Application of Bayesian Networks in Energetics Stanislav Chren Faculty of Informatics Masaryk University chren@mail.muni.cz 2. 10. 2014 (FI MU) PV226 Lasaris 2. 10. 2014 1 / 18 Motivation Real world prediction and diagnostic analysis suffer from many challenges Incomplete input data Uncertain data sources Complex non-linear relationship between variables (FI MU) PV226 Lasaris 2. 10. 2014 2 / 18 Outline 1 Introduction to Bayesian networks Definition Construction Analysis Pros and Cons 2 Bayesian networks in energetics Demo (FI MU) PV226 Lasaris 2. 10. 2014 3 / 18 Definition Informal definition Framework for graphically representing the logical relationships between variables and capturing the uncertainty in the dependency between these variables using conditional probabilities (FI MU) PV226 Lasaris 2. 10. 2014 4 / 18 Probability tables (FI MU) PV226 Lasaris 2. 10. 2014 5 / 18 Probability tables (FI MU) PV226 Lasaris 2. 10. 2014 6 / 18 Probability tables (FI MU) PV226 Lasaris 2. 10. 2014 7 / 18 Analysis I Unconditional (a priori) node probabilities (FI MU) PV226 Lasaris 2. 10. 2014 8 / 18 Analysis I Unconditional (a priori) node probabilities (FI MU) PV226 Lasaris 2. 10. 2014 9 / 18 Analysis II Sensitivity analysis Identification of nodes with the highest impact on the target node (FI MU) PV226 Lasaris 2. 10. 2014 10 / 18 Analysis II Sensitivity analysis Identification of nodes with the highest impact on the target node (FI MU) PV226 Lasaris 2. 10. 2014 11 / 18 Analysis III Inference and propagation of evidence (FI MU) PV226 Lasaris 2. 10. 2014 12 / 18 Analysis III Inference and propagation of evidence (FI MU) PV226 Lasaris 2. 10. 2014 13 / 18 Analysis III Inference and propagation of evidence (FI MU) PV226 Lasaris 2. 10. 2014 14 / 18 Analysis III Inference and propagation of evidence (FI MU) PV226 Lasaris 2. 10. 2014 15 / 18 Applications and Variations Domains of BN application Medical diagnostics Language understanding Weather forecasting Legal arguments Software reliability analysis ... Modifications and extensions of BN Dynamic BN OOBN Influence diagrams (FI MU) PV226 Lasaris 2. 10. 2014 16 / 18 Pros and Cons Advantages of Bayesian networks Uncertainty handling Complex relationships between variables Robust model Intuitive parameters Variety of analysis options Disadvantages of Bayesian networks Support for continuous variables Construction of topology (FI MU) PV226 Lasaris 2. 10. 2014 17 / 18 Bayesian Networks in Energetics DEMO (FI MU) PV226 Lasaris 2. 10. 2014 18 / 18