execution of instructions and
observe the behavior of the circuit.

module proc (DIN, Resetn, Clock, Run, Done, BusWires);
input [15:0] DIN;
input Resetn, Clock, Run;
output Done;
output [15:0] BusWires;

parameter T0 = 2’b00, T1 = 2’b01, T2 = 2’b10, T3 = 2’b11;
. . . declare variables

assign I = IR[1:3];
dec3to8 decX (IR[4:6], 1’b1, Xreg);
dec3to8 decY (IR[7:9], 1’b1, Yreg);

Figure 2a. Skeleton Verilog code for the processor.

3



// Control FSM state table
always @(Tstep_Q, Run, Done)
begin

case (Tstep_Q)
T0: // data is loaded into IR in this time step

if (!Run) Tstep_D = T0;
else Tstep_D = T1;

T1: . . .
endcase

end

// Control FSM outputs
always @(Tstep_Q or I or Xreg or Yreg)
begin

. . . specify initial values
case (Tstep_Q)

T0: // store DIN in IR in time step 0
begin

IRin = 1’b1;
end
T1: //define signals in time step 1

case (I)
. . .

endcase
T2: //define signals in time step 2

case (I)
. . .

endcase
T3: //define signals in time step 3

case (I)
. . .

endcase
endcase

end

// Control FSM flip-flops
always @(posedge Clock, negedge Resetn)

if (!Resetn)
. . .

regn reg_0 (BusWires, Rin[0], Clock, R0);
. . . instantiate other registers and the adder/subtracter unit

. . . define the bus

endmodule

Figure 2b. Skeleton Verilog code for the processor.

4



module dec3to8(W, En, Y);
input [2:0] W;
input En;
output [0:7] Y;
reg [0:7] Y;

always @(W or En)
begin

if (En == 1)
case (W)

3’b000: Y = 8’b10000000;
3’b001: Y = 8’b01000000;
3’b010: Y = 8’b00100000;
3’b011: Y = 8’b00010000;
3’b100: Y = 8’b00001000;
3’b101: Y = 8’b00000100;
3’b110: Y = 8’b00000010;
3’b111: Y = 8’b00000001;

endcase
else

Y = 8’b00000000;
end

endmodule

module regn(R, Rin, Clock, Q);
parameter n = 16;
input [n-1:0] R;
input Rin, Clock;
output [n-1:0] Q;
reg [n-1:0] Q;

always @(posedge Clock)
if (Rin)

Q <= R;
endmodule

Figure 2c. Subcircuit modules for use in the processor.

5



Figure 3. Simulation of the processor.

Part II

In this part you are to design the circuit depicted in Figure 4, in which a memory module and counter are connected
to the processor from Part I. The counter is used to read the contents of successive addresses in the memory, and
this data is provided to the processor as a stream of instructions. To simplify the design and testing of this circuit
we have used separate clock signals, PClock and MClock, for the processor and memory.

Counter

n

Resetn

MClock

Memory

16
addr data

Processor

16

DIN
Bus

Re
se

tn

Ru
n

Done

Run

Bus

Done

PClock

Figure 4. Connecting the processor to a memory and counter.

1. Create a new Quartus II project which will be used to test your circuit.

2. Generate a top-level Verilog file that instantiates the processor, memory, and counter. Use the Quartus II
MegaWizard Plug-In Manager tool to create the memory module from the Altera library of parameterized
modules (LPMs). The correct LPM is found under the Memory Compiler category and is called ROM:
1-PORT. Follow the instructions provided by the wizard to create a memory that has one 16-bit wide read
data port and is 32 words deep. Page 4 of the wizard is shown in Figure 5. Since this memory has only a
read port, and no write port, it is called a synchronous read-only memory (synchronous ROM). Note that the

6



memory includes a register for synchronously loading addresses. This register is required due to the design
of the memory resources on the Cyclone FPGA; account for the clocking of this address register in your
design.

To place processor instructions into the memory, you need to specify initial values that should be stored in
the memory once your circuit has been programmed into the FPGA chip. This can be done by telling the
wizard to initialize the memory using the contents of a memory initialization file (MIF). The appropriate
screen of the MegaWizard Plug-In Manager tool is illustrated in Figure 6. We have specified a file named
inst_mem.mif, which then has to be created in the directory that contains the Quartus II project. Use the
Quartus II on-line Help to learn about the format of the MIF file and create a file that has enough processor
instructions to test your circuit.

3. Use functional simulation to test the circuit. Ensure that data is read properly out of the ROM and executed
by the processor.

4. Make sure your project includes the necessary port names and pin location assignments to implement the
circuit on the DE2-series board. Use switch SW17 to drive the processor’s Run input, use KEY0 for Resetn,
use KEY1 for MClock, and use KEY2 for PClock. Connect the processor bus wires to LEDR15−0 and connect
the Done signal to LEDR17.

5. Compile the circuit and download it into the FPGA chip.

6. Test the functionality of your design by toggling the switches and observing the LEDs. Since the circuit’s
clock inputs are controlled by push button switches, it is easy to step through the execution of instructions
and observe the behavior of the circuit.

Figure 5. 1-PORT configuration.

7



Figure 6. Specifying a memory initialization file (MIF).

Enhanced Processor

It is possible to enhance the capability of the processor so that the counter in Figure 4 is no longer needed, and
so that the processor has the ability to perform read and write operations using memory or other devices. These
enhancements involve adding new instructions to the processor and the programs that the processor executes are
therefore more complex; they are described in a subsequent lab exercise available from Altera.

Copyright c©2011 Altera Corporation.

8


