PV227 GPU Rendering

Marek Vinkler

Department of Computer Graphics and Design

Laboratory

PV227 GPU Rendering

GLSL

e officialy OpenGL Shading Language,

@ part of OpenGL standard (from OpenGL 2.0),

@ high-level procedural language (based on C and C++),
@ independent on hardware,

@ performance oriented (through custom compilers).

Ene

Laboratory

PV227 GPU Rendering 2/50

N
GLSL Properties

single set of instructions for all shaders (almost),
native support for vectors and matrices,

no pointers (hurray :D) and strings,

strict with types,

no length limit (language part).

Laboratory

PV227 GPU Rendering 3/50

-
GLSL Compiler

@ part of the OpenGL driver — graphics driver,

@ common front-end (should be), different (optimized)
back-ends,

@ shaders are combined into programs,
@ linking resolves cross shader references,
@ shaders are strings, not files (no #include).

Laboratory

PV227 GPU Rendering 4/50

N
Scalar Data Types

o float,

@ int,

@ uint,

@ bool,

@ declarations may appear anywhere.

Laboratory

PV227 GPU Rendering 5/50

Scalar Data Types — example

float f;

float h = 2.4; // float constant in GLSL 3.3 and below
f = 0.2f;

float ff = 1.5e10;

ff —= 1.E-3G;

uint n = 5;
n = 15u;
int a = 0xA;
a += 071;

bool skip = true;
skip = skip && false;

W N = O O wWwN O Hh wN =

Ene

Laboratory

PV227 GPU Rendering 6/50

-
Vector Data Types

@ vec2, vec3, vec4d — float,

@ ivec2, ivec3, ivec4 —int,

@ uvec2, uvec3, uvec4 — uint,

@ bvec2, bvec3, bvec4 — bool,

@ two, three or four component vectors of scalar types.

Laboratory

PV227 GPU Rendering 7/50

N
Vector Data Types — Selection

@ field selection or array access,

@ X, Yy, z, w— for positions or directions,
@ r, g, b, a—forcolors,

@ s, t, p, q — for texture coordinates,

@ only for readability, all select certain vector coordinate (e.g.
v.x =v.r=v.s = v[0]).

Laboratory

PV227 GPU Rendering 8/50

-
Matrix Data Types

@ only matrices of floats

@ mat2, mat3, mat4 — 2 x 2, 3 x 3, 4 x 4 matrices,
@ matmxn — m x n (column x row) matix,

@ column major order (first coordinate is column),
@ as in OpenGL, unlike C/C++.

mat4 m;

vecd v = m[3]; // Fourth column

float f =m[3][1]; // Second component (row) of the fourth
column vector

W N

Ene

Laboratory

PV227 GPU Rendering 9/50

N
Sampler Data Types

@ for texture access,
@ variants for floats, ints, unsigned ints (no bool),

@ [ilulsampler{1|2|3}D — access one, two or three
dimensional texture,

@ [ilulsamplerCube — access cube-map texture,

@ [ilu]sampler2DRect — access two-dimensional rectangle
texture,

@ [ilu]sampler{1|2}DArray — access one or two dimensional
texture array,

@ [ilu]samplerBuffer — access texture buffer,

Laboratory

PV227 GPU Rendering 10/50

N
Sampler Data Types — Shadow

@ sampler{1|2}DShadow — access one, two or three
dimensional depth texture with comparison,

@ samplerCubeShadow — access cube-map depth texture
with comparison,

@ sampler2DRectShadow — access two-dimensional
rectangle depth texture with comparison,

@ sampler{1|2}DArrayShadow — access one or two
dimensional depth texture array with comparison.

Laboratory

PV227 GPU Rendering 11/50

N
Sampler Data Types — Initialization

@ application initializes the samplers,
@ passed to shaders through uniform variables,
@ samplers cannot be manipulated in shader,

@ shadow textures and color samplers must not be mixed —
undefined behaviour.

uniform sampler2D sampler;
vec2 coord vec2(0.f, 1.f);
vec4 color texture (sampler, coord);

N

w

Ene

Laboratory

PV227 GPU Rendering 12/50

R
Structures

@ C++ style (name of structure — name of type),
@ can be embedded and nested, contain arrays,
@ bit-fields not allowed, no union, enum, class.

struct vertex
{
vec3 pos;
vec3 color;
|

vertex v;

o oA W N =

Ene

Laboratory

PV227 GPU Rendering

13/50

Arrays

@ available for any type,

@ zero indexed,

@ no pointers — always declared with [] and size,

@ the array must be declared with same size in all shaders.

Ene

Laboratory

PV227 GPU Rendering 14/50

N
Declarations and Scopes

@ variable name format same as in C/C++ (case sensitive),
@ names begining with “gl_" or “__” are reserved,
@ scoping similar to C++.

1| float f; // Declared from this point until the end of the block
2| for(int i = 0; i < 3; ++i) // i is declared only in this cycle
3 f %= f;

4

5| if (i == 1) // Invalid

6] {

8| }

PV227 GPU Rendering 15/50

R
Initializers and Constructors

@ scalar variables may be initialized in declaration,
@ constants must be initialized,

@ in and out variables may not be initialized,

@ uniform variables may be initialized.

inta=20,b, c=1;
const float eps = 1e—3f;
uniform float temp = 36.5f;

w N

Ene

Laboratory

PV227 GPU Rendering 16/50

Initializers and Constructors — Aggregate

@ aggregate types are initialized/set with constructors,
@ the number of components in vectors need not match.

vec2 v = vec2(0.f, 1.f);
v = vec2(1.f, 0.f);
vec3 v3 = vec3(v, 0.f);

v3 = vec3(1.f); // vec3(1.f, 1.f, 1.f);
v = vec2(v3); // vec2(1.f, 1.f);

W N U AW N =

float array[4] = float[4](0.f, 1.f, 2.f, 3.f);

o ©

struct person

1] {

12 struct attrib

13

14 vec3 color;

15 bool active;
16 };

17 vec3 pos;
18| } personl = person(attrib(vec3(0.5f, 0.5f, 0.5f), true), v3);

PV227 GPU Rendering 17/50

R
Initializers and Constructors — Matrix

@ matrix components are read and written in column major
order,

@ matrices cannot be constructed from matrices.

mat2 matrix = mat2(1.f, 2.f, 3.f, 4.f); // 1.f, 3.1
/1 2., 4.1);
mat2 identity = mat2(1.f); // Initializes diagonal
// mat2(1.f, 0.f, 0.f, 1.f);

vec2 v = vec2(1.0f);
mat2 identity2 = mat2(v);

N o oA WD =

PV227 GPU Rendering 18/50

.
Type Matching and Promotion

@ strict matching (prevents ambiguity),
@ assigned types, functions parameters must match exactly,

@ scalar integers may be implicitely converted to scalar
floats,

@ may force the programmer to use explicit conversion.

Laboratory

PV227 GPU Rendering 19/50

Type Conversions

@ performed with constructors,

@ no C-style typecast,

@ no way to reinterpret a value,

@ conversions to boolean — non-zero as true, zero as false,

@ conversions from boolean — true as 1 (1.f), false as 0
(0.1).

Ene

Laboratory

PV227 GPU Rendering 20/50

N
GLSL Qualifiers

tell compiler where the value comes from,

@ in — vertex attribute (vertex shader), vertex data (geometry
shader) or interpolated value (fragment shader),

@ uniform — constant variable in all shaders,

@ out — varying variable passed from one shader to another,
output to frame buffer,

@ const — compile time constant variables,
@ in, uniform, out are always global variables,
qualifier are specified before variable type.

Laboratory

PV227 GPU Rendering 21/50

R
Uniform Qualifier

@ cannot be modifed from shader,

@ less frequently updated, max once per primitive,

@ all data types supported,

@ used for samplers,

@ all shaders inside a program share uniform variables.

Laboratory

PV227 GPU Rendering 22/50

N
In Qualifier (vertex shader)

@ vertex attributes,

@ can be changed as often as a single vertex,

@ not all data types supported:

@ boolean scalars and vectors,
e structures,
e arrays.

Ene

Laboratory

PV227 GPU Rendering 23/50

Out Qualifier (vertex shader/geometry shader)

@ output to the geometry shader / rasterizer,
@ interpolation qualifiers for computing fragments:

e smooth out — perspective-correct interpolation,

@ noperspective out — interpolation without perspective
correction,

e flat out — no interpolation.

@ floating point scalars, vectors, matrices and arrays,
@ with flat out: [unsigned] integer scalars, vectors, arrays,
@ no structures.

Laboratory

PV227 GPU Rendering 24/50

N
Out Qualifier — Interpolation

Figure: smooth Figure: noperspective Figure: flat

@ Taken from geeks3d.com

Laboratory

PV227 GPU Rendering 25/50

http://www.geeks3d.com/20130514/opengl-interpolation-qualifiers-glsl-tutorial/

N
In Qualifier (fragment shader)

@ interpolated values from the rasterizer,

@ must match the definition of out variables in vertex /
geometry shader,

e interpolation qualifier, type, size, name.

Laboratory

PV227 GPU Rendering 26/50

N
Out Qualifier (fragment shader)

@ passed to per fragment fixed-function stage,

@ floating point/integer/unsigned integer scalars, vectors and
arrays,

@ no matrices or structures,

@ can be preceeded with layout(location = x), where x is the
number of the render target.

Laboratory

PV227 GPU Rendering 27/50

R
Constant Qualifiers

@ compile time constant,
@ not visible outside the shader,
@ individual structure items may not be constants,

@ initializers may contain only literal values or other const
variables.

Ene

Laboratory

PV227 GPU Rendering 28/50

R
No Qualifiers

@ can be both read and written,
@ unqualified global variables,
e shared between shader of the same type, not between
shaders of different types,
e not visible outside program,
e lifetime limited to a single run of a shader (no “static”),
e different variables for different processors — do NOT use.

Ene

Laboratory

PV227 GPU Rendering 29/50

Interface Blocks

@ common names for several variables,
@ different meaning for each qualifier, same syntax,

@ used for passing data between shaders, loading uniform
variables.

{
}

NN

storage_qualifier block_name

<members defition >
[instance_name];

@ block_name used from OpenGL,
@ instance_name optional to create named instances inside

GLSL,
@ possible arrays of instances. Hcl

Laboratory

PV227 GPU Rendering 30/50

R
Inter-shader Communication — Name Based

/] vertex shader
out vec4 color;

/! geometry shader
in vec4 color[];
out vec4 colorFromGeom;

/1 fragment shader
in vec4 colorFromGeom;

- O © ® N O O h W N =

@ names in shaders must match,
@ in and out cannot be named the same,

@ cannot use the same shader for vertex — fragment
and vertex — geometry — fragment. "cl

Laboratory

PV227 GPU Rendering 31/50

R
Inter-shader Communication — Location Based

/! vertex shader
layout (location
layout (location

0) out vec3 normalOut;
out vec4 colorOut;

I n
-
N

/! geometry shader
layout (location
layout (location

0) in vec3 normalln[];
1) in vec4 colorin[];

1
2
3
4
5
6
7
8

9
10| layout (location
11| layout (location
12
13
14| // fragment shader
15| layout (location
16| layout (location

0) out vec3 normalOut;
1) out vec4 colorOut;

0) in vec3 normalln;
1) in vec4 colorin;

@ locations in shaders must match,
@ location is per max vec4 item (not aggregate types),
@ difficulty with assigning location numbers.

PV227 GPU Rendering 32/50

Inter-shader Communication — Interface Based

/] vertex shader
out Data {

vec3 normal;

vec3 eye;

vec2 texCoord;
} DataOut;

0 N o® O A WD =

/! geometry shader
in Data {

vec3 normal;

vec3 eye;

vec2 texCoord;
} Dataln[];

g b WN = O ©

out Data {
vec3 normal;
vec3 eye;
vec2 texCoord;
} DataOut;

© © N o®

SIS
- o

/! fragment shader
in Data {

n
N

PV227 GPU Rendering

N
Inter-shader Communication — Interface Based (cont.)

23 vec3 normal;
24 vec3 eye;
25 vec2 texCoord;

26 } Dataln;
271 ...
28| DataOut.normal = normalize (someVector) ;

@ block names in shaders must match,
@ data manipulation through instance name,
@ same members in blocks.

PV227 GPU Rendering 34/50

N
Uniform Interface Blocks

@ sharing uniforms between programs,
@ setting multiple uniforms at once,

@ named blocks of uniform variables (individual items are
globally scoped),

@ backed by buffers for data transfer,

@ for setting transform matrices, common variables in shader
families etc.

Laboratory

PV227 GPU Rendering 35/50

Uniform Interface Blocks — Types
layout (xxx) uniform ColorBlock {

vec4 diffuse;

vec4 ambient;

|
out vec4 outputF;

void main() {

outputF diffuse + ambient;
}

O © ® N O O A~ WN

@ layout specifies storage (default is implementation
dependent),

@ std140 — OpenGL specified layout, blocks can be shared
between shaders,

@ shared — implementation dependent layout, blocks can be
shared between shaders,

@ packed — unused variables are optimized-out, not
shareable.

PV227 GPU Rendering 36/50

.
Uniform Interface Blocks — Binding

@ uniform blocks are connected with buffers through binding
points,

@ block indices are assigned during program link,

@ multiple blocks can be bound to the same binding point.

GLuint bindingPoint = 1, buffer, blockindex;
float myFloats[8] = {1.0, 0.0, 0.0, 1.0, 0.4, 0.0, 0.0, 1.0};

/1 Assign the uniform block to the binding point
blocklndex = glGetUniformBlocklindex(p, "ColorBlock");
glUniformBlockBinding (p, blocklndex, bindingPoint);

W N O U A W N =

glGenBuffers (1, &buffer);
glBindBuffer (GL_UNIFORM_BUFFER, buffer);

- O ©

/] Assign the buffer to the binding point

glBufferData (GL_UNIFORM_BUFFER, sizeof(myFloats), myFloats,
GL_DYNAMIC_DRAW) ;

13| glBindBufferBase (GL_UNIFORM_BUFFER, bindingPoint, buffer);

PV227 GPU Rendering 37/50

)

-
Uniform Interface Blocks — Alignment

@ individual uniforms may be aligned in memory,

@ to set them correctly we need to compute their offset,

@ queried with glGetActiveUniformBlockiv and
glGetActiveUniformsiv,

@ set with glBufferSubData.

layout (std140) uniform ColorBlock2 {
vec3 diffuse;
vec3 ambient;

|

GLuint bindingPoint = 1, buffer, blocklindex;
float myFloats[3] = {0.4, 0.0, 0.0};

0 N OO A WD =

©

glGenBuffers (1, &buffer);
glBindBuffer (GL_UNIFORM_BUFFER, buffer);

N = o

glBufferSubData (GL_UNIFORM_BUFFER, 4xsizeof(float), sizeof(
myFloats), myFloats); // Notice the offset

PV227 GPU Rendering 38/50

-
Program Flow

similar to C++,
void main() is the entry point for a shader,
global variables are initialized before main is executed,
looping
o for, while, do-while, break, continue,
selection
o if, if-else, if-else if-else, ?: and switch,
expressions must be booleans,

partial evaluation of && and ||, ?:,
no goto,
discard prevents fragment from updating frame buffer,

Ene

Laboratory

PV227 GPU Rendering 39/50

Functions

@ support for C++ overload by parameter type,

@ prototype declaration or definition before call to the
function,

@ exact matching of parameters, return values (return),
@ no recursion.

Laboratory

PV227 GPU Rendering 40/50

-
Calling Conventions

@ value-return,

@ parameter behaviour controlled by qualifiers in (default),
out and inout,

@ all input parameter values are copied to function before
execution,

@ all output parameter values are copied from the function
after execution,

@ in parameters can be also const (not writeable inside
function).

Laboratory

PV227 GPU Rendering 41/50

.
Functions (cont.)

@ arrays and structures are also copied by value,
@ any return type (including structures).

1| void foo1(in vec3 normal, float eps, inout vec3 coord);

2| vec3 foo2(in vec3 normal, float eps, in vec3 coord);

void foo3(in vec3 normal, float eps, in vec3 coord, out vec3
coordOut) ;

w

/I Get coord

vec3 coord;

foo1(normal, eps, coord);

coord = foo2(normal, eps, coord);
foo3 (normal, eps, coord, coord);

© 0 N O O A

£

Laboratory

PV227 GPU Rendering 42/50

-
Swizzling

used to select (rearrange) components of a vector,
must use component names from the same set,
must still be a valid type (no more than 4 components),
R-values

e any combination and repetition of components,
L-values

@ no repetition of components.

vec4d
vec2
vec3
vecd
vecd
0.XW
0. XX

N o oA WD =

pos = vecd4(1.f, 2.f, 3.f, 4.f);

vl = pos.xy; // (1.f, 2.f)

v2 = pos.abb; // (1.f, 2.f, 2.1)

v3 = pos.xyrs; // lllegal: different sets
0 = vecd(0.f);

=v2; // (1.f, 0.f, 0.f, 2.1)

= vec2(0.f); // lllegal: repetition

PV227 GPU Rendering 43/50

N
Operations on Vectors and Matrices

@ mostly component-wise (independently for each
component),

@ vector sizes must match,

@ vector * matrix and matrix * matrix are not
component-wise,

@ logical operations (!, &&, ||, A") only on scalar boolean,
@ not conmonent-wise logical not on boolean vectors.

Laboratory

PV227 GPU Rendering 44/50

Operations on Vectors and Matrices (cont.)

@ relational operators (<, >, <=, >=) on scalar floats and
integers — scalar boolean,

@ build-in functions like lessThanEqual do component-wise
relational operations on vectors,

@ == and != operate on all types except arrays — scalar
boolean,

@ for component-wise comparision equal and nonEqual —
boolean vector,

@ any and all turn boolean vector into boolean scalar,

@ = and its variants (+=, -=, *=, /=) operate on all types
except structures and arrays.

Laboratory

PV227 GPU Rendering 45/50

-
Preprocessor

@ basically the same as in C,
@ macros begining with “GL_" or “__” are reserved,

@ shaders should declare the GLSL version they are written
for (#version number) as the first line of the code,

@ usefull pragmas optimize(on/off) and debug(on/off),
@ language extensions can be accessed using #extension.

Laboratory

PV227 GPU Rendering 46/50

N
Build-in Functions

@ make shader programming easier,
@ expose hardware functionality not writeable in the shader,

@ provide optimized (possibly hardware accelerated)
implementations of common functions,

@ usually both scalar and vector variants,
@ can be overriden by redeclaration,
@ may be specific for a single shader type.

Laboratory

PV227 GPU Rendering 47/50

N
Shader Specific Functions

Geometry shader:
@ void EmitVertex(void);
e use the current output state for a new vertex,
@ void EndPrimitive(void);
e complete the current output primitive.

Ene

Laboratory

PV227 GPU Rendering 48/50

N
Keep up-to-date

@ http://www.opengl.org/sdk/docs/man/
@ http://www.opengl.org/sdk/docs/manglsl/
@ http://www.opengl.org/registry/

Ene

Laboratory

PV227 GPU Rendering 49/50

http://www.opengl.org/sdk/docs/man/
http://www.opengl.org/sdk/docs/manglsl/
http://www.opengl.org/registry/

Example — HSV

@ Color the HSV cone:

e His the angle in radians (compute from x and
z-coordinates),

e S is the distance from the center,

e Vis the distance from the cone apex.

\ 24

Figure: Taken from http://sergeykarayev.com @

Laboratory

PV227 GPU Rendering 50/50

http://upload.wikimedia.org/wikipedia/commons/f/f1/HSV_cone.jpg

